Atomically Substitutional Engineering of Transition Metal Dichalcogenide Layers for Enhancing Tailored Properties and Superior Applications
Corresponding Author: Ming‑Yong Han
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 95
Abstract
Transition metal dichalcogenides (TMDs) are a promising class of layered materials in the post-graphene era, with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior. Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties, providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs. The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable (opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts (0–100%). Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase, band alignment/structure, carrier density, and surface reactive activity, enabling novel and promising applications. This review comprehensively elaborates on atomically substitutional engineering in TMD layers, including theoretical foundations, synthetic strategies, tailored properties, and superior applications. The emerging type of ternary TMDs, Janus TMDs, is presented specifically to highlight their typical compounds, fabrication methods, and potential applications. Finally, opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field.
Highlights:
1 Atomically substitutional engineering in binary transition metal dichalcogenides (TMDs) enables the facile production of ternary or quaternary TMDs with tunable (opto)electronic properties spanning the entire compositional spectrum.
2 A comprehensive overview is provided on multinary TMDs, including Janus-type structures, aiming to elaborate on their theoretical foundations, synthetic strategies, tailored properties, and superior applications.
3 The challenges and opportunities faced in accelerating the exploitation of multinary TMDs as highly promising nanomaterials are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896
- Y. Gao, J. Chen, G. Chen, C. Fan, X. Liu, Recent progress in the transfer of graphene films and nanostructures. Small Methods 5, e2100771 (2021). https://doi.org/10.1002/smtd.202100771
- C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558a
- Q. Zhang, X. Xiao, L. Li, D. Geng, W. Chen et al., Additive-assisted growth of scaled and quality 2D materials. Small 18, e2107241 (2022). https://doi.org/10.1002/smll.202107241
- W. Qian, S. Xu, X. Zhang, C. Li, W. Yang et al., Differences and similarities of photocatalysis and electrocatalysis in two-dimensional nanomaterials: strategies, traps, applications and challenges. Nano-Micro Lett. 13, 156 (2021). https://doi.org/10.1007/s40820-021-00681-9
- Z. Lyu, S. Ding, D. Du, K. Qiu, J. Liu et al., Recent advances in biomedical applications of 2D nanomaterials with peroxidase-like properties. Adv. Drug Deliv. Rev. 185, 114269 (2022). https://doi.org/10.1016/j.addr.2022.114269
- L. Cheng, X. Wang, F. Gong, T. Liu, Z. Liu, 2D nanomaterials for cancer theranostic applications. Adv. Mater. 32, e1902333 (2020). https://doi.org/10.1002/adma.201902333
- Y. Zhang, J. Mei, C. Yan, T. Liao, J. Bell et al., Bioinspired 2D nanomaterials for sustainable applications. Adv. Mater. 32, e1902806 (2020). https://doi.org/10.1002/adma.201902806
- M. Wang, J. Zhu, Y. Zi, Z.-G. Wu, H. Hu et al., Functional two-dimensional black phosphorus nanostructures towards next-generation devices. J. Mater. Chem. A 9, 12433–12473 (2021). https://doi.org/10.1039/D1TA02027G
- Z. Wei, B. Li, C. Xia, Y. Cui, J. He et al., Various structures of 2D transition-metal dichalcogenides and their applications. Small Method 2, 1800094 (2018). https://doi.org/10.1002/smtd.201800094
- S. Roy, X. Zhang, A.B. Puthirath, A. Meiyazhagan, S. Bhattacharyya et al., Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv. Mater. 33, e2101589 (2021). https://doi.org/10.1002/adma.202101589
- H.Y. Hoh, Y. Zhang, Y.L. Zhong, Q. Bao, Harnessing the potential of graphitic carbon nitride for optoelectronic applications. Adv. Opt. Mater. 9, 2100146 (2021). https://doi.org/10.1002/adom.202100146
- W. Yu, K. Gong, Y. Li, B. Ding, L. Li et al., Flexible 2D materials beyond graphene: synthesis, properties, and applications. Small 18, e2105383 (2022). https://doi.org/10.1002/smll.202105383
- H. Tian, J. Tice, R. Fei, V. Tran, X. Yan et al., Low-symmetry two-dimensional materials for electronic and photonic applications. Nano Today 11, 763–777 (2016). https://doi.org/10.1016/j.nantod.2016.10.003
- R. Rajendran, L.K. Shrestha, K. Minami, M. Subramanian, R. Jayavel et al., Dimensionally integrated nanoarchitectonics for a novel composite from 0D, 1D, and 2D nanomaterials: RGO/CNT/CeO2 ternary nanocomposites with electrochemical performance. J. Mater. Chem. A 2, 18480–18487 (2014). https://doi.org/10.1039/C4TA03996C
- J. Mei, Y. Zhang, T. Liao, Z. Sun, S.X. Dou, Strategies for improving the lithium-storage performance of 2D nanomaterials. Natl. Sci. Rev. 5, 389–416 (2018). https://doi.org/10.1093/nsr/nwx077
- C. Murugan, V. Sharma, R.K. Murugan, G. Malaimegu, A. Sundaramurthy, Two-dimensional cancer theranostic nanomaterials: synthesis, surface functionalization and applications in photothermal therapy. J. Control. Release 299, 1–20 (2019). https://doi.org/10.1016/j.jconrel.2019.02.015
- W. Wen, Y. Song, X. Yan, C. Zhu, D. Du et al., Recent advances in emerging 2D nanomaterials for biosensing and bioimaging applications. Mater. Today 21, 164–177 (2018). https://doi.org/10.1016/j.mattod.2017.09.001
- G. Guan, M.-Y. Han, Functionalized hybridization of 2D nanomaterials. Adv. Sci. 6, 1901837 (2019). https://doi.org/10.1002/advs.201901837
- Y.-C. Lin, R. Torsi, D.B. Geohegan, J.A. Robinson, K. Xiao, Controllable thin-film approaches for doping and alloying transition metal dichalcogenides monolayers. Adv. Sci. 8, 2004249 (2021). https://doi.org/10.1002/advs.202004249
- R. Wang, Y. Yu, S. Zhou, H. Li, H. Wong et al., Strategies on phase control in transition metal dichalcogenides. Adv. Funct. Mater. 28, 1802473 (2018). https://doi.org/10.1002/adfm.201802473
- G. Guan, S. Zhang, S. Liu, Y. Cai, M. Low et al., Protein induces layer-by-layer exfoliation of transition metal dichalcogenides. J. Am. Chem. Soc. 137, 6152–6155 (2015). https://doi.org/10.1021/jacs.5b02780
- G. Guan, J. Xia, S. Liu, Y. Cheng, S. Bai et al., Electrostatic-driven exfoliation and hybridization of 2D nanomaterials. Adv. Mater. 29, 1700326 (2017). https://doi.org/10.1002/adma.201700326
- S. Li, Y. Ma, N.A.N. Ouedraogo, F. Liu, C. You et al., P-/n-Type modulation of 2D transition metal dichalcogenides for electronic and optoelectronic devices. Nano Res. 15, 123–144 (2022). https://doi.org/10.1007/s12274-021-3500-2
- L. Loh, Z. Zhang, M. Bosman, G. Eda, Substitutional doping in 2D transition metal dichalcogenides. Nano Res. 14, 1668–1681 (2021). https://doi.org/10.1007/s12274-020-3013-4
- Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 28, 1917–1933 (2016). https://doi.org/10.1002/adma.201503270
- X. Huang, C. Tan, Z. Yin, H. Zhang, 25th anniversary : hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater. 26, 2185–2204 (2014). https://doi.org/10.1002/adma.201304964
- Y. Zhao, K. Xu, F. Pan, C. Zhou, F. Zhou et al., Doping, contact and interface engineering of two-dimensional layered transition metal dichalcogenides transistors. Adv. Funct. Mater. 27, 1603484 (2017). https://doi.org/10.1002/adfm.201603484
- Q. Wang, Y. Lei, Y. Wang, Y. Liu, C. Song et al., Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy Environ. Sci. 13, 1593–1616 (2020). https://doi.org/10.1039/D0EE00450B
- S. Chen, D. Huang, M. Cheng, L. Lei, Y. Chen et al., Surface and interface engineering of two-dimensional bismuth-based photocatalysts for ambient molecule activation. J. Mater. Chem. A 9, 196–233 (2021). https://doi.org/10.1039/D0TA08165E
- X. Gan, D. Lei, R. Ye, H. Zhao, K.-Y. Wong, Transition metal dichalcogenide-based mixed-dimensional heterostructures for visible-light-driven photocatalysis: dimensionality and interface engineering. Nano Res. 14, 2003–2022 (2021). https://doi.org/10.1007/s12274-020-2955-x
- W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116–130 (2017). https://doi.org/10.1016/j.mattod.2016.10.002
- J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen et al., A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018). https://doi.org/10.1038/s41586-018-0008-3
- X. Xi, Z. Wang, W. Zhao, J.-H. Park, K.T. Law et al., Ising pairing in superconducting NbSe2 atomiclayers. Nat. Phys. 12, 139–143 (2016). https://doi.org/10.1038/nphys3538
- Y. Qi, P.G. Naumov, M.N. Ali, C.R. Rajamathi, W. Schnelle et al., Superconductivity in weyl semimetal candidate MoTe2. Nat. Commun. 7, 11038 (2016). https://doi.org/10.1038/ncomms11038
- E. Navarro-Moratalla, J.O. Island, S. Mañas-Valero, E. Pinilla-Cienfuegos, A. Castellanos-Gomez et al., Enhanced superconductivity in atomically thin TaS2. Nat. Commun. 7, 11043 (2016). https://doi.org/10.1038/ncomms11043
- X. Qian, J. Liu, L. Fu, J. Li, Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014). https://doi.org/10.1126/science.1256815
- Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
- Y. Xiao, M. Zhou, J. Liu, J. Xu, L. Fu, Phase engineering of two-dimensional transition metal dichalcogenides. Sci. China Mater. 62, 759–775 (2019). https://doi.org/10.1007/s40843-018-9398-1
- X. Yuan, M. Yang, L. Wang, Y. Li, Structural stability and intriguing electronic properties of two-dimensional transition metal dichalcogenide alloys. Phys. Chem. Chem. Phys. 19, 13846–13854 (2017). https://doi.org/10.1039/C7CP01727H
- C. Gao, X. Yang, M. Jiang, L. Chen, Z. Chen et al., Machine learning-enabled band gap prediction of monolayer transition metal chalcogenide alloys. Phys. Chem. Chem. Phys. 24, 4653–4665 (2022). https://doi.org/10.1039/d1cp05847a
- Z. Shi, Q. Zhang, U. Schwingenschlögl, Alloying as a route to monolayer transition metal dichalcogenides with improved optoelectronic performance: Mo(S1–xSex)2 and Mo1–yWyS2. ACS Appl. Energy Mater. 1, 2208–2214 (2018). https://doi.org/10.1021/acsaem.8b00288
- M. Chen, L. Zhu, Q. Chen, N. Miao, C. Si et al., Quantifying the composition dependency of the ground-state structure, electronic property and phase-transition dynamics in ternary transition-metal-dichalcogenide monolayers. J. Mater. Chem. C 8, 721–733 (2020). https://doi.org/10.1039/C9TC05487A
- H. Li, X. Duan, X. Wu, X. Zhuang, H. Zhou et al., Growth of alloy MoS2xSe2(1–x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc. 136, 3756–3759 (2014). https://doi.org/10.1021/ja500069b
- Q. Deng, X. Li, H. Si, J. Hong, S. Wang et al., Strong band bowing effects and distinctive optoelectronic properties of 2H and 1T’ phase-tunable MoxRe1–xS2 alloys. Adv. Funct. Mater. 30, 2003264 (2020). https://doi.org/10.1002/adfm.202003264
- X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou et al., Synthesis of WS2xSe2-2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 16, 264–269 (2016). https://doi.org/10.1021/acs.nanolett.5b03662
- V. Kochat, A. Apte, J.A. Hachtel, H. Kumazoe, A. Krishnamoorthy et al., Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism. Adv. Mater. 29, 1703754 (2017). https://doi.org/10.1002/adma.201703754
- P. Yu, J. Lin, L. Sun, Q.L. Le, X. Yu et al., Metal-semiconductor phase-transition in WSe2(1–x)Te2x monolayer. Adv. Mater. 29, 1603991 (2017). https://doi.org/10.1002/adma.201603991
- Y. Deng, P. Li, C. Zhu, J. Zhou, X. Wang et al., Controlled synthesis of MoxW1−xTe2 atomic layers with emergent quantum states. ACS Nano 15, 11526–11534 (2021). https://doi.org/10.1021/acsnano.1c01441
- A.-Y. Lu, H. Zhu, J. Xiao, C.-P. Chuu, Y. Han et al., Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744–749 (2017). https://doi.org/10.1038/nnano.2017.100
- J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er et al., Janus monolayer transition-metal dichalcogenides. ACS Nano 11, 8192–8198 (2017). https://doi.org/10.1021/acsnano.7b03186
- H. Mo, X. Zhang, Y. Liu, P. Kang, H. Nan et al., Two-dimensional alloying molybdenum tin disulfide monolayers with fast photoresponse. ACS Appl. Mater. Interfaces 11, 39077–39087 (2019). https://doi.org/10.1021/acsami.9b13645
- C. Tan, Z. Luo, A. Chaturvedi, Y. Cai, Y. Du et al., Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution. Adv. Mater. 30, 1705509 (2018). https://doi.org/10.1002/adma.201705509
- I.S. Kwon, I.H. Kwak, T.T. Debela, J.Y. Kim, S.J. Yoo et al., Phase-transition Mo1−xVxSe2 alloy nanosheets with rich V-Se vacancies and their enhanced catalytic performance of hydrogen evolution reaction. ACS Nano 15, 14672–14682 (2021). https://doi.org/10.1021/acsnano.1c04453
- I.H. Kwak, I.S. Kwon, T.T. Debela, H.G. Abbas, Y.C. Park et al., Phase evolution of Re1−xMoxSe2 alloy nanosheets and their enhanced catalytic activity toward hydrogen evolution reaction. ACS Nano 14, 11995–12005 (2020). https://doi.org/10.1021/acsnano.0c05159
- X. Liu, J. Wu, W. Yu, L. Chen, Z. Huang et al., Monolayer WxMo1−xS2 grown by atmospheric pressure chemical vapor deposition: bandgap engineering and field effect transistors. Adv. Funct. Mater. 27, 1606469 (2017). https://doi.org/10.1002/adfm.201606469
- G. Shao, X.-X. Xue, B. Wu, Y.-C. Lin, M. Ouzounian et al., Template-assisted synthesis of metallic 1T’-Sn0.3W0.7S2 nanosheets for hydrogen evolution reaction. Adv. Funct. Mater. 30, 1906069 (2020). https://doi.org/10.1002/adfm.201906069
- X. Li, M.-W. Lin, L. Basile, S.M. Hus, A.A. Puretzky et al., Isoelectronic tungsten doping in monolayer MoSe2 for carrier type modulation. Adv. Mater. 28, 8240–8247 (2016). https://doi.org/10.1002/adma.201601991
- Q. Fu, L. Yang, W. Wang, A. Han, J. Huang et al., Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(1−x)Se2x with a tunable band gap. Adv. Mater. 27, 4732–4738 (2015). https://doi.org/10.1002/adma.201500368
- W.-J. Yin, H.-J. Tan, P.-J. Ding, B. Wen, X.-B. Li et al., Recent advances in low-dimensional Janus materials: theoretical and simulation perspectives. Mater. Adv. 2, 7543–7558 (2021). https://doi.org/10.1039/D1MA00660F
- F. Raffone, C. Ataca, J.C. Grossman, G. Cicero, MoS2 enhanced T-phase stabilization and tunability through alloying. J. Phys. Chem. Lett. 7, 2304–2309 (2016). https://doi.org/10.1021/acs.jpclett.6b00794
- X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin et al., Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv. Mater. 27, 8035–8041 (2015). https://doi.org/10.1002/adma.201503873
- Y. Huang, H.-X. Deng, K. Xu, Z.-X. Wang, Q.-S. Wang et al., Highly sensitive and fast phototransistor based on large size CVD-grown SnS2 nanosheets. Nanoscale 7, 14093–14099 (2015). https://doi.org/10.1039/C5NR04174K
- P. Perumal, R.K. Ulaganathan, R. Sankar, Y.-M. Liao, T.-M. Sun et al., Ultra-thin layered ternary single crystals [Sn(SxSe1–x)2] with bandgap engineering for high performance phototransistors on versatile substrates. Adv. Funct. Mater. 26, 3630–3638 (2016). https://doi.org/10.1002/adfm.201600081
- A. Kutana, E.S. Penev, B.I. Yakobson, Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying. Nanoscale 6, 5820–5825 (2014). https://doi.org/10.1039/C4NR00177J
- J. Kang, S. Tongay, J. Li, J. Wu, Monolayer semiconducting transition metal dichalcogenide alloys: stability and band bowing. J. Appl. Phys. 113, 143703 (2013). https://doi.org/10.1063/1.4799126
- H.-P. Komsa, A.V. Krasheninnikov, Two-dimensional transition metal dichalcogenide alloys: stability and electronic properties. J. Phys. Chem. Lett. 3, 3652–3656 (2012). https://doi.org/10.1021/jz301673x
- Z. Hemmat, J. Cavin, A. Ahmadiparidari, A. Ruckel, S. Rastegar et al., Quasi-binary transition metal dichalcogenide alloys: thermodynamic stability prediction, scalable synthesis, and application. Adv. Mater. 32, e1907041 (2020). https://doi.org/10.1002/adma.201907041
- J.-H. Yang, B.I. Yakobson, Unusual negative formation enthalpies and atomic ordering in isovalent alloys of transition metal dichalcogenide monolayers. Chem. Mater. 30, 1547–1555 (2018). https://doi.org/10.1021/acs.chemmater.7b04527
- M.C. Troparevsky, J.R. Morris, M. Daene, Y. Wang, A.R. Lupini et al., Beyond atomic sizes and hume-rothery rules: understanding and predicting high-entropy alloys. JOM 67, 2350–2363 (2015). https://doi.org/10.1007/s11837-015-1594-2
- H. Taghinejad, D.A. Rehn, C. Muccianti, A.A. Eftekhar, M. Tian et al., Defect-mediated alloying of monolayer transition-metal dichalcogenides. ACS Nano 12, 12795–12804 (2018). https://doi.org/10.1021/acsnano.8b07920
- W. Yao, Z. Kang, J. Deng, Y. Chen, Q. Song et al., Synthesis of 2D MoS2(1–x)Se2x semiconductor alloy by chemical vapor deposition. RSC Adv. 10, 42172–42177 (2020). https://doi.org/10.1039/d0ra07776c
- Y. Tsai, Z. Chu, Y. Han, C.-P. Chuu, D. Wu et al., Tailoring semiconductor lateral multijunctions for giant photoconductivity enhancement. Adv. Mater. 29, 1703680 (2017). https://doi.org/10.1002/adma.201703680
- B. Tang, J. Zhou, P. Sun, X. Wang, L. Bai et al., Phase-controlled synthesis of monolayer ternary telluride with a random local displacement of tellurium atoms. Adv. Mater. 31, e1900862 (2019). https://doi.org/10.1002/adma.201900862
- J. Cavin, A. Ahmadiparidari, L. Majidi, A.S. Thind, S.N. Misal et al., 2D high-entropy transition metal dichalcogenides for carbon dioxide electrocatalysis. Adv. Mater. 33, e2100347 (2021). https://doi.org/10.1002/adma.202100347
- Y. Chen, Z. Tian, X. Wang, N. Ran, C. Wang et al., 2D transition metal dichalcogenide with increased entropy for piezoelectric electronics. Adv. Mater. 34, e2201630 (2022). https://doi.org/10.1002/adma.202201630
- J. Lin, J. Zhou, S. Zuluaga, P. Yu, M. Gu et al., Anisotropic ordering in 1T’ molybdenum and tungsten ditelluride layers alloyed with sulfur and selenium. ACS Nano 12, 894–901 (2018). https://doi.org/10.1021/acsnano.7b08782
- D.O. Dumcenco, H. Kobayashi, Z. Liu, Y.-S. Huang, K. Suenaga, Visualization and quantification of transition metal atomic mixing in Mo1−xWxS2 single layers. Nat. Commun. 4, 1351 (2013). https://doi.org/10.1038/ncomms2351
- S. Susarla, P. Manimunda, Y.M. Jaques, J.A. Hachtel, J.C. Idrobo et al., Strain-induced structural deformation study of 2D MoxW(1–x)S2. Adv. Mater. Interfaces 6, 1801262 (2019). https://doi.org/10.1002/admi.201801262
- C. Tan, W. Zhao, A. Chaturvedi, Z. Fei, Z. Zeng et al., Preparation of single-layer MoS2xSe2(1–x) and MoxW1-xS2 nanosheets with high-concentration metallic 1T phase. Small 12, 1866–1874 (2016). https://doi.org/10.1002/smll.201600014
- D. Hu, G. Xu, L. Xing, X. Yan, J. Wang et al., Two-dimensional semiconductors grown by chemical vapor transport. Angew. Chem. Int. Ed. 56, 3611–3615 (2017). https://doi.org/10.1002/anie.201700439
- G.H. Han, D.L. Duong, D.H. Keum, S.J. Yun, Y.H. Lee, Van der waals metallic transition metal dichalcogenides. Chem. Rev. 118, 6297–6336 (2018). https://doi.org/10.1021/acs.chemrev.7b00618
- Q. Gong, L. Cheng, C. Liu, M. Zhang, Q. Feng et al., Ultrathin MoS2(1–x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal. 5, 2213–2219 (2015). https://doi.org/10.1021/cs501970w
- Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan et al., Growth of large-area 2D MoS2(1–x)Se2x semiconductor alloys. Adv. Mater. 26, 2648–2653 (2014). https://doi.org/10.1002/adma.201306095
- Z. Zheng, J. Yao, G. Yang, Centimeter-scale deposition of Mo0.5W0.5Se2 alloy film for high-performance photodetectors on versatile substrates. ACS Appl. Mater. Interfaces 9, 14920–14928 (2017). https://doi.org/10.1021/acsami.7b02166
- L. Zhang, T. Yang, X. He, W. Zhang, G. Vinai et al., Molecular beam epitaxy of two-dimensional vanadium-molybdenum diselenide alloys. ACS Nano 14, 11140–11149 (2020). https://doi.org/10.1021/acsnano.0c02124
- X. Hu, Z. Hemmat, L. Majidi, J. Cavin, R. Mishra et al., Controlling nanoscale thermal expansion of monolayer transition metal dichalcogenides by alloy engineering. Small 16, e1905892 (2020). https://doi.org/10.1002/smll.201905892
- G.K. Solanki, D.N. Gujarathi, M.P. Deshpande, D. Lakshminarayana, M.K. Agarwal, Transport property measurements in tungsten sulphoselenide single crystals grown by a CVT technique. Cryst. Res. Technol. 43, 179–185 (2008). https://doi.org/10.1002/crat.200711060
- S.D. Karande, N. Kaushik, D.S. Narang, D. Late, S. Lodha, Thickness tunable transport in alloyed WSSe field effect transistors. Appl. Phys. Lett. 109, 142101 (2016). https://doi.org/10.1063/1.4964289
- F.I. Alzakia, S.C. Tan, Liquid-exfoliated 2D materials for optoelectronic applications. Adv. Sci. 8, e2003864 (2021). https://doi.org/10.1002/advs.202003864
- S. Witomska, T. Leydecker, A. Ciesielski, P. Samorì, Production and patterning of liquid phase–exfoliated 2D sheets for applications in optoelectronics. Adv. Funct. Mater. 29, 1901126 (2019). https://doi.org/10.1002/adfm.201901126
- Z. Yang, H. Liang, X. Wang, X. Ma, T. Zhang et al., Atom-thin SnS2-xSex with adjustable compositions by direct liquid exfoliation from single crystals. ACS Nano 10, 755–762 (2016). https://doi.org/10.1021/acsnano.5b05823
- I.S. Kwon, I.H. Kwak, J.Y. Kim, T.T. Debela, Y.C. Park et al., Concurrent vacancy and adatom defects of Mo1-xNbxSe2 alloy nanosheets enhance electrochemical performance of hydrogen evolution reaction. ACS Nano 15, 5467–5477 (2021). https://doi.org/10.1021/acsnano.1c00171
- I.H. Kwak, T.T. Debela, I.S. Kwon, J. Seo, S.J. Yoo et al., Anisotropic alloying of Re1−xMoxS2 nanosheets to boost the electrochemical hydrogen evolution reaction. J. Mater. Chem. A 8, 25131–25141 (2020). https://doi.org/10.1039/D0TA09299A
- W. Zhang, X. Li, T. Jiang, J. Song, Y. Lin et al., CVD synthesis of Mo(1–x)WxS2 and MoS2(1–x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide. Nanoscale 7, 13554–13560 (2015). https://doi.org/10.1039/c5nr02515j
- Z. Cai, B. Liu, X. Zou, H.-M. Cheng, Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 118, 6091–6133 (2018). https://doi.org/10.1021/acs.chemrev.7b00536
- L. Tang, J. Tan, H. Nong, B. Liu, H.-M. Cheng, Chemical vapor deposition growth of two-dimensional compound materials: controllability, material quality, and growth mechanism. Acc. Mater. Res. 2, 36–47 (2021). https://doi.org/10.1021/accountsmr.0c00063
- L. Fang, S. Tao, Z. Tian, K. Liu, X. Li et al., Controlled growth of transition metal dichalcogenide via thermogravimetric prediction of precursors vapor concentration. Nano Res. 14, 2867–2874 (2021). https://doi.org/10.1007/s12274-021-3347-6
- F. Chen, L. Wang, X. Ji, Q. Zhang, Temperature-dependent two-dimensional transition metal dichalcogenide heterostructures: controlled synthesis and their properties. ACS Appl. Mater. Interfaces 9, 30821–30831 (2017). https://doi.org/10.1021/acsami.7b08313
- S. Susarla, V. Kochat, A. Kutana, J.A. Hachtel, J.C. Idrobo et al., Phase segregation behavior of two-dimensional transition metal dichalcogenide binary alloys induced by dissimilar substitution. Chem. Mater. 29, 7431–7439 (2017). https://doi.org/10.1021/acs.chemmater.7b02407
- D.B. Trivedi, G. Turgut, Y. Qin, M.Y. Sayyad, D. Hajra et al., Room-temperature synthesis of 2D Janus crystals and their heterostructures. Adv. Mater. 32, e2006320 (2020). https://doi.org/10.1002/adma.202006320
- S.J. Yun, G.H. Han, H. Kim, D.L. Duong, B.G. Shin et al., Telluriding monolayer MoS2 and WS2 via alkali metal scooter. Nat. Commun. 8, 2163 (2017). https://doi.org/10.1038/s41467-017-02238-0
- G. Xue, X. Sui, P. Yin, Z. Zhou, X. Li et al., Modularized batch production of 12-inch transition metal dichalcogenides by local element supply. Sci. Bull. 68, 1514–1521 (2023). https://doi.org/10.1016/j.scib.2023.06.037
- Y. Zuo, C. Liu, L. Ding, R. Qiao, J. Tian et al., Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply. Nat. Commun. 13, 1007 (2022). https://doi.org/10.1038/s41467-022-28628-7
- Z. Ye, C. Tan, X. Huang, Y. Ouyang, L. Yang et al., Emerging MoS2 wafer-scale technique for integrated circuits. Nano-Micro Lett. 15, 38 (2023). https://doi.org/10.1007/s40820-022-01010-4
- J. Lee, S. Pak, Y.W. Lee, Y. Park, A.R. Jang et al., Direct epitaxial synthesis of selective two-dimensional lateral heterostructures. ACS Nano 13, 13047–13055 (2019). https://doi.org/10.1021/acsnano.9b05722
- X. Zhang, S. Xiao, L. Shi, H. Nan, X. Wan et al., Large-size Mo1-xWxS2 and W1-xMoxS2 (x = 0–0.5) monolayers by confined-space chemical vapor deposition. Appl. Surf. Sci. 457, 591–597 (2018). https://doi.org/10.1016/j.apsusc.2018.06.299
- K. Ding, Q. Fu, H. Nan, X. Gu, K. Ostrikov et al., Controllable synthesis of WS2(1–x)Se2x monolayers with fast photoresponse by a facile chemical vapor deposition strategy. Mater. Sci. Eng. B 269, 115176 (2021). https://doi.org/10.1016/j.mseb.2021.115176
- P. Kang, H. Nan, X. Zhang, H. Mo, Z. Ni et al., Controllable synthesis of crystalline ReS2(1–x)Se2x monolayers on amorphous SiO2/Si substrates with fast photoresponse. Adv. Opt. Mater. 8, 1901415 (2020). https://doi.org/10.1002/adom.201901415
- Q. Feng, N. Mao, J. Wu, H. Xu, C. Wang et al., Growth of MoS2(1–x)Se2x (x = 0.41–1.00) monolayer alloys with controlled morphology by physical vapor deposition. ACS Nano 9, 7450–7455 (2015). https://doi.org/10.1021/acsnano.5b02506
- M.N. Bui, S. Rost, M. Auge, J.-S. Tu, L. Zhou et al., Low-energy Se ion implantation in MoS2 monolayers. NPJ 2D Mater. Appl. 6, 42 (2022). https://doi.org/10.1038/s41699-022-00318-4
- S. Prucnal, A. Hashemi, M. Ghorbani-Asl, R. Hübner, J. Duan et al., Chlorine doping of MoSe2 flakes by ion implantation. Nanoscale 13, 5834–5846 (2021). https://doi.org/10.1039/D0NR08935D
- Q. Ma, M. Isarraraz, C.S. Wang, E. Preciado, V. Klee et al., Postgrowth tuning of the bandgap of single-layer molybdenum disulfide films by sulfur/selenium exchange. ACS Nano 8, 4672–4677 (2014). https://doi.org/10.1021/nn5004327
- M. Ghorbani-Asl, S. Kretschmer, D.E. Spearot, A.V. Krasheninnikov, Two-dimensional MoS2 under ion irradiation: from controlled defect production to electronic structure engineering. 2D Mater. 4, 025078 (2017). https://doi.org/10.1088/2053-1583/aa6b17
- X. Kong, L. Liang, Floquet band engineering and topological phase transitions in 1T’ transition metal dichalcogenides. 2D Mater. 9, 025005 (2022). https://doi.org/10.1088/2053-1583/ac4957
- J. Yao, Z. Zheng, G. Yang, Promoting the performance of layered-material photodetectors by alloy engineering. ACS Appl. Mater. Interfaces 8, 12915–12924 (2016). https://doi.org/10.1021/acsami.6b03691
- J.G. Song, G.H. Ryu, S.J. Lee, S. Sim, C.W. Lee et al., Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer. Nat. Commun. 6, 7817 (2015). https://doi.org/10.1038/ncomms8817
- H.H. Huang, X. Fan, D.J. Singh, W.T. Zheng, Recent progress of TMD nanomaterials: phase transitions and applications. Nanoscale 12, 1247–1268 (2020). https://doi.org/10.1039/c9nr08313h
- D. Voiry, A. Mohite, M. Chhowalla, Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44, 2702–2712 (2015). https://doi.org/10.1039/c5cs00151j
- S.-Z. Yang, Y. Gong, P. Manchanda, Y.-Y. Zhang, G. Ye et al., Rhenium-doped and stabilized MoS2 atomic layers with basal-plane catalytic activity. Adv. Mater. 30, e1803477 (2018). https://doi.org/10.1002/adma.201803477
- I.S. Kwon, I.H. Kwak, G.M. Zewdie, S.J. Lee, J.Y. Kim et al., WSe2-VSe2 alloyed nanosheets to enhance the catalytic performance of hydrogen evolution reaction. ACS Nano 16, 12569–12579 (2022). https://doi.org/10.1021/acsnano.2c04113
- K. Yang, X. Wang, H. Li, B. Chen, X. Zhang et al., Composition- and phase-controlled synthesis and applications of alloyed phase heterostructures of transition metal disulphides. Nanoscale 9, 5102–5109 (2017). https://doi.org/10.1039/c7nr01015j
- Z. Wang, Y. Shen, Y. Ito, Y. Zhang, J. Du et al., Synthesizing 1T–1H two-phase Mo1-xWxS2 monolayers by chemical vapor deposition. ACS Nano 12, 1571–1579 (2018). https://doi.org/10.1021/acsnano.7b08149
- Z. Wang, X. Zhao, Y. Yang, L. Qiao, L. Lv et al., Phase-controlled synthesis of monolayer W1–xRexS2 alloy with improved photoresponse performance. Small 16, e2000852 (2020). https://doi.org/10.1002/smll.202000852
- Y.-C. Lin, D.O. Dumcenco, Y.-S. Huang, K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9, 391–396 (2014). https://doi.org/10.1038/nnano.2014.64
- I.H. Kwak, I.S. Kwon, G.M. Zewdie, T.T. Debela, S.J. Lee et al., Polytypic phase transition of Nb1- xVxSe2 via colloidal synthesis and their catalytic activity toward hydrogen evolution reaction. ACS Nano 16, 4278–4288 (2022). https://doi.org/10.1021/acsnano.1c10301
- K.Y. Ko, S. Lee, K. Park, Y. Kim, W.J. Woo et al., High-performance gas sensor using a large-area WS2xSe2-2x alloy for low-power operation wearable applications. ACS Appl. Mater. Interfaces 10, 34163–34171 (2018). https://doi.org/10.1021/acsami.8b10455
- Y. Chen, J. Xi, D.O. Dumcenco, Z. Liu, K. Suenaga et al., Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano 7, 4610–4616 (2013). https://doi.org/10.1021/nn401420h
- M. Zhang, J. Wu, Y. Zhu, D.O. Dumcenco, J. Hong et al., Two-dimensional molybdenum tungsten diselenide alloys: photoluminescence, Raman scattering, and electrical transport. ACS Nano 8, 7130–7137 (2014). https://doi.org/10.1021/nn5020566
- F. Cui, Q. Feng, J. Hong, R. Wang, Y. Bai et al., Synthesis of large-size 1T’ ReS2xSe2(1–x) alloy monolayer with tunable bandgap and carrier type. Adv. Mater. 29, 1705015 (2017). https://doi.org/10.1002/adma.201705015
- J. Kim, H. Seung, D. Kang, J. Kim, H. Bae et al., Wafer-scale production of transition metal dichalcogenides and alloy monolayers by nanocrystal conversion for large-scale ultrathin flexible electronics. Nano Lett. 21, 9153–9163 (2021). https://doi.org/10.1021/acs.nanolett.1c02991
- Y.-R. Lin, W.-H. Cheng, M.H. Richter, J.S. DuChene, E.A. Peterson et al., Band edge tailoring in few-layer two-dimensional molybdenum sulfide/selenide alloys. J. Phys. Chem. C 124, 22893–22902 (2020). https://doi.org/10.1021/acs.jpcc.0c04719
- N. Tit, I.M. Obaidat, H. Alawadhi, Origins of bandgap bowing in compound-semiconductor common-cation ternary alloys. J. Phys. Condens. Matter 21, 075802 (2009). https://doi.org/10.1088/0953-8984/21/7/075802
- L. Yang, Q. Fu, W. Wang, J. Huang, J. Huang et al., Large-area synthesis of monolayered MoS2(1–x)Se2x with a tunable band gap and its enhanced electrochemical catalytic activity. Nanoscale 7, 10490–10497 (2015). https://doi.org/10.1039/c5nr02652k
- F. Liang, H. Xu, Z. Dong, Y. Xie, C. Luo et al., Substrates and interlayer coupling effects on Mo1–xWxSe2 alloys. J. Semicond. 40, 062005 (2019). https://doi.org/10.1088/1674-4926/40/6/062005
- H. Masenda, L.M. Schneider, M. Adel Aly, S.J. Machchhar, A. Usman et al., Energy scaling of compositional disorder in ternary transition-metal dichalcogenide monolayers. Adv. Electron. Mater. 7, 2100196 (2021). https://doi.org/10.1002/aelm.202100196
- B. Aslan, I.M. Datye, M.J. Mleczko, K. Sze Cheung, S. Krylyuk et al., Probing the optical properties and strain-tuning of ultrathin Mo1−xWxTe2. Nano Lett. 18, 2485–2491 (2018). https://doi.org/10.1021/acs.nanolett.8b00049
- W. Zheng, B. Zheng, C. Yan, Y. Liu, X. Sun et al., Direct vapor growth of 2D vertical heterostructures with tunable band alignments and interfacial charge transfer behaviors. Adv. Sci. 6, 1802204 (2019). https://doi.org/10.1002/advs.201802204
- J. Wu, L. Xie, Structural quantification for graphene and related two-dimensional materials by Raman spectroscopy. Anal. Chem. 91, 468–481 (2019). https://doi.org/10.1021/acs.analchem.8b04991
- X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang et al., Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44, 2757–2785 (2015). https://doi.org/10.1039/c4cs00282b
- C. Ramkumar, K.P. Jain, S.C. Abbi, Resonant Raman scattering probe of alloying effect in GaAs1-xPx ternary alloy semiconductors. Phys. Rev. B Condens. Matter 54, 7921–7928 (1996). https://doi.org/10.1103/physrevb.54.7921
- Y. Chen, D.O. Dumcenco, Y. Zhu, X. Zhang, N. Mao et al., Composition-dependent Raman modes of Mo1−xWxS2 monolayer alloys. Nanoscale 6, 2833–2839 (2014). https://doi.org/10.1039/C3NR05630A
- X. Gan, R. Lv, X. Wang, Z. Zhang, K. Fujisawa et al., Pyrolytic carbon supported alloying metal dichalcogenides as free-standing electrodes for efficient hydrogen evolution. Carbon 132, 512–519 (2018). https://doi.org/10.1016/j.carbon.2018.02.025
- Y. Sun, K. Fujisawa, Z. Lin, Y. Lei, J.S. Mondschein et al., Low-temperature solution synthesis of transition metal dichalcogenide alloys with tunable optical properties. J. Am. Chem. Soc. 139, 11096–11105 (2017). https://doi.org/10.1021/jacs.7b04443
- D. Wang, X. Zhang, G. Guo, S. Gao, X. Li et al., Large-area synthesis of layered HfS2(1–x)Se2x alloys with fully tunable chemical compositions and bandgaps. Adv. Mater. 30, e1803285 (2018). https://doi.org/10.1002/adma.201803285
- A. Apte, A. Krishnamoorthy, J.A. Hachtel, S. Susarla, J.C. Idrobo et al., Telluride-based atomically thin layers of ternary two-dimensional transition metal dichalcogenide alloys. Chem. Mater. 30, 7262–7268 (2018). https://doi.org/10.1021/acs.chemmater.8b03444
- A.T. Barton, R. Yue, L.A. Walsh, G. Zhou, C. Cormier et al., WSe(2–x)Tex alloys grown by molecular beam epitaxy. 2D Mater. 6, 045027 (2019). https://doi.org/10.1088/2053-1583/ab334d
- Q. Fu, J. Han, X. Wang, P. Xu, T. Yao et al., 2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis. Adv. Mater. 33, e1907818 (2021). https://doi.org/10.1002/adma.201907818
- A.K. Chanchal, Garg, MREI-model calculations of optical phonons in layered mixed crystals of 2H-polytype of the series SnS2–xSex (0⩽x⩽2). Phys. B Condens. Matter 383, 188–193 (2006). https://doi.org/10.1016/j.physb.2006.03.009
- Y. Chen, W. Shockley, G.L. Pearson, Lattice vibration spectra of GaAsxP1-x single crystals. Phys. Rev. 151, 648–656 (1966). https://doi.org/10.1103/PhysRev.151.648
- I.F. Chang, S.S. Mitra, Application of a modified random-element-isodisplacement model to long-wavelength optic phonons of mixed crystals. Phys. Rev. 172, 924–933 (1968). https://doi.org/10.1103/physrev.172.924
- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
- A.R. Kim, Y. Kim, J. Nam, H.S. Chung, D.J. Kim et al., Alloyed 2D metal-semiconductor atomic layer junctions. Nano Lett. 16, 1890–1895 (2016). https://doi.org/10.1021/acs.nanolett.5b05036
- A. Sebastian, R. Pendurthi, T.H. Choudhury, J.M. Redwing, S. Das, Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun. 12, 693 (2021). https://doi.org/10.1038/s41467-020-20732-w
- B. Liu, Y. Ma, A. Zhang, L. Chen, A.N. Abbas et al., High-performance WSe2 field-effect transistors via controlled formation of In-plane heterojunctions. ACS Nano 10, 5153–5160 (2016). https://doi.org/10.1021/acsnano.6b00527
- H. Zhou, C. Wang, J.C. Shaw, R. Cheng, Y. Chen et al., Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 15, 709–713 (2015). https://doi.org/10.1021/nl504256y
- K. Xu, A. Sharma, S. Kang, J. Kang, X. Hu et al., Heterogeneous electronic and photonic devices based on monolayer ternary telluride core/shell structures. Adv. Mater. 33, e2100343 (2021). https://doi.org/10.1002/adma.202100343
- K.-C. Chen, C.-Y. Jian, Y.-J. Chen, S.-C. Lee, S.-W. Chang et al., Current enhancement and bipolar current modulation of top-gate transistors based on monolayer MoS2 on three-layer WxMo1−xS2. ACS Appl. Mater. Interfaces 10, 24733–24738 (2018). https://doi.org/10.1021/acsami.8b06327
- V.T. Vu, T.T.H. Vu, T.L. Phan, W.T. Kang, Y.R. Kim et al., One-step synthesis of NbSe2/Nb-doped-WSe2 metal/doped-semiconductor van der waals heterostructures for doping controlled ohmic contact. ACS Nano 15, 13031–13040 (2021). https://doi.org/10.1021/acsnano.1c02038
- W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi et al., Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013). https://doi.org/10.1021/nl4007479
- H. Tian, M.L. Chin, S. Najmaei, Q. Guo, F. Xia et al., Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 9, 1543–1560 (2016). https://doi.org/10.1007/s12274-016-1034-9
- H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan et al., Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013). https://doi.org/10.1038/ncomms3642
- Y.R. Lim, J.K. Han, Y. Yoon, J.B. Lee, C. Jeon et al., Atomic-level customization of 4 in transition metal dichalcogenide multilayer alloys for industrial applications. Adv. Mater. 31, e1901405 (2019). https://doi.org/10.1002/adma.201901405
- H. Xu, J. Zhu, G. Zou, W. Liu, X. Li et al., Spatially bandgap-graded MoS2(1–x)Se2x homojunctions for self-powered visible-near-infrared phototransistors. Nano-Micro Lett. 12, 26 (2020). https://doi.org/10.1007/s40820-019-0361-2
- P. Chauhan, G.K. Solanki, A.B. Patel, K. Patel, P. Pataniya et al., Tunable and anisotropic photoresponse of layered Re0.2Sn0.8Se2 ternary alloy. Sol. Energy Mater. Sol. Cells 200, 109936 (2019). https://doi.org/10.1016/j.solmat.2019.109936
- J. Ye, K. Liao, X. Ge, Z. Wang, Y. Wang et al., Narrowing bandgap of HfS2 by Te substitution for short-wavelength infrared photodetection. Adv. Opt. Mater. 9, 2002248 (2021). https://doi.org/10.1002/adom.202002248
- T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch et al., Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007). https://doi.org/10.1126/science.1141483
- W. Xu, S. Li, S. Zhou, J.K. Lee, S. Wang et al., Large dendritic monolayer MoS2 grown by atmospheric pressure chemical vapor deposition for electrocatalysis. ACS Appl. Mater. Interfaces 10, 4630–4639 (2018). https://doi.org/10.1021/acsami.7b14861
- Z. Lai, A. Chaturvedi, Y. Wang, T.H. Tran, X. Liu et al., Preparation of 1T’-phase ReS2xSe2(1–x) (x = 0–1) nanodots for highly efficient electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 140, 8563–8568 (2018). https://doi.org/10.1021/jacs.8b04513
- Y. Lei, S. Pakhira, K. Fujisawa, X. Wang, O.O. Iyiola et al., Low-temperature synthesis of heterostructures of transition metal dichalcogenide alloys (WxMo1-xS2) and graphene with superior catalytic performance for hydrogen evolution. ACS Nano 11, 5103–5112 (2017). https://doi.org/10.1021/acsnano.7b02060
- J. Xu, X. Li, W. Liu, Y. Sun, Z. Ju et al., Carbon dioxide electroreduction into syngas boosted by a partially delocalized charge in molybdenum sulfide selenide alloy monolayers. Angew. Chem. Int. Ed. 56, 9121–9125 (2017). https://doi.org/10.1002/anie.201704928
- G. Shao, Y. Lu, J. Hong, X.-X. Xue, J. Huang et al., Seamlessly splicing metallic SnxMo1−xS2 at MoS2 edge for enhanced photoelectrocatalytic performance in microreactor. Adv. Sci. 7, 2002172 (2020). https://doi.org/10.1002/advs.202002172
- F. Li, W. Wei, H. Wang, B. Huang, Y. Dai et al., Intrinsic electric field-induced properties in Janus MoSSe van der waals structures. J. Phys. Chem. Lett. 10, 559–565 (2019). https://doi.org/10.1021/acs.jpclett.8b03463
- T. Zheng, Y.-C. Lin, Y. Yu, P. Valencia-Acuna, A.A. Puretzky et al., Excitonic dynamics in Janus MoSSe and WSSe monolayers. Nano Lett. 21, 931–937 (2021). https://doi.org/10.1021/acs.nanolett.0c03412
- H. Cai, Y. Guo, H. Gao, W. Guo, Tribo-piezoelectricity in Janus transition metal dichalcogenide bilayers: a first-principles study. Nano Energy 56, 33–39 (2019). https://doi.org/10.1016/j.nanoen.2018.11.027
- C. Zhang, Y. Nie, S. Sanvito, A. Du, First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization. Nano Lett. 19, 1366–1370 (2019). https://doi.org/10.1021/acs.nanolett.8b05050
- J. Liang, W. Wang, H. Du, A. Hallal, K. Garcia et al., Very large Dzyaloshinskii-Moriya interaction in two-dimensional Janus manganese dichalcogenides and its application to realize skyrmion states. Phys. Rev. B 101, 184401 (2020). https://doi.org/10.1103/physrevb.101.184401
- A.C. Riis-Jensen, T. Deilmann, T. Olsen, K.S. Thygesen, Classifying the electronic and optical properties of Janus monolayers. ACS Nano 13, 13354–13364 (2019). https://doi.org/10.1021/acsnano.9b06698
- S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P.S. Schmidt et al., The computational 2D materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater. 5, 042002 (2018). https://doi.org/10.1088/2053-1583/aacfc1
- M.N. Gjerding, A. Taghizadeh, A. Rasmussen, S. Ali, F. Bertoldo et al., Recent progress of the computational 2D materials database (C2DB). 2D Mater. 8, 044002 (2021). https://doi.org/10.1088/2053-1583/ac1059
- S. Zhang, X. Wang, Y. Wang, H. Zhang, B. Huang et al., Electronic properties of defective Janus MoSSe monolayer. J. Phys. Chem. Lett. 13, 4807–4814 (2022). https://doi.org/10.1021/acs.jpclett.2c01195
- Y.-C. Lin, C. Liu, Y. Yu, E. Zarkadoula, M. Yoon et al., Low energy implantation into transition-metal dichalcogenide monolayers to form Janus structures. ACS Nano 14, 3896–3906 (2020). https://doi.org/10.1021/acsnano.9b10196
- X. Wan, E. Chen, J. Yao, M. Gao, X. Miao et al., Synthesis and characterization of metallic Janus MoSH monolayer. ACS Nano 15, 20319–20331 (2021). https://doi.org/10.1021/acsnano.1c08531
- C.-H. Yeh, Computational study of Janus transition metal dichalcogenide monolayers for acetone gas sensing. ACS Omega 5, 31398–31406 (2020). https://doi.org/10.1021/acsomega.0c04938
- S. Jia, A. Bandyopadhyay, H. Kumar, J. Zhang, W. Wang et al., Biomolecular sensing by surface-enhanced Raman scattering of monolayer Janus transition metal dichalcogenide. Nanoscale 12, 10723–10729 (2020). https://doi.org/10.1039/D0NR00300J
- W.-J. Yin, B. Wen, G.-Z. Nie, X.-L. Wei, L.-M. Liu, Tunable dipole and carrier mobility for a few layer Janus MoSSe structure. J. Mater. Chem. C 6, 1693–1700 (2018). https://doi.org/10.1039/C7TC05225A
- M. Idrees, H.U. Din, R. Ali, G. Rehman, T. Hussain et al., Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures. Phys. Chem. Chem. Phys. 21, 18612–18621 (2019). https://doi.org/10.1039/C9CP02648G
- S. Susarla, A. Kutana, J.A. Hachtel, V. Kochat, A. Apte et al., Quaternary 2D transition metal dichalcogenides (TMDs) with tunable bandgap. Adv. Mater. 29, 1702457 (2017). https://doi.org/10.1002/adma.201702457
- C.-Z. Ning, L. Dou, P. Yang, Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2, 17070 (2017). https://doi.org/10.1038/natrevmats.2017.70
- I.S. Kwon, S.J. Lee, J.Y. Kim, I.H. Kwak, G.M. Zewdie et al., Composition-tuned (MoWV)Se2 ternary alloy nanosheets as excellent hydrogen evolution reaction electrocatalysts. ACS Nano 17, 2968–2979 (2023). https://doi.org/10.1021/acsnano.2c11528
- T. Joseph, M. Ghorbani-Asl, A.G. Kvashnin, K.V. Larionov, Z.I. Popov et al., Nonstoichiometric phases of two-dimensional transition-metal dichalcogenides: from chalcogen vacancies to pure metal membranes. J. Phys. Chem. Lett. 10, 6492–6498 (2019). https://doi.org/10.1021/acs.jpclett.9b02529
- Z. Wang, R. Li, C. Su, K.P. Loh, Intercalated phases of transition metal dichalcogenides. SmartMat 1, e1013 (2020). https://doi.org/10.1002/smm2.1013
- B. An, Y. Ma, F. Chu, X. Li, Y. Wu et al., Growth of centimeter scale Nb1−xWxSe2 monolayer film by promoter assisted liquid phase chemical vapor deposition. Nano Res. 15, 2608–2615 (2022). https://doi.org/10.1007/s12274-021-3825-x
- S. Park, S.J. Yun, Y.I. Kim, J.H. Kim, Y.M. Kim et al., Tailoring domain morphology in monolayer NbSe2 and WxNb1−xSe2 heterostructure. ACS Nano 14, 8784–8792 (2020). https://doi.org/10.1021/acsnano.0c03382
- X. Li, F. Cui, Q. Feng, G. Wang, X. Xu et al., Controlled growth of large-area anisotropic ReS2 atomic layer and its photodetector application. Nanoscale 8, 18956–18962 (2016). https://doi.org/10.1039/C6NR07233J
- F. Cui, X. Li, Q. Feng, J. Yin, L. Zhou et al., Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer. Nano Res. 10, 2732–2742 (2017). https://doi.org/10.1007/s12274-017-1477-7
- G. Song, S. Cong, Z. Zhao, Defect engineering in semiconductor-based SERS. Chem. Sci. 13, 1210–1224 (2021). https://doi.org/10.1039/d1sc05940h
- S.G. Yi, S.H. Kim, S. Park, D. Oh, H.Y. Choi et al., Mo1-xWxSe2-based Schottky junction photovoltaic cells. ACS Appl. Mater. Interfaces 8, 33811–33820 (2016). https://doi.org/10.1021/acsami.6b11768
- K.C. Kwon, T.H. Lee, S. Choi, K.S. Choi, S.O. Gim et al., Synthesis of atomically thin alloyed molybdenum-tungsten disulfides thin films as hole transport layers in organic light-emitting diodes. Appl. Surf. Sci. 541, 148529 (2021). https://doi.org/10.1016/j.apsusc.2020.148529
- R. Yang, L. Liu, S. Feng, Y. Liu, S. Li et al., One-step growth of spatially graded Mo1−xWxS2 monolayers with a wide span in composition (from x = 0 to 1) at a large scale. ACS Appl. Mater. Interfaces 11, 20979–20986 (2019). https://doi.org/10.1021/acsami.9b03608
References
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896
Y. Gao, J. Chen, G. Chen, C. Fan, X. Liu, Recent progress in the transfer of graphene films and nanostructures. Small Methods 5, e2100771 (2021). https://doi.org/10.1002/smtd.202100771
C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558a
Q. Zhang, X. Xiao, L. Li, D. Geng, W. Chen et al., Additive-assisted growth of scaled and quality 2D materials. Small 18, e2107241 (2022). https://doi.org/10.1002/smll.202107241
W. Qian, S. Xu, X. Zhang, C. Li, W. Yang et al., Differences and similarities of photocatalysis and electrocatalysis in two-dimensional nanomaterials: strategies, traps, applications and challenges. Nano-Micro Lett. 13, 156 (2021). https://doi.org/10.1007/s40820-021-00681-9
Z. Lyu, S. Ding, D. Du, K. Qiu, J. Liu et al., Recent advances in biomedical applications of 2D nanomaterials with peroxidase-like properties. Adv. Drug Deliv. Rev. 185, 114269 (2022). https://doi.org/10.1016/j.addr.2022.114269
L. Cheng, X. Wang, F. Gong, T. Liu, Z. Liu, 2D nanomaterials for cancer theranostic applications. Adv. Mater. 32, e1902333 (2020). https://doi.org/10.1002/adma.201902333
Y. Zhang, J. Mei, C. Yan, T. Liao, J. Bell et al., Bioinspired 2D nanomaterials for sustainable applications. Adv. Mater. 32, e1902806 (2020). https://doi.org/10.1002/adma.201902806
M. Wang, J. Zhu, Y. Zi, Z.-G. Wu, H. Hu et al., Functional two-dimensional black phosphorus nanostructures towards next-generation devices. J. Mater. Chem. A 9, 12433–12473 (2021). https://doi.org/10.1039/D1TA02027G
Z. Wei, B. Li, C. Xia, Y. Cui, J. He et al., Various structures of 2D transition-metal dichalcogenides and their applications. Small Method 2, 1800094 (2018). https://doi.org/10.1002/smtd.201800094
S. Roy, X. Zhang, A.B. Puthirath, A. Meiyazhagan, S. Bhattacharyya et al., Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv. Mater. 33, e2101589 (2021). https://doi.org/10.1002/adma.202101589
H.Y. Hoh, Y. Zhang, Y.L. Zhong, Q. Bao, Harnessing the potential of graphitic carbon nitride for optoelectronic applications. Adv. Opt. Mater. 9, 2100146 (2021). https://doi.org/10.1002/adom.202100146
W. Yu, K. Gong, Y. Li, B. Ding, L. Li et al., Flexible 2D materials beyond graphene: synthesis, properties, and applications. Small 18, e2105383 (2022). https://doi.org/10.1002/smll.202105383
H. Tian, J. Tice, R. Fei, V. Tran, X. Yan et al., Low-symmetry two-dimensional materials for electronic and photonic applications. Nano Today 11, 763–777 (2016). https://doi.org/10.1016/j.nantod.2016.10.003
R. Rajendran, L.K. Shrestha, K. Minami, M. Subramanian, R. Jayavel et al., Dimensionally integrated nanoarchitectonics for a novel composite from 0D, 1D, and 2D nanomaterials: RGO/CNT/CeO2 ternary nanocomposites with electrochemical performance. J. Mater. Chem. A 2, 18480–18487 (2014). https://doi.org/10.1039/C4TA03996C
J. Mei, Y. Zhang, T. Liao, Z. Sun, S.X. Dou, Strategies for improving the lithium-storage performance of 2D nanomaterials. Natl. Sci. Rev. 5, 389–416 (2018). https://doi.org/10.1093/nsr/nwx077
C. Murugan, V. Sharma, R.K. Murugan, G. Malaimegu, A. Sundaramurthy, Two-dimensional cancer theranostic nanomaterials: synthesis, surface functionalization and applications in photothermal therapy. J. Control. Release 299, 1–20 (2019). https://doi.org/10.1016/j.jconrel.2019.02.015
W. Wen, Y. Song, X. Yan, C. Zhu, D. Du et al., Recent advances in emerging 2D nanomaterials for biosensing and bioimaging applications. Mater. Today 21, 164–177 (2018). https://doi.org/10.1016/j.mattod.2017.09.001
G. Guan, M.-Y. Han, Functionalized hybridization of 2D nanomaterials. Adv. Sci. 6, 1901837 (2019). https://doi.org/10.1002/advs.201901837
Y.-C. Lin, R. Torsi, D.B. Geohegan, J.A. Robinson, K. Xiao, Controllable thin-film approaches for doping and alloying transition metal dichalcogenides monolayers. Adv. Sci. 8, 2004249 (2021). https://doi.org/10.1002/advs.202004249
R. Wang, Y. Yu, S. Zhou, H. Li, H. Wong et al., Strategies on phase control in transition metal dichalcogenides. Adv. Funct. Mater. 28, 1802473 (2018). https://doi.org/10.1002/adfm.201802473
G. Guan, S. Zhang, S. Liu, Y. Cai, M. Low et al., Protein induces layer-by-layer exfoliation of transition metal dichalcogenides. J. Am. Chem. Soc. 137, 6152–6155 (2015). https://doi.org/10.1021/jacs.5b02780
G. Guan, J. Xia, S. Liu, Y. Cheng, S. Bai et al., Electrostatic-driven exfoliation and hybridization of 2D nanomaterials. Adv. Mater. 29, 1700326 (2017). https://doi.org/10.1002/adma.201700326
S. Li, Y. Ma, N.A.N. Ouedraogo, F. Liu, C. You et al., P-/n-Type modulation of 2D transition metal dichalcogenides for electronic and optoelectronic devices. Nano Res. 15, 123–144 (2022). https://doi.org/10.1007/s12274-021-3500-2
L. Loh, Z. Zhang, M. Bosman, G. Eda, Substitutional doping in 2D transition metal dichalcogenides. Nano Res. 14, 1668–1681 (2021). https://doi.org/10.1007/s12274-020-3013-4
Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 28, 1917–1933 (2016). https://doi.org/10.1002/adma.201503270
X. Huang, C. Tan, Z. Yin, H. Zhang, 25th anniversary : hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater. 26, 2185–2204 (2014). https://doi.org/10.1002/adma.201304964
Y. Zhao, K. Xu, F. Pan, C. Zhou, F. Zhou et al., Doping, contact and interface engineering of two-dimensional layered transition metal dichalcogenides transistors. Adv. Funct. Mater. 27, 1603484 (2017). https://doi.org/10.1002/adfm.201603484
Q. Wang, Y. Lei, Y. Wang, Y. Liu, C. Song et al., Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy Environ. Sci. 13, 1593–1616 (2020). https://doi.org/10.1039/D0EE00450B
S. Chen, D. Huang, M. Cheng, L. Lei, Y. Chen et al., Surface and interface engineering of two-dimensional bismuth-based photocatalysts for ambient molecule activation. J. Mater. Chem. A 9, 196–233 (2021). https://doi.org/10.1039/D0TA08165E
X. Gan, D. Lei, R. Ye, H. Zhao, K.-Y. Wong, Transition metal dichalcogenide-based mixed-dimensional heterostructures for visible-light-driven photocatalysis: dimensionality and interface engineering. Nano Res. 14, 2003–2022 (2021). https://doi.org/10.1007/s12274-020-2955-x
W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116–130 (2017). https://doi.org/10.1016/j.mattod.2016.10.002
J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen et al., A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018). https://doi.org/10.1038/s41586-018-0008-3
X. Xi, Z. Wang, W. Zhao, J.-H. Park, K.T. Law et al., Ising pairing in superconducting NbSe2 atomiclayers. Nat. Phys. 12, 139–143 (2016). https://doi.org/10.1038/nphys3538
Y. Qi, P.G. Naumov, M.N. Ali, C.R. Rajamathi, W. Schnelle et al., Superconductivity in weyl semimetal candidate MoTe2. Nat. Commun. 7, 11038 (2016). https://doi.org/10.1038/ncomms11038
E. Navarro-Moratalla, J.O. Island, S. Mañas-Valero, E. Pinilla-Cienfuegos, A. Castellanos-Gomez et al., Enhanced superconductivity in atomically thin TaS2. Nat. Commun. 7, 11043 (2016). https://doi.org/10.1038/ncomms11043
X. Qian, J. Liu, L. Fu, J. Li, Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014). https://doi.org/10.1126/science.1256815
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
Y. Xiao, M. Zhou, J. Liu, J. Xu, L. Fu, Phase engineering of two-dimensional transition metal dichalcogenides. Sci. China Mater. 62, 759–775 (2019). https://doi.org/10.1007/s40843-018-9398-1
X. Yuan, M. Yang, L. Wang, Y. Li, Structural stability and intriguing electronic properties of two-dimensional transition metal dichalcogenide alloys. Phys. Chem. Chem. Phys. 19, 13846–13854 (2017). https://doi.org/10.1039/C7CP01727H
C. Gao, X. Yang, M. Jiang, L. Chen, Z. Chen et al., Machine learning-enabled band gap prediction of monolayer transition metal chalcogenide alloys. Phys. Chem. Chem. Phys. 24, 4653–4665 (2022). https://doi.org/10.1039/d1cp05847a
Z. Shi, Q. Zhang, U. Schwingenschlögl, Alloying as a route to monolayer transition metal dichalcogenides with improved optoelectronic performance: Mo(S1–xSex)2 and Mo1–yWyS2. ACS Appl. Energy Mater. 1, 2208–2214 (2018). https://doi.org/10.1021/acsaem.8b00288
M. Chen, L. Zhu, Q. Chen, N. Miao, C. Si et al., Quantifying the composition dependency of the ground-state structure, electronic property and phase-transition dynamics in ternary transition-metal-dichalcogenide monolayers. J. Mater. Chem. C 8, 721–733 (2020). https://doi.org/10.1039/C9TC05487A
H. Li, X. Duan, X. Wu, X. Zhuang, H. Zhou et al., Growth of alloy MoS2xSe2(1–x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc. 136, 3756–3759 (2014). https://doi.org/10.1021/ja500069b
Q. Deng, X. Li, H. Si, J. Hong, S. Wang et al., Strong band bowing effects and distinctive optoelectronic properties of 2H and 1T’ phase-tunable MoxRe1–xS2 alloys. Adv. Funct. Mater. 30, 2003264 (2020). https://doi.org/10.1002/adfm.202003264
X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou et al., Synthesis of WS2xSe2-2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 16, 264–269 (2016). https://doi.org/10.1021/acs.nanolett.5b03662
V. Kochat, A. Apte, J.A. Hachtel, H. Kumazoe, A. Krishnamoorthy et al., Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism. Adv. Mater. 29, 1703754 (2017). https://doi.org/10.1002/adma.201703754
P. Yu, J. Lin, L. Sun, Q.L. Le, X. Yu et al., Metal-semiconductor phase-transition in WSe2(1–x)Te2x monolayer. Adv. Mater. 29, 1603991 (2017). https://doi.org/10.1002/adma.201603991
Y. Deng, P. Li, C. Zhu, J. Zhou, X. Wang et al., Controlled synthesis of MoxW1−xTe2 atomic layers with emergent quantum states. ACS Nano 15, 11526–11534 (2021). https://doi.org/10.1021/acsnano.1c01441
A.-Y. Lu, H. Zhu, J. Xiao, C.-P. Chuu, Y. Han et al., Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744–749 (2017). https://doi.org/10.1038/nnano.2017.100
J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er et al., Janus monolayer transition-metal dichalcogenides. ACS Nano 11, 8192–8198 (2017). https://doi.org/10.1021/acsnano.7b03186
H. Mo, X. Zhang, Y. Liu, P. Kang, H. Nan et al., Two-dimensional alloying molybdenum tin disulfide monolayers with fast photoresponse. ACS Appl. Mater. Interfaces 11, 39077–39087 (2019). https://doi.org/10.1021/acsami.9b13645
C. Tan, Z. Luo, A. Chaturvedi, Y. Cai, Y. Du et al., Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution. Adv. Mater. 30, 1705509 (2018). https://doi.org/10.1002/adma.201705509
I.S. Kwon, I.H. Kwak, T.T. Debela, J.Y. Kim, S.J. Yoo et al., Phase-transition Mo1−xVxSe2 alloy nanosheets with rich V-Se vacancies and their enhanced catalytic performance of hydrogen evolution reaction. ACS Nano 15, 14672–14682 (2021). https://doi.org/10.1021/acsnano.1c04453
I.H. Kwak, I.S. Kwon, T.T. Debela, H.G. Abbas, Y.C. Park et al., Phase evolution of Re1−xMoxSe2 alloy nanosheets and their enhanced catalytic activity toward hydrogen evolution reaction. ACS Nano 14, 11995–12005 (2020). https://doi.org/10.1021/acsnano.0c05159
X. Liu, J. Wu, W. Yu, L. Chen, Z. Huang et al., Monolayer WxMo1−xS2 grown by atmospheric pressure chemical vapor deposition: bandgap engineering and field effect transistors. Adv. Funct. Mater. 27, 1606469 (2017). https://doi.org/10.1002/adfm.201606469
G. Shao, X.-X. Xue, B. Wu, Y.-C. Lin, M. Ouzounian et al., Template-assisted synthesis of metallic 1T’-Sn0.3W0.7S2 nanosheets for hydrogen evolution reaction. Adv. Funct. Mater. 30, 1906069 (2020). https://doi.org/10.1002/adfm.201906069
X. Li, M.-W. Lin, L. Basile, S.M. Hus, A.A. Puretzky et al., Isoelectronic tungsten doping in monolayer MoSe2 for carrier type modulation. Adv. Mater. 28, 8240–8247 (2016). https://doi.org/10.1002/adma.201601991
Q. Fu, L. Yang, W. Wang, A. Han, J. Huang et al., Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(1−x)Se2x with a tunable band gap. Adv. Mater. 27, 4732–4738 (2015). https://doi.org/10.1002/adma.201500368
W.-J. Yin, H.-J. Tan, P.-J. Ding, B. Wen, X.-B. Li et al., Recent advances in low-dimensional Janus materials: theoretical and simulation perspectives. Mater. Adv. 2, 7543–7558 (2021). https://doi.org/10.1039/D1MA00660F
F. Raffone, C. Ataca, J.C. Grossman, G. Cicero, MoS2 enhanced T-phase stabilization and tunability through alloying. J. Phys. Chem. Lett. 7, 2304–2309 (2016). https://doi.org/10.1021/acs.jpclett.6b00794
X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin et al., Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv. Mater. 27, 8035–8041 (2015). https://doi.org/10.1002/adma.201503873
Y. Huang, H.-X. Deng, K. Xu, Z.-X. Wang, Q.-S. Wang et al., Highly sensitive and fast phototransistor based on large size CVD-grown SnS2 nanosheets. Nanoscale 7, 14093–14099 (2015). https://doi.org/10.1039/C5NR04174K
P. Perumal, R.K. Ulaganathan, R. Sankar, Y.-M. Liao, T.-M. Sun et al., Ultra-thin layered ternary single crystals [Sn(SxSe1–x)2] with bandgap engineering for high performance phototransistors on versatile substrates. Adv. Funct. Mater. 26, 3630–3638 (2016). https://doi.org/10.1002/adfm.201600081
A. Kutana, E.S. Penev, B.I. Yakobson, Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying. Nanoscale 6, 5820–5825 (2014). https://doi.org/10.1039/C4NR00177J
J. Kang, S. Tongay, J. Li, J. Wu, Monolayer semiconducting transition metal dichalcogenide alloys: stability and band bowing. J. Appl. Phys. 113, 143703 (2013). https://doi.org/10.1063/1.4799126
H.-P. Komsa, A.V. Krasheninnikov, Two-dimensional transition metal dichalcogenide alloys: stability and electronic properties. J. Phys. Chem. Lett. 3, 3652–3656 (2012). https://doi.org/10.1021/jz301673x
Z. Hemmat, J. Cavin, A. Ahmadiparidari, A. Ruckel, S. Rastegar et al., Quasi-binary transition metal dichalcogenide alloys: thermodynamic stability prediction, scalable synthesis, and application. Adv. Mater. 32, e1907041 (2020). https://doi.org/10.1002/adma.201907041
J.-H. Yang, B.I. Yakobson, Unusual negative formation enthalpies and atomic ordering in isovalent alloys of transition metal dichalcogenide monolayers. Chem. Mater. 30, 1547–1555 (2018). https://doi.org/10.1021/acs.chemmater.7b04527
M.C. Troparevsky, J.R. Morris, M. Daene, Y. Wang, A.R. Lupini et al., Beyond atomic sizes and hume-rothery rules: understanding and predicting high-entropy alloys. JOM 67, 2350–2363 (2015). https://doi.org/10.1007/s11837-015-1594-2
H. Taghinejad, D.A. Rehn, C. Muccianti, A.A. Eftekhar, M. Tian et al., Defect-mediated alloying of monolayer transition-metal dichalcogenides. ACS Nano 12, 12795–12804 (2018). https://doi.org/10.1021/acsnano.8b07920
W. Yao, Z. Kang, J. Deng, Y. Chen, Q. Song et al., Synthesis of 2D MoS2(1–x)Se2x semiconductor alloy by chemical vapor deposition. RSC Adv. 10, 42172–42177 (2020). https://doi.org/10.1039/d0ra07776c
Y. Tsai, Z. Chu, Y. Han, C.-P. Chuu, D. Wu et al., Tailoring semiconductor lateral multijunctions for giant photoconductivity enhancement. Adv. Mater. 29, 1703680 (2017). https://doi.org/10.1002/adma.201703680
B. Tang, J. Zhou, P. Sun, X. Wang, L. Bai et al., Phase-controlled synthesis of monolayer ternary telluride with a random local displacement of tellurium atoms. Adv. Mater. 31, e1900862 (2019). https://doi.org/10.1002/adma.201900862
J. Cavin, A. Ahmadiparidari, L. Majidi, A.S. Thind, S.N. Misal et al., 2D high-entropy transition metal dichalcogenides for carbon dioxide electrocatalysis. Adv. Mater. 33, e2100347 (2021). https://doi.org/10.1002/adma.202100347
Y. Chen, Z. Tian, X. Wang, N. Ran, C. Wang et al., 2D transition metal dichalcogenide with increased entropy for piezoelectric electronics. Adv. Mater. 34, e2201630 (2022). https://doi.org/10.1002/adma.202201630
J. Lin, J. Zhou, S. Zuluaga, P. Yu, M. Gu et al., Anisotropic ordering in 1T’ molybdenum and tungsten ditelluride layers alloyed with sulfur and selenium. ACS Nano 12, 894–901 (2018). https://doi.org/10.1021/acsnano.7b08782
D.O. Dumcenco, H. Kobayashi, Z. Liu, Y.-S. Huang, K. Suenaga, Visualization and quantification of transition metal atomic mixing in Mo1−xWxS2 single layers. Nat. Commun. 4, 1351 (2013). https://doi.org/10.1038/ncomms2351
S. Susarla, P. Manimunda, Y.M. Jaques, J.A. Hachtel, J.C. Idrobo et al., Strain-induced structural deformation study of 2D MoxW(1–x)S2. Adv. Mater. Interfaces 6, 1801262 (2019). https://doi.org/10.1002/admi.201801262
C. Tan, W. Zhao, A. Chaturvedi, Z. Fei, Z. Zeng et al., Preparation of single-layer MoS2xSe2(1–x) and MoxW1-xS2 nanosheets with high-concentration metallic 1T phase. Small 12, 1866–1874 (2016). https://doi.org/10.1002/smll.201600014
D. Hu, G. Xu, L. Xing, X. Yan, J. Wang et al., Two-dimensional semiconductors grown by chemical vapor transport. Angew. Chem. Int. Ed. 56, 3611–3615 (2017). https://doi.org/10.1002/anie.201700439
G.H. Han, D.L. Duong, D.H. Keum, S.J. Yun, Y.H. Lee, Van der waals metallic transition metal dichalcogenides. Chem. Rev. 118, 6297–6336 (2018). https://doi.org/10.1021/acs.chemrev.7b00618
Q. Gong, L. Cheng, C. Liu, M. Zhang, Q. Feng et al., Ultrathin MoS2(1–x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal. 5, 2213–2219 (2015). https://doi.org/10.1021/cs501970w
Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan et al., Growth of large-area 2D MoS2(1–x)Se2x semiconductor alloys. Adv. Mater. 26, 2648–2653 (2014). https://doi.org/10.1002/adma.201306095
Z. Zheng, J. Yao, G. Yang, Centimeter-scale deposition of Mo0.5W0.5Se2 alloy film for high-performance photodetectors on versatile substrates. ACS Appl. Mater. Interfaces 9, 14920–14928 (2017). https://doi.org/10.1021/acsami.7b02166
L. Zhang, T. Yang, X. He, W. Zhang, G. Vinai et al., Molecular beam epitaxy of two-dimensional vanadium-molybdenum diselenide alloys. ACS Nano 14, 11140–11149 (2020). https://doi.org/10.1021/acsnano.0c02124
X. Hu, Z. Hemmat, L. Majidi, J. Cavin, R. Mishra et al., Controlling nanoscale thermal expansion of monolayer transition metal dichalcogenides by alloy engineering. Small 16, e1905892 (2020). https://doi.org/10.1002/smll.201905892
G.K. Solanki, D.N. Gujarathi, M.P. Deshpande, D. Lakshminarayana, M.K. Agarwal, Transport property measurements in tungsten sulphoselenide single crystals grown by a CVT technique. Cryst. Res. Technol. 43, 179–185 (2008). https://doi.org/10.1002/crat.200711060
S.D. Karande, N. Kaushik, D.S. Narang, D. Late, S. Lodha, Thickness tunable transport in alloyed WSSe field effect transistors. Appl. Phys. Lett. 109, 142101 (2016). https://doi.org/10.1063/1.4964289
F.I. Alzakia, S.C. Tan, Liquid-exfoliated 2D materials for optoelectronic applications. Adv. Sci. 8, e2003864 (2021). https://doi.org/10.1002/advs.202003864
S. Witomska, T. Leydecker, A. Ciesielski, P. Samorì, Production and patterning of liquid phase–exfoliated 2D sheets for applications in optoelectronics. Adv. Funct. Mater. 29, 1901126 (2019). https://doi.org/10.1002/adfm.201901126
Z. Yang, H. Liang, X. Wang, X. Ma, T. Zhang et al., Atom-thin SnS2-xSex with adjustable compositions by direct liquid exfoliation from single crystals. ACS Nano 10, 755–762 (2016). https://doi.org/10.1021/acsnano.5b05823
I.S. Kwon, I.H. Kwak, J.Y. Kim, T.T. Debela, Y.C. Park et al., Concurrent vacancy and adatom defects of Mo1-xNbxSe2 alloy nanosheets enhance electrochemical performance of hydrogen evolution reaction. ACS Nano 15, 5467–5477 (2021). https://doi.org/10.1021/acsnano.1c00171
I.H. Kwak, T.T. Debela, I.S. Kwon, J. Seo, S.J. Yoo et al., Anisotropic alloying of Re1−xMoxS2 nanosheets to boost the electrochemical hydrogen evolution reaction. J. Mater. Chem. A 8, 25131–25141 (2020). https://doi.org/10.1039/D0TA09299A
W. Zhang, X. Li, T. Jiang, J. Song, Y. Lin et al., CVD synthesis of Mo(1–x)WxS2 and MoS2(1–x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide. Nanoscale 7, 13554–13560 (2015). https://doi.org/10.1039/c5nr02515j
Z. Cai, B. Liu, X. Zou, H.-M. Cheng, Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 118, 6091–6133 (2018). https://doi.org/10.1021/acs.chemrev.7b00536
L. Tang, J. Tan, H. Nong, B. Liu, H.-M. Cheng, Chemical vapor deposition growth of two-dimensional compound materials: controllability, material quality, and growth mechanism. Acc. Mater. Res. 2, 36–47 (2021). https://doi.org/10.1021/accountsmr.0c00063
L. Fang, S. Tao, Z. Tian, K. Liu, X. Li et al., Controlled growth of transition metal dichalcogenide via thermogravimetric prediction of precursors vapor concentration. Nano Res. 14, 2867–2874 (2021). https://doi.org/10.1007/s12274-021-3347-6
F. Chen, L. Wang, X. Ji, Q. Zhang, Temperature-dependent two-dimensional transition metal dichalcogenide heterostructures: controlled synthesis and their properties. ACS Appl. Mater. Interfaces 9, 30821–30831 (2017). https://doi.org/10.1021/acsami.7b08313
S. Susarla, V. Kochat, A. Kutana, J.A. Hachtel, J.C. Idrobo et al., Phase segregation behavior of two-dimensional transition metal dichalcogenide binary alloys induced by dissimilar substitution. Chem. Mater. 29, 7431–7439 (2017). https://doi.org/10.1021/acs.chemmater.7b02407
D.B. Trivedi, G. Turgut, Y. Qin, M.Y. Sayyad, D. Hajra et al., Room-temperature synthesis of 2D Janus crystals and their heterostructures. Adv. Mater. 32, e2006320 (2020). https://doi.org/10.1002/adma.202006320
S.J. Yun, G.H. Han, H. Kim, D.L. Duong, B.G. Shin et al., Telluriding monolayer MoS2 and WS2 via alkali metal scooter. Nat. Commun. 8, 2163 (2017). https://doi.org/10.1038/s41467-017-02238-0
G. Xue, X. Sui, P. Yin, Z. Zhou, X. Li et al., Modularized batch production of 12-inch transition metal dichalcogenides by local element supply. Sci. Bull. 68, 1514–1521 (2023). https://doi.org/10.1016/j.scib.2023.06.037
Y. Zuo, C. Liu, L. Ding, R. Qiao, J. Tian et al., Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply. Nat. Commun. 13, 1007 (2022). https://doi.org/10.1038/s41467-022-28628-7
Z. Ye, C. Tan, X. Huang, Y. Ouyang, L. Yang et al., Emerging MoS2 wafer-scale technique for integrated circuits. Nano-Micro Lett. 15, 38 (2023). https://doi.org/10.1007/s40820-022-01010-4
J. Lee, S. Pak, Y.W. Lee, Y. Park, A.R. Jang et al., Direct epitaxial synthesis of selective two-dimensional lateral heterostructures. ACS Nano 13, 13047–13055 (2019). https://doi.org/10.1021/acsnano.9b05722
X. Zhang, S. Xiao, L. Shi, H. Nan, X. Wan et al., Large-size Mo1-xWxS2 and W1-xMoxS2 (x = 0–0.5) monolayers by confined-space chemical vapor deposition. Appl. Surf. Sci. 457, 591–597 (2018). https://doi.org/10.1016/j.apsusc.2018.06.299
K. Ding, Q. Fu, H. Nan, X. Gu, K. Ostrikov et al., Controllable synthesis of WS2(1–x)Se2x monolayers with fast photoresponse by a facile chemical vapor deposition strategy. Mater. Sci. Eng. B 269, 115176 (2021). https://doi.org/10.1016/j.mseb.2021.115176
P. Kang, H. Nan, X. Zhang, H. Mo, Z. Ni et al., Controllable synthesis of crystalline ReS2(1–x)Se2x monolayers on amorphous SiO2/Si substrates with fast photoresponse. Adv. Opt. Mater. 8, 1901415 (2020). https://doi.org/10.1002/adom.201901415
Q. Feng, N. Mao, J. Wu, H. Xu, C. Wang et al., Growth of MoS2(1–x)Se2x (x = 0.41–1.00) monolayer alloys with controlled morphology by physical vapor deposition. ACS Nano 9, 7450–7455 (2015). https://doi.org/10.1021/acsnano.5b02506
M.N. Bui, S. Rost, M. Auge, J.-S. Tu, L. Zhou et al., Low-energy Se ion implantation in MoS2 monolayers. NPJ 2D Mater. Appl. 6, 42 (2022). https://doi.org/10.1038/s41699-022-00318-4
S. Prucnal, A. Hashemi, M. Ghorbani-Asl, R. Hübner, J. Duan et al., Chlorine doping of MoSe2 flakes by ion implantation. Nanoscale 13, 5834–5846 (2021). https://doi.org/10.1039/D0NR08935D
Q. Ma, M. Isarraraz, C.S. Wang, E. Preciado, V. Klee et al., Postgrowth tuning of the bandgap of single-layer molybdenum disulfide films by sulfur/selenium exchange. ACS Nano 8, 4672–4677 (2014). https://doi.org/10.1021/nn5004327
M. Ghorbani-Asl, S. Kretschmer, D.E. Spearot, A.V. Krasheninnikov, Two-dimensional MoS2 under ion irradiation: from controlled defect production to electronic structure engineering. 2D Mater. 4, 025078 (2017). https://doi.org/10.1088/2053-1583/aa6b17
X. Kong, L. Liang, Floquet band engineering and topological phase transitions in 1T’ transition metal dichalcogenides. 2D Mater. 9, 025005 (2022). https://doi.org/10.1088/2053-1583/ac4957
J. Yao, Z. Zheng, G. Yang, Promoting the performance of layered-material photodetectors by alloy engineering. ACS Appl. Mater. Interfaces 8, 12915–12924 (2016). https://doi.org/10.1021/acsami.6b03691
J.G. Song, G.H. Ryu, S.J. Lee, S. Sim, C.W. Lee et al., Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer. Nat. Commun. 6, 7817 (2015). https://doi.org/10.1038/ncomms8817
H.H. Huang, X. Fan, D.J. Singh, W.T. Zheng, Recent progress of TMD nanomaterials: phase transitions and applications. Nanoscale 12, 1247–1268 (2020). https://doi.org/10.1039/c9nr08313h
D. Voiry, A. Mohite, M. Chhowalla, Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44, 2702–2712 (2015). https://doi.org/10.1039/c5cs00151j
S.-Z. Yang, Y. Gong, P. Manchanda, Y.-Y. Zhang, G. Ye et al., Rhenium-doped and stabilized MoS2 atomic layers with basal-plane catalytic activity. Adv. Mater. 30, e1803477 (2018). https://doi.org/10.1002/adma.201803477
I.S. Kwon, I.H. Kwak, G.M. Zewdie, S.J. Lee, J.Y. Kim et al., WSe2-VSe2 alloyed nanosheets to enhance the catalytic performance of hydrogen evolution reaction. ACS Nano 16, 12569–12579 (2022). https://doi.org/10.1021/acsnano.2c04113
K. Yang, X. Wang, H. Li, B. Chen, X. Zhang et al., Composition- and phase-controlled synthesis and applications of alloyed phase heterostructures of transition metal disulphides. Nanoscale 9, 5102–5109 (2017). https://doi.org/10.1039/c7nr01015j
Z. Wang, Y. Shen, Y. Ito, Y. Zhang, J. Du et al., Synthesizing 1T–1H two-phase Mo1-xWxS2 monolayers by chemical vapor deposition. ACS Nano 12, 1571–1579 (2018). https://doi.org/10.1021/acsnano.7b08149
Z. Wang, X. Zhao, Y. Yang, L. Qiao, L. Lv et al., Phase-controlled synthesis of monolayer W1–xRexS2 alloy with improved photoresponse performance. Small 16, e2000852 (2020). https://doi.org/10.1002/smll.202000852
Y.-C. Lin, D.O. Dumcenco, Y.-S. Huang, K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9, 391–396 (2014). https://doi.org/10.1038/nnano.2014.64
I.H. Kwak, I.S. Kwon, G.M. Zewdie, T.T. Debela, S.J. Lee et al., Polytypic phase transition of Nb1- xVxSe2 via colloidal synthesis and their catalytic activity toward hydrogen evolution reaction. ACS Nano 16, 4278–4288 (2022). https://doi.org/10.1021/acsnano.1c10301
K.Y. Ko, S. Lee, K. Park, Y. Kim, W.J. Woo et al., High-performance gas sensor using a large-area WS2xSe2-2x alloy for low-power operation wearable applications. ACS Appl. Mater. Interfaces 10, 34163–34171 (2018). https://doi.org/10.1021/acsami.8b10455
Y. Chen, J. Xi, D.O. Dumcenco, Z. Liu, K. Suenaga et al., Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano 7, 4610–4616 (2013). https://doi.org/10.1021/nn401420h
M. Zhang, J. Wu, Y. Zhu, D.O. Dumcenco, J. Hong et al., Two-dimensional molybdenum tungsten diselenide alloys: photoluminescence, Raman scattering, and electrical transport. ACS Nano 8, 7130–7137 (2014). https://doi.org/10.1021/nn5020566
F. Cui, Q. Feng, J. Hong, R. Wang, Y. Bai et al., Synthesis of large-size 1T’ ReS2xSe2(1–x) alloy monolayer with tunable bandgap and carrier type. Adv. Mater. 29, 1705015 (2017). https://doi.org/10.1002/adma.201705015
J. Kim, H. Seung, D. Kang, J. Kim, H. Bae et al., Wafer-scale production of transition metal dichalcogenides and alloy monolayers by nanocrystal conversion for large-scale ultrathin flexible electronics. Nano Lett. 21, 9153–9163 (2021). https://doi.org/10.1021/acs.nanolett.1c02991
Y.-R. Lin, W.-H. Cheng, M.H. Richter, J.S. DuChene, E.A. Peterson et al., Band edge tailoring in few-layer two-dimensional molybdenum sulfide/selenide alloys. J. Phys. Chem. C 124, 22893–22902 (2020). https://doi.org/10.1021/acs.jpcc.0c04719
N. Tit, I.M. Obaidat, H. Alawadhi, Origins of bandgap bowing in compound-semiconductor common-cation ternary alloys. J. Phys. Condens. Matter 21, 075802 (2009). https://doi.org/10.1088/0953-8984/21/7/075802
L. Yang, Q. Fu, W. Wang, J. Huang, J. Huang et al., Large-area synthesis of monolayered MoS2(1–x)Se2x with a tunable band gap and its enhanced electrochemical catalytic activity. Nanoscale 7, 10490–10497 (2015). https://doi.org/10.1039/c5nr02652k
F. Liang, H. Xu, Z. Dong, Y. Xie, C. Luo et al., Substrates and interlayer coupling effects on Mo1–xWxSe2 alloys. J. Semicond. 40, 062005 (2019). https://doi.org/10.1088/1674-4926/40/6/062005
H. Masenda, L.M. Schneider, M. Adel Aly, S.J. Machchhar, A. Usman et al., Energy scaling of compositional disorder in ternary transition-metal dichalcogenide monolayers. Adv. Electron. Mater. 7, 2100196 (2021). https://doi.org/10.1002/aelm.202100196
B. Aslan, I.M. Datye, M.J. Mleczko, K. Sze Cheung, S. Krylyuk et al., Probing the optical properties and strain-tuning of ultrathin Mo1−xWxTe2. Nano Lett. 18, 2485–2491 (2018). https://doi.org/10.1021/acs.nanolett.8b00049
W. Zheng, B. Zheng, C. Yan, Y. Liu, X. Sun et al., Direct vapor growth of 2D vertical heterostructures with tunable band alignments and interfacial charge transfer behaviors. Adv. Sci. 6, 1802204 (2019). https://doi.org/10.1002/advs.201802204
J. Wu, L. Xie, Structural quantification for graphene and related two-dimensional materials by Raman spectroscopy. Anal. Chem. 91, 468–481 (2019). https://doi.org/10.1021/acs.analchem.8b04991
X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang et al., Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44, 2757–2785 (2015). https://doi.org/10.1039/c4cs00282b
C. Ramkumar, K.P. Jain, S.C. Abbi, Resonant Raman scattering probe of alloying effect in GaAs1-xPx ternary alloy semiconductors. Phys. Rev. B Condens. Matter 54, 7921–7928 (1996). https://doi.org/10.1103/physrevb.54.7921
Y. Chen, D.O. Dumcenco, Y. Zhu, X. Zhang, N. Mao et al., Composition-dependent Raman modes of Mo1−xWxS2 monolayer alloys. Nanoscale 6, 2833–2839 (2014). https://doi.org/10.1039/C3NR05630A
X. Gan, R. Lv, X. Wang, Z. Zhang, K. Fujisawa et al., Pyrolytic carbon supported alloying metal dichalcogenides as free-standing electrodes for efficient hydrogen evolution. Carbon 132, 512–519 (2018). https://doi.org/10.1016/j.carbon.2018.02.025
Y. Sun, K. Fujisawa, Z. Lin, Y. Lei, J.S. Mondschein et al., Low-temperature solution synthesis of transition metal dichalcogenide alloys with tunable optical properties. J. Am. Chem. Soc. 139, 11096–11105 (2017). https://doi.org/10.1021/jacs.7b04443
D. Wang, X. Zhang, G. Guo, S. Gao, X. Li et al., Large-area synthesis of layered HfS2(1–x)Se2x alloys with fully tunable chemical compositions and bandgaps. Adv. Mater. 30, e1803285 (2018). https://doi.org/10.1002/adma.201803285
A. Apte, A. Krishnamoorthy, J.A. Hachtel, S. Susarla, J.C. Idrobo et al., Telluride-based atomically thin layers of ternary two-dimensional transition metal dichalcogenide alloys. Chem. Mater. 30, 7262–7268 (2018). https://doi.org/10.1021/acs.chemmater.8b03444
A.T. Barton, R. Yue, L.A. Walsh, G. Zhou, C. Cormier et al., WSe(2–x)Tex alloys grown by molecular beam epitaxy. 2D Mater. 6, 045027 (2019). https://doi.org/10.1088/2053-1583/ab334d
Q. Fu, J. Han, X. Wang, P. Xu, T. Yao et al., 2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis. Adv. Mater. 33, e1907818 (2021). https://doi.org/10.1002/adma.201907818
A.K. Chanchal, Garg, MREI-model calculations of optical phonons in layered mixed crystals of 2H-polytype of the series SnS2–xSex (0⩽x⩽2). Phys. B Condens. Matter 383, 188–193 (2006). https://doi.org/10.1016/j.physb.2006.03.009
Y. Chen, W. Shockley, G.L. Pearson, Lattice vibration spectra of GaAsxP1-x single crystals. Phys. Rev. 151, 648–656 (1966). https://doi.org/10.1103/PhysRev.151.648
I.F. Chang, S.S. Mitra, Application of a modified random-element-isodisplacement model to long-wavelength optic phonons of mixed crystals. Phys. Rev. 172, 924–933 (1968). https://doi.org/10.1103/physrev.172.924
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
A.R. Kim, Y. Kim, J. Nam, H.S. Chung, D.J. Kim et al., Alloyed 2D metal-semiconductor atomic layer junctions. Nano Lett. 16, 1890–1895 (2016). https://doi.org/10.1021/acs.nanolett.5b05036
A. Sebastian, R. Pendurthi, T.H. Choudhury, J.M. Redwing, S. Das, Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun. 12, 693 (2021). https://doi.org/10.1038/s41467-020-20732-w
B. Liu, Y. Ma, A. Zhang, L. Chen, A.N. Abbas et al., High-performance WSe2 field-effect transistors via controlled formation of In-plane heterojunctions. ACS Nano 10, 5153–5160 (2016). https://doi.org/10.1021/acsnano.6b00527
H. Zhou, C. Wang, J.C. Shaw, R. Cheng, Y. Chen et al., Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 15, 709–713 (2015). https://doi.org/10.1021/nl504256y
K. Xu, A. Sharma, S. Kang, J. Kang, X. Hu et al., Heterogeneous electronic and photonic devices based on monolayer ternary telluride core/shell structures. Adv. Mater. 33, e2100343 (2021). https://doi.org/10.1002/adma.202100343
K.-C. Chen, C.-Y. Jian, Y.-J. Chen, S.-C. Lee, S.-W. Chang et al., Current enhancement and bipolar current modulation of top-gate transistors based on monolayer MoS2 on three-layer WxMo1−xS2. ACS Appl. Mater. Interfaces 10, 24733–24738 (2018). https://doi.org/10.1021/acsami.8b06327
V.T. Vu, T.T.H. Vu, T.L. Phan, W.T. Kang, Y.R. Kim et al., One-step synthesis of NbSe2/Nb-doped-WSe2 metal/doped-semiconductor van der waals heterostructures for doping controlled ohmic contact. ACS Nano 15, 13031–13040 (2021). https://doi.org/10.1021/acsnano.1c02038
W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi et al., Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013). https://doi.org/10.1021/nl4007479
H. Tian, M.L. Chin, S. Najmaei, Q. Guo, F. Xia et al., Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 9, 1543–1560 (2016). https://doi.org/10.1007/s12274-016-1034-9
H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan et al., Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013). https://doi.org/10.1038/ncomms3642
Y.R. Lim, J.K. Han, Y. Yoon, J.B. Lee, C. Jeon et al., Atomic-level customization of 4 in transition metal dichalcogenide multilayer alloys for industrial applications. Adv. Mater. 31, e1901405 (2019). https://doi.org/10.1002/adma.201901405
H. Xu, J. Zhu, G. Zou, W. Liu, X. Li et al., Spatially bandgap-graded MoS2(1–x)Se2x homojunctions for self-powered visible-near-infrared phototransistors. Nano-Micro Lett. 12, 26 (2020). https://doi.org/10.1007/s40820-019-0361-2
P. Chauhan, G.K. Solanki, A.B. Patel, K. Patel, P. Pataniya et al., Tunable and anisotropic photoresponse of layered Re0.2Sn0.8Se2 ternary alloy. Sol. Energy Mater. Sol. Cells 200, 109936 (2019). https://doi.org/10.1016/j.solmat.2019.109936
J. Ye, K. Liao, X. Ge, Z. Wang, Y. Wang et al., Narrowing bandgap of HfS2 by Te substitution for short-wavelength infrared photodetection. Adv. Opt. Mater. 9, 2002248 (2021). https://doi.org/10.1002/adom.202002248
T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch et al., Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007). https://doi.org/10.1126/science.1141483
W. Xu, S. Li, S. Zhou, J.K. Lee, S. Wang et al., Large dendritic monolayer MoS2 grown by atmospheric pressure chemical vapor deposition for electrocatalysis. ACS Appl. Mater. Interfaces 10, 4630–4639 (2018). https://doi.org/10.1021/acsami.7b14861
Z. Lai, A. Chaturvedi, Y. Wang, T.H. Tran, X. Liu et al., Preparation of 1T’-phase ReS2xSe2(1–x) (x = 0–1) nanodots for highly efficient electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 140, 8563–8568 (2018). https://doi.org/10.1021/jacs.8b04513
Y. Lei, S. Pakhira, K. Fujisawa, X. Wang, O.O. Iyiola et al., Low-temperature synthesis of heterostructures of transition metal dichalcogenide alloys (WxMo1-xS2) and graphene with superior catalytic performance for hydrogen evolution. ACS Nano 11, 5103–5112 (2017). https://doi.org/10.1021/acsnano.7b02060
J. Xu, X. Li, W. Liu, Y. Sun, Z. Ju et al., Carbon dioxide electroreduction into syngas boosted by a partially delocalized charge in molybdenum sulfide selenide alloy monolayers. Angew. Chem. Int. Ed. 56, 9121–9125 (2017). https://doi.org/10.1002/anie.201704928
G. Shao, Y. Lu, J. Hong, X.-X. Xue, J. Huang et al., Seamlessly splicing metallic SnxMo1−xS2 at MoS2 edge for enhanced photoelectrocatalytic performance in microreactor. Adv. Sci. 7, 2002172 (2020). https://doi.org/10.1002/advs.202002172
F. Li, W. Wei, H. Wang, B. Huang, Y. Dai et al., Intrinsic electric field-induced properties in Janus MoSSe van der waals structures. J. Phys. Chem. Lett. 10, 559–565 (2019). https://doi.org/10.1021/acs.jpclett.8b03463
T. Zheng, Y.-C. Lin, Y. Yu, P. Valencia-Acuna, A.A. Puretzky et al., Excitonic dynamics in Janus MoSSe and WSSe monolayers. Nano Lett. 21, 931–937 (2021). https://doi.org/10.1021/acs.nanolett.0c03412
H. Cai, Y. Guo, H. Gao, W. Guo, Tribo-piezoelectricity in Janus transition metal dichalcogenide bilayers: a first-principles study. Nano Energy 56, 33–39 (2019). https://doi.org/10.1016/j.nanoen.2018.11.027
C. Zhang, Y. Nie, S. Sanvito, A. Du, First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization. Nano Lett. 19, 1366–1370 (2019). https://doi.org/10.1021/acs.nanolett.8b05050
J. Liang, W. Wang, H. Du, A. Hallal, K. Garcia et al., Very large Dzyaloshinskii-Moriya interaction in two-dimensional Janus manganese dichalcogenides and its application to realize skyrmion states. Phys. Rev. B 101, 184401 (2020). https://doi.org/10.1103/physrevb.101.184401
A.C. Riis-Jensen, T. Deilmann, T. Olsen, K.S. Thygesen, Classifying the electronic and optical properties of Janus monolayers. ACS Nano 13, 13354–13364 (2019). https://doi.org/10.1021/acsnano.9b06698
S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P.S. Schmidt et al., The computational 2D materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater. 5, 042002 (2018). https://doi.org/10.1088/2053-1583/aacfc1
M.N. Gjerding, A. Taghizadeh, A. Rasmussen, S. Ali, F. Bertoldo et al., Recent progress of the computational 2D materials database (C2DB). 2D Mater. 8, 044002 (2021). https://doi.org/10.1088/2053-1583/ac1059
S. Zhang, X. Wang, Y. Wang, H. Zhang, B. Huang et al., Electronic properties of defective Janus MoSSe monolayer. J. Phys. Chem. Lett. 13, 4807–4814 (2022). https://doi.org/10.1021/acs.jpclett.2c01195
Y.-C. Lin, C. Liu, Y. Yu, E. Zarkadoula, M. Yoon et al., Low energy implantation into transition-metal dichalcogenide monolayers to form Janus structures. ACS Nano 14, 3896–3906 (2020). https://doi.org/10.1021/acsnano.9b10196
X. Wan, E. Chen, J. Yao, M. Gao, X. Miao et al., Synthesis and characterization of metallic Janus MoSH monolayer. ACS Nano 15, 20319–20331 (2021). https://doi.org/10.1021/acsnano.1c08531
C.-H. Yeh, Computational study of Janus transition metal dichalcogenide monolayers for acetone gas sensing. ACS Omega 5, 31398–31406 (2020). https://doi.org/10.1021/acsomega.0c04938
S. Jia, A. Bandyopadhyay, H. Kumar, J. Zhang, W. Wang et al., Biomolecular sensing by surface-enhanced Raman scattering of monolayer Janus transition metal dichalcogenide. Nanoscale 12, 10723–10729 (2020). https://doi.org/10.1039/D0NR00300J
W.-J. Yin, B. Wen, G.-Z. Nie, X.-L. Wei, L.-M. Liu, Tunable dipole and carrier mobility for a few layer Janus MoSSe structure. J. Mater. Chem. C 6, 1693–1700 (2018). https://doi.org/10.1039/C7TC05225A
M. Idrees, H.U. Din, R. Ali, G. Rehman, T. Hussain et al., Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures. Phys. Chem. Chem. Phys. 21, 18612–18621 (2019). https://doi.org/10.1039/C9CP02648G
S. Susarla, A. Kutana, J.A. Hachtel, V. Kochat, A. Apte et al., Quaternary 2D transition metal dichalcogenides (TMDs) with tunable bandgap. Adv. Mater. 29, 1702457 (2017). https://doi.org/10.1002/adma.201702457
C.-Z. Ning, L. Dou, P. Yang, Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2, 17070 (2017). https://doi.org/10.1038/natrevmats.2017.70
I.S. Kwon, S.J. Lee, J.Y. Kim, I.H. Kwak, G.M. Zewdie et al., Composition-tuned (MoWV)Se2 ternary alloy nanosheets as excellent hydrogen evolution reaction electrocatalysts. ACS Nano 17, 2968–2979 (2023). https://doi.org/10.1021/acsnano.2c11528
T. Joseph, M. Ghorbani-Asl, A.G. Kvashnin, K.V. Larionov, Z.I. Popov et al., Nonstoichiometric phases of two-dimensional transition-metal dichalcogenides: from chalcogen vacancies to pure metal membranes. J. Phys. Chem. Lett. 10, 6492–6498 (2019). https://doi.org/10.1021/acs.jpclett.9b02529
Z. Wang, R. Li, C. Su, K.P. Loh, Intercalated phases of transition metal dichalcogenides. SmartMat 1, e1013 (2020). https://doi.org/10.1002/smm2.1013
B. An, Y. Ma, F. Chu, X. Li, Y. Wu et al., Growth of centimeter scale Nb1−xWxSe2 monolayer film by promoter assisted liquid phase chemical vapor deposition. Nano Res. 15, 2608–2615 (2022). https://doi.org/10.1007/s12274-021-3825-x
S. Park, S.J. Yun, Y.I. Kim, J.H. Kim, Y.M. Kim et al., Tailoring domain morphology in monolayer NbSe2 and WxNb1−xSe2 heterostructure. ACS Nano 14, 8784–8792 (2020). https://doi.org/10.1021/acsnano.0c03382
X. Li, F. Cui, Q. Feng, G. Wang, X. Xu et al., Controlled growth of large-area anisotropic ReS2 atomic layer and its photodetector application. Nanoscale 8, 18956–18962 (2016). https://doi.org/10.1039/C6NR07233J
F. Cui, X. Li, Q. Feng, J. Yin, L. Zhou et al., Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer. Nano Res. 10, 2732–2742 (2017). https://doi.org/10.1007/s12274-017-1477-7
G. Song, S. Cong, Z. Zhao, Defect engineering in semiconductor-based SERS. Chem. Sci. 13, 1210–1224 (2021). https://doi.org/10.1039/d1sc05940h
S.G. Yi, S.H. Kim, S. Park, D. Oh, H.Y. Choi et al., Mo1-xWxSe2-based Schottky junction photovoltaic cells. ACS Appl. Mater. Interfaces 8, 33811–33820 (2016). https://doi.org/10.1021/acsami.6b11768
K.C. Kwon, T.H. Lee, S. Choi, K.S. Choi, S.O. Gim et al., Synthesis of atomically thin alloyed molybdenum-tungsten disulfides thin films as hole transport layers in organic light-emitting diodes. Appl. Surf. Sci. 541, 148529 (2021). https://doi.org/10.1016/j.apsusc.2020.148529
R. Yang, L. Liu, S. Feng, Y. Liu, S. Li et al., One-step growth of spatially graded Mo1−xWxS2 monolayers with a wide span in composition (from x = 0 to 1) at a large scale. ACS Appl. Mater. Interfaces 11, 20979–20986 (2019). https://doi.org/10.1021/acsami.9b03608