Exploring the Cation Regulation Mechanism for Interfacial Water Involved in the Hydrogen Evolution Reaction by In Situ Raman Spectroscopy
Corresponding Author: Jian‑Feng Li
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 53
Abstract
Interfacial water molecules are the most important participants in the hydrogen evolution reaction (HER). Hence, understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism. Unfortunately, investigating interfacial water is extremely challenging owing to the interference caused by bulk water molecules and complexity of the interfacial environment. Here, the behaviors of interfacial water in different cationic electrolytes on Pd surfaces were investigated by the electrochemistry, in situ core–shell nanostructure enhanced Raman spectroscopy and theoretical simulation techniques. Direct spectral evidence reveals a red shift in the frequency and a decrease in the intensity of interfacial water as the potential is shifted in the positively direction. When comparing the different cation electrolyte systems at a given potential, the frequency of the interfacial water peak increases in the specified order: Li+ < Na+ < K+ < Ca2+ < Sr2+. The structure of interfacial water was optimized by adjusting the radius, valence, and concentration of cation to form the two-H down structure. This unique interfacial water structure will improve the charge transfer efficiency between the water and electrode further enhancing the HER performance. Therefore, local cation tuning strategies can be used to improve the HER performance by optimizing the interfacial water structure.
Highlights:
1 In situ Raman spectroscopy study of the cation regulation for interfacial water on Au@Pd core–shell nanoparticle surface during hydrogen evolution reaction process.
2 Direct spectral evidence reveals new strategies to optimize the structure of interfacial water by the adjusting of radius and valence of the cation in the electrolyte.
3 The optimized structure of interfacial water will improve the charge transfer efficiency between the water and electrode increasing the performance of the hydrogen evolution reaction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.H. Wang, S. Zheng, W.M. Yang, R.Y. Zhou, Q.F. He et al., In situ raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600(7887), 81–85 (2021). https://doi.org/10.1038/s41586-021-04068-z
- R. Ma, D. Cao, C. Zhu, Y. Tian, J. Peng et al., Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice. Nature 577(7788), 60–63 (2020). https://doi.org/10.1038/s41586-019-1853-4
- L. Kringle, W.A. Thornley, B.D. Kay, G.A. Kimmel, Reversible structural transformations in supercooled liquid water from 135 to 245 k. Science 369(6510), 1490–1492 (2020). https://doi.org/10.1126/science.abb7542
- Y. Sun, F. Yu, C. Li, X. Dai, J. Ma, Nano-/micro-confined water in graphene hydrogel as superadsorbents for water purification. Nano-Micro Lett. 12(1), 2 (2020). https://doi.org/10.1007/s40820-019-0336-3
- L.F. Scatena, M.G. Brown, G.L. Richmond, Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292(5518), 908–912 (2001). https://doi.org/10.1126/science.1059514
- S. Zhu, X. Qin, F. Xiao, S. Yang, Y. Xu et al., The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat. Catal. 4(8), 711–718 (2021). https://doi.org/10.1038/s41929-021-00663-5
- P. Li, Y. Jiang, Y. Hu, Y. Men, Y. Liu et al., Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat. Catal. 5(10), 900–911 (2022). https://doi.org/10.1038/s41929-022-00846-8
- B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15(1), 57 (2023). https://doi.org/10.1007/s40820-023-01038-0
- J. Zhao, S. Xue, R. Ji, B. Li, J. Li, Localized surface plasmon resonance for enhanced electrocatalysis. Chem. Soc. Rev. 50(21), 12070–12097 (2021). https://doi.org/10.1039/d1cs00237f
- M.C.O. Monteiro, F. Dattila, N. Lopez, M.T.M. Koper, The role of cation acidity on the competition between hydrogen evolution and CO2 reduction on gold electrodes. J. Am. Chem. Soc. 144(4), 1589–1602 (2022). https://doi.org/10.1021/jacs.1c10171
- M. Luo, M.T.M. Koper, A kinetic descriptor for the electrolyte effect on the oxygen reduction kinetics on Pt(111). Nat. Catal. 5(7), 615–623 (2022). https://doi.org/10.1038/s41929-022-00810-6
- G. Marcandalli, M.C.O. Monteiro, A. Goyal, M.T.M. Koper, Electrolyte effects on CO2 electrochemical reduction to CO. Acc. Chem. Res. 55(14), 1900–1911 (2022). https://doi.org/10.1021/acs.accounts.2c00080
- B. Huang, R.R. Rao, S. You, K. Hpone Myint, Y. Song et al., Cation- and pH-dependent hydrogen evolution and oxidation reaction kinetics. JACS Au 1(10), 1674–1687 (2021). https://doi.org/10.1021/jacsau.1c00281
- S.J. Suresh, A.V. Satish, A. Choudhary, Influence of electric field on the hydrogen bond network of water. J. Chem. Phys. 124(7), 74506 (2006). https://doi.org/10.1063/1.2162888
- V. Balos, N.K. Kaliannan, H. Elgabarty, M. Wolf, T.D. Kuhne et al., Time-resolved terahertz-raman spectroscopy reveals that cations and anions distinctly modify intermolecular interactions of water. Nat. Chem. 14(9), 1031–1037 (2022). https://doi.org/10.1038/s41557-022-00977-2
- J.A. Kattirtzi, D.T. Limmer, A.P. Willard, Microscopic dynamics of charge separation at the aqueous electrochemical interface. Proc. Natl. Acad. Sci. 114(51), 13374–13379 (2017). https://doi.org/10.1073/pnas.1700093114
- T. Wang, Y. Zhang, B. Huang, B. Cai, R.R. Rao et al., Enhancing oxygen reduction electrocatalysis by tuning interfacial hydrogen bonds. Nat. Catal. 4(9), 753–762 (2021). https://doi.org/10.1038/s41929-021-00668-0
- G. Stirnemann, E. Wernersson, P. Jungwirth, D. Laage, Mechanisms of acceleration and retardation of water dynamics by ions. J. Am. Chem. Soc. 135(32), 11824–11831 (2013). https://doi.org/10.1021/ja405201s
- M. Pfeiffer-Laplaud, M.-P. Gaigeot, Electrolytes at the hydroxylated (0001) α-quartz/water interface: Location and structural effects on interfacial silanols by DFT-based MD. J. Phys. Chem. C 120(26), 14034–14047 (2016). https://doi.org/10.1021/acs.jpcc.6b01819
- S. Zhu, X. Qin, Y. Yao, M. Shao, Ph-dependent hydrogen and water binding energies on platinum surfaces as directly probed through surface-enhanced infrared absorption spectroscopy. J. Am. Chem. Soc. 142(19), 8748–8754 (2020). https://doi.org/10.1021/jacs.0c01104
- Y. Tong, F. Lapointe, M. Thamer, M. Wolf, R.K. Campen, Hydrophobic water probed experimentally at the gold electrode/aqueous interface. Angew. Chem. Int. Ed. 56(15), 4211–4214 (2017). https://doi.org/10.1002/anie.201612183
- A. Montenegro, C. Dutta, M. Mammetkuliev, H. Shi, B. Hou et al., Asymmetric response of interfacial water to applied electric fields. Nature 594(7861), 62–65 (2021). https://doi.org/10.1038/s41586-021-03504-4
- F. Lapointe, M. Wolf, R.K. Campen, Y. Tong, Probing the birth and ultrafast dynamics of hydrated electrons at the gold/liquid water interface via an optoelectronic approach. J. Am. Chem. Soc. 142, 18619–18627 (2020). https://doi.org/10.1021/jacs.0c08289
- Q. Du, E. Freysz, Y.R. Shen, Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity. Science 264(5160), 826–828 (1994). https://doi.org/10.1126/science.264.5160.826
- K. Sun, X. Wu, Z. Zhuang, L. Liu, J. Fang et al., Interfacial water engineering boosts neutral water reduction. Nat. Commun. 13(1), 6260 (2022). https://doi.org/10.1038/s41467-022-33984-5
- F. Dahms, B.P. Fingerhut, E.T.J. Nibbering, E. Pines, T. Elsaesser, Large-amplitude transfer motion of hydrated excess protons mapped by ultrafast 2d ir spectroscopy. Science 357(6350), 491–495 (2017). https://doi.org/10.1126/science.aan5144
- E. Liu, L. Jiao, J. Li, T. Stracensky, Q. Sun et al., Interfacial water shuffling the intermediates of hydrogen oxidation and evolution reactions in aqueous media. Energy Environ. Sci. 13(9), 3064–3074 (2020). https://doi.org/10.1039/d0ee01754j
- J.J. Velasco-Velez, C.H. Wu, T.A. Pascal, L.F. Wan, J. Guo et al., The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy. Science 346(6211), 831–834 (2014). https://doi.org/10.1126/science.1259437
- C.Y. Li, J.B. Le, Y.H. Wang, S. Chen, Z.L. Yang et al., In situ probing electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 18(7), 697–701 (2019). https://doi.org/10.1038/s41563-019-0356-x
- G. Frens, Controlled nucleation for the regulation of the p size in monodisperse gold suspensions. Nat. Phys. Sci. 241(105), 20–22 (1973). https://doi.org/10.1038/physci241020a0
- G. Kresse, J. Hafner, Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49(20), 14251–14269 (1994). https://doi.org/10.1103/PhysRevB.49.14251
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- X.M. Lin, X.T. Wang, Y.L. Deng, X. Chen, H.N. Chen et al., In situ probe of the hydrogen oxidation reaction intermediates on ptru a bimetallic catalyst surface by core-shell nanop-enhanced raman spectroscopy. Nano Lett. 22(13), 5544–5552 (2022). https://doi.org/10.1021/acs.nanolett.2c01744
- J.L. Bott-Neto, A.C. Garcia, V.L. Oliveira, N.E. de Souza, G. Tremiliosi-Filho, Au/C catalysts prepared by a green method towards C3 alcohol electrooxidation: A cyclic voltammetry and in situ ftir spectroscopy study. J. Electroanal. Chem. 735, 57–62 (2014). https://doi.org/10.1016/j.jelechem.2014.10.010
- X. Huang, A.J. Shumski, X. Zhang, C.W. Li, Systematic control of redox properties and oxygen reduction reactivity through colloidal ligand-exchange deposition of Pd on Au. J. Am. Chem. Soc. 140(28), 8918–8923 (2018). https://doi.org/10.1021/jacs.8b04967
- M. Baldauf, D.M. Kolb, A hydrogen adsorption and absorption study with ultrathin Pd overlayers on au(111) and au(100). Electrochim. Acta 38(15), 2145–2153 (1993). https://doi.org/10.1016/0013-4686(93)80091-d
- H. Duncan, A. Lasia, Separation of hydrogen adsorption and absorption on Pd thin films. Electrochim. Acta 53(23), 6845–6850 (2008). https://doi.org/10.1016/j.electacta.2007.12.012
- M. Luo, Z. Zhao, Y. Zhang, Y. Sun, Y. Xing et al., Pdmo bimetallene for oxygen reduction catalysis. Nature 574(7776), 81–85 (2019). https://doi.org/10.1038/s41586-019-1603-7
- E. Habibi, H. Razmi, Glycerol electrooxidation on Pd, Pt and Au nanops supported on carbon ceramic electrode in alkaline media. Int. J. Hydrogen Energy 37(22), 16800–16809 (2012). https://doi.org/10.1016/j.ijhydene.2012.08.127
- W.A. Senior, W.K. Thompson, Assignment of the infra-red and raman bands of liquid water. Nature 205(4967), 170–170 (1965). https://doi.org/10.1038/205170a0
- J.G. Davis, K.P. Gierszal, P. Wang, D. Ben-Amotz, Water structural transformation at molecular hydrophobic interfaces. Nature 491(7425), 582–585 (2012). https://doi.org/10.1038/nature11570
- J.L. Green, A.R. Lacey, M.G. Sceats, Spectroscopic evidence for spatial correlations of hydrogen bonds in liquid water. J. Phys. Chem. 90(17), 3958–3964 (2002). https://doi.org/10.1021/j100408a027
- F. Perakis, L.D. Marco, A. Shalit, F. Tang, Z.R. Kann et al., Vibrational spectroscopy and dynamics of water. Chem. Rev. 116(13), 7590–7607 (2016). https://doi.org/10.1021/acs.chemrev.5b00640
References
Y.H. Wang, S. Zheng, W.M. Yang, R.Y. Zhou, Q.F. He et al., In situ raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600(7887), 81–85 (2021). https://doi.org/10.1038/s41586-021-04068-z
R. Ma, D. Cao, C. Zhu, Y. Tian, J. Peng et al., Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice. Nature 577(7788), 60–63 (2020). https://doi.org/10.1038/s41586-019-1853-4
L. Kringle, W.A. Thornley, B.D. Kay, G.A. Kimmel, Reversible structural transformations in supercooled liquid water from 135 to 245 k. Science 369(6510), 1490–1492 (2020). https://doi.org/10.1126/science.abb7542
Y. Sun, F. Yu, C. Li, X. Dai, J. Ma, Nano-/micro-confined water in graphene hydrogel as superadsorbents for water purification. Nano-Micro Lett. 12(1), 2 (2020). https://doi.org/10.1007/s40820-019-0336-3
L.F. Scatena, M.G. Brown, G.L. Richmond, Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292(5518), 908–912 (2001). https://doi.org/10.1126/science.1059514
S. Zhu, X. Qin, F. Xiao, S. Yang, Y. Xu et al., The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat. Catal. 4(8), 711–718 (2021). https://doi.org/10.1038/s41929-021-00663-5
P. Li, Y. Jiang, Y. Hu, Y. Men, Y. Liu et al., Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat. Catal. 5(10), 900–911 (2022). https://doi.org/10.1038/s41929-022-00846-8
B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15(1), 57 (2023). https://doi.org/10.1007/s40820-023-01038-0
J. Zhao, S. Xue, R. Ji, B. Li, J. Li, Localized surface plasmon resonance for enhanced electrocatalysis. Chem. Soc. Rev. 50(21), 12070–12097 (2021). https://doi.org/10.1039/d1cs00237f
M.C.O. Monteiro, F. Dattila, N. Lopez, M.T.M. Koper, The role of cation acidity on the competition between hydrogen evolution and CO2 reduction on gold electrodes. J. Am. Chem. Soc. 144(4), 1589–1602 (2022). https://doi.org/10.1021/jacs.1c10171
M. Luo, M.T.M. Koper, A kinetic descriptor for the electrolyte effect on the oxygen reduction kinetics on Pt(111). Nat. Catal. 5(7), 615–623 (2022). https://doi.org/10.1038/s41929-022-00810-6
G. Marcandalli, M.C.O. Monteiro, A. Goyal, M.T.M. Koper, Electrolyte effects on CO2 electrochemical reduction to CO. Acc. Chem. Res. 55(14), 1900–1911 (2022). https://doi.org/10.1021/acs.accounts.2c00080
B. Huang, R.R. Rao, S. You, K. Hpone Myint, Y. Song et al., Cation- and pH-dependent hydrogen evolution and oxidation reaction kinetics. JACS Au 1(10), 1674–1687 (2021). https://doi.org/10.1021/jacsau.1c00281
S.J. Suresh, A.V. Satish, A. Choudhary, Influence of electric field on the hydrogen bond network of water. J. Chem. Phys. 124(7), 74506 (2006). https://doi.org/10.1063/1.2162888
V. Balos, N.K. Kaliannan, H. Elgabarty, M. Wolf, T.D. Kuhne et al., Time-resolved terahertz-raman spectroscopy reveals that cations and anions distinctly modify intermolecular interactions of water. Nat. Chem. 14(9), 1031–1037 (2022). https://doi.org/10.1038/s41557-022-00977-2
J.A. Kattirtzi, D.T. Limmer, A.P. Willard, Microscopic dynamics of charge separation at the aqueous electrochemical interface. Proc. Natl. Acad. Sci. 114(51), 13374–13379 (2017). https://doi.org/10.1073/pnas.1700093114
T. Wang, Y. Zhang, B. Huang, B. Cai, R.R. Rao et al., Enhancing oxygen reduction electrocatalysis by tuning interfacial hydrogen bonds. Nat. Catal. 4(9), 753–762 (2021). https://doi.org/10.1038/s41929-021-00668-0
G. Stirnemann, E. Wernersson, P. Jungwirth, D. Laage, Mechanisms of acceleration and retardation of water dynamics by ions. J. Am. Chem. Soc. 135(32), 11824–11831 (2013). https://doi.org/10.1021/ja405201s
M. Pfeiffer-Laplaud, M.-P. Gaigeot, Electrolytes at the hydroxylated (0001) α-quartz/water interface: Location and structural effects on interfacial silanols by DFT-based MD. J. Phys. Chem. C 120(26), 14034–14047 (2016). https://doi.org/10.1021/acs.jpcc.6b01819
S. Zhu, X. Qin, Y. Yao, M. Shao, Ph-dependent hydrogen and water binding energies on platinum surfaces as directly probed through surface-enhanced infrared absorption spectroscopy. J. Am. Chem. Soc. 142(19), 8748–8754 (2020). https://doi.org/10.1021/jacs.0c01104
Y. Tong, F. Lapointe, M. Thamer, M. Wolf, R.K. Campen, Hydrophobic water probed experimentally at the gold electrode/aqueous interface. Angew. Chem. Int. Ed. 56(15), 4211–4214 (2017). https://doi.org/10.1002/anie.201612183
A. Montenegro, C. Dutta, M. Mammetkuliev, H. Shi, B. Hou et al., Asymmetric response of interfacial water to applied electric fields. Nature 594(7861), 62–65 (2021). https://doi.org/10.1038/s41586-021-03504-4
F. Lapointe, M. Wolf, R.K. Campen, Y. Tong, Probing the birth and ultrafast dynamics of hydrated electrons at the gold/liquid water interface via an optoelectronic approach. J. Am. Chem. Soc. 142, 18619–18627 (2020). https://doi.org/10.1021/jacs.0c08289
Q. Du, E. Freysz, Y.R. Shen, Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity. Science 264(5160), 826–828 (1994). https://doi.org/10.1126/science.264.5160.826
K. Sun, X. Wu, Z. Zhuang, L. Liu, J. Fang et al., Interfacial water engineering boosts neutral water reduction. Nat. Commun. 13(1), 6260 (2022). https://doi.org/10.1038/s41467-022-33984-5
F. Dahms, B.P. Fingerhut, E.T.J. Nibbering, E. Pines, T. Elsaesser, Large-amplitude transfer motion of hydrated excess protons mapped by ultrafast 2d ir spectroscopy. Science 357(6350), 491–495 (2017). https://doi.org/10.1126/science.aan5144
E. Liu, L. Jiao, J. Li, T. Stracensky, Q. Sun et al., Interfacial water shuffling the intermediates of hydrogen oxidation and evolution reactions in aqueous media. Energy Environ. Sci. 13(9), 3064–3074 (2020). https://doi.org/10.1039/d0ee01754j
J.J. Velasco-Velez, C.H. Wu, T.A. Pascal, L.F. Wan, J. Guo et al., The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy. Science 346(6211), 831–834 (2014). https://doi.org/10.1126/science.1259437
C.Y. Li, J.B. Le, Y.H. Wang, S. Chen, Z.L. Yang et al., In situ probing electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 18(7), 697–701 (2019). https://doi.org/10.1038/s41563-019-0356-x
G. Frens, Controlled nucleation for the regulation of the p size in monodisperse gold suspensions. Nat. Phys. Sci. 241(105), 20–22 (1973). https://doi.org/10.1038/physci241020a0
G. Kresse, J. Hafner, Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49(20), 14251–14269 (1994). https://doi.org/10.1103/PhysRevB.49.14251
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
X.M. Lin, X.T. Wang, Y.L. Deng, X. Chen, H.N. Chen et al., In situ probe of the hydrogen oxidation reaction intermediates on ptru a bimetallic catalyst surface by core-shell nanop-enhanced raman spectroscopy. Nano Lett. 22(13), 5544–5552 (2022). https://doi.org/10.1021/acs.nanolett.2c01744
J.L. Bott-Neto, A.C. Garcia, V.L. Oliveira, N.E. de Souza, G. Tremiliosi-Filho, Au/C catalysts prepared by a green method towards C3 alcohol electrooxidation: A cyclic voltammetry and in situ ftir spectroscopy study. J. Electroanal. Chem. 735, 57–62 (2014). https://doi.org/10.1016/j.jelechem.2014.10.010
X. Huang, A.J. Shumski, X. Zhang, C.W. Li, Systematic control of redox properties and oxygen reduction reactivity through colloidal ligand-exchange deposition of Pd on Au. J. Am. Chem. Soc. 140(28), 8918–8923 (2018). https://doi.org/10.1021/jacs.8b04967
M. Baldauf, D.M. Kolb, A hydrogen adsorption and absorption study with ultrathin Pd overlayers on au(111) and au(100). Electrochim. Acta 38(15), 2145–2153 (1993). https://doi.org/10.1016/0013-4686(93)80091-d
H. Duncan, A. Lasia, Separation of hydrogen adsorption and absorption on Pd thin films. Electrochim. Acta 53(23), 6845–6850 (2008). https://doi.org/10.1016/j.electacta.2007.12.012
M. Luo, Z. Zhao, Y. Zhang, Y. Sun, Y. Xing et al., Pdmo bimetallene for oxygen reduction catalysis. Nature 574(7776), 81–85 (2019). https://doi.org/10.1038/s41586-019-1603-7
E. Habibi, H. Razmi, Glycerol electrooxidation on Pd, Pt and Au nanops supported on carbon ceramic electrode in alkaline media. Int. J. Hydrogen Energy 37(22), 16800–16809 (2012). https://doi.org/10.1016/j.ijhydene.2012.08.127
W.A. Senior, W.K. Thompson, Assignment of the infra-red and raman bands of liquid water. Nature 205(4967), 170–170 (1965). https://doi.org/10.1038/205170a0
J.G. Davis, K.P. Gierszal, P. Wang, D. Ben-Amotz, Water structural transformation at molecular hydrophobic interfaces. Nature 491(7425), 582–585 (2012). https://doi.org/10.1038/nature11570
J.L. Green, A.R. Lacey, M.G. Sceats, Spectroscopic evidence for spatial correlations of hydrogen bonds in liquid water. J. Phys. Chem. 90(17), 3958–3964 (2002). https://doi.org/10.1021/j100408a027
F. Perakis, L.D. Marco, A. Shalit, F. Tang, Z.R. Kann et al., Vibrational spectroscopy and dynamics of water. Chem. Rev. 116(13), 7590–7607 (2016). https://doi.org/10.1021/acs.chemrev.5b00640