Efficient Polytelluride Anchoring for Ultralong-Life Potassium Storage: Combined Physical Barrier and Chemisorption in Nanogrid-in-Nanofiber
Corresponding Author: Shaoming Huang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 77
Abstract
Metal tellurides (MTes) are highly attractive as promising anodes for high-performance potassium-ion batteries. The capacity attenuation of most reported MTe anodes is attributed to their poor electrical conductivity and large volume variation. The evolution mechanisms, dissolution properties, and corresponding manipulation strategies of intermediates (K-polytellurides, K-pTex) are rarely mentioned. Herein, we propose a novel structural engineering strategy to confine ultrafine CoTe2 nanodots in hierarchical nanogrid-in-nanofiber carbon substrates (CoTe2@NC@NSPCNFs) for smooth immobilization of K-pTex and highly reversible conversion of CoTe2 by manipulating the intense electrochemical reaction process. Various in situ/ex situ techniques and density functional theory calculations have been performed to clarify the formation, transformation, and dissolution of K-pTex (K5Te3 and K2Te), as well as verifying the robust physical barrier and the strong chemisorption of K5Te3 and K2Te on S, N co-doped dual-type carbon substrates. Additionally, the hierarchical nanogrid-in-nanofiber nanostructure increases the chemical anchoring sites for K-pTex, provides sufficient volume buffer space, and constructs highly interconnected conductive microcircuits, further propelling the battery reaction to new heights (3500 cycles at 2.0 A g−1). Furthermore, the full cells further demonstrate the potential for practical applications. This work provides new insights into manipulating K-pTex in the design of ultralong-cycling MTe anodes for advanced PIBs.
Highlights:
1 The hierarchical nanogrid-in-nanofiber-structured dual-type carbon-confined CoTe2 nanodots (CoTe2@NC@NSPCNFs) were synthesized via facile templates and an electrospinning approach.
2 Hierarchical nanogrid-in-nanofiber structure effectively suppresses the volume change of CoTe2 and the shuttle of potassium polytelluride (K-pTex) through robust physical restraint and strong chemisorption.
3 CoTe2@NC@NSPCNFs hybrid achieves ultralong lifespan potassium-storage performance over 3500 cycles, and the deep mechanisms underlying the evolution, dissolution, and shuttle of K-pTex have been clearly revealed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Fan, H. Xie, Y. Hu, Z. Caixiang, A.M. Rao et al., A tailored electrolyte for safe and durable potassium ion batteries. Energy Environ. Sci. 16, 305–315 (2023). https://doi.org/10.1039/D2EE03294E
- Q. Li, Y. Zhang, Z. Chen, J. Zhang, Y. Tao et al., Discrete graphitic crystallites promise high-rate ion intercalation for KC8 formation in potassium ion batteries. Adv. Energy Mater. 12, 2201574 (2022). https://doi.org/10.1002/aenm.202201574
- S. Dong, D. Yu, J. Yang, L. Jiang, J. Wang et al., Tellurium: a high-volumetric-capacity potassium-ion battery electrode material. Adv. Mater. 32, e1908027 (2020). https://doi.org/10.1002/adma.201908027
- Z. Xiao, X. Wang, J. Meng, H. Wang, Y. Zhao et al., Advances and perspectives on one-dimensional nanostructure electrode materials for potassium-ion batteries. Mater. Today 56, 114–134 (2022). https://doi.org/10.1016/j.mattod.2022.05.009
- S. Li, H. Zhu, Y. Liu, Z. Han, L. Peng et al., Codoped porous carbon nanofibres as a potassium metal host for nonaqueous K-ion batteries. Nat. Commun. 13, 4911 (2022). https://doi.org/10.1038/s41467-022-32660-y
- Z. Sun, Y. Liu, W. Ye, J. Zhang, Y. Wang et al., Unveiling intrinsic potassium storage behaviors of hierarchical nano Bi@N-doped carbon nanocages framework via in situ characterizations. Angew. Chem. Int. Ed. 60, 7180–7187 (2021). https://doi.org/10.1002/anie.202016082
- G.-Z. Yang, Y.-F. Chen, B.-Q. Feng, C.-X. Ye, X.-B. Ye et al., Surface-dominated potassium storage enabled by single-atomic sulfur for high-performance K-ion battery anodes. Energy Environ. Sci. 16, 1540–1547 (2023). https://doi.org/10.1039/D3EE00073G
- H. Huang, J. Wang, X. Yang, R. Hu, J. Liu et al., Unveiling the advances of nanostructure design for alloy-type potassium-ion battery anodes via in situ TEM. Angew. Chem. Int. Ed. 59, 14504–14510 (2020). https://doi.org/10.1002/anie.202004193
- C. Yang, F. Lv, Y. Zhang, J. Wen, K. Dong et al., Confined Fe2VO4⊂Nitrogen-doped carbon nanowires with internal void space for high-rate and ultrastable potassium-ion storage. Adv. Energy Mater. 9, 1902674 (2019). https://doi.org/10.1002/aenm.201902674
- C.-H. Chang, K.-T. Chen, Y.-Y. Hsieh, C.-B. Chang, H.-Y. Tuan, Crystal facet and architecture engineering of metal oxide nanonetwork anodes for high-performance potassium ion batteries and hybrid capacitors. ACS Nano 16, 1486–1501 (2022). https://doi.org/10.1021/acsnano.1c09863
- S. Liu, L. Kang, J. Henzie, J. Zhang, J. Ha et al., Recent advances and perspectives of battery-type anode materials for potassium ion storage. ACS Nano 15, 18931–18973 (2021). https://doi.org/10.1021/acsnano.1c08428
- X. Xu, Y. Zhang, H. Sun, J. Zhou, Z. Liu et al., Orthorhombic cobalt ditelluride with Te vacancy defects anchoring on elastic MXene enables efficient potassium-ion storage. Adv. Mater. 33, e2100272 (2021). https://doi.org/10.1002/adma.202100272
- S. Geng, T. Zhou, M. Jia, X. Shen, P. Gao et al., Carbon-coated WS2 nanosheets supported on carbon nanofibers for high-rate potassium-ion capacitors. Energy Environ. Sci. 14, 3184–3193 (2021). https://doi.org/10.1039/D1EE00193K
- C. Zhang, H. Li, X. Zeng, S. Xi, R. Wang et al., Accelerated diffusion kinetics in ZnTe/CoTe2 heterojunctions for high rate potassium storage. Adv. Energy Mater. 12, 2202577 (2022). https://doi.org/10.1002/aenm.202202577
- G.D. Park, Y.C. Kang, Conversion reaction mechanism for yolk-shell-structured iron telluride-C nanospheres and exploration of their electrochemical performance as an anode material for potassium-ion batteries. Small Meth. 4, 2000556 (2020). https://doi.org/10.1002/smtd.202000556
- B. Wu, J. Luxa, E. Kovalska, M. Ivo, H. Zhou et al., Sub-millimetre scale Van der Waals single-crystal MoTe2 for potassium storage: Electrochemical properties, and its failure and structure evolution mechanisms. Energy Storage Mater. 43, 284–292 (2021). https://doi.org/10.1016/j.ensm.2021.09.006
- C.H.R. Gillard, P.P. Jana, A. Rawal, N. Sharma, Electrochemical phase evolution of tetradymite-type Bi2Te3 in lithium, sodium and potassium ion half cells. J. Alloys Compd. 854, 155621 (2021). https://doi.org/10.1016/j.jallcom.2020.155621
- W. Zhang, X. Wang, K.W. Wong, W. Zhang, T. Chen et al., Rational design of embedded CoTe2 nanops in freestanding N-doped multichannel carbon fibers for sodium-ion batteries with ultralong cycle lifespan. ACS Appl. Mater. Interfaces 13, 34134–34144 (2021). https://doi.org/10.1021/acsami.1c06794
- W. Zhao, W. Zhang, Y. Lei, L. Wang, G. Wang et al., Dual-type carbon confinement strategy: improving the stability of CoTe2 nanocrystals for sodium-ion batteries with a long lifespan. ACS Appl. Mater. Interfaces 14, 6801–6809 (2022). https://doi.org/10.1021/acsami.1c22486
- Q. Li, J. Peng, W. Zhang, L. Wang, Z. Liang et al., Manipulating the polytellurides of metallic telluride for ultra-stable potassium-ion storage: a case study of carbon-confined CoTe2 nanofibers. Adv. Energy Mater. 13, 2300150 (2023). https://doi.org/10.1002/aenm.202300150
- Y. Jiang, F. Wu, Z. Ye, Y. Zhou, Y. Chen et al., Superimposed effect of hollow carbon polyhedron and interconnected graphene network to achieve CoTe2 anode for fast and ultralong sodium storage. J. Power. Sources 554, 232174 (2023). https://doi.org/10.1016/j.jpowsour.2022.232174
- Q. Li, W. Zhang, J. Peng, D. Yu, Z. Liang et al., Nanodot-in-nanofiber structured carbon-confined Sb2Se3 crystallites for fast and durable sodium storage. Adv. Funct. Mater. 32, 2112776 (2022). https://doi.org/10.1002/adfm.202112776
- B. Guo, W. Du, T. Yang, J. Deng, D. Liu et al., Nickel hollow spheres concatenated by nitrogen-doped carbon fibers for enhancing electrochemical kinetics of sodium-sulfur batteries. Adv. Sci. 7, 1902617 (2019). https://doi.org/10.1002/advs.201902617
- L. Cao, X. Gao, B. Zhang, X. Ou, J. Zhang et al., Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano 14, 3610–3620 (2020). https://doi.org/10.1021/acsnano.0c00020
- C. Lu, Z. Sun, L. Yu, X. Lian, Y. Yi et al., Enhanced kinetics harvested in heteroatom dual-doped graphitic hollow architectures toward high rate printable potassium-ion batteries. Adv. Energy Mater. 10, 2001161 (2020). https://doi.org/10.1002/aenm.202001161
- Y. Liu, H. Dai, L. Wu, W. Zhou, L. He et al., A large scalable and low-cost sulfur/nitrogen dual-doped hard carbon as the negative electrode material for high-performance potassium-ion batteries. Adv. Energy Mater. 9, 1901379 (2019). https://doi.org/10.1002/aenm.201901379
- S. Yang, G.D. Park, Y.C. Kang, Conversion reaction mechanism of cobalt telluride-carbon composite microspheres synthesized by spray pyrolysis process for K-ion storage. Appl. Surf. Sci. 529, 147140 (2020). https://doi.org/10.1016/j.apsusc.2020.147140
- W. Zhang, J. Yin, M. Sun, W. Wang, C. Chen et al., Direct pyrolysis of supermolecules: an ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries. Adv. Mater. 32, e2000732 (2020). https://doi.org/10.1002/adma.202000732
- D. Xu, Q. Cheng, P. Saha, Y. Hu, L. Chen et al., Engineering Se/N Co-doped hard CNTs with localized electron configuration for superior potassium storage. Adv. Funct. Mater. 33, 2211661 (2023). https://doi.org/10.1002/adfm.202211661
- X. Hu, Y. Liu, J. Chen, L. Yi, H. Zhan et al., Fast redox kinetics in Bi-heteroatom doped 3D porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors. Adv. Energy Mater. 9, 1901533 (2019). https://doi.org/10.1002/aenm.201901533
- Z. Liang, Q. Li, W. Zhang, D. Yu, W. Zhang et al., Pomegranate-inspired porous SnSe/ZnSe@C anode: a stress-buffer nanostructure for fast and ultrastable sodium-ion storage. J. Energy Chem. 75, 369–377 (2022). https://doi.org/10.1016/j.jechem.2022.08.022
- R. Hu, D. Sha, X. Cao, C. Lu, Y. Wei et al., Anchoring metal-organic framework-derived ZnTe@C onto elastic Ti3C2Tx MXene with 0D/2D dual confinement for ultrastable potassium-ion storage. Adv. Energy Mater. 12, 2203118 (2022). https://doi.org/10.1002/aenm.202203118
- Q. Liu, W. Deng, C.-F. Sun, A potassium–tellurium battery. Energy Storage Mater. 28, 10–16 (2020). https://doi.org/10.1016/j.ensm.2020.02.021
- J. Cui, S. Yao, M. Ihsan-Ul-Haq, N. Mubarak, M. Wang et al., Rational exploration of conversion-alloying reaction based anodes for high-performance K-ion batteries. ACS Mater. Lett. 3, 406–413 (2021). https://doi.org/10.1021/acsmaterialslett.0c00627
- J.K. Ko, J.H. Jo, H.J. Kim, J.S. Park, H. Yashiro et al., Bismuth telluride anode boosting highly reversible electrochemical activity for potassium storage. Energy Storage Mater. 43, 411–421 (2021). https://doi.org/10.1016/j.ensm.2021.09.028
- D.M. Soares, G. Singh, Superior electrochemical performance of layered WTe2 as potassium-ion battery electrode. Nanotechnology 31, 455406 (2020). https://doi.org/10.1088/1361-6528/ababcc
- Z. Sun, X.-L. Wu, J. Xu, D. Qu, B. Zhao et al., Construction of bimetallic selenides encapsulated in nitrogen/sulfur Co-doped hollow carbon nanospheres for high-performance sodium/potassium-ion half/full batteries. Small 16, e1907670 (2020). https://doi.org/10.1002/smll.201907670
- B. Zhang, Y. Zhang, J. Li, J. Liu, X. Huo et al., In situ growth of metal–organic framework-derived CoTe2 nanops@nitrogen-doped porous carbon polyhedral composites as novel cathodes for rechargeable aluminum-ion batteries. J. Mater. Chem. A 8, 5535–5545 (2020). https://doi.org/10.1039/D0TA00674B
- Q. Zhou, L. Yuan, T. Li, S. Qiao, M. Ma et al., Boosting cobalt ditelluride quantum-rods anode materials for excellent potassium-ion storage via hierarchical physicochemical encapsulation. J. Colloid Interface Sci. 646, 493–502 (2023). https://doi.org/10.1016/j.jcis.2023.05.073
- X. Hu, G. Zhong, J. Li, Y. Liu, J. Yuan et al., Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ. Sci. 13, 2431–2440 (2020). https://doi.org/10.1039/D0EE00477D
- Y. Qian, S. Jiang, Y. Li, Z. Yi, J. Zhou et al., In situ revealing the electroactivity of P-O and P-C bonds in hard carbon for high-capacity and long-life Li/K-ion batteries. Adv. Energy Mater. 9, 1901676 (2019). https://doi.org/10.1002/aenm.201901676
- X. Yin, Z. Lu, J. Wang, X. Feng, S. Roy et al., Enabling fast Na+ transfer kinetics in the whole-voltage-region of hard-carbon anodes for ultrahigh-rate sodium storage. Adv. Mater. 34, e2109282 (2022). https://doi.org/10.1002/adma.202109282
- D. Yu, W. Luo, H. Gu, K. Li, J. Liang et al., Subnano-sized tellurium@nitrogen/phosphorus Co-doped carbon nanofibers as anode for potassium-based dual-ion batteries. Chem. Eng. J. 454, 139908 (2023). https://doi.org/10.1016/j.cej.2022.139908
- C. Wei, D. Gong, D. Xie, Y. Tang, The free-standing alloy strategy to improve the electrochemical performance of potassium-based dual-ion batteries. ACS Energy Lett. 6, 4336–4344 (2021). https://doi.org/10.1021/acsenergylett.1c02092
- A. Yu, Q. Pan, M. Zhang, D. Xie, Y. Tang, Fast rate and long life potassium-ion based dual-ion battery through 3D porous organic negative electrode. Adv. Funct. Mater. 30, 2001440 (2020). https://doi.org/10.1002/adfm.202001440
- D. Yu, W. Zhang, Q. Zhang, S. Huang, Tuning anion chemistry enables high-voltage and stable potassium-based tellurium-graphite batteries. Nano Energy 92, 106744 (2022). https://doi.org/10.1016/j.nanoen.2021.106744
- L. Fan, Q. Liu, Z. Xu, B. Lu, An organic cathode for potassium dual-ion full battery. ACS Energy Lett. 2, 1614–1620 (2017). https://doi.org/10.1021/acsenergylett.7b00378
- M. Zhang, M. Shoaib, H. Fei, T. Wang, J. Zhong et al., Hierarchically porous N-doped carbon fibers as a free-standing anode for high-capacity potassium-based dual-ion battery. Adv. Energy Mater. 9, 1901663 (2019). https://doi.org/10.1002/aenm.201901663
- Q. Wang, W. Liu, S. Wang, M. Tan, S. Luo et al., High cycling stability graphite cathode modified by artificial CEI for potassium-based dual-ion batteries. J. Alloys Compd. 918, 165436 (2022). https://doi.org/10.1016/j.jallcom.2022.165436
- K. Li, G. Ma, D. Yu, W. Luo, J. Li et al., A high-concentrated and nonflammable electrolyte for potassium ion-based dual-graphite batteries. Nano Res. 16, 6353–6360 (2023). https://doi.org/10.1007/s12274-023-5438-z
- A. Kotronia, K. Edström, D. Brandell, H.D. Asfaw, Ternary ionogel electrolytes enable quasi-solid-state potassium dual-ion intercalation batteries. Adv. Energy Sustain. Res. 3, 2270001 (2022). https://doi.org/10.1002/aesr.202270001
- L. Fan, Q. Liu, S. Chen, K. Lin, Z. Xu et al., Potassium-based dual ion battery with dual-graphite electrode. Small 13, 201701011 (2017). https://doi.org/10.1002/smll.201701011
- M. Zhang, J. Zhong, W. Kong, L. Wang, T. Wang et al., A high capacity and working voltage potassium-based dual ion batteries. Energy Environ. Mater. 4, 413–420 (2021). https://doi.org/10.1002/eem2.12086
- Q. Wang, S. Wang, W. Liu, D. Wang, S. Luo et al., N-doped hollow carbon spheres as a high-performance anode for potassium-based dual-ion battery. J. Energy Storage 54, 105285 (2022). https://doi.org/10.1016/j.est.2022.105285
References
L. Fan, H. Xie, Y. Hu, Z. Caixiang, A.M. Rao et al., A tailored electrolyte for safe and durable potassium ion batteries. Energy Environ. Sci. 16, 305–315 (2023). https://doi.org/10.1039/D2EE03294E
Q. Li, Y. Zhang, Z. Chen, J. Zhang, Y. Tao et al., Discrete graphitic crystallites promise high-rate ion intercalation for KC8 formation in potassium ion batteries. Adv. Energy Mater. 12, 2201574 (2022). https://doi.org/10.1002/aenm.202201574
S. Dong, D. Yu, J. Yang, L. Jiang, J. Wang et al., Tellurium: a high-volumetric-capacity potassium-ion battery electrode material. Adv. Mater. 32, e1908027 (2020). https://doi.org/10.1002/adma.201908027
Z. Xiao, X. Wang, J. Meng, H. Wang, Y. Zhao et al., Advances and perspectives on one-dimensional nanostructure electrode materials for potassium-ion batteries. Mater. Today 56, 114–134 (2022). https://doi.org/10.1016/j.mattod.2022.05.009
S. Li, H. Zhu, Y. Liu, Z. Han, L. Peng et al., Codoped porous carbon nanofibres as a potassium metal host for nonaqueous K-ion batteries. Nat. Commun. 13, 4911 (2022). https://doi.org/10.1038/s41467-022-32660-y
Z. Sun, Y. Liu, W. Ye, J. Zhang, Y. Wang et al., Unveiling intrinsic potassium storage behaviors of hierarchical nano Bi@N-doped carbon nanocages framework via in situ characterizations. Angew. Chem. Int. Ed. 60, 7180–7187 (2021). https://doi.org/10.1002/anie.202016082
G.-Z. Yang, Y.-F. Chen, B.-Q. Feng, C.-X. Ye, X.-B. Ye et al., Surface-dominated potassium storage enabled by single-atomic sulfur for high-performance K-ion battery anodes. Energy Environ. Sci. 16, 1540–1547 (2023). https://doi.org/10.1039/D3EE00073G
H. Huang, J. Wang, X. Yang, R. Hu, J. Liu et al., Unveiling the advances of nanostructure design for alloy-type potassium-ion battery anodes via in situ TEM. Angew. Chem. Int. Ed. 59, 14504–14510 (2020). https://doi.org/10.1002/anie.202004193
C. Yang, F. Lv, Y. Zhang, J. Wen, K. Dong et al., Confined Fe2VO4⊂Nitrogen-doped carbon nanowires with internal void space for high-rate and ultrastable potassium-ion storage. Adv. Energy Mater. 9, 1902674 (2019). https://doi.org/10.1002/aenm.201902674
C.-H. Chang, K.-T. Chen, Y.-Y. Hsieh, C.-B. Chang, H.-Y. Tuan, Crystal facet and architecture engineering of metal oxide nanonetwork anodes for high-performance potassium ion batteries and hybrid capacitors. ACS Nano 16, 1486–1501 (2022). https://doi.org/10.1021/acsnano.1c09863
S. Liu, L. Kang, J. Henzie, J. Zhang, J. Ha et al., Recent advances and perspectives of battery-type anode materials for potassium ion storage. ACS Nano 15, 18931–18973 (2021). https://doi.org/10.1021/acsnano.1c08428
X. Xu, Y. Zhang, H. Sun, J. Zhou, Z. Liu et al., Orthorhombic cobalt ditelluride with Te vacancy defects anchoring on elastic MXene enables efficient potassium-ion storage. Adv. Mater. 33, e2100272 (2021). https://doi.org/10.1002/adma.202100272
S. Geng, T. Zhou, M. Jia, X. Shen, P. Gao et al., Carbon-coated WS2 nanosheets supported on carbon nanofibers for high-rate potassium-ion capacitors. Energy Environ. Sci. 14, 3184–3193 (2021). https://doi.org/10.1039/D1EE00193K
C. Zhang, H. Li, X. Zeng, S. Xi, R. Wang et al., Accelerated diffusion kinetics in ZnTe/CoTe2 heterojunctions for high rate potassium storage. Adv. Energy Mater. 12, 2202577 (2022). https://doi.org/10.1002/aenm.202202577
G.D. Park, Y.C. Kang, Conversion reaction mechanism for yolk-shell-structured iron telluride-C nanospheres and exploration of their electrochemical performance as an anode material for potassium-ion batteries. Small Meth. 4, 2000556 (2020). https://doi.org/10.1002/smtd.202000556
B. Wu, J. Luxa, E. Kovalska, M. Ivo, H. Zhou et al., Sub-millimetre scale Van der Waals single-crystal MoTe2 for potassium storage: Electrochemical properties, and its failure and structure evolution mechanisms. Energy Storage Mater. 43, 284–292 (2021). https://doi.org/10.1016/j.ensm.2021.09.006
C.H.R. Gillard, P.P. Jana, A. Rawal, N. Sharma, Electrochemical phase evolution of tetradymite-type Bi2Te3 in lithium, sodium and potassium ion half cells. J. Alloys Compd. 854, 155621 (2021). https://doi.org/10.1016/j.jallcom.2020.155621
W. Zhang, X. Wang, K.W. Wong, W. Zhang, T. Chen et al., Rational design of embedded CoTe2 nanops in freestanding N-doped multichannel carbon fibers for sodium-ion batteries with ultralong cycle lifespan. ACS Appl. Mater. Interfaces 13, 34134–34144 (2021). https://doi.org/10.1021/acsami.1c06794
W. Zhao, W. Zhang, Y. Lei, L. Wang, G. Wang et al., Dual-type carbon confinement strategy: improving the stability of CoTe2 nanocrystals for sodium-ion batteries with a long lifespan. ACS Appl. Mater. Interfaces 14, 6801–6809 (2022). https://doi.org/10.1021/acsami.1c22486
Q. Li, J. Peng, W. Zhang, L. Wang, Z. Liang et al., Manipulating the polytellurides of metallic telluride for ultra-stable potassium-ion storage: a case study of carbon-confined CoTe2 nanofibers. Adv. Energy Mater. 13, 2300150 (2023). https://doi.org/10.1002/aenm.202300150
Y. Jiang, F. Wu, Z. Ye, Y. Zhou, Y. Chen et al., Superimposed effect of hollow carbon polyhedron and interconnected graphene network to achieve CoTe2 anode for fast and ultralong sodium storage. J. Power. Sources 554, 232174 (2023). https://doi.org/10.1016/j.jpowsour.2022.232174
Q. Li, W. Zhang, J. Peng, D. Yu, Z. Liang et al., Nanodot-in-nanofiber structured carbon-confined Sb2Se3 crystallites for fast and durable sodium storage. Adv. Funct. Mater. 32, 2112776 (2022). https://doi.org/10.1002/adfm.202112776
B. Guo, W. Du, T. Yang, J. Deng, D. Liu et al., Nickel hollow spheres concatenated by nitrogen-doped carbon fibers for enhancing electrochemical kinetics of sodium-sulfur batteries. Adv. Sci. 7, 1902617 (2019). https://doi.org/10.1002/advs.201902617
L. Cao, X. Gao, B. Zhang, X. Ou, J. Zhang et al., Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano 14, 3610–3620 (2020). https://doi.org/10.1021/acsnano.0c00020
C. Lu, Z. Sun, L. Yu, X. Lian, Y. Yi et al., Enhanced kinetics harvested in heteroatom dual-doped graphitic hollow architectures toward high rate printable potassium-ion batteries. Adv. Energy Mater. 10, 2001161 (2020). https://doi.org/10.1002/aenm.202001161
Y. Liu, H. Dai, L. Wu, W. Zhou, L. He et al., A large scalable and low-cost sulfur/nitrogen dual-doped hard carbon as the negative electrode material for high-performance potassium-ion batteries. Adv. Energy Mater. 9, 1901379 (2019). https://doi.org/10.1002/aenm.201901379
S. Yang, G.D. Park, Y.C. Kang, Conversion reaction mechanism of cobalt telluride-carbon composite microspheres synthesized by spray pyrolysis process for K-ion storage. Appl. Surf. Sci. 529, 147140 (2020). https://doi.org/10.1016/j.apsusc.2020.147140
W. Zhang, J. Yin, M. Sun, W. Wang, C. Chen et al., Direct pyrolysis of supermolecules: an ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries. Adv. Mater. 32, e2000732 (2020). https://doi.org/10.1002/adma.202000732
D. Xu, Q. Cheng, P. Saha, Y. Hu, L. Chen et al., Engineering Se/N Co-doped hard CNTs with localized electron configuration for superior potassium storage. Adv. Funct. Mater. 33, 2211661 (2023). https://doi.org/10.1002/adfm.202211661
X. Hu, Y. Liu, J. Chen, L. Yi, H. Zhan et al., Fast redox kinetics in Bi-heteroatom doped 3D porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors. Adv. Energy Mater. 9, 1901533 (2019). https://doi.org/10.1002/aenm.201901533
Z. Liang, Q. Li, W. Zhang, D. Yu, W. Zhang et al., Pomegranate-inspired porous SnSe/ZnSe@C anode: a stress-buffer nanostructure for fast and ultrastable sodium-ion storage. J. Energy Chem. 75, 369–377 (2022). https://doi.org/10.1016/j.jechem.2022.08.022
R. Hu, D. Sha, X. Cao, C. Lu, Y. Wei et al., Anchoring metal-organic framework-derived ZnTe@C onto elastic Ti3C2Tx MXene with 0D/2D dual confinement for ultrastable potassium-ion storage. Adv. Energy Mater. 12, 2203118 (2022). https://doi.org/10.1002/aenm.202203118
Q. Liu, W. Deng, C.-F. Sun, A potassium–tellurium battery. Energy Storage Mater. 28, 10–16 (2020). https://doi.org/10.1016/j.ensm.2020.02.021
J. Cui, S. Yao, M. Ihsan-Ul-Haq, N. Mubarak, M. Wang et al., Rational exploration of conversion-alloying reaction based anodes for high-performance K-ion batteries. ACS Mater. Lett. 3, 406–413 (2021). https://doi.org/10.1021/acsmaterialslett.0c00627
J.K. Ko, J.H. Jo, H.J. Kim, J.S. Park, H. Yashiro et al., Bismuth telluride anode boosting highly reversible electrochemical activity for potassium storage. Energy Storage Mater. 43, 411–421 (2021). https://doi.org/10.1016/j.ensm.2021.09.028
D.M. Soares, G. Singh, Superior electrochemical performance of layered WTe2 as potassium-ion battery electrode. Nanotechnology 31, 455406 (2020). https://doi.org/10.1088/1361-6528/ababcc
Z. Sun, X.-L. Wu, J. Xu, D. Qu, B. Zhao et al., Construction of bimetallic selenides encapsulated in nitrogen/sulfur Co-doped hollow carbon nanospheres for high-performance sodium/potassium-ion half/full batteries. Small 16, e1907670 (2020). https://doi.org/10.1002/smll.201907670
B. Zhang, Y. Zhang, J. Li, J. Liu, X. Huo et al., In situ growth of metal–organic framework-derived CoTe2 nanops@nitrogen-doped porous carbon polyhedral composites as novel cathodes for rechargeable aluminum-ion batteries. J. Mater. Chem. A 8, 5535–5545 (2020). https://doi.org/10.1039/D0TA00674B
Q. Zhou, L. Yuan, T. Li, S. Qiao, M. Ma et al., Boosting cobalt ditelluride quantum-rods anode materials for excellent potassium-ion storage via hierarchical physicochemical encapsulation. J. Colloid Interface Sci. 646, 493–502 (2023). https://doi.org/10.1016/j.jcis.2023.05.073
X. Hu, G. Zhong, J. Li, Y. Liu, J. Yuan et al., Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ. Sci. 13, 2431–2440 (2020). https://doi.org/10.1039/D0EE00477D
Y. Qian, S. Jiang, Y. Li, Z. Yi, J. Zhou et al., In situ revealing the electroactivity of P-O and P-C bonds in hard carbon for high-capacity and long-life Li/K-ion batteries. Adv. Energy Mater. 9, 1901676 (2019). https://doi.org/10.1002/aenm.201901676
X. Yin, Z. Lu, J. Wang, X. Feng, S. Roy et al., Enabling fast Na+ transfer kinetics in the whole-voltage-region of hard-carbon anodes for ultrahigh-rate sodium storage. Adv. Mater. 34, e2109282 (2022). https://doi.org/10.1002/adma.202109282
D. Yu, W. Luo, H. Gu, K. Li, J. Liang et al., Subnano-sized tellurium@nitrogen/phosphorus Co-doped carbon nanofibers as anode for potassium-based dual-ion batteries. Chem. Eng. J. 454, 139908 (2023). https://doi.org/10.1016/j.cej.2022.139908
C. Wei, D. Gong, D. Xie, Y. Tang, The free-standing alloy strategy to improve the electrochemical performance of potassium-based dual-ion batteries. ACS Energy Lett. 6, 4336–4344 (2021). https://doi.org/10.1021/acsenergylett.1c02092
A. Yu, Q. Pan, M. Zhang, D. Xie, Y. Tang, Fast rate and long life potassium-ion based dual-ion battery through 3D porous organic negative electrode. Adv. Funct. Mater. 30, 2001440 (2020). https://doi.org/10.1002/adfm.202001440
D. Yu, W. Zhang, Q. Zhang, S. Huang, Tuning anion chemistry enables high-voltage and stable potassium-based tellurium-graphite batteries. Nano Energy 92, 106744 (2022). https://doi.org/10.1016/j.nanoen.2021.106744
L. Fan, Q. Liu, Z. Xu, B. Lu, An organic cathode for potassium dual-ion full battery. ACS Energy Lett. 2, 1614–1620 (2017). https://doi.org/10.1021/acsenergylett.7b00378
M. Zhang, M. Shoaib, H. Fei, T. Wang, J. Zhong et al., Hierarchically porous N-doped carbon fibers as a free-standing anode for high-capacity potassium-based dual-ion battery. Adv. Energy Mater. 9, 1901663 (2019). https://doi.org/10.1002/aenm.201901663
Q. Wang, W. Liu, S. Wang, M. Tan, S. Luo et al., High cycling stability graphite cathode modified by artificial CEI for potassium-based dual-ion batteries. J. Alloys Compd. 918, 165436 (2022). https://doi.org/10.1016/j.jallcom.2022.165436
K. Li, G. Ma, D. Yu, W. Luo, J. Li et al., A high-concentrated and nonflammable electrolyte for potassium ion-based dual-graphite batteries. Nano Res. 16, 6353–6360 (2023). https://doi.org/10.1007/s12274-023-5438-z
A. Kotronia, K. Edström, D. Brandell, H.D. Asfaw, Ternary ionogel electrolytes enable quasi-solid-state potassium dual-ion intercalation batteries. Adv. Energy Sustain. Res. 3, 2270001 (2022). https://doi.org/10.1002/aesr.202270001
L. Fan, Q. Liu, S. Chen, K. Lin, Z. Xu et al., Potassium-based dual ion battery with dual-graphite electrode. Small 13, 201701011 (2017). https://doi.org/10.1002/smll.201701011
M. Zhang, J. Zhong, W. Kong, L. Wang, T. Wang et al., A high capacity and working voltage potassium-based dual ion batteries. Energy Environ. Mater. 4, 413–420 (2021). https://doi.org/10.1002/eem2.12086
Q. Wang, S. Wang, W. Liu, D. Wang, S. Luo et al., N-doped hollow carbon spheres as a high-performance anode for potassium-based dual-ion battery. J. Energy Storage 54, 105285 (2022). https://doi.org/10.1016/j.est.2022.105285