Engineering Nano/Microscale Chiral Self-Assembly in 3D Printed Constructs
Corresponding Author: Monirosadat Sadati
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 54
Abstract
Helical hierarchy found in biomolecules like cellulose, chitin, and collagen underpins the remarkable mechanical strength and vibrant colors observed in living organisms. This study advances the integration of helical/chiral assembly and 3D printing technology, providing precise spatial control over chiral nano/microstructures of rod-shaped colloidal nanoparticles in intricate geometries. We designed reactive chiral inks based on cellulose nanocrystal (CNC) suspensions and acrylamide monomers, enabling the chiral assembly at nano/microscale, beyond the resolution seen in printed materials. We employed a range of complementary techniques including Orthogonal Superposition rheometry and in situ rheo-optic measurements under steady shear rate conditions. These techniques help us to understand the nature of the nonlinear flow behavior of the chiral inks, and directly probe the flow-induced microstructural dynamics and phase transitions at constant shear rates, as well as their post-flow relaxation. Furthermore, we analyzed the photo-curing process to identify key parameters affecting gelation kinetics and structural integrity of the printed object within the supporting bath. These insights into the interplay between the chiral inks self-assembly dynamics, 3D printing flow kinematics and photo-polymerization kinetics provide a roadmap to direct the out-of-equilibrium arrangement of CNC particles in the 3D printed filaments, ranging from uniform nematic to 3D concentric chiral structures with controlled pitch length, as well as random orientation of chiral domains. Our biomimetic approach can pave the way for the creation of materials with superior mechanical properties or programable photonic responses that arise from 3D nano/microstructure and can be translated into larger scale 3D printed designs.
Highlights:
1 To precisely engineer complex helical hierarchies at nano/microscales, reactive inks with chiral nematic anisotropy are designed for 3D printing.
2 The phase transformations and chiral evolution in response to parallel and orthogonal shear forces are meticulously investigated to finely adjust the 3D printing parameters for programming oriented chiral assemblies.
3 The interplay between chiral relaxation dynamics and photo-polymerization kinetics is finely tuned to enable well-controlled chiral reformation, while simultaneously ensuring high print quality.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Forth, P.Y. Kim, G. Xie, X. Liu, B.A. Helms et al., Building reconfigurable devices using complex liquid-fluid interfaces. Adv. Mater. 31, e1806370 (2019). https://doi.org/10.1002/adma.201806370
- G.G. Fuller, J. Vermant, Complex fluid-fluid interfaces: rheology and structure. Annu. Rev. Chem. Biomol. Eng. 3, 519–543 (2012). https://doi.org/10.1146/annurev-chembioeng-061010-114202
- R.H. Ewoldt, C. Saengow, Designing complex fluids. Annu. Rev. Fluid Mech. 54, 413–441 (2022). https://doi.org/10.1146/annurev-fluid-031821-104935
- P.A. Rühs, J. Bergfreund, P. Bertsch, S.J. Gstöhl, P. Fischer, Complex fluids in animal survival strategies. Soft Matter 17, 3022–3036 (2021). https://doi.org/10.1039/D1SM00142F
- G.M. Whitesides, B. Grzybowski, Self-assembly at all scales. Science 295, 2418–2421 (2002). https://doi.org/10.1126/science.1070821
- Q. Zhu, S. Wang, X. Wang, A. Suwardi, M.H. Chua et al., Bottom-up engineering strategies for high-performance thermoelectric materials. Nano-Micro Lett. 13, 119 (2021). https://doi.org/10.1007/s40820-021-00637-z
- C.L.C. Chan, J.M. Taylor, E.C. Davidson, Design of soft matter for additive processing. Nat. Synth 1, 592–600 (2022). https://doi.org/10.1038/s44160-022-00115-3
- R. Zhou, Y. Wang, Z. Liu, Y. Pang, J. Chen et al., Digital light processing 3D-printed ceramic metamaterials for electromagnetic wave absorption. Nano-Micro Lett. 14, 122 (2022). https://doi.org/10.1007/s40820-022-00865-x
- H.-Y. Zhao, M.-Y. Yu, J. Liu, X. Li, P. Min et al., Efficient preconstruction of three-dimensional graphene networks for thermally conductive polymer composites. Nano-Micro Lett. 14, 129 (2022). https://doi.org/10.1007/s40820-022-00878-6
- X. Wu, T. Tu, Y. Dai, P. Tang, Y. Zhang et al., Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism. Nano-Micro Lett. 13, 148 (2021). https://doi.org/10.1007/s40820-021-00665-9
- J. Huang, P. Wu, Controlled assembly of luminescent lanthanide-organic frameworks via post-treatment of 3D-printed objects. Nano-Micro Lett. 13, 15 (2020). https://doi.org/10.1007/s40820-020-00543-w
- J. Lewis, Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16, 2193–2204 (2006). https://doi.org/10.1002/adfm.200600434
- M. Cao, S. Liu, Q. Zhu, Y. Wang, J. Ma et al., Monodomain liquid crystals of two-dimensional sheets by boundary-free sheargraphy. Nano-Micro Lett. 14, 192 (2022). https://doi.org/10.1007/s40820-022-00925-2
- Z. Zeng, G. Wang, B.F. Wolan, N. Wu, C. Wang et al., Printable aligned single-walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance. Nano-Micro Lett. 14, 179 (2022). https://doi.org/10.1007/s40820-022-00883-9
- A. Sydney-Gladman, E.A. Matsumoto, R.G. Nuzzo, L. Mahadevan, J.A. Lewis, Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016). https://doi.org/10.1038/nmat4544
- B.G. Compton, J.A. Lewis, 3D-printing of lightweight cellular composites. Adv. Mater. 26, 5930–5935 (2014). https://doi.org/10.1002/adma.201401804
- M.E. Prendergast, M.D. Davidson, J.A. Burdick, A biofabrication method to align cells within bioprinted photocrosslinkable and cell-degradable hydrogel constructs via embedded fibers. Biofabrication 13, 044108 (2021). https://doi.org/10.1088/1758-5090/ac25cc
- P. Steffen, E. Stellamanns, A. Sengupta, Surface anchoring mediates bifurcation in nematic microflows within cylindrical capillaries. Phys. Fluids 33, 072005 (2021). https://doi.org/10.1063/5.0050379
- M. Esmaeili, K. George, G. Rezvan, N. Taheri-Qazvini, R. Zhang et al., Capillary flow characterizations of chiral nematic cellulose nanocrystal suspensions. Langmuir 38, 2192–2204 (2022). https://doi.org/10.1021/acs.langmuir.1c01881
- A. Sengupta, U. Tkalec, M. Ravnik, J.M. Yeomans, C. Bahr et al., Liquid crystal microfluidics for tunable flow shaping. Phys. Rev. Lett. 110, 048303 (2013). https://doi.org/10.1103/PhysRevLett.110.048303
- M.K. Hausmann, P.A. Rühs, G. Siqueira, J. Läuger, R. Libanori et al., Dynamics of cellulose nanocrystal alignment during 3D printing. ACS Nano 12, 6926–6937 (2018). https://doi.org/10.1021/acsnano.8b02366
- A.D. Haywood, K.M. Weigandt, P. Saha, M. Noor, M.J. Green et al., New insights into the flow and microstructural relaxation behavior of biphasic cellulose nanocrystal dispersions from RheoSANS. Soft Matter 13, 8451–8462 (2017). https://doi.org/10.1039/c7sm00685c
- F. Pignon, M. Challamel, A. De Geyer, M. Elchamaa, E.F. Semeraro et al., Breakdown and buildup mechanisms of cellulose nanocrystal suspensions under shear and upon relaxation probed by SAXS and SALS. Carbohydr. Polym. 260, 117751 (2021). https://doi.org/10.1016/j.carbpol.2021.117751
- A.D. Haywood, V.A. Davis, Effects of liquid crystalline and shear alignment on the optical properties of cellulose nanocrystal films. Cellulose 24, 705–716 (2017). https://doi.org/10.1007/s10570-016-1150-4
- M. Nagaraj, Liquid crystals templating. Crystals 10, 648 (2020). https://doi.org/10.3390/cryst10080648
- R. Xie, S. Mukherjee, A.E. Levi, V.G. Reynolds, H. Wang et al., Room temperature 3D printing of super-soft and solvent-free elastomers. Sci. Adv. 6, eabc6900 (2020). https://doi.org/10.1126/sciadv.abc6900
- R.L. Truby, J.A. Lewis, Printing soft matter in three dimensions. Nature 540, 371–378 (2016). https://doi.org/10.1038/nature21003
- M.O. Saed, C.P. Ambulo, H. Kim, R. De, V. Raval et al., Molecularly-engineered, 4D-printed liquid crystal elastomer actuators. Adv. Funct. Mater. 29, 1806412 (2019). https://doi.org/10.1002/adfm.201806412
- M. del Pozo, L. Liu, M. Pilz da Cunha, D.J. Broer, A.P.H.J. Schenning, Direct ink writing of a light-responsive underwater liquid crystal actuator with atypical temperature-dependent shape changes. Adv. Funct. Mater. 30, 2005560 (2020). https://doi.org/10.1002/adfm.202005560
- T. Wu, J. Li, J. Li, S. Ye, J. Wei et al., A bio-inspired cellulose nanocrystal-based nanocomposite photonic film with hyper-reflection and humidity-responsive actuator properties. J. Mater. Chem. C 4, 9687–9696 (2016). https://doi.org/10.1039/C6TC02629J
- M. Winkler, A. Kaiser, S. Krause, H. Finkelmann, A.M. Schmidt, Liquid crystal elastomers with magnetic actuation. Macromol. Symp. 291–292, 186–192 (2010). https://doi.org/10.1002/masy.201050522
- K.M. Herbert, H.E. Fowler, J.M. McCracken, K.R. Schlafmann, J.A. Koch et al., Synthesis and alignment of liquid crystalline elastomers. Nat. Rev. Mater. 7, 23–38 (2022). https://doi.org/10.1038/s41578-021-00359-z
- G. Siqueira, D. Kokkinis, R. Libanori, M.K. Hausmann, A.S. Gladman et al., Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Adv. Funct. Mater. 27, 1604619 (2017). https://doi.org/10.1002/adfm.201604619
- M. Esmaeili, S. Norouzi, K. George, G. Rezvan, N. Taheri-Qazvini et al., 3D printing-assisted self-assembly to bio-inspired bouligand nanostructures. Small 19, e2206847 (2023). https://doi.org/10.1002/smll.202206847
- W. Liu, K. Liu, H. Du, T. Zheng, N. Zhang et al., Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Lett. 14, 104 (2022). https://doi.org/10.1007/s40820-022-00849-x
- A. Tran, C.E. Boott, M.J. MacLachlan, Understanding the self-assembly of cellulose nanocrystals-toward chiral photonic materials. Adv. Mater. 32, e1905876 (2020). https://doi.org/10.1002/adma.201905876
- H. Zhao, X. Dai, Z. Yuan, G. Li, Y. Fu et al., Iridescent chiral nematic papers based on cellulose nanocrystals with multiple optical responses for patterned coatings. Carbohydr. Polym. 289, 119461 (2022). https://doi.org/10.1016/j.carbpol.2022.119461
- D.P.N. Gonçalves, T. Hegmann, Chirality transfer from an innately chiral nanocrystal core to a nematic liquid crystal: surface-modified cellulose nanocrystals. Angew. Chem. Int. Ed. 60, 17344–17349 (2021). https://doi.org/10.1002/anie.202105357
- P. Liu, X. Guo, F. Nan, Y. Duan, J. Zhang, Modifying mechanical, optical properties and thermal processability of iridescent cellulose nanocrystal films using ionic liquid. ACS Appl. Mater. Interfaces 9, 3085–3092 (2017). https://doi.org/10.1021/acsami.6b12953
- F. Tanner, A. Al-Habahbeh, K. Feigl, S. Nahar, S. Jeelani et al., Numerical and experimental investigation of a non-newtonian flow in a collapsed elastic tube. Appl. Rheol. 22, 22–29 (2012). https://doi.org/10.3933/applrheol-22-63910
- R. Bird, R. Armstrong, O. Hassager, Dynamics of Polymeric Liquids: Fluid Mechanics (Wiley, New Jersey, 1987)
- K. Fleming, D.G. Gray, S. Matthews, Cellulose crystallites. Chemistry 7, 1831–1836 (2001). https://doi.org/10.1002/1521-3765(20010504)7:9%3c1831::AID-CHEM1831%3e3.0.CO;2-S
- C. Echeverria, P.L. Almeida, O.F. Aguilar Gutierrez, A.D. Rey, M.H. Godinho, Two negative minima of the first normal stress difference in a cellulose-based cholesteric liquid crystal: Helix uncoiling. J. Polym. Sci. Part B. Polym. Phys. 55, 821–830 (2017). https://doi.org/10.1002/polb.24332
- S.-G. Baek, J.J. Magda, S. Cementwala, Normal stress differences in liquid crystalline hydroxypropylcellulose solutions. J. Rheol. 37, 935–945 (1993). https://doi.org/10.1122/1.550404
- P. Moldenaers, J. Mewis, Transient behavior of liquid crystalline solutions of poly(benzylglutamate). J. Rheol. 30, 567–584 (1986). https://doi.org/10.1122/1.549861
- N. Grizzuti, P. Moldenaers, M. Mortier, J. Mewis, On the time-dependency of the flow-induced dynamic moduli of a liquid crystalline hydroxypropylcellulose solution. Rheol. Acta 32, 218–226 (1993). https://doi.org/10.1007/BF00434186
- P. Moldenaers, J. Mewis, On the nature of viscoelasticity in polymeric liquid crystals. J. Rheol. 37, 367–380 (1993). https://doi.org/10.1122/1.550448
- J. Mewis, P. Moldenaers, Rheology of polymeric liquid crystals. Curr. Opin. Colloid Interface Sci. 1, 466–471 (1996). https://doi.org/10.1016/S1359-0294(96)80114-2
- N. Grizzuti, S. Cavella, P. Cicarelli, Transient and steady-state rheology of a liquid crystalline hydroxypropylcellulose solution. J. Rheol. 34, 1293–1310 (1990). https://doi.org/10.1122/1.550139
- K. George, M. Esmaeili, J. Wang, N. Taheri-Qazvini, A. Abbaspourrad et al., 3D printing of responsive chiral photonic nanostructures. Proc. Natl. Acad. Sci. U. S. A. 120, e2220032120 (2023). https://doi.org/10.1073/pnas.2220032120
- L.M. Walker, J. Vermant, P. Moldenaers, J. Mewis, Orthogonal and parallel superposition measurements on lyotropic liquid crystalline polymers. Rheol. Acta 39, 26–37 (2000). https://doi.org/10.1007/s003970050004
- J.D.J. Rathinaraj, J. Hendricks, G.H. McKinley, C. Clasen, OrthoChirp: a fast spectro-mechanical probe for monitoring transient microstructural evolution of complex fluids during shear. J. Non Newton. Fluid Mech. 301, 104744 (2022). https://doi.org/10.1016/j.jnnfm.2022.104744
- G. Lenfant, M.-C. Heuzey, T.G.M. van de Ven, P.J. Carreau, A comparative study of ECNC and CNC suspensions: effect of salt on rheological properties. Rheol. Acta 56, 51–62 (2017). https://doi.org/10.1007/s00397-016-0979-7
- M. Kröger, J. Vermant, The structure and rheology of complex fluids. Appl. Rheol. 10, 110–111 (2000). https://doi.org/10.1515/arh-2000-0024
- Y.A. Nastishin, H. Liu, T. Schneider, V. Nazarenko, R. Vasyuta et al., Optical characterization of the nematic lyotropic chromonic liquid crystals: light absorption, birefringence, and scalar order parameter. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 72, 041711 (2005). https://doi.org/10.1103/PhysRevE.72.041711
- A. Kanwar, Measurement of order parameter, birefringence and polarizibility of liquid crystals. J. Opt. 42, 311–315 (2013). https://doi.org/10.1007/s12596-013-0141-1
- R.A. Chowdhury, S.X. Peng, J. Youngblood, Improved order parameter (alignment) determination in cellulose nanocrystal (CNC) films by a simple optical birefringence method. Cellulose 24, 1957–1970 (2017). https://doi.org/10.1007/s10570-017-1250-9
- S.A. Khadem, M. Bagnani, R. Mezzenga, A.D. Rey, Relaxation dynamics in bio-colloidal cholesteric liquid crystals confined to cylindrical geometry. Nat. Commun. 11, 4616 (2020). https://doi.org/10.1038/s41467-020-18421-9
- W.J. Orts, L. Godbout, R.H. Marchessault, J.-F. Revol, Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small angle neutron scattering study. Macromolecules 31, 5717–5725 (1998). https://doi.org/10.1021/ma9711452
- M. Bercea, P. Navard, Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 33, 6011–6016 (2000). https://doi.org/10.1021/ma000417p
- A.V. Emelyanenko, M.A. Osipov, D.A. Dunmur, Molecular theory of helical sense inversions in chiral nematic liquid crystals. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat Interdiscip. Topics 62, 2340–2352 (2000). https://doi.org/10.1103/physreve.62.2340
- A.K. Higham, C.A. Bonino, S.R. Raghavan, S.A. Khan, Photo-activated ionic gelation of alginate hydrogel: real-time rheological monitoring of the two-step crosslinking mechanism. Soft Matter 10, 4990–5002 (2014). https://doi.org/10.1039/c4sm00411f
- C.A. Bonino, J.E. Samorezov, O. Jeon, E. Alsberg, S.A. Khan, Real-time in siturheology of alginate hydrogel photocrosslinking. Soft Matter 7, 11510–11517 (2011). https://doi.org/10.1039/C1SM06109G
- B.T. White, V. Meenakshisundaram, K.D. Feller, C.B. Williams, T.E. Long, Vat photopolymerization of unsaturated polyesters utilizing a polymerizable ionic liquid as a non-volatile reactive diluent. Polymer 223, 123727 (2021). https://doi.org/10.1016/j.polymer.2021.123727
- C.B. Arrington, D.A. Rau, C.B. Williams, T.E. Long, UV-assisted direct ink write printing of fully aromatic Poly(amide imide)s: elucidating the influence of an acrylic scaffold. Polymer 212, 123306 (2021). https://doi.org/10.1016/j.polymer.2020.123306
- F. Jiang, A. Wörz, M. Romeis, D. Drummer, Analysis of UV-assisted direct ink writing rheological properties and curing degree. Polym. Test. 105, 107428 (2022). https://doi.org/10.1016/j.polymertesting.2021.107428
- C.S. O’Bryan, T. Bhattacharjee, S.L. Marshall, W. Gregory Sawyer, T.E. Angelini, Commercially available microgels for 3D bioprinting. Bioprinting 11, e00037 (2018). https://doi.org/10.1016/j.bprint.2018.e00037
- T. Bhattacharjee, C.J. Gil, S.L. Marshall, J.M. Urueña, C.S. O’Bryan et al., Liquid-like solids support cells in 3D. ACS Biomater. Sci. Eng. 2, 1787–1795 (2016). https://doi.org/10.1021/acsbiomaterials.6b00218
- K.J. LeBlanc, S.R. Niemi, A.I. Bennett, K.L. Harris, K.D. Schulze et al., Stability of high speed 3D printing in liquid-like solids. ACS Biomater. Sci. Eng. 2, 1796–1799 (2016). https://doi.org/10.1021/acsbiomaterials.6b00184
- J. Zhao, N. He, A mini-review of embedded 3D printing: supporting media and strategies. J. Mater. Chem. B 8, 10474–10486 (2020). https://doi.org/10.1039/D0TB01819H
- T. Bhattacharjee, S.M. Zehnder, K.G. Rowe, S. Jain, R.M. Nixon et al., Writing in the granular gel medium. Sci. Adv. 1, e1500655 (2015). https://doi.org/10.1126/sciadv.1500655
- M.E. Prendergast, J.A. Burdick, Computational modeling and experimental characterization of extrusion printing into suspension baths. Adv. Healthc. Mater. 11, e2101679 (2022). https://doi.org/10.1002/adhm.202101679
- Z. Jaworski, T. Spychaj, A. Story, G. Story, Carbomer microgels as model yield-stress fluids. Rev. Chem. Eng. 38, 881–919 (2022). https://doi.org/10.1515/revce-2020-0016
- T. Bhattacharjee, C.P. Kabb, C.S. O’Bryan, J.M. Urueña, B.S. Sumerlin et al., Polyelectrolyte scaling laws for microgel yielding near jamming. Soft Matter 14, 1559–1570 (2018). https://doi.org/10.1039/C7SM01518F
- C.J. Dimitriou, R.H. Ewoldt, G.H. McKinley, Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress). J. Rheol. 57, 27–70 (2013). https://doi.org/10.1122/1.4754023
References
J. Forth, P.Y. Kim, G. Xie, X. Liu, B.A. Helms et al., Building reconfigurable devices using complex liquid-fluid interfaces. Adv. Mater. 31, e1806370 (2019). https://doi.org/10.1002/adma.201806370
G.G. Fuller, J. Vermant, Complex fluid-fluid interfaces: rheology and structure. Annu. Rev. Chem. Biomol. Eng. 3, 519–543 (2012). https://doi.org/10.1146/annurev-chembioeng-061010-114202
R.H. Ewoldt, C. Saengow, Designing complex fluids. Annu. Rev. Fluid Mech. 54, 413–441 (2022). https://doi.org/10.1146/annurev-fluid-031821-104935
P.A. Rühs, J. Bergfreund, P. Bertsch, S.J. Gstöhl, P. Fischer, Complex fluids in animal survival strategies. Soft Matter 17, 3022–3036 (2021). https://doi.org/10.1039/D1SM00142F
G.M. Whitesides, B. Grzybowski, Self-assembly at all scales. Science 295, 2418–2421 (2002). https://doi.org/10.1126/science.1070821
Q. Zhu, S. Wang, X. Wang, A. Suwardi, M.H. Chua et al., Bottom-up engineering strategies for high-performance thermoelectric materials. Nano-Micro Lett. 13, 119 (2021). https://doi.org/10.1007/s40820-021-00637-z
C.L.C. Chan, J.M. Taylor, E.C. Davidson, Design of soft matter for additive processing. Nat. Synth 1, 592–600 (2022). https://doi.org/10.1038/s44160-022-00115-3
R. Zhou, Y. Wang, Z. Liu, Y. Pang, J. Chen et al., Digital light processing 3D-printed ceramic metamaterials for electromagnetic wave absorption. Nano-Micro Lett. 14, 122 (2022). https://doi.org/10.1007/s40820-022-00865-x
H.-Y. Zhao, M.-Y. Yu, J. Liu, X. Li, P. Min et al., Efficient preconstruction of three-dimensional graphene networks for thermally conductive polymer composites. Nano-Micro Lett. 14, 129 (2022). https://doi.org/10.1007/s40820-022-00878-6
X. Wu, T. Tu, Y. Dai, P. Tang, Y. Zhang et al., Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism. Nano-Micro Lett. 13, 148 (2021). https://doi.org/10.1007/s40820-021-00665-9
J. Huang, P. Wu, Controlled assembly of luminescent lanthanide-organic frameworks via post-treatment of 3D-printed objects. Nano-Micro Lett. 13, 15 (2020). https://doi.org/10.1007/s40820-020-00543-w
J. Lewis, Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16, 2193–2204 (2006). https://doi.org/10.1002/adfm.200600434
M. Cao, S. Liu, Q. Zhu, Y. Wang, J. Ma et al., Monodomain liquid crystals of two-dimensional sheets by boundary-free sheargraphy. Nano-Micro Lett. 14, 192 (2022). https://doi.org/10.1007/s40820-022-00925-2
Z. Zeng, G. Wang, B.F. Wolan, N. Wu, C. Wang et al., Printable aligned single-walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance. Nano-Micro Lett. 14, 179 (2022). https://doi.org/10.1007/s40820-022-00883-9
A. Sydney-Gladman, E.A. Matsumoto, R.G. Nuzzo, L. Mahadevan, J.A. Lewis, Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016). https://doi.org/10.1038/nmat4544
B.G. Compton, J.A. Lewis, 3D-printing of lightweight cellular composites. Adv. Mater. 26, 5930–5935 (2014). https://doi.org/10.1002/adma.201401804
M.E. Prendergast, M.D. Davidson, J.A. Burdick, A biofabrication method to align cells within bioprinted photocrosslinkable and cell-degradable hydrogel constructs via embedded fibers. Biofabrication 13, 044108 (2021). https://doi.org/10.1088/1758-5090/ac25cc
P. Steffen, E. Stellamanns, A. Sengupta, Surface anchoring mediates bifurcation in nematic microflows within cylindrical capillaries. Phys. Fluids 33, 072005 (2021). https://doi.org/10.1063/5.0050379
M. Esmaeili, K. George, G. Rezvan, N. Taheri-Qazvini, R. Zhang et al., Capillary flow characterizations of chiral nematic cellulose nanocrystal suspensions. Langmuir 38, 2192–2204 (2022). https://doi.org/10.1021/acs.langmuir.1c01881
A. Sengupta, U. Tkalec, M. Ravnik, J.M. Yeomans, C. Bahr et al., Liquid crystal microfluidics for tunable flow shaping. Phys. Rev. Lett. 110, 048303 (2013). https://doi.org/10.1103/PhysRevLett.110.048303
M.K. Hausmann, P.A. Rühs, G. Siqueira, J. Läuger, R. Libanori et al., Dynamics of cellulose nanocrystal alignment during 3D printing. ACS Nano 12, 6926–6937 (2018). https://doi.org/10.1021/acsnano.8b02366
A.D. Haywood, K.M. Weigandt, P. Saha, M. Noor, M.J. Green et al., New insights into the flow and microstructural relaxation behavior of biphasic cellulose nanocrystal dispersions from RheoSANS. Soft Matter 13, 8451–8462 (2017). https://doi.org/10.1039/c7sm00685c
F. Pignon, M. Challamel, A. De Geyer, M. Elchamaa, E.F. Semeraro et al., Breakdown and buildup mechanisms of cellulose nanocrystal suspensions under shear and upon relaxation probed by SAXS and SALS. Carbohydr. Polym. 260, 117751 (2021). https://doi.org/10.1016/j.carbpol.2021.117751
A.D. Haywood, V.A. Davis, Effects of liquid crystalline and shear alignment on the optical properties of cellulose nanocrystal films. Cellulose 24, 705–716 (2017). https://doi.org/10.1007/s10570-016-1150-4
M. Nagaraj, Liquid crystals templating. Crystals 10, 648 (2020). https://doi.org/10.3390/cryst10080648
R. Xie, S. Mukherjee, A.E. Levi, V.G. Reynolds, H. Wang et al., Room temperature 3D printing of super-soft and solvent-free elastomers. Sci. Adv. 6, eabc6900 (2020). https://doi.org/10.1126/sciadv.abc6900
R.L. Truby, J.A. Lewis, Printing soft matter in three dimensions. Nature 540, 371–378 (2016). https://doi.org/10.1038/nature21003
M.O. Saed, C.P. Ambulo, H. Kim, R. De, V. Raval et al., Molecularly-engineered, 4D-printed liquid crystal elastomer actuators. Adv. Funct. Mater. 29, 1806412 (2019). https://doi.org/10.1002/adfm.201806412
M. del Pozo, L. Liu, M. Pilz da Cunha, D.J. Broer, A.P.H.J. Schenning, Direct ink writing of a light-responsive underwater liquid crystal actuator with atypical temperature-dependent shape changes. Adv. Funct. Mater. 30, 2005560 (2020). https://doi.org/10.1002/adfm.202005560
T. Wu, J. Li, J. Li, S. Ye, J. Wei et al., A bio-inspired cellulose nanocrystal-based nanocomposite photonic film with hyper-reflection and humidity-responsive actuator properties. J. Mater. Chem. C 4, 9687–9696 (2016). https://doi.org/10.1039/C6TC02629J
M. Winkler, A. Kaiser, S. Krause, H. Finkelmann, A.M. Schmidt, Liquid crystal elastomers with magnetic actuation. Macromol. Symp. 291–292, 186–192 (2010). https://doi.org/10.1002/masy.201050522
K.M. Herbert, H.E. Fowler, J.M. McCracken, K.R. Schlafmann, J.A. Koch et al., Synthesis and alignment of liquid crystalline elastomers. Nat. Rev. Mater. 7, 23–38 (2022). https://doi.org/10.1038/s41578-021-00359-z
G. Siqueira, D. Kokkinis, R. Libanori, M.K. Hausmann, A.S. Gladman et al., Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Adv. Funct. Mater. 27, 1604619 (2017). https://doi.org/10.1002/adfm.201604619
M. Esmaeili, S. Norouzi, K. George, G. Rezvan, N. Taheri-Qazvini et al., 3D printing-assisted self-assembly to bio-inspired bouligand nanostructures. Small 19, e2206847 (2023). https://doi.org/10.1002/smll.202206847
W. Liu, K. Liu, H. Du, T. Zheng, N. Zhang et al., Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Lett. 14, 104 (2022). https://doi.org/10.1007/s40820-022-00849-x
A. Tran, C.E. Boott, M.J. MacLachlan, Understanding the self-assembly of cellulose nanocrystals-toward chiral photonic materials. Adv. Mater. 32, e1905876 (2020). https://doi.org/10.1002/adma.201905876
H. Zhao, X. Dai, Z. Yuan, G. Li, Y. Fu et al., Iridescent chiral nematic papers based on cellulose nanocrystals with multiple optical responses for patterned coatings. Carbohydr. Polym. 289, 119461 (2022). https://doi.org/10.1016/j.carbpol.2022.119461
D.P.N. Gonçalves, T. Hegmann, Chirality transfer from an innately chiral nanocrystal core to a nematic liquid crystal: surface-modified cellulose nanocrystals. Angew. Chem. Int. Ed. 60, 17344–17349 (2021). https://doi.org/10.1002/anie.202105357
P. Liu, X. Guo, F. Nan, Y. Duan, J. Zhang, Modifying mechanical, optical properties and thermal processability of iridescent cellulose nanocrystal films using ionic liquid. ACS Appl. Mater. Interfaces 9, 3085–3092 (2017). https://doi.org/10.1021/acsami.6b12953
F. Tanner, A. Al-Habahbeh, K. Feigl, S. Nahar, S. Jeelani et al., Numerical and experimental investigation of a non-newtonian flow in a collapsed elastic tube. Appl. Rheol. 22, 22–29 (2012). https://doi.org/10.3933/applrheol-22-63910
R. Bird, R. Armstrong, O. Hassager, Dynamics of Polymeric Liquids: Fluid Mechanics (Wiley, New Jersey, 1987)
K. Fleming, D.G. Gray, S. Matthews, Cellulose crystallites. Chemistry 7, 1831–1836 (2001). https://doi.org/10.1002/1521-3765(20010504)7:9%3c1831::AID-CHEM1831%3e3.0.CO;2-S
C. Echeverria, P.L. Almeida, O.F. Aguilar Gutierrez, A.D. Rey, M.H. Godinho, Two negative minima of the first normal stress difference in a cellulose-based cholesteric liquid crystal: Helix uncoiling. J. Polym. Sci. Part B. Polym. Phys. 55, 821–830 (2017). https://doi.org/10.1002/polb.24332
S.-G. Baek, J.J. Magda, S. Cementwala, Normal stress differences in liquid crystalline hydroxypropylcellulose solutions. J. Rheol. 37, 935–945 (1993). https://doi.org/10.1122/1.550404
P. Moldenaers, J. Mewis, Transient behavior of liquid crystalline solutions of poly(benzylglutamate). J. Rheol. 30, 567–584 (1986). https://doi.org/10.1122/1.549861
N. Grizzuti, P. Moldenaers, M. Mortier, J. Mewis, On the time-dependency of the flow-induced dynamic moduli of a liquid crystalline hydroxypropylcellulose solution. Rheol. Acta 32, 218–226 (1993). https://doi.org/10.1007/BF00434186
P. Moldenaers, J. Mewis, On the nature of viscoelasticity in polymeric liquid crystals. J. Rheol. 37, 367–380 (1993). https://doi.org/10.1122/1.550448
J. Mewis, P. Moldenaers, Rheology of polymeric liquid crystals. Curr. Opin. Colloid Interface Sci. 1, 466–471 (1996). https://doi.org/10.1016/S1359-0294(96)80114-2
N. Grizzuti, S. Cavella, P. Cicarelli, Transient and steady-state rheology of a liquid crystalline hydroxypropylcellulose solution. J. Rheol. 34, 1293–1310 (1990). https://doi.org/10.1122/1.550139
K. George, M. Esmaeili, J. Wang, N. Taheri-Qazvini, A. Abbaspourrad et al., 3D printing of responsive chiral photonic nanostructures. Proc. Natl. Acad. Sci. U. S. A. 120, e2220032120 (2023). https://doi.org/10.1073/pnas.2220032120
L.M. Walker, J. Vermant, P. Moldenaers, J. Mewis, Orthogonal and parallel superposition measurements on lyotropic liquid crystalline polymers. Rheol. Acta 39, 26–37 (2000). https://doi.org/10.1007/s003970050004
J.D.J. Rathinaraj, J. Hendricks, G.H. McKinley, C. Clasen, OrthoChirp: a fast spectro-mechanical probe for monitoring transient microstructural evolution of complex fluids during shear. J. Non Newton. Fluid Mech. 301, 104744 (2022). https://doi.org/10.1016/j.jnnfm.2022.104744
G. Lenfant, M.-C. Heuzey, T.G.M. van de Ven, P.J. Carreau, A comparative study of ECNC and CNC suspensions: effect of salt on rheological properties. Rheol. Acta 56, 51–62 (2017). https://doi.org/10.1007/s00397-016-0979-7
M. Kröger, J. Vermant, The structure and rheology of complex fluids. Appl. Rheol. 10, 110–111 (2000). https://doi.org/10.1515/arh-2000-0024
Y.A. Nastishin, H. Liu, T. Schneider, V. Nazarenko, R. Vasyuta et al., Optical characterization of the nematic lyotropic chromonic liquid crystals: light absorption, birefringence, and scalar order parameter. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 72, 041711 (2005). https://doi.org/10.1103/PhysRevE.72.041711
A. Kanwar, Measurement of order parameter, birefringence and polarizibility of liquid crystals. J. Opt. 42, 311–315 (2013). https://doi.org/10.1007/s12596-013-0141-1
R.A. Chowdhury, S.X. Peng, J. Youngblood, Improved order parameter (alignment) determination in cellulose nanocrystal (CNC) films by a simple optical birefringence method. Cellulose 24, 1957–1970 (2017). https://doi.org/10.1007/s10570-017-1250-9
S.A. Khadem, M. Bagnani, R. Mezzenga, A.D. Rey, Relaxation dynamics in bio-colloidal cholesteric liquid crystals confined to cylindrical geometry. Nat. Commun. 11, 4616 (2020). https://doi.org/10.1038/s41467-020-18421-9
W.J. Orts, L. Godbout, R.H. Marchessault, J.-F. Revol, Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small angle neutron scattering study. Macromolecules 31, 5717–5725 (1998). https://doi.org/10.1021/ma9711452
M. Bercea, P. Navard, Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 33, 6011–6016 (2000). https://doi.org/10.1021/ma000417p
A.V. Emelyanenko, M.A. Osipov, D.A. Dunmur, Molecular theory of helical sense inversions in chiral nematic liquid crystals. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat Interdiscip. Topics 62, 2340–2352 (2000). https://doi.org/10.1103/physreve.62.2340
A.K. Higham, C.A. Bonino, S.R. Raghavan, S.A. Khan, Photo-activated ionic gelation of alginate hydrogel: real-time rheological monitoring of the two-step crosslinking mechanism. Soft Matter 10, 4990–5002 (2014). https://doi.org/10.1039/c4sm00411f
C.A. Bonino, J.E. Samorezov, O. Jeon, E. Alsberg, S.A. Khan, Real-time in siturheology of alginate hydrogel photocrosslinking. Soft Matter 7, 11510–11517 (2011). https://doi.org/10.1039/C1SM06109G
B.T. White, V. Meenakshisundaram, K.D. Feller, C.B. Williams, T.E. Long, Vat photopolymerization of unsaturated polyesters utilizing a polymerizable ionic liquid as a non-volatile reactive diluent. Polymer 223, 123727 (2021). https://doi.org/10.1016/j.polymer.2021.123727
C.B. Arrington, D.A. Rau, C.B. Williams, T.E. Long, UV-assisted direct ink write printing of fully aromatic Poly(amide imide)s: elucidating the influence of an acrylic scaffold. Polymer 212, 123306 (2021). https://doi.org/10.1016/j.polymer.2020.123306
F. Jiang, A. Wörz, M. Romeis, D. Drummer, Analysis of UV-assisted direct ink writing rheological properties and curing degree. Polym. Test. 105, 107428 (2022). https://doi.org/10.1016/j.polymertesting.2021.107428
C.S. O’Bryan, T. Bhattacharjee, S.L. Marshall, W. Gregory Sawyer, T.E. Angelini, Commercially available microgels for 3D bioprinting. Bioprinting 11, e00037 (2018). https://doi.org/10.1016/j.bprint.2018.e00037
T. Bhattacharjee, C.J. Gil, S.L. Marshall, J.M. Urueña, C.S. O’Bryan et al., Liquid-like solids support cells in 3D. ACS Biomater. Sci. Eng. 2, 1787–1795 (2016). https://doi.org/10.1021/acsbiomaterials.6b00218
K.J. LeBlanc, S.R. Niemi, A.I. Bennett, K.L. Harris, K.D. Schulze et al., Stability of high speed 3D printing in liquid-like solids. ACS Biomater. Sci. Eng. 2, 1796–1799 (2016). https://doi.org/10.1021/acsbiomaterials.6b00184
J. Zhao, N. He, A mini-review of embedded 3D printing: supporting media and strategies. J. Mater. Chem. B 8, 10474–10486 (2020). https://doi.org/10.1039/D0TB01819H
T. Bhattacharjee, S.M. Zehnder, K.G. Rowe, S. Jain, R.M. Nixon et al., Writing in the granular gel medium. Sci. Adv. 1, e1500655 (2015). https://doi.org/10.1126/sciadv.1500655
M.E. Prendergast, J.A. Burdick, Computational modeling and experimental characterization of extrusion printing into suspension baths. Adv. Healthc. Mater. 11, e2101679 (2022). https://doi.org/10.1002/adhm.202101679
Z. Jaworski, T. Spychaj, A. Story, G. Story, Carbomer microgels as model yield-stress fluids. Rev. Chem. Eng. 38, 881–919 (2022). https://doi.org/10.1515/revce-2020-0016
T. Bhattacharjee, C.P. Kabb, C.S. O’Bryan, J.M. Urueña, B.S. Sumerlin et al., Polyelectrolyte scaling laws for microgel yielding near jamming. Soft Matter 14, 1559–1570 (2018). https://doi.org/10.1039/C7SM01518F
C.J. Dimitriou, R.H. Ewoldt, G.H. McKinley, Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress). J. Rheol. 57, 27–70 (2013). https://doi.org/10.1122/1.4754023