Drug Nanorod-Mediated Intracellular Delivery of microRNA-101 for Self-sensitization via Autophagy Inhibition
Corresponding Author: Lifang Yin
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 82
Abstract
Autophagy is closely related to the drug resistance and metastasis in cancer therapy. Nanoparticle-mediated co-delivery of combinatorial therapy with small-molecular drugs and nucleic acids is promising to address drug resistance. Here, a drug-delivering-drug (DDD) platform consisting of anti-tumor-drug nanorods as a vehicle for cytosol delivery of nucleic acid (miR-101) with potent autophagic-inhibition activity is reported for combinatorial therapy. The developed 180-nm nanoplatform, with total drug loading of up to 66%, delivers miR-101 to cancer cells, with threefold increase in intracellular level compared to conventional gene carriers and inhibits the autophagy significantly, along with above twofold reduction in LC3II mRNA and approximately fivefold increase in p62 mRNA over the control demonstrated in the results in vivo. And in turn, the delivery of miR-101 potentiates the drug’s ability to kill cancer cells, with a threefold increase in apoptosis over that of chemotherapy alone. The anti-tumor study in vivo indicates the combined therapy that enables a reduction of 80% in tumor volume and > twofold increase in apoptosis than of the single-drug strategy. In summary, via the carrier-free strategy of DDD, this work provides a delivery platform that can be easily customized to overcome drug resistance and facilitates the delivery of combined therapy of small-molecular drugs and nucleic acids.
Highlights:
1 Nanosized cytotoxic drug could combat against the autophagy induced by the drug.
2 The drug nanorods enabled efficient intracellular delivery of the nucleic acid and the resultant autophagy inhibition in vitro and in vivo, which in turn sensitized the cancer cells to the anti-tumor nanorods.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Al-Lazikani, U. Banerji, P. Workman, Combinatorial drug therapy for cancer in the post-genomic era. Nat. Biotechnol. 30(7), 679–692 (2012). https://doi.org/10.1038/nbt.2284
- M. Bar-Zeev, Y.D. Livney, Y.G. Assaraf, Targeted nanomedicine for cancer therapeutics: towards precision medicine overcoming drug resistance. Drug Resist. Updates 31, 15–30 (2017). https://doi.org/10.1016/j.drup.2017.05.002
- J.S. Lopez, U. Banerji, Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nat. Rev. Clin. Oncol. 14(1), 57–66 (2017). https://doi.org/10.1038/nrclinonc.2016.96
- W. Dai, X. Wang, G. Song, T. Liu, B. He, H. Zhang, X. Wang, Q. Zhang, Combination antitumor therapy with targeted dual-nanomedicines. Adv. Drug Delivery Rev. 115, 23–45 (2017). https://doi.org/10.1016/j.addr.2017.03.001
- K. Han, E.E. Jeng, G.T. Hess, D.W. Morgens, A. Li, M.C. Bassik, Synergistic drug combinations for cancer identified in a crispr screen for pairwise genetic interactions. Nat. Biotechnol. 35(5), 463–474 (2017). https://doi.org/10.1038/nbt.3834
- J. Lehàr, A.S. Krueger, W. Avery, A.M. Heilbut, L.M. Johansen et al., Synergistic drug combinations improve therapeutic selectivity. Nat. Biotechnol. 27(7), 659–666 (2009). https://doi.org/10.1038/nbt.1549
- E.K. Rowinsky, N. Onetto, R.M. Canetta, S.G. Arbuck, Taxol: the first of the taxanes, an important new class of antitumor agents. Seminars Oncol. 19(6), 646–662 (1992)
- P.E. Saw, J. Park, S. Jon, O.C. Farokhzad, A drug-delivery strategy for overcoming drug resistance in breast cancer through targeting of oncofetal fibronectin. Nanomed. NBM 13(2), 713–722 (2017). https://doi.org/10.1016/j.nano.2016.10.005
- X. Xie, X. Shao, W. Ma, D. Zhao, S. Shi, Q. Li, Y. Lin, Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures. Nanoscale 10(12), 5457–5465 (2018). https://doi.org/10.1039/c7nr09692e
- J.M.M. Levy, C.G. Towers, A. Thorburn, Targeting autophagy in cancer. Nat. Rev. Cancer 17(9), 528–542 (2017). https://doi.org/10.1038/nrc.2017.53
- A.C. Kimmelman, E. White, Autophagy and tumor metabolism. Cell Metab. 25(5), 1037–1043 (2017). https://doi.org/10.1016/j.cmet.2017.04.004
- J. Wen, S. Yeo, C. Wang, S. Chen, S. Sun et al., Autophagy inhibition re-sensitizes pulse stimulation-selected paclitaxel-resistant triple negative breast cancer cells to chemotherapy-induced apoptosis. Breast Cancer Res. Treat. 149(3), 619–629 (2015). https://doi.org/10.1007/s10549-015-3283-9
- B.E. Fitzwalter, C.G. Towers, K.D. Sullivan, Z. Andrysik, M. Hoh et al., Autophagy inhibition mediates apoptosis sensitization in cancer therapy by relieving FOXO3a turnover. Dev. Cell 44(5), 555–565 (2018). https://doi.org/10.1016/j.devcel.2018.02.014
- H. Vakifahmetoglu-Norberg, H. Xia, J. Yuan, Pharmacologic agents targeting autophagy. J. Clin. Investig. 125(1), 5–13 (2015). https://doi.org/10.1172/JCI73937
- A.N. Zelikin, C. Ehrhardt, A.M. Healy, Materials and methods for delivery of biological drugs. Nat. Chem. 8(11), 997–1007 (2016). https://doi.org/10.1038/nchem.2629
- L.B. Frankel, A.H. Lund, Microrna regulation of autophagy. Carcinogenesis 33(11), 2018–2025 (2012). https://doi.org/10.1093/carcin/bgs266
- L.B. Frankel, J. Wen, M. Lees, M. Høyer-Hansen, T. Farkas, A. Krogh, M. Jäättelä, A.H. Lund, MicroRNA-101 is a potent inhibitor of autophagy. EMBO J. 30(22), 4628–4641 (2011). https://doi.org/10.1038/emboj.2011.331
- Y. Xu, Y. An, Y. Wang, C. Zhang, H. Zhang et al., MiR-101 inhibits autophagy and enhances cisplatin-induced apoptosis in hepatocellular carcinoma cells. Oncol. Rep. 29(5), 2019–2024 (2013). https://doi.org/10.3892/or.2013.2338
- X. Xin, C. Teng, X. Du, Y. Lv, Q. Xiao et al., Drug-delivering-drug platform-mediated potent protein therapeutics via a non-endo-lysosomal route. Theranostics 8(13), 3474–3489 (2018). https://doi.org/10.7150/thno.23804
- Q. Xiao, X. Zhu, Y. Yuan, L. Yin, W. He, A drug-delivering-drug strategy for combined treatment of metastatic breast cancer. Nanomed. NBM 14(8), 2678–2688 (2018). https://doi.org/10.1016/j.nano.2018.06.012
- X. Xin, X. Pei, X. Yang, Y. Lv, L. Zhang, W. He, L. Yin, Rod-shaped active drug particles enable efficient and safe gene delivery. Adv. Sci. 4(11), 1700324 (2017). https://doi.org/10.1002/advs.201700324
- X. Hu, J. Zhang, Z. Yu, Y. Xie, H. He et al., Environment-responsive aza-BODIPY dyes quenching in water as potential probes to visualize the in vivo fate of lipid-based nanocarriers. Nanomed. NBM 11(8), 1939–1948 (2015). https://doi.org/10.1016/j.nano.2015.06.013
- H. He, S. Jiang, Y. Xie, Y. Lu, J. Qi et al., Reassessment of long circulation via monitoring of integral polymeric nanoparticles justifies a more accurate understanding. Nanoscale Horiz. 3(4), 397–407 (2018). https://doi.org/10.1039/C8NH00010G
- Y. Lv, C. Xu, X. Zhao, C. Lin, X. Yang et al., Nanoplatform assembled from a CD44-targeted prodrug and smart liposomes for dual targeting of tumor microenvironment and cancer cells. ACS Nano 12(2), 1519–1536 (2018). https://doi.org/10.1021/acsnano.7b08051
- Y. Cho, H.W. Lee, H.G. Kang, H.Y. Kim, S.J. Kim, K.H. Chun, Cleaved CD44 intracellular domain supports activation of stemness factors and promotes tumorigenesis of breast cancer. Oncotarget 6(11), 8709–8721 (2015). https://doi.org/10.18632/oncotarget.3325
- K. Maaser, J. Borlak, A genome-wide expression analysis identifies a network of EpCAM-induced cell cycle regulators. Br J Cancer 99(10), 1635–1643 (2008). https://doi.org/10.1038/sj.bjc.6604725
- R. Mout, M. Ray, G. Yesilbag Tonga, Y.W. Lee, T. Tay, K. Sasaki, V.M. Rotello, Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano 11(3), 2452–2458 (2017). https://doi.org/10.1021/acsnano.6b07600
- F. Scaletti, J. Hardie, Y.W. Lee, D.C. Luther, M. Ray, V.M. Rotello, Protein delivery into cells using inorganic nanoparticle–protein supramolecular assemblies. Chem. Soc. Rev. 47(10), 3421–3432 (2018). https://doi.org/10.1039/c8cs00008e
- R.G. Parton, A.A. Richards, Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 4(11), 724–738 (2003). https://doi.org/10.1034/j.1600-0854.2003.00128.x
- J. Gilleron, W. Querbes, A. Zeigerer, A. Borodovsky, G. Marsico et al., Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31(7), 638–646 (2013). https://doi.org/10.1038/nbt.2612
- M.P. Stewart, A. Sharei, X. Ding, G. Sahay, R. Langer, K.F. Jensen, In vitro and ex vivo strategies for intracellular delivery. Nature 538(7624), 183–192 (2016). https://doi.org/10.1038/nature19764
- I. Tanida, T. Ueno, E. Kominami, LC3 and autophagy (Springer, Berlin, 2008), pp. 77–88. https://doi.org/10.1007/978-1-59745-157-4_4
- S. Sarkar, Chemical screening platforms for autophagy drug discovery to identify therapeutic candidates for Huntington’s disease and other neurodegenerative disorders. Drug Discov. Today Technol. 10(1), e137–e144 (2013). https://doi.org/10.1016/j.ddtec.2012.09.010
- C. Zhou, W. Zhong, J. Zhou, F. Sheng, Z. Fang et al., Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells. Autophagy 8(8), 1215–1226 (2012). https://doi.org/10.4161/auto.20284
- K. Zhang, J. Chen, H. Zhou, Y. Chen, Y. Zhi et al., PU. 1/microRNA-142-3p targets ATG5/ATG16L1 to inactivate autophagy and sensitize hepatocellular carcinoma cells to sorafenib. Cell Death Dis. 9(3), 312 (2018). https://doi.org/10.1038/s41419-018-0344-0
- E.E. Mowers, M.N. Sharifi, K.F. Macleod, Autophagy in cancer metastasis. Oncogene 36(12), 1619–1630 (2017). https://doi.org/10.1038/onc.2016.333
- J.M. Munson, L. Fried, S.A. Rowson, M.Y. Bonner, L. Karumbaiah et al., Anti-invasive adjuvant therapy with imipramine blue enhances chemotherapeutic efficacy against glioma. Sci. Transl. Med. 4(127), 127ra136 (2012). https://doi.org/10.1126/scitranslmed.3003016
- J. Park, S.H. Wrzesinski, E. Stern, M. Look, J. Criscione et al., Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat. Mater. 11(10), 895–905 (2012). https://doi.org/10.1038/nmat3355
- J. Shi, P.W. Kantoff, R. Wooster, O.C. Farokhzad, Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17(1), 20–37 (2017). https://doi.org/10.1038/nrc.2016.108
- Y. Wang, S. Gao, W.H. Ye, H.S. Yoon, Y.Y. Yang, Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer. Nat. Mater. 5(10), 791–796 (2006). https://doi.org/10.1038/nmat1737
- R. Tong, J. Cheng, Paclitaxel-initiated, controlled polymerization of lactide for the formulation of polymeric nanoparticulate delivery vehicles. Angew. Chem. Int. Ed. 47(26), 4830–4834 (2008). https://doi.org/10.1002/anie.200800491
- H.D. Herce, D. Schumacher, A.F.L. Schneider, A.K. Ludwig, F.A. Mann et al., Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells. Nat. Chem. 9(8), 762–771 (2017). https://doi.org/10.1038/nchem.2811
- R. Mout, M. Ray, T. Tay, K. Sasaki, G. YesilbagTonga, V.M. Rotello, General strategy for direct cytosolic protein delivery via protein-nanoparticle co-engineering. ACS Nano 11(6), 6416–6421 (2017). https://doi.org/10.1021/acsnano.7b02884
- A. Sharma, C. Cornejo, J. Mihalic, A. Geyh, D.E. Bordelon et al., Physical characterization and in vivo organ distribution of coated iron oxide nanoparticles. Sci. Rep. 8(1), 4916 (2018). https://doi.org/10.1038/s41598-018-23317-2
- J.C. Sung, B.L. Pulliam, D.A. Edwards, Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 25(12), 563–570 (2007). https://doi.org/10.1016/j.tibtech.2007.09.005
- K. Hadinoto, K. Zhu, R.B. Tan, Drug release study of large hollow nanoparticulate aggregates carrier particles for pulmonary delivery. Int. J. Pharm. 341(1–2), 195–206 (2007). https://doi.org/10.1016/j.ijpharm.2007.03.035
- C. He, Z. Tang, H. Tian, X. Chen, Co-delivery of chemotherapeutics and proteins for synergistic therapy. Adv. Drug Delivery Rev. 98, 64–76 (2016). https://doi.org/10.1016/j.addr.2015.10.021
- G. Shim, M.G. Kim, D. Kim, J.Y. Park, Y.K. Oh, Nanoformulation-based sequential combination cancer therapy. Adv. Drug Delivery Rev. 115, 57–81 (2017). https://doi.org/10.1016/j.addr.2017.04.003
- M.J. Lee, A.S. Ye, A.K. Gardino, A.M. Heijink, P.K. Sorger, G. MacBeath, M.B. Yaffe, Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 149(4), 780–794 (2012). https://doi.org/10.1016/j.cell.2012.03.031
- X. Zhang, X. Zeng, X. Liang, Y. Yang, X. Li et al., The chemotherapeutic potential of PEG-b-PLGA copolymer micelles that combine chloroquine as autophagy inhibitor and docetaxel as an anti-cancer drug. Biomaterials 35(33), 9144–9154 (2014). https://doi.org/10.1016/j.biomaterials.2014.07.028
- X. Zhang, Y. Yang, X. Liang, X. Zeng, Z. Liu et al., Enhancing therapeutic effects of docetaxel-loaded dendritic copolymer nanoparticles by co-treatment with autophagy inhibitor on breast cancer. Theranostics 4(11), 1085–1095 (2014). https://doi.org/10.7150/thno.9933
- X. Zhang, Y. Dong, X. Zeng, X. Liang, X. Li et al., The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment. Biomaterials 35(6), 1932–1943 (2014). https://doi.org/10.1016/j.biomaterials.2013.10.034
- R. Mohammadinejad, M.A. Moosavi, S. Tavakol, D.Ö. Vardar, A. Hosseini et al., Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy 15(1), 4–33 (2019). https://doi.org/10.1080/15548627.2018.1509171
- K. Peynshaert, B.B. Manshian, F. Joris, K. Braeckmans, S.C. De Smedt, J. Demeester, S.J. Soenen, Exploiting intrinsic nanoparticle toxicity: the pros and cons of nanoparticle-induced autophagy in biomedical research. Chem. Rev. 114(15), 7581–7609 (2014). https://doi.org/10.1021/cr400372p
- W. He, X. Xin, Y. Li, X. Han, C. Qin, L. Yin, Rod-shaped drug particles for cancer therapy: the importance of particle size and participation of caveolae pathway. Part. Part. Syst. Charact. 34(6), 1600371 (2017). https://doi.org/10.1002/ppsc.201600371
- I.S. Mohammad, C. Teng, B. Chaurasiya, L. Yin, C. Wu, W. He, Drug-delivering-drug approach-based codelivery of paclitaxel and disulfiram for treating multidrug-resistant cancer. Int. J. Pharm. 557, 304–313 (2018). https://doi.org/10.1016/j.ijpharm.2018.12.067
- L. Galluzzi, J.M. Bravo-San Pedro, B. Levine, D.R. Green, G. Kroemer, Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat. Rev. Drug Discovery 16(7), 487–511 (2017). https://doi.org/10.1038/nrd.2017.22
- I.S. Mohammad, W. He, L. Yin, Smart paclitaxel-disulfiram nanococrystals for efficient MDR reversal and enhanced apoptosis. Pharm. Res. -Dordr. 35(4), 77 (2018). https://doi.org/10.1007/s11095-018-2370-0
References
B. Al-Lazikani, U. Banerji, P. Workman, Combinatorial drug therapy for cancer in the post-genomic era. Nat. Biotechnol. 30(7), 679–692 (2012). https://doi.org/10.1038/nbt.2284
M. Bar-Zeev, Y.D. Livney, Y.G. Assaraf, Targeted nanomedicine for cancer therapeutics: towards precision medicine overcoming drug resistance. Drug Resist. Updates 31, 15–30 (2017). https://doi.org/10.1016/j.drup.2017.05.002
J.S. Lopez, U. Banerji, Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nat. Rev. Clin. Oncol. 14(1), 57–66 (2017). https://doi.org/10.1038/nrclinonc.2016.96
W. Dai, X. Wang, G. Song, T. Liu, B. He, H. Zhang, X. Wang, Q. Zhang, Combination antitumor therapy with targeted dual-nanomedicines. Adv. Drug Delivery Rev. 115, 23–45 (2017). https://doi.org/10.1016/j.addr.2017.03.001
K. Han, E.E. Jeng, G.T. Hess, D.W. Morgens, A. Li, M.C. Bassik, Synergistic drug combinations for cancer identified in a crispr screen for pairwise genetic interactions. Nat. Biotechnol. 35(5), 463–474 (2017). https://doi.org/10.1038/nbt.3834
J. Lehàr, A.S. Krueger, W. Avery, A.M. Heilbut, L.M. Johansen et al., Synergistic drug combinations improve therapeutic selectivity. Nat. Biotechnol. 27(7), 659–666 (2009). https://doi.org/10.1038/nbt.1549
E.K. Rowinsky, N. Onetto, R.M. Canetta, S.G. Arbuck, Taxol: the first of the taxanes, an important new class of antitumor agents. Seminars Oncol. 19(6), 646–662 (1992)
P.E. Saw, J. Park, S. Jon, O.C. Farokhzad, A drug-delivery strategy for overcoming drug resistance in breast cancer through targeting of oncofetal fibronectin. Nanomed. NBM 13(2), 713–722 (2017). https://doi.org/10.1016/j.nano.2016.10.005
X. Xie, X. Shao, W. Ma, D. Zhao, S. Shi, Q. Li, Y. Lin, Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures. Nanoscale 10(12), 5457–5465 (2018). https://doi.org/10.1039/c7nr09692e
J.M.M. Levy, C.G. Towers, A. Thorburn, Targeting autophagy in cancer. Nat. Rev. Cancer 17(9), 528–542 (2017). https://doi.org/10.1038/nrc.2017.53
A.C. Kimmelman, E. White, Autophagy and tumor metabolism. Cell Metab. 25(5), 1037–1043 (2017). https://doi.org/10.1016/j.cmet.2017.04.004
J. Wen, S. Yeo, C. Wang, S. Chen, S. Sun et al., Autophagy inhibition re-sensitizes pulse stimulation-selected paclitaxel-resistant triple negative breast cancer cells to chemotherapy-induced apoptosis. Breast Cancer Res. Treat. 149(3), 619–629 (2015). https://doi.org/10.1007/s10549-015-3283-9
B.E. Fitzwalter, C.G. Towers, K.D. Sullivan, Z. Andrysik, M. Hoh et al., Autophagy inhibition mediates apoptosis sensitization in cancer therapy by relieving FOXO3a turnover. Dev. Cell 44(5), 555–565 (2018). https://doi.org/10.1016/j.devcel.2018.02.014
H. Vakifahmetoglu-Norberg, H. Xia, J. Yuan, Pharmacologic agents targeting autophagy. J. Clin. Investig. 125(1), 5–13 (2015). https://doi.org/10.1172/JCI73937
A.N. Zelikin, C. Ehrhardt, A.M. Healy, Materials and methods for delivery of biological drugs. Nat. Chem. 8(11), 997–1007 (2016). https://doi.org/10.1038/nchem.2629
L.B. Frankel, A.H. Lund, Microrna regulation of autophagy. Carcinogenesis 33(11), 2018–2025 (2012). https://doi.org/10.1093/carcin/bgs266
L.B. Frankel, J. Wen, M. Lees, M. Høyer-Hansen, T. Farkas, A. Krogh, M. Jäättelä, A.H. Lund, MicroRNA-101 is a potent inhibitor of autophagy. EMBO J. 30(22), 4628–4641 (2011). https://doi.org/10.1038/emboj.2011.331
Y. Xu, Y. An, Y. Wang, C. Zhang, H. Zhang et al., MiR-101 inhibits autophagy and enhances cisplatin-induced apoptosis in hepatocellular carcinoma cells. Oncol. Rep. 29(5), 2019–2024 (2013). https://doi.org/10.3892/or.2013.2338
X. Xin, C. Teng, X. Du, Y. Lv, Q. Xiao et al., Drug-delivering-drug platform-mediated potent protein therapeutics via a non-endo-lysosomal route. Theranostics 8(13), 3474–3489 (2018). https://doi.org/10.7150/thno.23804
Q. Xiao, X. Zhu, Y. Yuan, L. Yin, W. He, A drug-delivering-drug strategy for combined treatment of metastatic breast cancer. Nanomed. NBM 14(8), 2678–2688 (2018). https://doi.org/10.1016/j.nano.2018.06.012
X. Xin, X. Pei, X. Yang, Y. Lv, L. Zhang, W. He, L. Yin, Rod-shaped active drug particles enable efficient and safe gene delivery. Adv. Sci. 4(11), 1700324 (2017). https://doi.org/10.1002/advs.201700324
X. Hu, J. Zhang, Z. Yu, Y. Xie, H. He et al., Environment-responsive aza-BODIPY dyes quenching in water as potential probes to visualize the in vivo fate of lipid-based nanocarriers. Nanomed. NBM 11(8), 1939–1948 (2015). https://doi.org/10.1016/j.nano.2015.06.013
H. He, S. Jiang, Y. Xie, Y. Lu, J. Qi et al., Reassessment of long circulation via monitoring of integral polymeric nanoparticles justifies a more accurate understanding. Nanoscale Horiz. 3(4), 397–407 (2018). https://doi.org/10.1039/C8NH00010G
Y. Lv, C. Xu, X. Zhao, C. Lin, X. Yang et al., Nanoplatform assembled from a CD44-targeted prodrug and smart liposomes for dual targeting of tumor microenvironment and cancer cells. ACS Nano 12(2), 1519–1536 (2018). https://doi.org/10.1021/acsnano.7b08051
Y. Cho, H.W. Lee, H.G. Kang, H.Y. Kim, S.J. Kim, K.H. Chun, Cleaved CD44 intracellular domain supports activation of stemness factors and promotes tumorigenesis of breast cancer. Oncotarget 6(11), 8709–8721 (2015). https://doi.org/10.18632/oncotarget.3325
K. Maaser, J. Borlak, A genome-wide expression analysis identifies a network of EpCAM-induced cell cycle regulators. Br J Cancer 99(10), 1635–1643 (2008). https://doi.org/10.1038/sj.bjc.6604725
R. Mout, M. Ray, G. Yesilbag Tonga, Y.W. Lee, T. Tay, K. Sasaki, V.M. Rotello, Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano 11(3), 2452–2458 (2017). https://doi.org/10.1021/acsnano.6b07600
F. Scaletti, J. Hardie, Y.W. Lee, D.C. Luther, M. Ray, V.M. Rotello, Protein delivery into cells using inorganic nanoparticle–protein supramolecular assemblies. Chem. Soc. Rev. 47(10), 3421–3432 (2018). https://doi.org/10.1039/c8cs00008e
R.G. Parton, A.A. Richards, Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 4(11), 724–738 (2003). https://doi.org/10.1034/j.1600-0854.2003.00128.x
J. Gilleron, W. Querbes, A. Zeigerer, A. Borodovsky, G. Marsico et al., Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31(7), 638–646 (2013). https://doi.org/10.1038/nbt.2612
M.P. Stewart, A. Sharei, X. Ding, G. Sahay, R. Langer, K.F. Jensen, In vitro and ex vivo strategies for intracellular delivery. Nature 538(7624), 183–192 (2016). https://doi.org/10.1038/nature19764
I. Tanida, T. Ueno, E. Kominami, LC3 and autophagy (Springer, Berlin, 2008), pp. 77–88. https://doi.org/10.1007/978-1-59745-157-4_4
S. Sarkar, Chemical screening platforms for autophagy drug discovery to identify therapeutic candidates for Huntington’s disease and other neurodegenerative disorders. Drug Discov. Today Technol. 10(1), e137–e144 (2013). https://doi.org/10.1016/j.ddtec.2012.09.010
C. Zhou, W. Zhong, J. Zhou, F. Sheng, Z. Fang et al., Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells. Autophagy 8(8), 1215–1226 (2012). https://doi.org/10.4161/auto.20284
K. Zhang, J. Chen, H. Zhou, Y. Chen, Y. Zhi et al., PU. 1/microRNA-142-3p targets ATG5/ATG16L1 to inactivate autophagy and sensitize hepatocellular carcinoma cells to sorafenib. Cell Death Dis. 9(3), 312 (2018). https://doi.org/10.1038/s41419-018-0344-0
E.E. Mowers, M.N. Sharifi, K.F. Macleod, Autophagy in cancer metastasis. Oncogene 36(12), 1619–1630 (2017). https://doi.org/10.1038/onc.2016.333
J.M. Munson, L. Fried, S.A. Rowson, M.Y. Bonner, L. Karumbaiah et al., Anti-invasive adjuvant therapy with imipramine blue enhances chemotherapeutic efficacy against glioma. Sci. Transl. Med. 4(127), 127ra136 (2012). https://doi.org/10.1126/scitranslmed.3003016
J. Park, S.H. Wrzesinski, E. Stern, M. Look, J. Criscione et al., Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat. Mater. 11(10), 895–905 (2012). https://doi.org/10.1038/nmat3355
J. Shi, P.W. Kantoff, R. Wooster, O.C. Farokhzad, Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17(1), 20–37 (2017). https://doi.org/10.1038/nrc.2016.108
Y. Wang, S. Gao, W.H. Ye, H.S. Yoon, Y.Y. Yang, Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer. Nat. Mater. 5(10), 791–796 (2006). https://doi.org/10.1038/nmat1737
R. Tong, J. Cheng, Paclitaxel-initiated, controlled polymerization of lactide for the formulation of polymeric nanoparticulate delivery vehicles. Angew. Chem. Int. Ed. 47(26), 4830–4834 (2008). https://doi.org/10.1002/anie.200800491
H.D. Herce, D. Schumacher, A.F.L. Schneider, A.K. Ludwig, F.A. Mann et al., Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells. Nat. Chem. 9(8), 762–771 (2017). https://doi.org/10.1038/nchem.2811
R. Mout, M. Ray, T. Tay, K. Sasaki, G. YesilbagTonga, V.M. Rotello, General strategy for direct cytosolic protein delivery via protein-nanoparticle co-engineering. ACS Nano 11(6), 6416–6421 (2017). https://doi.org/10.1021/acsnano.7b02884
A. Sharma, C. Cornejo, J. Mihalic, A. Geyh, D.E. Bordelon et al., Physical characterization and in vivo organ distribution of coated iron oxide nanoparticles. Sci. Rep. 8(1), 4916 (2018). https://doi.org/10.1038/s41598-018-23317-2
J.C. Sung, B.L. Pulliam, D.A. Edwards, Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 25(12), 563–570 (2007). https://doi.org/10.1016/j.tibtech.2007.09.005
K. Hadinoto, K. Zhu, R.B. Tan, Drug release study of large hollow nanoparticulate aggregates carrier particles for pulmonary delivery. Int. J. Pharm. 341(1–2), 195–206 (2007). https://doi.org/10.1016/j.ijpharm.2007.03.035
C. He, Z. Tang, H. Tian, X. Chen, Co-delivery of chemotherapeutics and proteins for synergistic therapy. Adv. Drug Delivery Rev. 98, 64–76 (2016). https://doi.org/10.1016/j.addr.2015.10.021
G. Shim, M.G. Kim, D. Kim, J.Y. Park, Y.K. Oh, Nanoformulation-based sequential combination cancer therapy. Adv. Drug Delivery Rev. 115, 57–81 (2017). https://doi.org/10.1016/j.addr.2017.04.003
M.J. Lee, A.S. Ye, A.K. Gardino, A.M. Heijink, P.K. Sorger, G. MacBeath, M.B. Yaffe, Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 149(4), 780–794 (2012). https://doi.org/10.1016/j.cell.2012.03.031
X. Zhang, X. Zeng, X. Liang, Y. Yang, X. Li et al., The chemotherapeutic potential of PEG-b-PLGA copolymer micelles that combine chloroquine as autophagy inhibitor and docetaxel as an anti-cancer drug. Biomaterials 35(33), 9144–9154 (2014). https://doi.org/10.1016/j.biomaterials.2014.07.028
X. Zhang, Y. Yang, X. Liang, X. Zeng, Z. Liu et al., Enhancing therapeutic effects of docetaxel-loaded dendritic copolymer nanoparticles by co-treatment with autophagy inhibitor on breast cancer. Theranostics 4(11), 1085–1095 (2014). https://doi.org/10.7150/thno.9933
X. Zhang, Y. Dong, X. Zeng, X. Liang, X. Li et al., The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment. Biomaterials 35(6), 1932–1943 (2014). https://doi.org/10.1016/j.biomaterials.2013.10.034
R. Mohammadinejad, M.A. Moosavi, S. Tavakol, D.Ö. Vardar, A. Hosseini et al., Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy 15(1), 4–33 (2019). https://doi.org/10.1080/15548627.2018.1509171
K. Peynshaert, B.B. Manshian, F. Joris, K. Braeckmans, S.C. De Smedt, J. Demeester, S.J. Soenen, Exploiting intrinsic nanoparticle toxicity: the pros and cons of nanoparticle-induced autophagy in biomedical research. Chem. Rev. 114(15), 7581–7609 (2014). https://doi.org/10.1021/cr400372p
W. He, X. Xin, Y. Li, X. Han, C. Qin, L. Yin, Rod-shaped drug particles for cancer therapy: the importance of particle size and participation of caveolae pathway. Part. Part. Syst. Charact. 34(6), 1600371 (2017). https://doi.org/10.1002/ppsc.201600371
I.S. Mohammad, C. Teng, B. Chaurasiya, L. Yin, C. Wu, W. He, Drug-delivering-drug approach-based codelivery of paclitaxel and disulfiram for treating multidrug-resistant cancer. Int. J. Pharm. 557, 304–313 (2018). https://doi.org/10.1016/j.ijpharm.2018.12.067
L. Galluzzi, J.M. Bravo-San Pedro, B. Levine, D.R. Green, G. Kroemer, Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat. Rev. Drug Discovery 16(7), 487–511 (2017). https://doi.org/10.1038/nrd.2017.22
I.S. Mohammad, W. He, L. Yin, Smart paclitaxel-disulfiram nanococrystals for efficient MDR reversal and enhanced apoptosis. Pharm. Res. -Dordr. 35(4), 77 (2018). https://doi.org/10.1007/s11095-018-2370-0