Highly Elastic, Bioresorbable Polymeric Materials for Stretchable, Transient Electronic Systems
Corresponding Author: Suk‑Won Hwang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 102
Abstract
Substrates or encapsulants in soft and stretchable formats are key components for transient, bioresorbable electronic systems; however, elastomeric polymers with desired mechanical and biochemical properties are very limited compared to non-transient counterparts. Here, we introduce a bioresorbable elastomer, poly(glycolide-co-ε-caprolactone) (PGCL), that contains excellent material properties including high elongation-at-break (< 1300%), resilience and toughness, and tunable dissolution behaviors. Exploitation of PGCLs as polymer matrices, in combination with conducing polymers, yields stretchable, conductive composites for degradable interconnects, sensors, and actuators, which can reliably function under external strains. Integration of device components with wireless modules demonstrates elastic, transient electronic suture system with on-demand drug delivery for rapid recovery of post-surgical wounds in soft, time-dynamic tissues.
Highlights:
1 The paper introduces a bioresorbable elastomer, poly(glycolide-co-ε-caprolactone) (PGCL), with remarkable mechanical properties, including high elongation-at-break (< 1300%), resilience, and toughness (75 MJ m−3) for soft and transient electronics.
2 Fabrication of conducting polymers with PGCL yields stretchable, conductive composites for transient electronic devices, functioning reliably under external strains.
3 The study demonstrates the feasibility of a disintegrable electronic suture system with on-demand drug delivery for rapid recovery of post-surgical wounds on soft, time-dynamic tissues or versatile biomedical areas of interest.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.-K. Kang, R.K.J. Murphy, S.-W. Hwang, S.M. Lee et al., Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016). https://doi.org/10.1038/ncomms3838
- J. Koo, M.R. MacEwan, S.-K. Kang, S.M. Won et al., Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 24, 1830–1836 (2018). https://doi.org/10.1038/s41591-018-0196-2
- C.M. Boutry, L. Beker, Y. Kaizawa, C. Vassos et al., Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019). https://doi.org/10.1038/s41551-018-0336-5
- Y.S. Choi, R.T. Yin, A. Pfenniger, J. Koo et al., Fully implantable and bioresorbable cardiac pacemakers without le or batteries. Nat. Biotechnol. 39, 1228–1238 (2021). https://doi.org/10.1038/s41587-021-00948-x
- Y.S. Choi, H. Jeong, R.T. Yin, R. Avila et al., A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science 376, 1006–1012 (2022). https://doi.org/10.1126/science.abm1703
- S.M. Yang, J.H. Shim, H.-U. Cho, T.-M. Jang et al., Hetero-integration of silicon nanomembranes with 2D materials for bioresorbable, wireless neurochemical system. Adv. Mater. 34, e2108203 (2022). https://doi.org/10.1002/adma.202108203
- J. Lee, H.R. Cho, G.D. Cha, H. Seo et al., Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nat. Commun. 10, 5205 (2019). https://doi.org/10.1038/s41467-019-13198-y
- J. Koo, S.B. Kim, Y.S. Choi, Z. Xie et al., Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. Sci. Adv. 6, eabb1093 (2020). https://doi.org/10.1126/sciadv.abb1093
- X. Peng, K. Dong, C. Ye, Y. Jiang et al., A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 6, eaba9624 (2020). https://doi.org/10.1126/sciadv.aba9624
- J.-H. Lee, K. Cho, K. Cho, Emerging trend in soft electronics: integrating machine intelligence with soft acoustic/vibration sensors. Adv. Mater. (2023). https://doi.org/10.1002/adma.202209673
- W.B. Han, S.-Y. Heo, D. Kim, S.M. Yang et al., Zebra-inspired stretchable, biodegradable radiation modulator for all-day sustainable energy harvesters. Sci. Adv. 9, eadf5883 (2023). https://doi.org/10.1126/sciadv.adf5883
- Z. Hui, L. Zhang, G. Ren, G. Sun et al., Green flexible electronics: natural materials, fabrication, and applications. Adv. Mater. (2023). https://doi.org/10.1002/adma.202211202
- G. Li, E. Song, G. Huang, Q. Guo et al., High-temperature-triggered thermally degradable electronics based on flexible silicon nanomembranes. Adv. Funct. Mater. 28, 1801448 (2018). https://doi.org/10.1002/adfm.201801448
- J.-W. Shin, J. ChanChoe, J.H. Lee, W.B. Han et al., Biologically safe, degradable self-destruction system for on-demand, programmable transient electronics. ACS Nano 15, 19310–19320 (2021). https://doi.org/10.1021/acsnano.1c05463
- C. Li, C. Guo, V. Fitzpatrick, A. Ibrahim et al., Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 5, 61–81 (2020). https://doi.org/10.1038/s41578-019-0150-z
- A. Samir, F.H. Ashour, A.A.A. Hakim, M. Bassyouni, Recent advances in biodegradable polymers for sustainable applications. Npj Mater. Degrad. 6, 68 (2022). https://doi.org/10.1038/s41529-022-00277-7
- W.B. Han, J.H. Lee, J.-W. Shin, S.-W. Hwang, Advanced materials and systems for biodegradable, transient electronics. Adv. Mater. 32, e2002211 (2020). https://doi.org/10.1002/adma.202002211
- S.-W. Hwang, J.-K. Song, X. Huang, H. Cheng et al., High-performance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 26, 3905–3911 (2014). https://doi.org/10.1002/adma.201306050
- H. Tao, S.-W. Hwang, B. Marelli, B. An et al., Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc. Natl. Acad. Sci. U.S.A. 111, 17385–17389 (2014). https://doi.org/10.1073/pnas.1407743111
- W. Jiang, H. Li, Z. Liu, Z. Li et al., Fully bioabsorbable natural-materials-based triboelectric nanogenerators. Adv. Mater. 30, 1801895 (2018). https://doi.org/10.1002/adma.201801895
- Y.H. Jung, T.-H. Chang, H. Zhang, C. Yao et al., High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 6, 7170 (2015). https://doi.org/10.1038/ncomms8170
- T. Li, C. Chen, A.H. Brozena, J.Y. Zhu et al., Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47–56 (2021). https://doi.org/10.1038/s41586-020-03167-7
- S.K. Ghosh, J. Park, S. Na, M.P. Kim et al., A fully biodegradable ferroelectric skin sensor from edible porcine skin gelatine. Adv. Sci. 8, 2005010 (2021). https://doi.org/10.1002/advs.202005010
- X. Peng, K. Dong, Y. Zhang, L. Wang et al., Sweat-permeable, biodegradable, transparent and self-powered chitosan-based electronic skin with ultrathin elastic gold nanofibers. Adv. Funct. Mater. 32, 2112241 (2022). https://doi.org/10.1002/adfm.202112241
- M. Baumgartner, F. Hartmann, M. Drack, D. Preninger et al., Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 19, 1102–1109 (2020). https://doi.org/10.1038/s41563-020-0699-3
- E.H. Rumley, D. Preninger, A. Shagan Shomron, P. Rothemund et al., Biodegradable electrohydraulic actuators for sustainable soft robots. Sci. Adv. 9, eadf5551 (2023). https://doi.org/10.1126/sciadv.adf5551
- G.A. Salvatore, J. Sülzle, F. Dalla Valle, G. Cantarella et al., Biodegradable and highly deformable temperature sensors for the internet of things. Adv. Funct. Mater. 27, 1702390 (2017). https://doi.org/10.1002/adfm.201702390
- C. Hou, Z. Xu, W. Qiu, R. Wu et al., A biodegradable and stretchable protein-based sensor as artificial electronic skin for human motion detection. Small 15, e1805084 (2019). https://doi.org/10.1002/smll.201805084
- O. Yue, X. Wang, X. Liu, M. Hou et al., Spider-web and ant-tentacle doubly bio-inspired multifunctional self-powered electronic skin with hierarchical nanostructure. Adv. Sci. 8, e2004377 (2021). https://doi.org/10.1002/advs.202004377
- J. Xu, X. Wei, R. Li, Y. Shi et al., Intelligent self-powered sensor based on triboelectric nanogenerator for take-off status monitoring in the sport of triple-jumping. Nano Res. 15, 6843–6849 (2022). https://doi.org/10.1007/s12274-022-4218-5
- X. Wei, Y. Wang, B. Tan, E. Zhang et al., Triboelectric nanogenerators stimulated electroacupuncture (EA) treatment for promoting the functional recovery after spinal cord injury. Mater. Today 60, 41–51 (2022). https://doi.org/10.1016/j.mattod.2022.09.010
- X. Wei, B. Wang, Z. Wu, Z.L. Wang, An open-environment tactile sensing system: toward simple and efficient material identification. Adv. Mater. 34(29), 2203073 (2022). https://doi.org/10.1002/adma.202203073
- W.B. Han, G.-J. Ko, K.-G. Lee, D. Kim et al., Ultra-stretchable and biodegradable elastomers for soft, transient electronics. Nat. Commun. 14, 2263 (2023). https://doi.org/10.1038/s41467-023-38040-4
- S. Chen, L. Sun, X. Zhou, Y. Guo et al., Mechanically and biologically skin-like elastomers for bio-integrated electronics. Nat. Commun. 11, 1107 (2020). https://doi.org/10.1038/s41467-020-14446-2
- Y.S. Choi, Y.-Y. Hsueh, J. Koo, Q. Yang et al., Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nat. Commun. 11, 5990 (2020). https://doi.org/10.1038/s41467-020-19660-6
- Y. Wang, G.A. Ameer, B.J. Sheppard, R. Langer, A tough biodegradable elastomer. Nat. Biotechnol. 20, 602–606 (2002). https://doi.org/10.1038/nbt0602-602
- C.M. Boutry, Y. Kaizawa, B.C. Schroeder, A. Chortos et al., A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1, 314–321 (2018). https://doi.org/10.1038/s41928-018-0071-7
- Q. Yang, T. Wei, R.T. Yin, M. Wu et al., Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat. Mater. 20, 1559–1570 (2021). https://doi.org/10.1038/s41563-021-01051-x
- U. Sharma, D. Concagh, L. Core, Y. Kuang et al., The development of bioresorbable composite polymeric implants with high mechanical strength. Nat. Mater. 17, 96–103 (2018). https://doi.org/10.1038/nmat5016
- R.S. Bezwada, D.D. Jamiolkowski, I.Y. Lee, V. Agarwal et al., Monocryl suture, a new ultra-pliable absorbable monofilament suture. Biomaterials 16, 1141–1148 (1995). https://doi.org/10.1016/0142-9612(95)93577-z
- S.-H. Lee, B.-S. Kim, S.H. Kim, S.W. Choi et al., Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. J. Biomed. Mater. Res. A 66, 29–37 (2003). https://doi.org/10.1002/jbm.a.10497
- J.-H. Park, H. Yoon, Y.J. Kwak, C. Wang et al., Feasibility and safety of inserting transient biodegradable stents in the pylorus during pylorus-preserving gastrectomy for gastric cancer: a preliminary study in a porcine for proof of concept. Gastric Cancer 26, 155–166 (2023). https://doi.org/10.1007/s10120-022-01350-5
- J. Jaworska, R. Smolarczyk, M. Musiał-Kulik, T. Cichoń et al., Electrospun paclitaxel delivery system based on PGCL/PLGA in local therapy combined with brachytherapy. Int. J. Pharm. 602, 120596 (2021). https://doi.org/10.1016/j.ijpharm.2021.120596
- Q. Cai, J. Bei, S. Wang, Synthesis and properties of ABA-type triblock copolymers of poly(glycolide-co-caprolactone) (A) and poly(ethylene glycol) (B). Polymer 43(13), 3585–3591 (2002). https://doi.org/10.1016/S0032-3861(02)00197-0
- A. Turek, K. Stoklosa, A. Borecka et al., Designing biodegradable wafers based on poly(l-lactide-co-glycolide) and poly(glycolide-co-ε-caprolactone) for the prolonged and local release of idarubicin for the therapy of glioblastoma multiforme. Pharm. Res.s 37, 90 (2020). https://doi.org/10.1007/s11095-020-02810-2
- M. Labet, W. Thielemans, Synthesis of polycaprolactone: a review. Chem. Soc. Rev. 38, 3484–3504 (2009). https://doi.org/10.1039/b820162p
- P.K. Samantaray, A. Little, D.M. Haddleton, T. McNally et al., Poly(glycolic acid) (PGA): a versatile building block expanding high performance and sustainable bioplastic applications. Green Chem. 22, 4055–4081 (2020). https://doi.org/10.1039/d0gc01394c
- S. Li, P. Dobrzynski, J. Kasperczyk, M. Bero et al., Structure-property relationships of copolymers obtained by ring-opening polymerization of glycolide and epsilon-caprolactone. Part 2. Influence of composition and chain microstructure on the hydrolytic degradation. Biomacromol 6, 489–497 (2005). https://doi.org/10.1021/bm049458
- J. Li, C. Wang, G. Gao, X. Yin et al., MBG/PGA–PCL composite scaffolds provide highly tunable degradation and osteogenic features. Bioact. Mater. 15, 53–67 (2022). https://doi.org/10.1016/j.bioactmat.2021.11.034
- Y. You, B.-M. Min, S.J. Lee, T.S. Lee et al., In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide-co-glycolide). J. Appl. Polym. Sci. 95(2), 193–200 (2005). https://doi.org/10.1002/app.21116
- M. Guo, Z. Chu, J. Yao, W. Feng et al., The effects of tensile stress on degradation of biodegradable PLGA membranes: a quantitative study. Polym. Degrad. Stab. 124, 95–100 (2016). https://doi.org/10.1016/j.polymdegrtab.2015.12.019
- C. Vepari, D.L. Kaplan, Silk as a biomaterial. Prog. Polym. Sci. 32, 991–1007 (2007). https://doi.org/10.1016/j.progpolymsci.2007.05.013
- B. Kong, Y. Chen, R. Liu, X. Liu et al., Fiber reinforced GelMA hydrogel to induce the regeneration of corneal stroma. Nat. Commun. 11, 1–12 (2020). https://doi.org/10.1038/s41467-020-14887-9
- M. Held, A. Pichler, J. Chabeda, N. Lam et al., Soft electronic platforms combining elastomeric stretchability and biodegradability. Adv. Sustain. Syst. 6, 2100035 (2022). https://doi.org/10.1002/u.202100035
- S. Kim, S. Choi, E. Oh, J. Byun et al., Revisit to three-dimensional percolation theory: Accurate analysis for highly stretchable conductive composite materials. Sci. Rep. 6, 34632 (2016). https://doi.org/10.1038/srep34632
- J. Yang, A.R. Webb, G.A. Ameer, Novel citric acid-based biodegradable elastomers for tissue engineering. Adv. Mater. 16, 511–516 (2004). https://doi.org/10.1002/adma.200306264
- Y. Guo, S. Chen, L. Sun, L. Yang et al., Degradable and fully recyclable dynamic thermoset elastomer for 3D-printed wearable electronics. Adv. Funct. Mater. 31, 2009799 (2021). https://doi.org/10.1002/adfm.202009799
- N.A. Shahrim, Z. Ahmad, A. Wong Azman, Y. Fachmi Buys et al., Mechanisms for doped PEDOT:PSS electrical conductivity improvement. Mater. Adv. 2, 7118–7138 (2021). https://doi.org/10.1039/d1ma00290b
- H. He, L. Zhang, X. Guan, H. Cheng et al., Biocompatible conductive polymers with high conductivity and high stretchability. ACS Appl. Mater. Interfaces 11, 26185–26193 (2019). https://doi.org/10.1021/acsami.9b07325
- L. Zhang, K.S. Kumar, H. He, C.J. Cai, X. He et al., Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat. Commun. 11, 4683 (2020). https://doi.org/10.1038/s41467-020-18503-8
- S. Choi, J. Park, W. Hyun, J. Kim, J. Kim et al., Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 9, 6626–6633 (2015). https://doi.org/10.1021/acsnano.5b02790
- R. Zhou, P. Li, Z. Fan, D. Du et al., Stretchable heaters with composites of an intrinsically conductive polymer, reduced graphene oxide and an elastomer for wearable thermotherapy. J. Mater. Chem. C 5, 1544–1551 (2017). https://doi.org/10.1039/c6tc04849h
- S.E. Naleway, W. Lear, J.J. Kruzic, C.B. Maughan, Mechanical properties of suture materials in general and cutaneous surgery: an update on mechanical properties of suture materials. J. Biomed. Mater. Res. B Appl. Biomater. 103, 735–742 (2015). https://doi.org/10.1002/jbm.b.33171
- J.-C. Kim, Y.-K. Lee, B.-S. Lim, S.-H. Rhee et al., Comparison of tensile and knot security properties of surgical sutures. J. Mater. Sci. Mater. Med. 18, 2363–2369 (2007). https://doi.org/10.1007/s10856-007-3114-6
- V. Kalidasan, X. Yang, Z. Xiong, R.R. Li et al., Wirelessly operated bioelectronic sutures for the monitoring of deep surgical wounds. Nat. Biomed. Eng. 5, 1217–1227 (2021). https://doi.org/10.1038/s41551-021-00802-0
- J. Lee, S.J. Ihle, G.S. Pellegrino, H. Kim et al., Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat. Electron. 4, 291–301 (2021). https://doi.org/10.1038/s41928-021-00557-1
- M. Helmedag, D. Heise, R. Eickhoff, K.-M. Kossel et al., Cross-section modified and highly elastic sutures reduce tissue incision and show comparable biocompatibility: in-vitro and in-vivo evaluation of novel thermoplastic urethane surgical thre. J. Biomed. Mater. Res. B Appl. Biomater. 109, 693–702 (2021). https://doi.org/10.1002/jbm.b.34734
- J.C. Gills, R.N. Brogden, Ketorolac. Drugs 53, 139–188 (1997). https://doi.org/10.2165/00003495-199753010-00012
- A. Ghosh, L. Li, L. Xu, R.P. Dash et al., Gastrointestinal-resident, shape-changing microdevices extend drug release in vivo. Sci. Adv. 6(44), eabb4133 (2020). https://doi.org/10.1126/sciadv.abb4133
- I. Negut, V. Grumezescu, A.M. Grumezescu, Treatment strategies for infected wounds. Molecules 23(9), 2392 (2018). https://doi.org/10.3390/molecules23092392
References
S.-K. Kang, R.K.J. Murphy, S.-W. Hwang, S.M. Lee et al., Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016). https://doi.org/10.1038/ncomms3838
J. Koo, M.R. MacEwan, S.-K. Kang, S.M. Won et al., Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 24, 1830–1836 (2018). https://doi.org/10.1038/s41591-018-0196-2
C.M. Boutry, L. Beker, Y. Kaizawa, C. Vassos et al., Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019). https://doi.org/10.1038/s41551-018-0336-5
Y.S. Choi, R.T. Yin, A. Pfenniger, J. Koo et al., Fully implantable and bioresorbable cardiac pacemakers without le or batteries. Nat. Biotechnol. 39, 1228–1238 (2021). https://doi.org/10.1038/s41587-021-00948-x
Y.S. Choi, H. Jeong, R.T. Yin, R. Avila et al., A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science 376, 1006–1012 (2022). https://doi.org/10.1126/science.abm1703
S.M. Yang, J.H. Shim, H.-U. Cho, T.-M. Jang et al., Hetero-integration of silicon nanomembranes with 2D materials for bioresorbable, wireless neurochemical system. Adv. Mater. 34, e2108203 (2022). https://doi.org/10.1002/adma.202108203
J. Lee, H.R. Cho, G.D. Cha, H. Seo et al., Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nat. Commun. 10, 5205 (2019). https://doi.org/10.1038/s41467-019-13198-y
J. Koo, S.B. Kim, Y.S. Choi, Z. Xie et al., Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. Sci. Adv. 6, eabb1093 (2020). https://doi.org/10.1126/sciadv.abb1093
X. Peng, K. Dong, C. Ye, Y. Jiang et al., A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 6, eaba9624 (2020). https://doi.org/10.1126/sciadv.aba9624
J.-H. Lee, K. Cho, K. Cho, Emerging trend in soft electronics: integrating machine intelligence with soft acoustic/vibration sensors. Adv. Mater. (2023). https://doi.org/10.1002/adma.202209673
W.B. Han, S.-Y. Heo, D. Kim, S.M. Yang et al., Zebra-inspired stretchable, biodegradable radiation modulator for all-day sustainable energy harvesters. Sci. Adv. 9, eadf5883 (2023). https://doi.org/10.1126/sciadv.adf5883
Z. Hui, L. Zhang, G. Ren, G. Sun et al., Green flexible electronics: natural materials, fabrication, and applications. Adv. Mater. (2023). https://doi.org/10.1002/adma.202211202
G. Li, E. Song, G. Huang, Q. Guo et al., High-temperature-triggered thermally degradable electronics based on flexible silicon nanomembranes. Adv. Funct. Mater. 28, 1801448 (2018). https://doi.org/10.1002/adfm.201801448
J.-W. Shin, J. ChanChoe, J.H. Lee, W.B. Han et al., Biologically safe, degradable self-destruction system for on-demand, programmable transient electronics. ACS Nano 15, 19310–19320 (2021). https://doi.org/10.1021/acsnano.1c05463
C. Li, C. Guo, V. Fitzpatrick, A. Ibrahim et al., Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 5, 61–81 (2020). https://doi.org/10.1038/s41578-019-0150-z
A. Samir, F.H. Ashour, A.A.A. Hakim, M. Bassyouni, Recent advances in biodegradable polymers for sustainable applications. Npj Mater. Degrad. 6, 68 (2022). https://doi.org/10.1038/s41529-022-00277-7
W.B. Han, J.H. Lee, J.-W. Shin, S.-W. Hwang, Advanced materials and systems for biodegradable, transient electronics. Adv. Mater. 32, e2002211 (2020). https://doi.org/10.1002/adma.202002211
S.-W. Hwang, J.-K. Song, X. Huang, H. Cheng et al., High-performance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 26, 3905–3911 (2014). https://doi.org/10.1002/adma.201306050
H. Tao, S.-W. Hwang, B. Marelli, B. An et al., Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc. Natl. Acad. Sci. U.S.A. 111, 17385–17389 (2014). https://doi.org/10.1073/pnas.1407743111
W. Jiang, H. Li, Z. Liu, Z. Li et al., Fully bioabsorbable natural-materials-based triboelectric nanogenerators. Adv. Mater. 30, 1801895 (2018). https://doi.org/10.1002/adma.201801895
Y.H. Jung, T.-H. Chang, H. Zhang, C. Yao et al., High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 6, 7170 (2015). https://doi.org/10.1038/ncomms8170
T. Li, C. Chen, A.H. Brozena, J.Y. Zhu et al., Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47–56 (2021). https://doi.org/10.1038/s41586-020-03167-7
S.K. Ghosh, J. Park, S. Na, M.P. Kim et al., A fully biodegradable ferroelectric skin sensor from edible porcine skin gelatine. Adv. Sci. 8, 2005010 (2021). https://doi.org/10.1002/advs.202005010
X. Peng, K. Dong, Y. Zhang, L. Wang et al., Sweat-permeable, biodegradable, transparent and self-powered chitosan-based electronic skin with ultrathin elastic gold nanofibers. Adv. Funct. Mater. 32, 2112241 (2022). https://doi.org/10.1002/adfm.202112241
M. Baumgartner, F. Hartmann, M. Drack, D. Preninger et al., Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 19, 1102–1109 (2020). https://doi.org/10.1038/s41563-020-0699-3
E.H. Rumley, D. Preninger, A. Shagan Shomron, P. Rothemund et al., Biodegradable electrohydraulic actuators for sustainable soft robots. Sci. Adv. 9, eadf5551 (2023). https://doi.org/10.1126/sciadv.adf5551
G.A. Salvatore, J. Sülzle, F. Dalla Valle, G. Cantarella et al., Biodegradable and highly deformable temperature sensors for the internet of things. Adv. Funct. Mater. 27, 1702390 (2017). https://doi.org/10.1002/adfm.201702390
C. Hou, Z. Xu, W. Qiu, R. Wu et al., A biodegradable and stretchable protein-based sensor as artificial electronic skin for human motion detection. Small 15, e1805084 (2019). https://doi.org/10.1002/smll.201805084
O. Yue, X. Wang, X. Liu, M. Hou et al., Spider-web and ant-tentacle doubly bio-inspired multifunctional self-powered electronic skin with hierarchical nanostructure. Adv. Sci. 8, e2004377 (2021). https://doi.org/10.1002/advs.202004377
J. Xu, X. Wei, R. Li, Y. Shi et al., Intelligent self-powered sensor based on triboelectric nanogenerator for take-off status monitoring in the sport of triple-jumping. Nano Res. 15, 6843–6849 (2022). https://doi.org/10.1007/s12274-022-4218-5
X. Wei, Y. Wang, B. Tan, E. Zhang et al., Triboelectric nanogenerators stimulated electroacupuncture (EA) treatment for promoting the functional recovery after spinal cord injury. Mater. Today 60, 41–51 (2022). https://doi.org/10.1016/j.mattod.2022.09.010
X. Wei, B. Wang, Z. Wu, Z.L. Wang, An open-environment tactile sensing system: toward simple and efficient material identification. Adv. Mater. 34(29), 2203073 (2022). https://doi.org/10.1002/adma.202203073
W.B. Han, G.-J. Ko, K.-G. Lee, D. Kim et al., Ultra-stretchable and biodegradable elastomers for soft, transient electronics. Nat. Commun. 14, 2263 (2023). https://doi.org/10.1038/s41467-023-38040-4
S. Chen, L. Sun, X. Zhou, Y. Guo et al., Mechanically and biologically skin-like elastomers for bio-integrated electronics. Nat. Commun. 11, 1107 (2020). https://doi.org/10.1038/s41467-020-14446-2
Y.S. Choi, Y.-Y. Hsueh, J. Koo, Q. Yang et al., Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nat. Commun. 11, 5990 (2020). https://doi.org/10.1038/s41467-020-19660-6
Y. Wang, G.A. Ameer, B.J. Sheppard, R. Langer, A tough biodegradable elastomer. Nat. Biotechnol. 20, 602–606 (2002). https://doi.org/10.1038/nbt0602-602
C.M. Boutry, Y. Kaizawa, B.C. Schroeder, A. Chortos et al., A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1, 314–321 (2018). https://doi.org/10.1038/s41928-018-0071-7
Q. Yang, T. Wei, R.T. Yin, M. Wu et al., Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat. Mater. 20, 1559–1570 (2021). https://doi.org/10.1038/s41563-021-01051-x
U. Sharma, D. Concagh, L. Core, Y. Kuang et al., The development of bioresorbable composite polymeric implants with high mechanical strength. Nat. Mater. 17, 96–103 (2018). https://doi.org/10.1038/nmat5016
R.S. Bezwada, D.D. Jamiolkowski, I.Y. Lee, V. Agarwal et al., Monocryl suture, a new ultra-pliable absorbable monofilament suture. Biomaterials 16, 1141–1148 (1995). https://doi.org/10.1016/0142-9612(95)93577-z
S.-H. Lee, B.-S. Kim, S.H. Kim, S.W. Choi et al., Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. J. Biomed. Mater. Res. A 66, 29–37 (2003). https://doi.org/10.1002/jbm.a.10497
J.-H. Park, H. Yoon, Y.J. Kwak, C. Wang et al., Feasibility and safety of inserting transient biodegradable stents in the pylorus during pylorus-preserving gastrectomy for gastric cancer: a preliminary study in a porcine for proof of concept. Gastric Cancer 26, 155–166 (2023). https://doi.org/10.1007/s10120-022-01350-5
J. Jaworska, R. Smolarczyk, M. Musiał-Kulik, T. Cichoń et al., Electrospun paclitaxel delivery system based on PGCL/PLGA in local therapy combined with brachytherapy. Int. J. Pharm. 602, 120596 (2021). https://doi.org/10.1016/j.ijpharm.2021.120596
Q. Cai, J. Bei, S. Wang, Synthesis and properties of ABA-type triblock copolymers of poly(glycolide-co-caprolactone) (A) and poly(ethylene glycol) (B). Polymer 43(13), 3585–3591 (2002). https://doi.org/10.1016/S0032-3861(02)00197-0
A. Turek, K. Stoklosa, A. Borecka et al., Designing biodegradable wafers based on poly(l-lactide-co-glycolide) and poly(glycolide-co-ε-caprolactone) for the prolonged and local release of idarubicin for the therapy of glioblastoma multiforme. Pharm. Res.s 37, 90 (2020). https://doi.org/10.1007/s11095-020-02810-2
M. Labet, W. Thielemans, Synthesis of polycaprolactone: a review. Chem. Soc. Rev. 38, 3484–3504 (2009). https://doi.org/10.1039/b820162p
P.K. Samantaray, A. Little, D.M. Haddleton, T. McNally et al., Poly(glycolic acid) (PGA): a versatile building block expanding high performance and sustainable bioplastic applications. Green Chem. 22, 4055–4081 (2020). https://doi.org/10.1039/d0gc01394c
S. Li, P. Dobrzynski, J. Kasperczyk, M. Bero et al., Structure-property relationships of copolymers obtained by ring-opening polymerization of glycolide and epsilon-caprolactone. Part 2. Influence of composition and chain microstructure on the hydrolytic degradation. Biomacromol 6, 489–497 (2005). https://doi.org/10.1021/bm049458
J. Li, C. Wang, G. Gao, X. Yin et al., MBG/PGA–PCL composite scaffolds provide highly tunable degradation and osteogenic features. Bioact. Mater. 15, 53–67 (2022). https://doi.org/10.1016/j.bioactmat.2021.11.034
Y. You, B.-M. Min, S.J. Lee, T.S. Lee et al., In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide-co-glycolide). J. Appl. Polym. Sci. 95(2), 193–200 (2005). https://doi.org/10.1002/app.21116
M. Guo, Z. Chu, J. Yao, W. Feng et al., The effects of tensile stress on degradation of biodegradable PLGA membranes: a quantitative study. Polym. Degrad. Stab. 124, 95–100 (2016). https://doi.org/10.1016/j.polymdegrtab.2015.12.019
C. Vepari, D.L. Kaplan, Silk as a biomaterial. Prog. Polym. Sci. 32, 991–1007 (2007). https://doi.org/10.1016/j.progpolymsci.2007.05.013
B. Kong, Y. Chen, R. Liu, X. Liu et al., Fiber reinforced GelMA hydrogel to induce the regeneration of corneal stroma. Nat. Commun. 11, 1–12 (2020). https://doi.org/10.1038/s41467-020-14887-9
M. Held, A. Pichler, J. Chabeda, N. Lam et al., Soft electronic platforms combining elastomeric stretchability and biodegradability. Adv. Sustain. Syst. 6, 2100035 (2022). https://doi.org/10.1002/u.202100035
S. Kim, S. Choi, E. Oh, J. Byun et al., Revisit to three-dimensional percolation theory: Accurate analysis for highly stretchable conductive composite materials. Sci. Rep. 6, 34632 (2016). https://doi.org/10.1038/srep34632
J. Yang, A.R. Webb, G.A. Ameer, Novel citric acid-based biodegradable elastomers for tissue engineering. Adv. Mater. 16, 511–516 (2004). https://doi.org/10.1002/adma.200306264
Y. Guo, S. Chen, L. Sun, L. Yang et al., Degradable and fully recyclable dynamic thermoset elastomer for 3D-printed wearable electronics. Adv. Funct. Mater. 31, 2009799 (2021). https://doi.org/10.1002/adfm.202009799
N.A. Shahrim, Z. Ahmad, A. Wong Azman, Y. Fachmi Buys et al., Mechanisms for doped PEDOT:PSS electrical conductivity improvement. Mater. Adv. 2, 7118–7138 (2021). https://doi.org/10.1039/d1ma00290b
H. He, L. Zhang, X. Guan, H. Cheng et al., Biocompatible conductive polymers with high conductivity and high stretchability. ACS Appl. Mater. Interfaces 11, 26185–26193 (2019). https://doi.org/10.1021/acsami.9b07325
L. Zhang, K.S. Kumar, H. He, C.J. Cai, X. He et al., Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat. Commun. 11, 4683 (2020). https://doi.org/10.1038/s41467-020-18503-8
S. Choi, J. Park, W. Hyun, J. Kim, J. Kim et al., Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 9, 6626–6633 (2015). https://doi.org/10.1021/acsnano.5b02790
R. Zhou, P. Li, Z. Fan, D. Du et al., Stretchable heaters with composites of an intrinsically conductive polymer, reduced graphene oxide and an elastomer for wearable thermotherapy. J. Mater. Chem. C 5, 1544–1551 (2017). https://doi.org/10.1039/c6tc04849h
S.E. Naleway, W. Lear, J.J. Kruzic, C.B. Maughan, Mechanical properties of suture materials in general and cutaneous surgery: an update on mechanical properties of suture materials. J. Biomed. Mater. Res. B Appl. Biomater. 103, 735–742 (2015). https://doi.org/10.1002/jbm.b.33171
J.-C. Kim, Y.-K. Lee, B.-S. Lim, S.-H. Rhee et al., Comparison of tensile and knot security properties of surgical sutures. J. Mater. Sci. Mater. Med. 18, 2363–2369 (2007). https://doi.org/10.1007/s10856-007-3114-6
V. Kalidasan, X. Yang, Z. Xiong, R.R. Li et al., Wirelessly operated bioelectronic sutures for the monitoring of deep surgical wounds. Nat. Biomed. Eng. 5, 1217–1227 (2021). https://doi.org/10.1038/s41551-021-00802-0
J. Lee, S.J. Ihle, G.S. Pellegrino, H. Kim et al., Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat. Electron. 4, 291–301 (2021). https://doi.org/10.1038/s41928-021-00557-1
M. Helmedag, D. Heise, R. Eickhoff, K.-M. Kossel et al., Cross-section modified and highly elastic sutures reduce tissue incision and show comparable biocompatibility: in-vitro and in-vivo evaluation of novel thermoplastic urethane surgical thre. J. Biomed. Mater. Res. B Appl. Biomater. 109, 693–702 (2021). https://doi.org/10.1002/jbm.b.34734
J.C. Gills, R.N. Brogden, Ketorolac. Drugs 53, 139–188 (1997). https://doi.org/10.2165/00003495-199753010-00012
A. Ghosh, L. Li, L. Xu, R.P. Dash et al., Gastrointestinal-resident, shape-changing microdevices extend drug release in vivo. Sci. Adv. 6(44), eabb4133 (2020). https://doi.org/10.1126/sciadv.abb4133
I. Negut, V. Grumezescu, A.M. Grumezescu, Treatment strategies for infected wounds. Molecules 23(9), 2392 (2018). https://doi.org/10.3390/molecules23092392