Solvation Engineering via Fluorosurfactant Additive Toward Boosted Lithium-Ion Thermoelectrochemical Cells
Corresponding Author: Xiaogang Zhang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 72
Abstract
Lithium-ion thermoelectrochemical cell (LTEC), featuring simultaneous energy conversion and storage, has emerged as promising candidate for low-grade heat harvesting. However, relatively poor thermosensitivity and heat-to-current behavior limit the application of LTECs using LiPF6 electrolyte. Introducing additives into bulk electrolyte is a reasonable strategy to solve such problem by modifying the solvation structure of electrolyte ions. In this work, we develop a dual-salt electrolyte with fluorosurfactant (FS) additive to achieve high thermopower and durability of LTECs during the conversion of low-grade heat into electricity. The addition of FS induces a unique Li+ solvation with the aggregated double anions through a crowded electrolyte environment, resulting in an enhanced mobility kinetics of Li+ as well as boosted thermoelectrochemical performances. By coupling optimized electrolyte with graphite electrode, a high thermopower of 13.8 mV K−1 and a normalized output power density of 3.99 mW m–2 K–2 as well as an outstanding output energy density of 607.96 J m−2 can be obtained. These results demonstrate that the optimization of electrolyte by regulating solvation structure will inject new vitality into the construction of thermoelectrochemical devices with attractive properties.
Highlights:
1 Solvation engineering toward dual-salt electrolyte by fluorosurfactant additive is proposed, which implements the stable interface of electrode/electrolyte coupled with fast ion thermodiffusion, improving the durability and capability of lithium-ion thermoelectrochemical cell.
2 By combining the optimized electrolyte with functional electrodes, as-constructed device exhibits high Seebeck coefficient and energy density based on hybrid mechanisms, which can be extended as self-power supply for smart electronics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.-G. Han, X. Qian, Q. Li, B. Deng, Y. Zhu et al., Giant thermopower of ionic gelatin near room temperature. Science 368, 1091–1098 (2020). https://doi.org/10.1126/science.aaz5045
- Y. Liu, M. Cui, W. Ling, L. Cheng, H. Lei et al., Thermo-electrochemical cells for heat to electricity conversion: from mechanisms, materials, strategies to applications. Energy Environ. Sci. 15, 3670–3687 (2022). https://doi.org/10.1039/D2EE01457B
- J. Duan, B. Yu, L. Huang, B. Hu, M. Xu et al., Liquid-state thermocells: opportunities and challenges for low-grade heat harvesting. Joule 5, 768–779 (2021). https://doi.org/10.1016/j.joule.2021.02.009
- G.-H. Kim, L. Shao, K. Zhang, K.P. Pipe, Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 12, 719–723 (2013). https://doi.org/10.1038/nmat3635
- J.A. Perez-Taborda, O. Caballero-Calero, L. Vera-Londono, F. Briones, M. Martin-Gonzalez, High thermoelectric zT in n-type silver selenide films at room temperature. Adv. Energy Mater. 8, 1702024 (2018). https://doi.org/10.1002/aenm.201702024
- X. Lu, D. Xie, K. Zhu, S. Wei, Z. Mo et al., Swift assembly of adaptive thermocell arrays for device-level healable and energy-autonomous motion sensors. Nano-Micro Lett. 15, 196 (2023). https://doi.org/10.1007/s40820-023-01170-x
- S. Sun, M. Li, X.-L. Shi, Z.-G. Chen, Advances in ionic thermoelectrics: from materials to devices. Adv. Energy Mater. 13, 2203692 (2023). https://doi.org/10.1002/aenm.202203692
- L. Onsager, Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265–2279 (1931). https://doi.org/10.1103/physrev.38.2265
- L. Onsager, Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931). https://doi.org/10.1103/physrev.37.405
- X. Shi, J. He, Thermopower and harvesting heat. Science 371, 343–344 (2021). https://doi.org/10.1126/science.abf3342
- M.F. Dupont, D.R. MacFarlane, J.M. Pringle, Thermo-electrochemical cells for waste heat harvesting - progress and perspectives. Chem. Commun. 53, 6288–6302 (2017). https://doi.org/10.1039/c7cc02160g
- M. Li, M. Hong, M. Dargusch, J. Zou, Z.-G. Chen, High-efficiency thermocells driven by thermo-electrochemical processes. Trends Chem. 3, 561–574 (2021). https://doi.org/10.1016/j.trechm.2020.11.001
- J.L. Weininger, Thermogalvanic cells with silver iodide as a solid electrolyte. J. Electrochem. Soc. 111, 769 (1964). https://doi.org/10.1149/1.2426251
- Y. He, S. Li, R. Chen, X. Liu, G.O. Odunmbaku et al., Ion–electron coupling enables ionic thermoelectric material with new operation mode and high energy density. Nano-Micro Lett. 15, 101 (2023). https://doi.org/10.1007/s40820-023-01077-7
- Z. Mo, J. Zhou, X. Lu, L. Liang, F. Liu et al., Flexible nanocomposite electrodes with optimized hybrid structure for improved low-grade heat harvest via thermocells. Sci. China Chem. 66, 1814–1823 (2023). https://doi.org/10.1007/s11426-023-1567-0
- L. Liang, H. Lv, X.-L. Shi, Z. Liu, G. Chen et al., A flexible quasi-solid-state thermoelectrochemical cell with high stretchability as an energy-autonomous strain sensor. Mater. Horiz. 8, 2750–2760 (2021). https://doi.org/10.1039/d1mh00775k
- J. Zhou, P. Peng, Z. Li, L. Liang, X. Huang et al., Interfacial architecting with anion treatment for enhanced thermoelectric power of flexible ternary polymer nanocomposites. J. Mater. Chem. A 9, 20544–20552 (2021). https://doi.org/10.1039/D1TA04698E
- S. Wei, J. Ma, D. Wu, B. Chen, C. Du et al., Constructing flexible film electrode with porous layered structure by MXene/SWCNTs/PANI ternary composite for efficient low-grade thermal energy harvest. Adv. Funct. Mater. 33, 2209806 (2023). https://doi.org/10.1002/adfm.202209806
- D. Bae, A. Bentien, Take it to the Carnot limit: perspectives and thermodynamics of dual-cell electrochemical heat engines. Energy Convers. Manag. 271, 116315 (2022). https://doi.org/10.1016/j.enconman.2022.116315
- X. Wang, Y.-T. Huang, C. Liu, K. Mu, K.H. Li et al., Direct thermal charging cell for converting low-grade heat to electricity. Nat. Commun. 10, 4151 (2019). https://doi.org/10.1038/s41467-019-12144-2
- Y. Liang, T. Yamada, H. Zhou, N. Kimizuka, Hexakis(2, 3, 6-tri- O-methyl)-α-cyclodextrin-I5 - complex in aqueous I-/I3 - thermocells and enhancement in the Seebeck coefficient. Chem. Sci. 10, 773–780 (2018). https://doi.org/10.1039/c8sc03821j
- Y. Han, J. Zhang, R. Hu, D. Xu, High-thermopower polarized electrolytes enabled by methylcellulose for low-grade heat harvesting. Sci. Adv. 8, eabl5318 (2022). https://doi.org/10.1126/sciadv.abl5318
- Y. Liu, Q. Zhang, G.O. Odunmbaku, Y. He, Y. Zheng et al., Solvent effect on the Seebeck coefficient of Fe2+/Fe3+ hydrogel thermogalvanic cells. J. Mater. Chem. A 10, 19690–19698 (2022). https://doi.org/10.1039/d1ta10508f
- H. Zhou, H. Inoue, M. Ujita, T. Yamada, Advancement of electrochemical thermoelectric conversion with molecular technology. Angew. Chem. Int. Ed. 62, e202213449 (2023). https://doi.org/10.1002/anie.202213449
- P. Peng, J. Zhou, L. Liang, X. Huang, H. Lv et al., Regulating thermogalvanic effect and mechanical robustness via redox ions for flexible quasi-solid-state thermocells. Nanomicro Lett. 14, 81 (2022). https://doi.org/10.1007/s40820-022-00824-6
- Y. Chen, Q. Huang, T.-H. Liu, X. Qian, R. Yang, Effect of solvation shell structure on thermopower of liquid redox pairs. EcoMat 5, e12385 (2023). https://doi.org/10.1002/eom2.12385
- H. Zhou, T. Yamada, N. Kimizuka, Supramolecular thermo-electrochemical cells: enhanced thermoelectric performance by host-guest complexation and salt-induced crystallization. J. Am. Chem. Soc. 138, 10502–10507 (2016). https://doi.org/10.1021/jacs.6b04923
- F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49, 1569–1614 (2020). https://doi.org/10.1039/c7cs00863e
- Y. Xu, Z. Li, L. Wu, H. Dou, X. Zhang, Lithium-ion thermal charging cell with giant thermopower for low-grade heat harvesting. Batteries Supercaps 6, 2200331 (2023). https://doi.org/10.1002/batt.202200331
- H. Wang, S.C. Kim, T. Rojas, Y. Zhu, Y. Li et al., Correlating Li-ion solvation structures and electrode potential temperature coefficients. J. Am. Chem. Soc. 143, 2264–2271 (2021). https://doi.org/10.1021/jacs.0c10587
- J. Seok, C.N. Gannett, S.-H. Yu, H.D. Abruña, Understanding the impacts of Li stripping overpotentials at the counter electrode by three-electrode coin cell measurements. Anal. Chem. 93, 15459–15467 (2021). https://doi.org/10.1021/acs.analchem.1c03422
- A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17, 1132–1139 (2017). https://doi.org/10.1021/acs.nanolett.6b04755
- Z. Li, Y. Xu, L. Wu, Y. An, Y. Sun et al., Zinc ion thermal charging cell for low-grade heat conversion and energy storage. Nat. Commun. 13, 132 (2022). https://doi.org/10.1038/s41467-021-27755-x
- S.C. Kim, X. Kong, R.A. Vilá, W. Huang, Y. Chen et al., Potentiometric measurement to probe solvation energy and its correlation to lithium battery cyclability. J. Am. Chem. Soc. 143, 10301–10308 (2021). https://doi.org/10.1021/jacs.1c03868
- X. Chen, Q. Zhang, Atomic insights into the fundamental interactions in lithium battery electrolytes. Acc. Chem. Res. 53, 1992–2002 (2020). https://doi.org/10.1021/acs.accounts.0c00412
- X. Zheng, L. Huang, X. Ye, J. Zhang, F. Min et al., Critical effects of electrolyte recipes for Li and Na metal batteries. Chem 7, 2312–2346 (2021). https://doi.org/10.1016/j.chempr.2021.02.025
- Z.A. Akbar, Y.T. Malik, D.H. Kim, S. Cho, S.Y. Jang et al., Self-healable and stretchable ionic-liquid-based thermoelectric composites with high ionic seebeck coefficient. Small 18, e2106937 (2022). https://doi.org/10.1002/smll.202106937
- Z. Piao, R. Gao, Y. Liu, G. Zhou, H.-M. Cheng, A review on regulating Li+ solvation structures in carbonate electrolytes for lithium metal batteries. Adv. Mater. 35, e2206009 (2023). https://doi.org/10.1002/adma.202206009
- K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004). https://doi.org/10.1021/cr030203g
- J. Duan, G. Feng, B. Yu, J. Li, M. Chen et al., Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Nat. Commun. 9, 5146 (2018). https://doi.org/10.1038/s41467-018-07625-9
- S.R. Mohanty, A relationship between heat conductivity and viscosity of liquids. Nature 168, 42 (1951). https://doi.org/10.1038/168042a0
- Y. Zhao, T. Zhou, T. Ashirov, M.E. Kazzi, C. Cancellieri et al., Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nat. Commun. 13, 2575 (2022). https://doi.org/10.1038/s41467-022-29199-3
- M. Morita, Y. Asai, N. Yoshimoto, M. Ishikawa, A Raman spectroscopic study of organic electrolyte solutions based on binary solvent systems of ethylene carbonate with low viscosity solvents which dissolve different lithium salts. J. Chem. Soc. Faraday Trans. 94, 3451–3456 (1998). https://doi.org/10.1039/A806278A
- S.-D. Han, S.-H. Yun, O. Borodin, D.M. Seo, R.D. Sommer et al., Solvate structures and computational/spectroscopic characterization of LiPF6 electrolytes. J. Phys. Chem. C 119, 8492–8500 (2015). https://doi.org/10.1021/acs.jpcc.5b00826
- L.D. Kock, M.D.S. Lekgoathi, P.L. Crouse, B.M. Vilakazi, Solid state vibrational spectroscopy of anhydrous lithium hexafluorophosphate (LiPF6). J. Mol. Struct. 1026, 145–149 (2012). https://doi.org/10.1016/j.molstruc.2012.05.053
- R. Aroca, M. Nazri, G.A. Nazri, A.J. Camargo, M. Trsic, Vibrational spectra and ion-pair properties of lithium hexafluorophosphate in ethylene carbonate based mixed-solvent systems for lithium batteries. J. Solut. Chem. 29, 1047–1060 (2000). https://doi.org/10.1023/A:1005151220893
- S. Uchida, T. Kiyobayashi, How does the solvent composition influence the transport properties of electrolyte solutions? LiPF6 and LiFSA in EC and DMC binary solvent. Phys. Chem. Chem. Phys. 23, 10875–10887 (2021). https://doi.org/10.1039/d1cp00967b
- W.A. Henderson, F. McKenna, M.A. Khan, N.R. Brooks, V.G. Young Jr. et al., Glyme–lithium bis(trifluoromethanesulfonyl)imide and glyme–lithium bis(perfluoroethanesulfonyl)imide phase behavior and solvate structures. Chem. Mater. 17, 2284–2289 (2005). https://doi.org/10.1021/cm047881j
- H. Yang, Y. Qiao, Z. Chang, P. He, H. Zhou, Designing cation-solvent fully coordinated electrolyte for high-energy-density lithium-sulfur full cell based on solid-solid conversion. Angew. Chem. Int. Ed. 60, 17726–17734 (2021). https://doi.org/10.1002/anie.202106788
- T. Hou, G. Yang, N.N. Rajput, J. Self, S.-W. Park et al., The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation. Nano Energy 64, 103881 (2019). https://doi.org/10.1016/j.nanoen.2019.103881
- F. Li, J. Liu, J. He, Y. Hou, H. Wang et al., Additive-assisted hydrophobic Li+-solvated structure for stabilizing dual electrode electrolyte interphases through suppressing LiPF6 hydrolysis. Angew. Chem. Int. Ed. 61, e202205091 (2022). https://doi.org/10.1002/anie.202205091
- Y. Xiao, X. Wang, K. Yang, J. Wu, Y. Chao et al., The anion-dominated dynamic coordination field in the electrolytes for high-performance lithium metal batteries. Energy Storage Mater. 55, 773–781 (2023). https://doi.org/10.1016/j.ensm.2022.12.038
- Z. Yu, N.P. Balsara, O. Borodin, A.A. Gewirth, N.T. Hahn et al., Beyond local solvation structure: nanometric aggregates in battery electrolytes and their effect on electrolyte properties. ACS Energy Lett. 7, 461–470 (2022). https://doi.org/10.1021/acsenergylett.1c02391
- H. Su, Z. Chen, M. Li, P. Bai, Y. Li et al., Achieving practical high-energy-density lithium-metal batteries by a dual-anion regulated electrolyte. Adv. Mater. 35, e2301171 (2023). https://doi.org/10.1002/adma.202301171
- A.L. Henne, M.A. Smook, Fluorinated ethers. J. Am. Chem. Soc. 72, 4378–4380 (1950). https://doi.org/10.1021/ja01166a013
- X.-Q. Zhang, X. Chen, X.-B. Cheng, B.-Q. Li, X. Shen et al., Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew. Chem. Int. Ed. 57, 5301–5305 (2018). https://doi.org/10.1002/anie.201801513
- D. Wu, J. He, J. Liu, M. Wu, S. Qi et al., Li2CO3/LiF-rich heterostructured solid electrolyte interphase with superior lithiophilic and Li+-transferred characteristics via adjusting electrolyte additives. Adv. Energy Mater. 12, 2200337 (2022). https://doi.org/10.1002/aenm.202200337
- G. Childs, L. Ericks, R. Powell, Thermal conductivity of solids at room temperature and below. NBS Monograph 131 (1976). https://digital.library.unt.edu/ark:/67531/metadc13173/
- B. Xu, Y. Tu, J. Li, B. Zhang, W. Zhang et al., A novel measurement method for the self-discharge of lithium-ion cells employing an equivalent resistance model. J. Electrochem. Soc. 170, 050518 (2023). https://doi.org/10.1149/1945-7111/acd35c
- Z. Li, Y. Xu, L. Wu, H. Dou, X. Zhang, Microstructural engineering of hydrated vanadium pentoxide for boosted zinc ion thermoelectrochemical cells. J. Mater. Chem. A 10, 21446–21455 (2022). https://doi.org/10.1039/D2TA05882K
- K. Mu, Y. Mu, X. Wang, X. Wu, C. Pang et al., Direct thermal charging cell using nickel hexacyanoferrate (ΙΙ) anode for green recycling of low-grade heat. ACS Energy Lett. 7, 1146–1153 (2022). https://doi.org/10.1021/acsenergylett.2c00057
- B. Yu, H. Xiao, Y. Zeng, S. Liu, D. Wu et al., Cost-effective n-type thermocells enabled by thermosensitive crystallizations and 3D multi-structured electrodes. Nano Energy 93, 106795 (2022). https://doi.org/10.1016/j.nanoen.2021.106795
- Z.A. Akbar, J.-W. Jeon, S.-Y. Jang, Intrinsically self-healable, stretchable thermoelectric materials with a large ionic Seebeck effect. Energy Environ. Sci. 13, 2915–2923 (2020). https://doi.org/10.1039/C9EE03861B
- D. Zhao, H. Wang, Z.U. Khan, J.C. Chen, R. Gabrielsson et al., Ionic thermoelectric supercapacitors. Energy Environ. Sci. 9, 1450–1457 (2016). https://doi.org/10.1039/c6ee00121a
- M. Jeong, J. Noh, M.Z. Islam, K. Kim, A. Sohn et al., Embedding aligned graphene oxides in polyelectrolytes to facilitate thermo-diffusion of protons for high ionic thermoelectric figure-of-merit. Adv. Funct. Mater. 31, 2011016 (2021). https://doi.org/10.1002/adfm.202011016
- H. Cheng, X. He, Z. Fan, J. Ouyang, Flexible quasi-solid state ionogels with remarkable seebeck coefficient and high thermoelectric properties. Adv. Energy Mater. 9, 1901085 (2019). https://doi.org/10.1002/aenm.201901085
References
C.-G. Han, X. Qian, Q. Li, B. Deng, Y. Zhu et al., Giant thermopower of ionic gelatin near room temperature. Science 368, 1091–1098 (2020). https://doi.org/10.1126/science.aaz5045
Y. Liu, M. Cui, W. Ling, L. Cheng, H. Lei et al., Thermo-electrochemical cells for heat to electricity conversion: from mechanisms, materials, strategies to applications. Energy Environ. Sci. 15, 3670–3687 (2022). https://doi.org/10.1039/D2EE01457B
J. Duan, B. Yu, L. Huang, B. Hu, M. Xu et al., Liquid-state thermocells: opportunities and challenges for low-grade heat harvesting. Joule 5, 768–779 (2021). https://doi.org/10.1016/j.joule.2021.02.009
G.-H. Kim, L. Shao, K. Zhang, K.P. Pipe, Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 12, 719–723 (2013). https://doi.org/10.1038/nmat3635
J.A. Perez-Taborda, O. Caballero-Calero, L. Vera-Londono, F. Briones, M. Martin-Gonzalez, High thermoelectric zT in n-type silver selenide films at room temperature. Adv. Energy Mater. 8, 1702024 (2018). https://doi.org/10.1002/aenm.201702024
X. Lu, D. Xie, K. Zhu, S. Wei, Z. Mo et al., Swift assembly of adaptive thermocell arrays for device-level healable and energy-autonomous motion sensors. Nano-Micro Lett. 15, 196 (2023). https://doi.org/10.1007/s40820-023-01170-x
S. Sun, M. Li, X.-L. Shi, Z.-G. Chen, Advances in ionic thermoelectrics: from materials to devices. Adv. Energy Mater. 13, 2203692 (2023). https://doi.org/10.1002/aenm.202203692
L. Onsager, Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265–2279 (1931). https://doi.org/10.1103/physrev.38.2265
L. Onsager, Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931). https://doi.org/10.1103/physrev.37.405
X. Shi, J. He, Thermopower and harvesting heat. Science 371, 343–344 (2021). https://doi.org/10.1126/science.abf3342
M.F. Dupont, D.R. MacFarlane, J.M. Pringle, Thermo-electrochemical cells for waste heat harvesting - progress and perspectives. Chem. Commun. 53, 6288–6302 (2017). https://doi.org/10.1039/c7cc02160g
M. Li, M. Hong, M. Dargusch, J. Zou, Z.-G. Chen, High-efficiency thermocells driven by thermo-electrochemical processes. Trends Chem. 3, 561–574 (2021). https://doi.org/10.1016/j.trechm.2020.11.001
J.L. Weininger, Thermogalvanic cells with silver iodide as a solid electrolyte. J. Electrochem. Soc. 111, 769 (1964). https://doi.org/10.1149/1.2426251
Y. He, S. Li, R. Chen, X. Liu, G.O. Odunmbaku et al., Ion–electron coupling enables ionic thermoelectric material with new operation mode and high energy density. Nano-Micro Lett. 15, 101 (2023). https://doi.org/10.1007/s40820-023-01077-7
Z. Mo, J. Zhou, X. Lu, L. Liang, F. Liu et al., Flexible nanocomposite electrodes with optimized hybrid structure for improved low-grade heat harvest via thermocells. Sci. China Chem. 66, 1814–1823 (2023). https://doi.org/10.1007/s11426-023-1567-0
L. Liang, H. Lv, X.-L. Shi, Z. Liu, G. Chen et al., A flexible quasi-solid-state thermoelectrochemical cell with high stretchability as an energy-autonomous strain sensor. Mater. Horiz. 8, 2750–2760 (2021). https://doi.org/10.1039/d1mh00775k
J. Zhou, P. Peng, Z. Li, L. Liang, X. Huang et al., Interfacial architecting with anion treatment for enhanced thermoelectric power of flexible ternary polymer nanocomposites. J. Mater. Chem. A 9, 20544–20552 (2021). https://doi.org/10.1039/D1TA04698E
S. Wei, J. Ma, D. Wu, B. Chen, C. Du et al., Constructing flexible film electrode with porous layered structure by MXene/SWCNTs/PANI ternary composite for efficient low-grade thermal energy harvest. Adv. Funct. Mater. 33, 2209806 (2023). https://doi.org/10.1002/adfm.202209806
D. Bae, A. Bentien, Take it to the Carnot limit: perspectives and thermodynamics of dual-cell electrochemical heat engines. Energy Convers. Manag. 271, 116315 (2022). https://doi.org/10.1016/j.enconman.2022.116315
X. Wang, Y.-T. Huang, C. Liu, K. Mu, K.H. Li et al., Direct thermal charging cell for converting low-grade heat to electricity. Nat. Commun. 10, 4151 (2019). https://doi.org/10.1038/s41467-019-12144-2
Y. Liang, T. Yamada, H. Zhou, N. Kimizuka, Hexakis(2, 3, 6-tri- O-methyl)-α-cyclodextrin-I5 - complex in aqueous I-/I3 - thermocells and enhancement in the Seebeck coefficient. Chem. Sci. 10, 773–780 (2018). https://doi.org/10.1039/c8sc03821j
Y. Han, J. Zhang, R. Hu, D. Xu, High-thermopower polarized electrolytes enabled by methylcellulose for low-grade heat harvesting. Sci. Adv. 8, eabl5318 (2022). https://doi.org/10.1126/sciadv.abl5318
Y. Liu, Q. Zhang, G.O. Odunmbaku, Y. He, Y. Zheng et al., Solvent effect on the Seebeck coefficient of Fe2+/Fe3+ hydrogel thermogalvanic cells. J. Mater. Chem. A 10, 19690–19698 (2022). https://doi.org/10.1039/d1ta10508f
H. Zhou, H. Inoue, M. Ujita, T. Yamada, Advancement of electrochemical thermoelectric conversion with molecular technology. Angew. Chem. Int. Ed. 62, e202213449 (2023). https://doi.org/10.1002/anie.202213449
P. Peng, J. Zhou, L. Liang, X. Huang, H. Lv et al., Regulating thermogalvanic effect and mechanical robustness via redox ions for flexible quasi-solid-state thermocells. Nanomicro Lett. 14, 81 (2022). https://doi.org/10.1007/s40820-022-00824-6
Y. Chen, Q. Huang, T.-H. Liu, X. Qian, R. Yang, Effect of solvation shell structure on thermopower of liquid redox pairs. EcoMat 5, e12385 (2023). https://doi.org/10.1002/eom2.12385
H. Zhou, T. Yamada, N. Kimizuka, Supramolecular thermo-electrochemical cells: enhanced thermoelectric performance by host-guest complexation and salt-induced crystallization. J. Am. Chem. Soc. 138, 10502–10507 (2016). https://doi.org/10.1021/jacs.6b04923
F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49, 1569–1614 (2020). https://doi.org/10.1039/c7cs00863e
Y. Xu, Z. Li, L. Wu, H. Dou, X. Zhang, Lithium-ion thermal charging cell with giant thermopower for low-grade heat harvesting. Batteries Supercaps 6, 2200331 (2023). https://doi.org/10.1002/batt.202200331
H. Wang, S.C. Kim, T. Rojas, Y. Zhu, Y. Li et al., Correlating Li-ion solvation structures and electrode potential temperature coefficients. J. Am. Chem. Soc. 143, 2264–2271 (2021). https://doi.org/10.1021/jacs.0c10587
J. Seok, C.N. Gannett, S.-H. Yu, H.D. Abruña, Understanding the impacts of Li stripping overpotentials at the counter electrode by three-electrode coin cell measurements. Anal. Chem. 93, 15459–15467 (2021). https://doi.org/10.1021/acs.analchem.1c03422
A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17, 1132–1139 (2017). https://doi.org/10.1021/acs.nanolett.6b04755
Z. Li, Y. Xu, L. Wu, Y. An, Y. Sun et al., Zinc ion thermal charging cell for low-grade heat conversion and energy storage. Nat. Commun. 13, 132 (2022). https://doi.org/10.1038/s41467-021-27755-x
S.C. Kim, X. Kong, R.A. Vilá, W. Huang, Y. Chen et al., Potentiometric measurement to probe solvation energy and its correlation to lithium battery cyclability. J. Am. Chem. Soc. 143, 10301–10308 (2021). https://doi.org/10.1021/jacs.1c03868
X. Chen, Q. Zhang, Atomic insights into the fundamental interactions in lithium battery electrolytes. Acc. Chem. Res. 53, 1992–2002 (2020). https://doi.org/10.1021/acs.accounts.0c00412
X. Zheng, L. Huang, X. Ye, J. Zhang, F. Min et al., Critical effects of electrolyte recipes for Li and Na metal batteries. Chem 7, 2312–2346 (2021). https://doi.org/10.1016/j.chempr.2021.02.025
Z.A. Akbar, Y.T. Malik, D.H. Kim, S. Cho, S.Y. Jang et al., Self-healable and stretchable ionic-liquid-based thermoelectric composites with high ionic seebeck coefficient. Small 18, e2106937 (2022). https://doi.org/10.1002/smll.202106937
Z. Piao, R. Gao, Y. Liu, G. Zhou, H.-M. Cheng, A review on regulating Li+ solvation structures in carbonate electrolytes for lithium metal batteries. Adv. Mater. 35, e2206009 (2023). https://doi.org/10.1002/adma.202206009
K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004). https://doi.org/10.1021/cr030203g
J. Duan, G. Feng, B. Yu, J. Li, M. Chen et al., Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Nat. Commun. 9, 5146 (2018). https://doi.org/10.1038/s41467-018-07625-9
S.R. Mohanty, A relationship between heat conductivity and viscosity of liquids. Nature 168, 42 (1951). https://doi.org/10.1038/168042a0
Y. Zhao, T. Zhou, T. Ashirov, M.E. Kazzi, C. Cancellieri et al., Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nat. Commun. 13, 2575 (2022). https://doi.org/10.1038/s41467-022-29199-3
M. Morita, Y. Asai, N. Yoshimoto, M. Ishikawa, A Raman spectroscopic study of organic electrolyte solutions based on binary solvent systems of ethylene carbonate with low viscosity solvents which dissolve different lithium salts. J. Chem. Soc. Faraday Trans. 94, 3451–3456 (1998). https://doi.org/10.1039/A806278A
S.-D. Han, S.-H. Yun, O. Borodin, D.M. Seo, R.D. Sommer et al., Solvate structures and computational/spectroscopic characterization of LiPF6 electrolytes. J. Phys. Chem. C 119, 8492–8500 (2015). https://doi.org/10.1021/acs.jpcc.5b00826
L.D. Kock, M.D.S. Lekgoathi, P.L. Crouse, B.M. Vilakazi, Solid state vibrational spectroscopy of anhydrous lithium hexafluorophosphate (LiPF6). J. Mol. Struct. 1026, 145–149 (2012). https://doi.org/10.1016/j.molstruc.2012.05.053
R. Aroca, M. Nazri, G.A. Nazri, A.J. Camargo, M. Trsic, Vibrational spectra and ion-pair properties of lithium hexafluorophosphate in ethylene carbonate based mixed-solvent systems for lithium batteries. J. Solut. Chem. 29, 1047–1060 (2000). https://doi.org/10.1023/A:1005151220893
S. Uchida, T. Kiyobayashi, How does the solvent composition influence the transport properties of electrolyte solutions? LiPF6 and LiFSA in EC and DMC binary solvent. Phys. Chem. Chem. Phys. 23, 10875–10887 (2021). https://doi.org/10.1039/d1cp00967b
W.A. Henderson, F. McKenna, M.A. Khan, N.R. Brooks, V.G. Young Jr. et al., Glyme–lithium bis(trifluoromethanesulfonyl)imide and glyme–lithium bis(perfluoroethanesulfonyl)imide phase behavior and solvate structures. Chem. Mater. 17, 2284–2289 (2005). https://doi.org/10.1021/cm047881j
H. Yang, Y. Qiao, Z. Chang, P. He, H. Zhou, Designing cation-solvent fully coordinated electrolyte for high-energy-density lithium-sulfur full cell based on solid-solid conversion. Angew. Chem. Int. Ed. 60, 17726–17734 (2021). https://doi.org/10.1002/anie.202106788
T. Hou, G. Yang, N.N. Rajput, J. Self, S.-W. Park et al., The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation. Nano Energy 64, 103881 (2019). https://doi.org/10.1016/j.nanoen.2019.103881
F. Li, J. Liu, J. He, Y. Hou, H. Wang et al., Additive-assisted hydrophobic Li+-solvated structure for stabilizing dual electrode electrolyte interphases through suppressing LiPF6 hydrolysis. Angew. Chem. Int. Ed. 61, e202205091 (2022). https://doi.org/10.1002/anie.202205091
Y. Xiao, X. Wang, K. Yang, J. Wu, Y. Chao et al., The anion-dominated dynamic coordination field in the electrolytes for high-performance lithium metal batteries. Energy Storage Mater. 55, 773–781 (2023). https://doi.org/10.1016/j.ensm.2022.12.038
Z. Yu, N.P. Balsara, O. Borodin, A.A. Gewirth, N.T. Hahn et al., Beyond local solvation structure: nanometric aggregates in battery electrolytes and their effect on electrolyte properties. ACS Energy Lett. 7, 461–470 (2022). https://doi.org/10.1021/acsenergylett.1c02391
H. Su, Z. Chen, M. Li, P. Bai, Y. Li et al., Achieving practical high-energy-density lithium-metal batteries by a dual-anion regulated electrolyte. Adv. Mater. 35, e2301171 (2023). https://doi.org/10.1002/adma.202301171
A.L. Henne, M.A. Smook, Fluorinated ethers. J. Am. Chem. Soc. 72, 4378–4380 (1950). https://doi.org/10.1021/ja01166a013
X.-Q. Zhang, X. Chen, X.-B. Cheng, B.-Q. Li, X. Shen et al., Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew. Chem. Int. Ed. 57, 5301–5305 (2018). https://doi.org/10.1002/anie.201801513
D. Wu, J. He, J. Liu, M. Wu, S. Qi et al., Li2CO3/LiF-rich heterostructured solid electrolyte interphase with superior lithiophilic and Li+-transferred characteristics via adjusting electrolyte additives. Adv. Energy Mater. 12, 2200337 (2022). https://doi.org/10.1002/aenm.202200337
G. Childs, L. Ericks, R. Powell, Thermal conductivity of solids at room temperature and below. NBS Monograph 131 (1976). https://digital.library.unt.edu/ark:/67531/metadc13173/
B. Xu, Y. Tu, J. Li, B. Zhang, W. Zhang et al., A novel measurement method for the self-discharge of lithium-ion cells employing an equivalent resistance model. J. Electrochem. Soc. 170, 050518 (2023). https://doi.org/10.1149/1945-7111/acd35c
Z. Li, Y. Xu, L. Wu, H. Dou, X. Zhang, Microstructural engineering of hydrated vanadium pentoxide for boosted zinc ion thermoelectrochemical cells. J. Mater. Chem. A 10, 21446–21455 (2022). https://doi.org/10.1039/D2TA05882K
K. Mu, Y. Mu, X. Wang, X. Wu, C. Pang et al., Direct thermal charging cell using nickel hexacyanoferrate (ΙΙ) anode for green recycling of low-grade heat. ACS Energy Lett. 7, 1146–1153 (2022). https://doi.org/10.1021/acsenergylett.2c00057
B. Yu, H. Xiao, Y. Zeng, S. Liu, D. Wu et al., Cost-effective n-type thermocells enabled by thermosensitive crystallizations and 3D multi-structured electrodes. Nano Energy 93, 106795 (2022). https://doi.org/10.1016/j.nanoen.2021.106795
Z.A. Akbar, J.-W. Jeon, S.-Y. Jang, Intrinsically self-healable, stretchable thermoelectric materials with a large ionic Seebeck effect. Energy Environ. Sci. 13, 2915–2923 (2020). https://doi.org/10.1039/C9EE03861B
D. Zhao, H. Wang, Z.U. Khan, J.C. Chen, R. Gabrielsson et al., Ionic thermoelectric supercapacitors. Energy Environ. Sci. 9, 1450–1457 (2016). https://doi.org/10.1039/c6ee00121a
M. Jeong, J. Noh, M.Z. Islam, K. Kim, A. Sohn et al., Embedding aligned graphene oxides in polyelectrolytes to facilitate thermo-diffusion of protons for high ionic thermoelectric figure-of-merit. Adv. Funct. Mater. 31, 2011016 (2021). https://doi.org/10.1002/adfm.202011016
H. Cheng, X. He, Z. Fan, J. Ouyang, Flexible quasi-solid state ionogels with remarkable seebeck coefficient and high thermoelectric properties. Adv. Energy Mater. 9, 1901085 (2019). https://doi.org/10.1002/aenm.201901085