Integrating Levels of Hierarchical Organization in Porous Organic Molecular Materials
Corresponding Author: Antonio Fernandez
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 88
Abstract
Porous organic molecular materials (POMMs) are an emergent class of molecular-based materials characterized by the formation of extended porous frameworks, mainly held by non-covalent interactions. POMMs represent a variety of chemical families, such as hydrogen-bonded organic frameworks, porous organic salts, porous organic cages, C − H⋅⋅⋅π microporous crystals, supramolecular organic frameworks, π-organic frameworks, halogen-bonded organic framework, and intrinsically porous molecular materials. In some porous materials such as zeolites and metal organic frameworks, the integration of multiscale has been adopted to build materials with multifunctionality and optimized properties. Therefore, considering the significant role of hierarchy in porous materials and the growing importance of POMMs in the realm of synthetic porous materials, we consider it appropriate to dedicate for the first time a critical review covering both topics. Herein, we will provide a summary of literature examples showcasing hierarchical POMMs, with a focus on their main synthetic approaches, applications, and the advantages brought forth by introducing hierarchy.
Highlights:
1 This review covers the extent of the integration of hierarchy in porous organic molecular materials (POMMs) for the first time.
2 Three main hierarchies are identified in POMMs: composition, architecture, and porosity.
3 The synthesis and applications of hierarchical POMMs, while highlighting the advantages of having hierarchy, are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. Little, A.I. Cooper, The chemistry of porous organic molecular materials. Adv. Funct. Mater. 30, 1909842 (2020). https://doi.org/10.1002/adfm.201909842
- C. Halliwell, J. Ferrando-Soria, A. Fernandez, Beyond microporosity in porous organic molecular materials (POMMs). Angew. Chem. Int. Ed. 62, e202217729 (2023). https://doi.org/10.1002/anie.202217729
- Z.-J. Lin, S.A.R. Mahammed, T.-F. Liu et al., Hydrogen-bonded organic frameworks: chemistry and functions. ACS Cent. Sci. 8(12), 1589–1608 (2022). https://doi.org/10.1021/acscentsci.2c01196
- R.-B. Lin, B. Chen, Hydrogen-bonded organic frameworks: chemistry and functions. Chem 8, 2114–2135 (2022). https://doi.org/10.1016/j.chempr.2022.06.015
- S. Yu, G.-L. Xing, L.-H. Chen et al., Crystalline porous organic salts: from micropore to hierarchical pores. Adv. Mater. 32, 2003270 (2020). https://doi.org/10.1002/adma.202003270
- T. Hasell, A.I. Cooper, Porous organic cages: soluble, modular and molecular pores. Nat. Rev. Mater. 1, 16053 (2016). https://doi.org/10.1038/natrevmats.2016.53
- Y. Tian, J. Yang, M. Gao et al., Organic microporous crystals driven by pure C–H..π interactions with vapor-induced crystal-to-crystal transformations. Mater. Horiz. 9, 731–739 (2022). https://doi.org/10.1039/D1MH01360B
- J. Tian, H. Wang, D.-W. Zhang et al., Supramolecular organic frameworks (SOFs): homogeneous regular 2D and 3D pores in water. Natl. Sci. Rev. 4, 426–436 (2017). https://doi.org/10.1093/nsr/nwx030
- C. Chen, Z. Di, H. Li et al., An ultrastable π–π stacked porous organic molecular framework as a crystalline sponge for rapid molecular structure determination. CCS Chem. 4, 1315–1325 (2022). https://doi.org/10.31635/ccschem.021.202100910
- C. Chen, H. Guan, H. Li et al., A noncovalent π-stacked porous organic molecular framework for selective separation of aromatics and cyclic aliphatics. Angew. Chem. Int. Ed. 61, e202201646 (2022). https://doi.org/10.1002/anie.202201646
- D. Meng, J.L. Yang, C. Xiao et al., Noncovalent π-stacked robust topological organic framework. Proc. Natl. Acad. Sci. U.S.A. 117, 20397–20403 (2020). https://doi.org/10.1073/pnas.2010733117
- G. Gong, S. Lv, J. Han et al., Halogen-bonded organic framework (XOF) based on iodonium-bridged N⋅⋅⋅I+⋅⋅⋅N interactions: A type of diphase periodic organic network. Angew. Chem. Int. Ed. 60, 14831–14835 (2021). https://doi.org/10.1002/anie.202102448
- G. Zhang, B. Hua, A. Dey et al., Intrinsically porous molecular materials (IPMs) for natural gas and benzene derivatives separations. Acc. Chem. Res. 54, 155–168 (2021). https://doi.org/10.1021/acs.accounts.0c00582
- W. Schwieger, A.G. Machoke, T. Weissenberger et al., Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chem. Soc. Rev. 45, 3353 (2016). https://doi.org/10.1039/C5CS00599J
- K. Geng, R. Liu, S. Dalapati et al., Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 16, 8814–8933 (2020). https://doi.org/10.1021/acs.chemrev.9b00550
- Q. Wang, D. Astruc, State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2, 1438–1511 (2020). https://doi.org/10.1021/acs.chemrev.9b00223
- S. Das, P. Heasman, T. Ben et al., Porous organic materials: strategic design and structure-function correlation. Chem. Rev. 3, 1515–1563 (2017). https://doi.org/10.1021/acs.chemrev.6b00439
- L.-H. Chen, Y. Li, B.-L. Su, Hierarchy in materials for maximized efficiency. Natl. Sci. Rev. 11, 1626–1630 (2020). https://doi.org/10.1093/nsr/nwaa251
- R. Lakes, Materials with structural hierarchy. Nature 361, 511–515 (1993). https://doi.org/10.1038/361511a0
- A. Levin, T.A. Hakala, L. Schnaider et al., Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020). https://doi.org/10.1038/s41570-020-0215-y
- L.-H. Chen, M.-H. Sun, Z. Wang et al., Hierarchically structured zeolites: from design to application. Chem. Rev. 20, 11194–11294 (2020). https://doi.org/10.1021/acs.chemrev.0c00016
- L. Feng, K.-Y. Wang, J. Willman et al., Hierarchy in metal–organic frameworks. ACS Cent. Sci. 3, 359–367 (2020). https://doi.org/10.1021/acscentsci.0c00158
- R.-R. Liang, S.-Y. Jiang, R. Han et al., Two-dimensional covalent organic frameworks with hierarchical porosity. Chem. Soc. Rev. 49, 3920–3951 (2020). https://doi.org/10.1039/D0CS00049C
- Y. Luo, M. Ahmad, A. Schug et al., Rising Up: hierarchical metal–organic frameworks in experiments and simulations. Adv. Mater. 31, 1901744 (2019). https://doi.org/10.1002/adma.201901744
- C. Sanchez, Hierarchy: enhancing performances beyond limits. Natl. Sci. Rev. 7, 1624–1625 (2020). https://doi.org/10.1093/nsr/nwaa249
- H.V. Doan, H.A. Hamzah, P.K. Prabhakaran et al., Hierarchical metal–organic frameworks with macroporosity: synthesis, achievements, and challenges. Nano-Micro Lett. 11, 54 (2019). https://doi.org/10.1007/s40820-019-0286-9
- C. Wang, Y. Wang, K.O. Kirlikovali et al., Ultrafine silver nanop encapsulated porous molecular traps for discriminative photoelectrochemical detection of mustard gas simulants by synergistic size-exclusion and site-specific recognition. Adv. Mater. 34, 2202287 (2022). https://doi.org/10.1002/adma.202202287
- Y.-J. Du, J.-H. Zhou, L.-X. Tan et al., Porous organic cage nanostructures for construction of complex sequential reaction networks. ACS Appl. Nano Mater. 5, 7974–7982 (2022). https://doi.org/10.1021/acsanm.2c01057
- F. Ren, M. Hua, Z. Yang et al., Self-assembled artificial enzyme from hybridized porous organic cages and iron oxide nanocrystals. J. Colloid Interface Sci. 621, 331–340 (2022). https://doi.org/10.1016/j.jcis.2022.04.027
- S. Jiang, Y. Du, M. Marcello et al., Core–shell crystals of porous organic cages. Angew. Chem. Int. Ed. 57, 11228–11232 (2018). https://doi.org/10.1002/anie.201803244
- B.-T. Liu, X.-H. Pan, D.-Y. Zhang et al., Construction of function-oriented core–shell nanostructures in hydrogen-bonded organic frameworks for near-infrared-responsive bacterial inhibition. Angew. Chem. Int. Ed. 60, 25701–25707 (2021). https://doi.org/10.1002/anie.202110028
- J. Wang, Y. Mao, R. Zhang et al., In situ assembly of hydrogen-bonded organic framework on metal–organic framework: an effective strategy for constructing core–shell hybrid photocatalyst. Adv. Sci. 9, 2204036 (2022). https://doi.org/10.1002/advs.202204036
- B. Yu, T. Meng, X. Ding et al., Hydrogen-bonded organic framework ultrathin nanosheets for efficient visible-light photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 61, e202211482 (2022). https://doi.org/10.1002/anie.202211482
- D. Yu, H. Zhang, Z. Liu et al., Hydrogen-bonded organic framework (HOF)-based single-neural stem cell encapsulation and transplantation to remodel impaired neural networks. Angew. Chem. Int. Ed. 134, e202201485 (2022). https://doi.org/10.1002/anie.202201485
- Q. Zou, L. Zhang, X. Yan et al., Multifunctional porous microspheres based on peptide–porphyrin hierarchical Co-assembly. Angew. Chem. Int. Ed. 126, 2398–2402 (2014). https://doi.org/10.1002/ange.201308792
- A. Kaushik, K. Marvaniya, Y. Kulkarni et al., Large-area self-standing thin film of porous hydrogen-bonded organic framework for efficient uranium extraction from seawater. Chem 8, 2749–2765 (2022). https://doi.org/10.1016/j.chempr.2022.07.009
- S. Wuttke, D.D. Medina, J.M. Rotter et al., Bringing porous organic and carbon-based materials toward thin-film applications. Adv. Funct. Mater. 28, 1801545 (2018). https://doi.org/10.1002/adfm.201801545
- Y.-H. Luo, L. Zhang, W.-X. Fang et al., 2D hydrogen-bonded organic frameworks: in-site generation and subsequent exfoliation. Chem. Commun. 57, 5901 (2021). https://doi.org/10.1039/D1CC01626A
- X.-T. He, Y.-H. Luo, D.-L. Hong et al., Atomically thin nanoribbons by exfoliation of hydrogen-bonded organic frameworks for drug delivery. ACS Appl. Nano Mater. 2, 2437 (2019). https://doi.org/10.1021/acsanm.9b00303
- Y.-H. Luo, X.-T. He, C. Wang et al., Interconversion between nanoribbons and nanospheres mediated by detachable ‘invisibility suit.’ Mater. Today Nano 9, 100068 (2020). https://doi.org/10.1016/j.mtnano.2019.100068
- X.-T. He, Y.-H. Luo, Z.-Y. Zheng et al., Porphyrin-based hydrogen-bonded organic frameworks for the photocatalytic degradation of 9,10-diphenylanthracene. ACS Appl. Nano Mater. 2, 7719 (2019). https://doi.org/10.1021/acsanm.9b01787
- R. Makiura, K. Tsuchiyama, E. Pohl et al., Air/liquid interfacial nanoassembly of molecular building blocks into preferentially oriented porous organic nanosheet crystals via hydrogen bonding. ACS Nano 11, 10875–10882 (2017). https://doi.org/10.1021/acsnano.7b04447
- M. Brutschy, M.W. Schneider, M. Mastalerz et al., Porous organic cage compounds as highly potent affinity materials for sensing by quartz crystal microbalances. Adv. Mater. 24, 6049–6052 (2012). https://doi.org/10.1002/adma.201202786
- Q. Song, S. Jiang, T. Hasell et al., Porous organic cage thin films and molecular-sieving membranes. Adv. Mater. 28, 2629–2637 (2016). https://doi.org/10.1002/adma.201505688
- H. Li, Y. Huang, Y. Zhang et al., An ultrathin functional layer based on porous organic cages for selective ion sieving and lithium–sulfur batteries. Nano Lett. 22, 2030–2037 (2022). https://doi.org/10.1021/acs.nanolett.1c04838
- T. Xu, B. Wu, L. Hou et al., Highly ion-permselective porous organic cage membranes with hierarchical channels. J. Am. Chem. Soc. 23, 10220–10229 (2022). https://doi.org/10.1021/jacs.2c00318
- A. He, Z. Jiang, Y. Wu et al., A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving. Nat. Mater. 21, 463–470 (2022). https://doi.org/10.1038/s41563-021-01168-z
- S. Jiang, Q. Song, A. Massey et al., Oriented two-dimensional porous organic cage crystals. Angew. Chem. Int. Ed. 56, 9391–9395 (2017). https://doi.org/10.1002/anie.201704579
- Z. Jiang, Y. Wang, M. Sheng et al., A highly permeable porous organic cage composite membrane for gas separation. J. Mater. Chem. A 11, 6831–6841 (2023). https://doi.org/10.1039/D2TA09632C
- J.M. Lucero, M.A. Carreon, Separation of light gases from xenon over porous organic cage membranes. ACS Appl. Mater. Interfaces 12, 32182–32188 (2020). https://doi.org/10.1021/acsami.0c08040
- J.-F. Feng, T.-F. Liu, R. Cao, An electrochromic hydrogen-bonded organic framework film. Angew. Chem. Int. Ed. 59, 22392–22396 (2020). https://doi.org/10.1002/anie.202006926
- S. Feng, Y. Shang, Z. Wang et al., Fabrication of a hydrogen-bonded organic framework membrane through solution processing for pressure-regulated gas separation. Angew. Chem. Int. Ed. 59, 3840–3845 (2020). https://doi.org/10.1002/anie.201914548
- Y. Lei, S. Wang, Z. Lai et al., Two-dimensional C60 nano-meshes via crystal transformation. Nanoscale 11, 8692 (2019). https://doi.org/10.1039/C8NR09329F
- P. Bairi, K. Minami, W. Nakanishi, Hierarchically structured fullerene C70 cube for sensing volatile aromatic solvent vapors. ACS Nano 10, 6631–6637 (2016). https://doi.org/10.1021/acsnano.6b01544
- S. Tothadi, K. Koner, K. Dey et al., Morphological evolution of two-dimensional porous hexagonal trimesic acid framework. ACS Appl. Mater. Interfaces 12, 15588–15594 (2020). https://doi.org/10.1021/acsami.0c01398
- Q. Tang, G. Zhang, B. Jiang et al., Self-assembled fullerene (C60)-pentacene superstructures for photodetectors. SmartMat 2, 109–118 (2021). https://doi.org/10.1002/smm2.1024
- Q. Huang, W. Li, Z. Mao et al., Dynamic molecular weaving in a two-dimensional hydrogen-bonded organic framework. Chem 7, 1321–1332 (2021). https://doi.org/10.1016/j.chempr.2021.02.017
- X.-T. He, X.-T. He, Y.-H. Luo et al., Atomically Thin nanoribbons by exfoliation of hydrogen-bonded organic frameworks for drug delivery. ACS Appl. Nano Mater. 2, 2437–2445 (2019). https://doi.org/10.1021/acsanm.9b00303
- F. Lorignon, A. Gossard, M. Carboni, Hierarchically porous monolithic MOFs: an ongoing challenge for industrial-scale effluent treatment. Chem. Engin. J. 393, 124765 (2020). https://doi.org/10.1016/j.cej.2020.124765
- G. Zhang, O. Presly, F. White et al., A shape-persistent quadruply interlocked giant cage catenane with two distinct pores in the solid state. Angew. Chem. Int. Ed. 53, 5126–5130 (2014). https://doi.org/10.1002/anie.201400285
- W. Liang, F. Carraro, M.B. Solomon et al., Enzyme encapsulation in a porous hydrogen-bonded organic framework. J. Am. Chem. Soc. 141, 14298–14305 (2019). https://doi.org/10.1021/jacs.9b06589
- M. Hua, S. Wang, Y. Gong et al., Hierarchically porous organic cages. Angew. Chem. Int. Ed. 60, 12490–12497 (2021). https://doi.org/10.1002/anie.202100849
- Q. Yin, Y.-L. Li, L. Li et al., Novel Hierarchical meso-microporous hydrogen-bonded organic framework for selective separation of acetylene and ethylene versus methane. ACS Appl. Mater. Interfaces 11, 17823–17827 (2019). https://doi.org/10.1021/acsami.9b03696
- A. Ahmed, T. Hasell, R. Clowes et al., Aligned macroporous monoliths with intrinsic microporosity via a frozen-solvent-templating approach. Chem. Commun. 51, 1717–1720 (2015). https://doi.org/10.1039/C4CC08919G
- T. Hasell, H. Zhang, A.I. Cooper et al., Solution-processable molecular cage micropores for hierarchically porous materials. Adv. Mater. 24, 5732–5737 (2012). https://doi.org/10.1002/adma.201202000
- C.A. Halliwell, S.E. Dann, J. Ferrando-Soria et al., Hierarchical assembly of a micro- and macroporous hydrogen-bonded organic framework with tailored single-crystal size. Angew. Chem. Int. Ed. 134, e202208677 (2022). https://doi.org/10.1002/anie.202208677
- L.K. Shrestha, Y. Yamauchi, J.P. Hill et al., Fullerene crystals with bimodal pore architectures consisting of macropores and mesopores. J. Am. Chem. Soc. 135, 586–589 (2013). https://doi.org/10.1021/ja3108752
- L. Bao, T. Xu, K. Guo et al., Supramolecular engineering of crystalline fullerene micro-/nano-architectures. Adv. Mater. 34, 2200189 (2022). https://doi.org/10.1002/adma.202200189
References
M.A. Little, A.I. Cooper, The chemistry of porous organic molecular materials. Adv. Funct. Mater. 30, 1909842 (2020). https://doi.org/10.1002/adfm.201909842
C. Halliwell, J. Ferrando-Soria, A. Fernandez, Beyond microporosity in porous organic molecular materials (POMMs). Angew. Chem. Int. Ed. 62, e202217729 (2023). https://doi.org/10.1002/anie.202217729
Z.-J. Lin, S.A.R. Mahammed, T.-F. Liu et al., Hydrogen-bonded organic frameworks: chemistry and functions. ACS Cent. Sci. 8(12), 1589–1608 (2022). https://doi.org/10.1021/acscentsci.2c01196
R.-B. Lin, B. Chen, Hydrogen-bonded organic frameworks: chemistry and functions. Chem 8, 2114–2135 (2022). https://doi.org/10.1016/j.chempr.2022.06.015
S. Yu, G.-L. Xing, L.-H. Chen et al., Crystalline porous organic salts: from micropore to hierarchical pores. Adv. Mater. 32, 2003270 (2020). https://doi.org/10.1002/adma.202003270
T. Hasell, A.I. Cooper, Porous organic cages: soluble, modular and molecular pores. Nat. Rev. Mater. 1, 16053 (2016). https://doi.org/10.1038/natrevmats.2016.53
Y. Tian, J. Yang, M. Gao et al., Organic microporous crystals driven by pure C–H..π interactions with vapor-induced crystal-to-crystal transformations. Mater. Horiz. 9, 731–739 (2022). https://doi.org/10.1039/D1MH01360B
J. Tian, H. Wang, D.-W. Zhang et al., Supramolecular organic frameworks (SOFs): homogeneous regular 2D and 3D pores in water. Natl. Sci. Rev. 4, 426–436 (2017). https://doi.org/10.1093/nsr/nwx030
C. Chen, Z. Di, H. Li et al., An ultrastable π–π stacked porous organic molecular framework as a crystalline sponge for rapid molecular structure determination. CCS Chem. 4, 1315–1325 (2022). https://doi.org/10.31635/ccschem.021.202100910
C. Chen, H. Guan, H. Li et al., A noncovalent π-stacked porous organic molecular framework for selective separation of aromatics and cyclic aliphatics. Angew. Chem. Int. Ed. 61, e202201646 (2022). https://doi.org/10.1002/anie.202201646
D. Meng, J.L. Yang, C. Xiao et al., Noncovalent π-stacked robust topological organic framework. Proc. Natl. Acad. Sci. U.S.A. 117, 20397–20403 (2020). https://doi.org/10.1073/pnas.2010733117
G. Gong, S. Lv, J. Han et al., Halogen-bonded organic framework (XOF) based on iodonium-bridged N⋅⋅⋅I+⋅⋅⋅N interactions: A type of diphase periodic organic network. Angew. Chem. Int. Ed. 60, 14831–14835 (2021). https://doi.org/10.1002/anie.202102448
G. Zhang, B. Hua, A. Dey et al., Intrinsically porous molecular materials (IPMs) for natural gas and benzene derivatives separations. Acc. Chem. Res. 54, 155–168 (2021). https://doi.org/10.1021/acs.accounts.0c00582
W. Schwieger, A.G. Machoke, T. Weissenberger et al., Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chem. Soc. Rev. 45, 3353 (2016). https://doi.org/10.1039/C5CS00599J
K. Geng, R. Liu, S. Dalapati et al., Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 16, 8814–8933 (2020). https://doi.org/10.1021/acs.chemrev.9b00550
Q. Wang, D. Astruc, State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2, 1438–1511 (2020). https://doi.org/10.1021/acs.chemrev.9b00223
S. Das, P. Heasman, T. Ben et al., Porous organic materials: strategic design and structure-function correlation. Chem. Rev. 3, 1515–1563 (2017). https://doi.org/10.1021/acs.chemrev.6b00439
L.-H. Chen, Y. Li, B.-L. Su, Hierarchy in materials for maximized efficiency. Natl. Sci. Rev. 11, 1626–1630 (2020). https://doi.org/10.1093/nsr/nwaa251
R. Lakes, Materials with structural hierarchy. Nature 361, 511–515 (1993). https://doi.org/10.1038/361511a0
A. Levin, T.A. Hakala, L. Schnaider et al., Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020). https://doi.org/10.1038/s41570-020-0215-y
L.-H. Chen, M.-H. Sun, Z. Wang et al., Hierarchically structured zeolites: from design to application. Chem. Rev. 20, 11194–11294 (2020). https://doi.org/10.1021/acs.chemrev.0c00016
L. Feng, K.-Y. Wang, J. Willman et al., Hierarchy in metal–organic frameworks. ACS Cent. Sci. 3, 359–367 (2020). https://doi.org/10.1021/acscentsci.0c00158
R.-R. Liang, S.-Y. Jiang, R. Han et al., Two-dimensional covalent organic frameworks with hierarchical porosity. Chem. Soc. Rev. 49, 3920–3951 (2020). https://doi.org/10.1039/D0CS00049C
Y. Luo, M. Ahmad, A. Schug et al., Rising Up: hierarchical metal–organic frameworks in experiments and simulations. Adv. Mater. 31, 1901744 (2019). https://doi.org/10.1002/adma.201901744
C. Sanchez, Hierarchy: enhancing performances beyond limits. Natl. Sci. Rev. 7, 1624–1625 (2020). https://doi.org/10.1093/nsr/nwaa249
H.V. Doan, H.A. Hamzah, P.K. Prabhakaran et al., Hierarchical metal–organic frameworks with macroporosity: synthesis, achievements, and challenges. Nano-Micro Lett. 11, 54 (2019). https://doi.org/10.1007/s40820-019-0286-9
C. Wang, Y. Wang, K.O. Kirlikovali et al., Ultrafine silver nanop encapsulated porous molecular traps for discriminative photoelectrochemical detection of mustard gas simulants by synergistic size-exclusion and site-specific recognition. Adv. Mater. 34, 2202287 (2022). https://doi.org/10.1002/adma.202202287
Y.-J. Du, J.-H. Zhou, L.-X. Tan et al., Porous organic cage nanostructures for construction of complex sequential reaction networks. ACS Appl. Nano Mater. 5, 7974–7982 (2022). https://doi.org/10.1021/acsanm.2c01057
F. Ren, M. Hua, Z. Yang et al., Self-assembled artificial enzyme from hybridized porous organic cages and iron oxide nanocrystals. J. Colloid Interface Sci. 621, 331–340 (2022). https://doi.org/10.1016/j.jcis.2022.04.027
S. Jiang, Y. Du, M. Marcello et al., Core–shell crystals of porous organic cages. Angew. Chem. Int. Ed. 57, 11228–11232 (2018). https://doi.org/10.1002/anie.201803244
B.-T. Liu, X.-H. Pan, D.-Y. Zhang et al., Construction of function-oriented core–shell nanostructures in hydrogen-bonded organic frameworks for near-infrared-responsive bacterial inhibition. Angew. Chem. Int. Ed. 60, 25701–25707 (2021). https://doi.org/10.1002/anie.202110028
J. Wang, Y. Mao, R. Zhang et al., In situ assembly of hydrogen-bonded organic framework on metal–organic framework: an effective strategy for constructing core–shell hybrid photocatalyst. Adv. Sci. 9, 2204036 (2022). https://doi.org/10.1002/advs.202204036
B. Yu, T. Meng, X. Ding et al., Hydrogen-bonded organic framework ultrathin nanosheets for efficient visible-light photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 61, e202211482 (2022). https://doi.org/10.1002/anie.202211482
D. Yu, H. Zhang, Z. Liu et al., Hydrogen-bonded organic framework (HOF)-based single-neural stem cell encapsulation and transplantation to remodel impaired neural networks. Angew. Chem. Int. Ed. 134, e202201485 (2022). https://doi.org/10.1002/anie.202201485
Q. Zou, L. Zhang, X. Yan et al., Multifunctional porous microspheres based on peptide–porphyrin hierarchical Co-assembly. Angew. Chem. Int. Ed. 126, 2398–2402 (2014). https://doi.org/10.1002/ange.201308792
A. Kaushik, K. Marvaniya, Y. Kulkarni et al., Large-area self-standing thin film of porous hydrogen-bonded organic framework for efficient uranium extraction from seawater. Chem 8, 2749–2765 (2022). https://doi.org/10.1016/j.chempr.2022.07.009
S. Wuttke, D.D. Medina, J.M. Rotter et al., Bringing porous organic and carbon-based materials toward thin-film applications. Adv. Funct. Mater. 28, 1801545 (2018). https://doi.org/10.1002/adfm.201801545
Y.-H. Luo, L. Zhang, W.-X. Fang et al., 2D hydrogen-bonded organic frameworks: in-site generation and subsequent exfoliation. Chem. Commun. 57, 5901 (2021). https://doi.org/10.1039/D1CC01626A
X.-T. He, Y.-H. Luo, D.-L. Hong et al., Atomically thin nanoribbons by exfoliation of hydrogen-bonded organic frameworks for drug delivery. ACS Appl. Nano Mater. 2, 2437 (2019). https://doi.org/10.1021/acsanm.9b00303
Y.-H. Luo, X.-T. He, C. Wang et al., Interconversion between nanoribbons and nanospheres mediated by detachable ‘invisibility suit.’ Mater. Today Nano 9, 100068 (2020). https://doi.org/10.1016/j.mtnano.2019.100068
X.-T. He, Y.-H. Luo, Z.-Y. Zheng et al., Porphyrin-based hydrogen-bonded organic frameworks for the photocatalytic degradation of 9,10-diphenylanthracene. ACS Appl. Nano Mater. 2, 7719 (2019). https://doi.org/10.1021/acsanm.9b01787
R. Makiura, K. Tsuchiyama, E. Pohl et al., Air/liquid interfacial nanoassembly of molecular building blocks into preferentially oriented porous organic nanosheet crystals via hydrogen bonding. ACS Nano 11, 10875–10882 (2017). https://doi.org/10.1021/acsnano.7b04447
M. Brutschy, M.W. Schneider, M. Mastalerz et al., Porous organic cage compounds as highly potent affinity materials for sensing by quartz crystal microbalances. Adv. Mater. 24, 6049–6052 (2012). https://doi.org/10.1002/adma.201202786
Q. Song, S. Jiang, T. Hasell et al., Porous organic cage thin films and molecular-sieving membranes. Adv. Mater. 28, 2629–2637 (2016). https://doi.org/10.1002/adma.201505688
H. Li, Y. Huang, Y. Zhang et al., An ultrathin functional layer based on porous organic cages for selective ion sieving and lithium–sulfur batteries. Nano Lett. 22, 2030–2037 (2022). https://doi.org/10.1021/acs.nanolett.1c04838
T. Xu, B. Wu, L. Hou et al., Highly ion-permselective porous organic cage membranes with hierarchical channels. J. Am. Chem. Soc. 23, 10220–10229 (2022). https://doi.org/10.1021/jacs.2c00318
A. He, Z. Jiang, Y. Wu et al., A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving. Nat. Mater. 21, 463–470 (2022). https://doi.org/10.1038/s41563-021-01168-z
S. Jiang, Q. Song, A. Massey et al., Oriented two-dimensional porous organic cage crystals. Angew. Chem. Int. Ed. 56, 9391–9395 (2017). https://doi.org/10.1002/anie.201704579
Z. Jiang, Y. Wang, M. Sheng et al., A highly permeable porous organic cage composite membrane for gas separation. J. Mater. Chem. A 11, 6831–6841 (2023). https://doi.org/10.1039/D2TA09632C
J.M. Lucero, M.A. Carreon, Separation of light gases from xenon over porous organic cage membranes. ACS Appl. Mater. Interfaces 12, 32182–32188 (2020). https://doi.org/10.1021/acsami.0c08040
J.-F. Feng, T.-F. Liu, R. Cao, An electrochromic hydrogen-bonded organic framework film. Angew. Chem. Int. Ed. 59, 22392–22396 (2020). https://doi.org/10.1002/anie.202006926
S. Feng, Y. Shang, Z. Wang et al., Fabrication of a hydrogen-bonded organic framework membrane through solution processing for pressure-regulated gas separation. Angew. Chem. Int. Ed. 59, 3840–3845 (2020). https://doi.org/10.1002/anie.201914548
Y. Lei, S. Wang, Z. Lai et al., Two-dimensional C60 nano-meshes via crystal transformation. Nanoscale 11, 8692 (2019). https://doi.org/10.1039/C8NR09329F
P. Bairi, K. Minami, W. Nakanishi, Hierarchically structured fullerene C70 cube for sensing volatile aromatic solvent vapors. ACS Nano 10, 6631–6637 (2016). https://doi.org/10.1021/acsnano.6b01544
S. Tothadi, K. Koner, K. Dey et al., Morphological evolution of two-dimensional porous hexagonal trimesic acid framework. ACS Appl. Mater. Interfaces 12, 15588–15594 (2020). https://doi.org/10.1021/acsami.0c01398
Q. Tang, G. Zhang, B. Jiang et al., Self-assembled fullerene (C60)-pentacene superstructures for photodetectors. SmartMat 2, 109–118 (2021). https://doi.org/10.1002/smm2.1024
Q. Huang, W. Li, Z. Mao et al., Dynamic molecular weaving in a two-dimensional hydrogen-bonded organic framework. Chem 7, 1321–1332 (2021). https://doi.org/10.1016/j.chempr.2021.02.017
X.-T. He, X.-T. He, Y.-H. Luo et al., Atomically Thin nanoribbons by exfoliation of hydrogen-bonded organic frameworks for drug delivery. ACS Appl. Nano Mater. 2, 2437–2445 (2019). https://doi.org/10.1021/acsanm.9b00303
F. Lorignon, A. Gossard, M. Carboni, Hierarchically porous monolithic MOFs: an ongoing challenge for industrial-scale effluent treatment. Chem. Engin. J. 393, 124765 (2020). https://doi.org/10.1016/j.cej.2020.124765
G. Zhang, O. Presly, F. White et al., A shape-persistent quadruply interlocked giant cage catenane with two distinct pores in the solid state. Angew. Chem. Int. Ed. 53, 5126–5130 (2014). https://doi.org/10.1002/anie.201400285
W. Liang, F. Carraro, M.B. Solomon et al., Enzyme encapsulation in a porous hydrogen-bonded organic framework. J. Am. Chem. Soc. 141, 14298–14305 (2019). https://doi.org/10.1021/jacs.9b06589
M. Hua, S. Wang, Y. Gong et al., Hierarchically porous organic cages. Angew. Chem. Int. Ed. 60, 12490–12497 (2021). https://doi.org/10.1002/anie.202100849
Q. Yin, Y.-L. Li, L. Li et al., Novel Hierarchical meso-microporous hydrogen-bonded organic framework for selective separation of acetylene and ethylene versus methane. ACS Appl. Mater. Interfaces 11, 17823–17827 (2019). https://doi.org/10.1021/acsami.9b03696
A. Ahmed, T. Hasell, R. Clowes et al., Aligned macroporous monoliths with intrinsic microporosity via a frozen-solvent-templating approach. Chem. Commun. 51, 1717–1720 (2015). https://doi.org/10.1039/C4CC08919G
T. Hasell, H. Zhang, A.I. Cooper et al., Solution-processable molecular cage micropores for hierarchically porous materials. Adv. Mater. 24, 5732–5737 (2012). https://doi.org/10.1002/adma.201202000
C.A. Halliwell, S.E. Dann, J. Ferrando-Soria et al., Hierarchical assembly of a micro- and macroporous hydrogen-bonded organic framework with tailored single-crystal size. Angew. Chem. Int. Ed. 134, e202208677 (2022). https://doi.org/10.1002/anie.202208677
L.K. Shrestha, Y. Yamauchi, J.P. Hill et al., Fullerene crystals with bimodal pore architectures consisting of macropores and mesopores. J. Am. Chem. Soc. 135, 586–589 (2013). https://doi.org/10.1021/ja3108752
L. Bao, T. Xu, K. Guo et al., Supramolecular engineering of crystalline fullerene micro-/nano-architectures. Adv. Mater. 34, 2200189 (2022). https://doi.org/10.1002/adma.202200189