Advances in Wireless, Batteryless, Implantable Electronics for Real-Time, Continuous Physiological Monitoring
Corresponding Author: Woon‑Hong Yeo
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 52
Abstract
This review summarizes recent progress in developing wireless, batteryless, fully implantable biomedical devices for real-time continuous physiological signal monitoring, focusing on advancing human health care. Design considerations, such as biological constraints, energy sourcing, and wireless communication, are discussed in achieving the desired performance of the devices and enhanced interface with human tissues. In addition, we review the recent achievements in materials used for developing implantable systems, emphasizing their importance in achieving multi-functionalities, biocompatibility, and hemocompatibility. The wireless, batteryless devices offer minimally invasive device insertion to the body, enabling portable health monitoring and advanced disease diagnosis. Lastly, we summarize the most recent practical applications of advanced implantable devices for human health care, highlighting their potential for immediate commercialization and clinical uses.
Highlights:
1 This article summarizes the recent advances in wireless, batteryless, implantable electronics for continuous physiological monitoring.
2 The critical factors that affect the design of implantable electronics for biosensing are discussed.
3 The recent progress of material research for developing various implantable devices is summarized.
4 This article reviews various biomedical applications of implantable devices for human healthcare.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.P.F. Turner, Biosensors: sense and sensibility. Chem. Soc. Rev. 42(8), 3184–3196 (2013). https://doi.org/10.1039/C3CS35528D
- D. Seo, R.M. Neely, K. Shen, U. Singhal, E. Alon et al., Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91(3), 529–539 (2016). https://doi.org/10.1016/j.neuron.2016.06.034
- A. Burton, S.N. Obaid, A. Vázquez-Guardado, M.B. Schmit, T. Stuart et al., Wireless, battery-free subdermally implantable photometry systems for chronic recording of neural dynamics. Proc. Natl. Acad. Sci. 117(6), 2835–2845 (2020). https://doi.org/10.1073/pnas.1920073117
- R. Herbert, H.-R. Lim, B. Rigo, W.-H. Yeo, Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics. Sci. Adv. 8(19), eabm1175 (2022). https://doi.org/10.1126/sciadv.abm1175
- S. Hu, H. Chen, S. Jia, X. Xiao, Y. Cao et al., A wireless passive extra-arterial implantable blood pressure monitoring sensing system for rats. Microsyst. Technol. 27(7), 2595–2603 (2021). https://doi.org/10.1007/s00542-020-05011-4
- S. Islam, A. Kim, Ultrasonic energy harvesting scheme for implantable active stent., in International Microwave Biomedical Conference (2018) pp. 70–72. https://doi.org/10.1109/IMBIOC.2018.8428943
- R. Herbert, S. Mishra, H.-R. Lim, H. Yoo, W.-H. Yeo, Fully printed, wireless, stretchable implantable biosystem toward batteryless, real-time monitoring of cerebral aneurysm hemodynamics. Adv. Sci. 6(18), 1901034 (2019). https://doi.org/10.1002/advs.201901034
- C.-C. Yeh, S.-H. Lo, M.-X. Xu, Y.-J. Yang, Fabrication of a flexible wireless pressure sensor for intravascular blood pressure monitoring. Microelectron. Eng. 213, 55–61 (2019). https://doi.org/10.1016/j.mee.2019.04.009
- R. Herbert, M. Elsisy, B. Rigo, H.R. Lim, H. Kim et al., Fully implantable batteryless soft platforms with printed nanomaterial-based arterial stiffness sensors for wireless continuous monitoring of restenosis in real time. Nano Today 46, 101557 (2022). https://doi.org/10.1016/j.nantod.2022.101557
- S. Nappi, L. Gargale, F. Naccarata, P.P. Valentini, G. Marrocco, A fractal-RFID based sensing tattoo for the early detection of cracks in implanted metal prostheses. IEEE J. Electromagn. RF Microw. Med. Biol. 6(1), 29–40 (2022). https://doi.org/10.1109/JERM.2021.3108945
- H. Mohammadbagherpoor, P. Ierymenko, M.H. Craver, J. Carlson, D. Dausch et al., An implantable wireless inductive sensor system designed to monitor prosthesis motion in total joint replacement surgery. IEEE Trans. Biomed. Eng. 67(6), 1718–1726 (2020). https://doi.org/10.1109/tbme.2019.2943808
- P. Westerhoff, F. Graichen, A. Bender, A. Rohlmann, G. Bergmann, An instrumented implant for in vivo measurement of contact forces and contact moments in the shoulder joint. Med. Eng. Phys. 31(2), 207–213 (2009). https://doi.org/10.1016/j.medengphy.2008.07.011
- Y. Jang, S.M. Kim, K.J. Kim, H.J. Sim, B.-J. Kim et al., Self-powered coiled carbon-nanotube yarn sensor for gastric electronics. ACS Sens. 4(11), 2893–2899 (2019). https://doi.org/10.1021/acssensors.9b01180
- X. Pei, H. Zhang, Y. Zhou, L. Zhou, J. Fu, Stretchable, self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions. Mater. Horiz. 7(7), 1872–1882 (2020). https://doi.org/10.1039/D0MH00361A
- F. Stauffer, Q. Zhang, K. Tybrandt, B. Llerena Zambrano, J. Hengsteler et al., Soft electronic strain sensor with chipless wireless readout: toward real-time monitoring of bladder volume. Adv. Mater. Technol. 3(6), 1800031 (2018). https://doi.org/10.1002/admt.201800031
- J. Kim, A.S. Campbell, B.E.-F. de Ávila, J. Wang, Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37(4), 389–406 (2019). https://doi.org/10.1038/s41587-019-0045-y
- A. Carnicer-Lombarte, S.-T. Chen, G.G. Malliaras, D.G. Barone, Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics. Front. Bioeng. Biotechnol. 9, 622524 (2021). https://doi.org/10.3389/fbioe.2021.622524
- J.K. Nguyen, D.J. Park, J.L. Skousen, A.E. Hess-Dunning, D.J. Tyler et al., Mechanically-compliant intracortical implants reduce the neuroinflammatory response. J. Neural Eng. 11(5), 056014 (2014). https://doi.org/10.1088/1741-2560/11/5/056014
- I.R. Minev, P. Musienko, A. Hirsch, Q. Barraud, N. Wenger et al., Electronic dura mater for long-term multimodal neural interfaces. Science 347(6218), 159–163 (2015). https://doi.org/10.1126/science.1260318
- S. Kwon, Y.T. Kwon, Y.S. Kim, H.R. Lim, M. Mahmood et al., Skin-conformal, soft material-enabled bioelectronic system with minimized motion artifacts for reliable health and performance monitoring of athletes. Biosens. Bioelectron. 151, 111981 (2020). https://doi.org/10.1016/j.bios.2019.111981
- S.-K. Kang, J. Koo, Y.K. Lee, J.A. Rogers, Advanced materials and devices for bioresorbable electronics. Acc. Chem. Res. 51(5), 988–998 (2018). https://doi.org/10.1021/acs.accounts.7b00548
- M.L. Bernard, Pacing without wires: leadless cardiac pacing. Ochsner J. 16(3), 238–242 (2016)
- A.L. Benabid, S. Chabardes, J. Mitrofanis, P. Pollak, Deep brain stimulation of the subthalamic nucleus for the treatment of parkinson’s disease. Lancet Neurol. 8(1), 67–81 (2009). https://doi.org/10.1016/S1474-4422(08)70291-6
- C.J. Van Rooden, S.G. Molhoek, F.R. Rosendaal, M.J. Schalij, A.E. Meinders et al., Incidence and risk factors of early venous thrombosis associated with permanent pacemaker leads. J. Cardiovasc. Electrophysiol. 15(11), 1258–1262 (2004). https://doi.org/10.1046/j.1540-8167.2004.04081.x
- M. Banaszewski, J. Stępińska, Right heart perforation by pacemaker leads. Arch. Med. Sci. 8(1), 11–13 (2012). https://doi.org/10.5114/aoms.2012.27273
- E. Buch, N.G. Boyle, P.H. Belott, Pacemaker and defibrillator lead extraction. Circulation 123(11), e378–e380 (2011). https://doi.org/10.1161/CIRCULATIONAHA.110.987354
- R. Luechinger, V.A. Zeijlemaker, E.M. Pedersen, P. Mortensen, E. Falk et al., In vivo heating of pacemaker leads during magnetic resonance imaging. Eur. Heart J. 26(4), 376–383 (2004). https://doi.org/10.1093/eurheartj/ehi009
- N. Bhatia, M. El-Chami, Leadless pacemakers: a contemporary review. J. Geriatr. Cardiol. 15(4), 249–253 (2018). https://doi.org/10.11909/j.issn.1671-5411.2018.04.002
- P. Blomstedt, M.I. Hariz, Hardware-related complications of deep brain stimulation: a ten year experience. Acta Neurochir. 147(10), 1061–1064 (2005). https://doi.org/10.1007/s00701-005-0576-5
- S. Vaddiraju, I. Tomazos, D.J. Burgess, F.C. Jain, F. Papadimitrakopoulos, Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens. Bioelectr. 25(7), 1553–1565 (2010). https://doi.org/10.1016/j.bios.2009.12.001
- G. Reach, G.S. Wilson, Can continuous glucose monitoring be used for the treatment of diabetes? Anal. Chem. 64(6), 381A-386A (1992). https://doi.org/10.1021/ac00030a001
- J. Zhang, R. Das, J. Zhao, N. Mirzai, J. Mercer et al., Battery-free and wireless technologies for cardiovascular implantable medical devices. Adv. Mater. Technol. 7(6), 2101086 (2022). https://doi.org/10.1002/admt.202101086
- X. Huang, L. Wang, H. Wang, B. Zhang, X. Wang et al., Materials strategies and device architectures of emerging power supply devices for implantable bioelectronics. Small 16(15), 1902827 (2020). https://doi.org/10.1002/smll.201902827
- A. Zurbuchen, A. Haeberlin, A. Pfenniger, L. Bereuter, J. Schaerer et al., Towards batteryless cardiac implantable electronic devices—the swiss way. IEEE Trans. Biomed. Circuits Syst. 11(1), 78–86 (2017). https://doi.org/10.1109/TBCAS.2016.2580658
- S.H. Lee, Y.B. Lee, B.H. Kim, C. Lee, Y.M. Cho et al., Implantable batteryless device for on-demand and pulsatile insulin administration. Nat. Commun. 8(1), 15032 (2017). https://doi.org/10.1038/ncomms15032
- A. Cadei, A. Dionisi, E. Sardini, M. Serpelloni, Kinetic and thermal energy harvesters for implantable medical devices and biomedical autonomous sensors. Meas. Sci. Technol. 25(1), 012003 (2013). https://doi.org/10.1088/0957-0233/25/1/012003
- H. Zhang, X.-S. Zhang, X. Cheng, Y. Liu, M. Han et al., A flexible and implantable piezoelectric generator harvesting energy from the pulsation of ascending aorta: in vitro and in vivo studies. Nano Energy 12, 296–304 (2015). https://doi.org/10.1016/j.nanoen.2014.12.038
- R. Sun, S.C. Carreira, Y. Chen, C. Xiang, L. Xu et al., Stretchable piezoelectric sensing systems for self-powered and wireless health monitoring. Adv. Mater. Technol. 4(5), 1900100 (2019). https://doi.org/10.1002/admt.201900100
- Z. Xu, C. Jin, A. Cabe, D. Escobedo, A. Gruslova et al., Implantable cardiac kirigami-inspired lead-based energy harvester fabricated by enhanced piezoelectric composite film. Adv. Healthc. Mater. 10(8), 2002100 (2021). https://doi.org/10.1002/adhm.202002100
- J. Li, L. Kang, Y. Long, H. Wei, Y. Yu et al., Implanted battery-free direct-current micro-power supply from in vivo breath energy harvesting. ACS Appl. Mater. Interfaces 10(49), 42030–42038 (2018). https://doi.org/10.1021/acsami.8b15619
- M. Sahu, S. Šafranko, S. Hajra, A.M. Padhan, P. Živković et al., Development of triboelectric nanogenerator and mechanical energy harvesting using argon ion-implanted kapton, zinc oxide and kapton. Mater. Lett. 301, 130290 (2021). https://doi.org/10.1016/j.matlet.2021.130290
- A. Zurbuchen, A. Haeberlin, L. Bereuter, A. Pfenniger, S. Bosshard et al., Endocardial energy harvesting by electromagnetic induction. IEEE Trans. Biomed. Eng. 65(2), 424–430 (2018). https://doi.org/10.1109/TBME.2017.2773568
- L. Bereuter, S. Williner, F. Pianezzi, B. Bissig, S. Buecheler et al., Energy harvesting by subcutaneous solar cells: a long-term study on achievable energy output. Ann. Biomed. Eng. 45(5), 1172–1180 (2017). https://doi.org/10.1007/s10439-016-1774-4
- T. Wu, J.M. Redouté, M.R. Yuce, Subcutaneous solar energy harvesting for self-powered wireless implantable sensor systems. in IEEE Engineering in Medicine and Biology Society (2018), pp. 4657–4660. https://doi.org/10.1109/EMBC.2018.8513146
- E. Moon, D. Blaauw, J.D. Phillips, Subcutaneous photovoltaic infrared energy harvesting for bio-implantable devices. IEEE Trans. Electron Devices 64(5), 2432–2437 (2017). https://doi.org/10.1109/TED.2017.2681694
- J. Kim, J. Seo, D. Jung, T. Lee, H. Ju et al., Active photonic wireless power transfer into live tissues. Proc. Natl. Acad. Sci. 117(29), 16856–16863 (2020). https://doi.org/10.1073/pnas.2002201117
- F. Li, D. Li, F. Yan, Improvement of detection sensitivity of microbubbles as sensors to detect ambient pressure. Sensors 18(12), 4083 (2018). https://doi.org/10.3390/s18124083
- H. Jiang, I. Woodhouse, V. Selvamani, J.L. Ma, R. Tang et al., A wireless implantable passive intra-abdominal pressure sensing scheme via ultrasonic imaging of a microfluidic device. IEEE Trans. Biomed. Eng. 68(3), 747–758 (2021). https://doi.org/10.1109/TBME.2020.3015485
- H. Jiang, N.M. Carter, A. Zareei, S. Nejati, J.F. Waimin et al., A wireless implantable strain sensing scheme using ultrasound imaging of highly stretchable zinc oxide/poly dimethylacrylamide nanocomposite hydrogel. ACS Appl. Bio Mater. 3(7), 4012–4024 (2020). https://doi.org/10.1021/acsabm.9b01032
- M. Farooq, T. Iqbal, P. Vazquez, N. Farid, S. Thampi et al., Thin-film flexible wireless pressure sensor for continuous pressure monitoring in medical applications. Sensors 20(22), 6653 (2020). https://doi.org/10.3390/s20226653
- P. Yeon, M.G. Kim, O. Brand, M. Ghoovanloo, Optimal design of passive resonating wireless sensors for wearable and implantable devices. IEEE Sens. J. 19(17), 7460–7470 (2019). https://doi.org/10.1109/JSEN.2019.2915299
- M. Yang, Z. Ye, N. Alsaab, M. Farhat, P.Y. Chen, In-vitro demonstration of ultra-reliable, wireless and batteryless implanted intracranial sensors operated on loci of exceptional points. IEEE Trans. Biomed. Circuits Syst. 16(2), 287–295 (2022). https://doi.org/10.1109/TBCAS.2022.3164697
- Z. Dong, Z. Li, F. Yang, C.-W. Qiu, J.S. Ho, Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point. Nat. Electron. 2, 335–342 (2019). https://doi.org/10.1038/s41928-019-0284-4
- R. Feiner, T. Dvir, Tissue–electronics interfaces: from implantable devices to engineered tissues. Nat. Rev. Mater. 3(1), 17076 (2017). https://doi.org/10.1038/natrevmats.2017.76
- J.M. Lane, J.E. Mait, A. Unnanuntana, B.P. Hirsch, A.D. Shaffer et al., Materials in Fracture Fixation (Elsevier, Oxford, 2011), pp.219–235
- P. Thevenot, W. Hu, L. Tang, Surface chemistry influences implant biocompatibility. Curr. Top. Med. Chem. 8(4), 270–280 (2008). https://doi.org/10.2174/156802608783790901
- S. Kamath, D. Bhattacharyya, C. Padukudru, R.B. Timmons, L. Tang, Surface chemistry influences implant-mediated host tissue responses. J. Biomed. Mater. Res. A 86(3), 617–626 (2008). https://doi.org/10.1002/jbm.a.31649
- G. Cattaneo, C. Bräuner, G. Siekmeyer, A. Ding, S. Bauer et al., In vitro investigation of chemical properties and biocompatibility of neurovascular braided implants. J. Mater. Sci.-Mater. Med. 30, 67 (2019). https://doi.org/10.1007/s10856-019-6270-6
- D.K. Freeman, S.J. Byrnes, Optimal frequency for wireless power transmission into the body: efficiency versus received power. IEEE Trans. Antennas Propag. 67(6), 4073–4083 (2019). https://doi.org/10.1109/TAP.2019.2905672
- S. Ma, T. Björninen, L. Sydänheimo, M.H. Voutilainen, L. Ukkonen, Double split rings as extremely small and tuneable antennas for brain implantable wireless medical microsystems. IEEE Trans. Antennas Propag. 69(2), 760–768 (2021). https://doi.org/10.1109/TAP.2020.3016459
- H. Bhamra, J. Tsai, Y. Huang, Q. Yuan, J.V. Shah et al., A subcubic millimeter wireless implantable intraocular pressure monitor microsystem. IEEE Trans. Biomed. Circuits Syst. 11(6), 1204–1215 (2017). https://doi.org/10.1109/TBCAS.2017.2755596
- H. Lee, J. Lee, H. Park, M.S. Nam, Y.J. Heo et al., Batteryless, miniaturized implantable glucose sensor using a fluorescent hydrogel. Sensors 21(24), 8464 (2021). https://doi.org/10.3390/s21248464
- S.S. Mosavinejad, P. Rezaei, A.A. Khazaei, A miniaturized and biocompatible dual-band implantable antenna for fully-passive wireless signal monitoring. AEU-Int. J. Electron. Commun. 154, 154303 (2022). https://doi.org/10.1016/j.aeue.2022.154303
- J.H. Lee, H. Kim, J.H. Kim, S.H. Lee, Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation. Lab Chip 16(6), 959–976 (2016). https://doi.org/10.1039/c5lc00842e
- S. Gong, W. Cheng, Toward soft skin-like wearable and implantable energy devices. Adv. Energy Mater. 7(23), 1700648 (2017). https://doi.org/10.1002/aenm.201700648
- C. Yang, Q. Wu, J. Liu, J. Mo, X. Li et al., Intelligent wireless theranostic contact lens for electrical sensing and regulation of intraocular pressure. Nat. Commun. 13(1), 2556 (2022). https://doi.org/10.1038/s41467-022-29860-x
- J. Lee, S.J. Ihle, G.S. Pellegrino, H. Kim, J. Yea et al., Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat. Electron. 4, 291–301 (2021). https://doi.org/10.1038/s41928-021-00557-1
- R. Lemdiasov, A. Venkatasubramanian, R. Jegadeesan, Estimating electric field and SAR in tissue in the proximity of RF coils, in Brain and Human Body Modeling (Springer, Cham, 2020), pp. 293–307. https://doi.org/10.1007/978-3-030-45623-8_18
- C. Miozzi, G. Saggio, E. Gruppioni, G. Marrocco, Near-field circular array for the transcutaneous telemetry of uhf RFID-based implantable medical devices. IEEE J. Electromagn. RF Microw. Med. Biol. 6(2), 219–227 (2022). https://doi.org/10.1109/JERM.2021.3111128
- B. John, C. Spink, M. Braunschweig, R. Ranjan, D. Schroeder et al., Optimisation of inductive telemetry links in an implantable medical device for a wireless range of 25 cm. Electron. Lett. 54(23), 1315–1316 (2018). https://doi.org/10.1049/el.2018.6074
- M. Lin, D. Qiu, C. Luo, B. Zhang, W. Xiao, Resonant topology design method for implantable wireless power transfer system. IET Power Electron. 14(4), 862–874 (2021). https://doi.org/10.1049/pel2.12070
- D.K. Biswas, M. Sinclair, J. Hyde, I. Mahbub, An NFC (near-field communication) based wireless power transfer system design with miniaturized receiver coil for optogenetic implants, in IEEE Texas Symposium on Wireless & Microwave Circuit and Systems (2018), pp. 1–5. https://doi.org/10.1109/WMCaS.2018.8400620
- J. Wang, M.P. Leach, E.G. Lim, Z. Wang, Z. Jiang et al., A conformal split-ring loop as a self-resonator for wireless power transfer. IEEE Access 8, 911–919 (2020). https://doi.org/10.1109/ACCESS.2019.2918640
- T. Zhang, H. Liang, Z. Wang, C. Qiu, Y.B. Peng et al., Piezoelectric ultrasound energy–harvesting device for deep brain stimulation and analgesia applications. Sci. Adv. 8(15), eabk0159 (2022). https://doi.org/10.1126/sciadv.abk0159
- R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi et al., Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365(6452), 491–494 (2019). https://doi.org/10.1126/science.aan3997
- X. Liu, Y. Wang, G. Wang, Y. Ma, Z. Zheng et al., An ultrasound-driven implantable wireless energy harvesting system using a triboelectric transducer. Matter 5(12), 4315–4331 (2022). https://doi.org/10.1016/j.matt.2022.08.016
- R. Jegadeesan, K. Agarwal, Y.X. Guo, S.C. Yen, N.V. Thakor, Wireless power delivery to flexible subcutaneous implants using capacitive coupling. IEEE Trans. Microw. Theory Tech. 65(1), 280–292 (2017). https://doi.org/10.1109/TMTT.2016.2615623
- R. Erfani, F. Marefat, A.M. Sodagar, P. Mohseni, Transcutaneous capacitive wireless power transfer (C-WPT) for biomedical implants, in IEEE International Symposium on Circuits and Systems (2017), pp. 1–4. https://doi.org/10.1109/ISCAS.2017.8050940
- A. Koruprolu, S. Nag, R. Erfani, P. Mohseni, Capacitive wireless power and data transfer for implantable medical devices, in IEEE Biomedical Circuits and Systems (2018), pp. 1–4. https://doi.org/10.1109/BIOCAS.2018.8584824
- S. Nag, A. Koruprolu, S.M. Saikh, R. Erfani, P. Mohseni, Auto-resonant tuning for capacitive power and data telemetry using flexible patches. IEEE Trans. Circuits Syst. II Express Briefs 67(10), 1804–1808 (2020). https://doi.org/10.1109/TCSII.2019.2955568
- Y. Yang, X.-J. Wei, J. Liu, Suitability of a thermoelectric power generator for implantable medical electronic devices. J. Phys. D Appl. Phys. 40(18), 5790–5800 (2007). https://doi.org/10.1088/0022-3727/40/18/042
- W. Jiang, T. Zhao, H. Liu, R. Jia, D. Niu et al., Laminated pyroelectric generator with spin coated transparent poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) electrodes for a flexible self-powered stimulator. RSC Adv. 8(27), 15134–15140 (2018). https://doi.org/10.1039/c8ra00491a
- D. Pankratov, L. Ohlsson, P. Gudmundsson, S. Halak, L. Ljunggren et al., Ex vivo electric power generation in human blood using an enzymatic fuel cell in a vein replica. RSC Adv. 6(74), 70215–70220 (2016). https://doi.org/10.1039/c6ra17122b
- D. Lee, S.H. Jeong, S. Yun, S. Kim, J. Sung et al., Totally implantable enzymatic biofuel cell and brain stimulator operating in bird through wireless communication. Biosens. Bioelectron. 171, 112746 (2021). https://doi.org/10.1016/j.bios.2020.112746
- F.D. Bono, A. Bontempi, N.D. Trani, D. Demarchi, A. Grattoni et al., Wireless power transfer closed-loop control for low-power active implantable medical devices, in IEEE Sensors (2022), p. 22362121. https://doi.org/10.1109/SENSORS52175.2022.9967268
- M. Alghrairi, N. Sulaiman, W.Z.W. Hasan, H. Jaafar, S. Mutashar, Efficient wireless power transmission to remote the sensor in restenosis coronary artery. Indones. J. Electr. Eng. Comput. Sci. 25(2), 771–779 (2022). https://doi.org/10.11591/ijeecs.v25.i2.pp771-779
- J. Bao, S. Hu, Z. Xie, G. Hu, Y. Lu et al., Optimization of the coupling coefficient of the inductive link for wireless power transfer to biomedical implants. Int. J. Antennas Propag. 2022, 8619514 (2022). https://doi.org/10.1155/2022/8619514
- A. Basir, I.A. Shah, H. Yoo, Sphere-shaped receiver coil for misalignment-resilient wireless power transfer systems for implantable devices. IEEE Trans. Antennas Propag. 70(9), 8368–8378 (2022). https://doi.org/10.1109/tap.2022.3161268
- A. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulos, P. Fisher et al., Wireless power transfer via strongly coupled magnetic resonances. Science 317(5834), 83–86 (2007). https://doi.org/10.1126/science.1143254
- Q. Hua, L.A. Rytoft, B.K. Kroyer, O. Rahbek, S.V. Kold et al., Design and in-vivo test of battery-free implantable temperature sensor based on magnetic resonant wireless power transfer, in IEEE Nordic Circuits and Systems Conference (2022), p. 22238838. https://doi.org/10.1109/NorCAS57515.2022.9934626
- A. Denisov, E. Yeatman, Ultrasonic versus inductive power delivery for miniature biomedical implants, in International Conference on Body Sensor Networks (2010), pp. 84–89. https://doi.org/10.1109/BSN.2010.27
- B.L. Turner, S. Senevirathne, K. Kilgour, D. McArt, M. Biggs et al., Ultrasound-powered implants: a critical review of piezoelectric material selection and applications. Adv. Healthc. Mater. 10(17), 2100986 (2021). https://doi.org/10.1002/adhm.202100986
- X. Wan, P. Chen, Z. Xu, X. Mo, H. Jin et al., Hybrid-piezoelectret based highly efficient ultrasonic energy harvester for implantable electronics. Adv. Funct. Mater. 32(24), 2200589 (2022). https://doi.org/10.1002/adfm.202200589
- J. Xing, H. Chen, L. Jiang, C. Zhao, Z. Tan et al., High performance BiFe0.9CO0.1O3 doped KNN-based lead-free ceramics for acoustic energy harvesting. Nano Energy 84, 105900 (2021). https://doi.org/10.1016/j.nanoen.2021.105900
- C.K. Jeong, J.H. Han, H. Palneedi, H. Park, G.-T. Hwang et al., Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. APL Mater. 5(7), 074102 (2017). https://doi.org/10.1063/1.4976803
- W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103(25), 257602 (2009). https://doi.org/10.1103/PhysRevLett.103.257602
- M. Yuan, L. Cheng, Q. Xu, W. Wu, S. Bai et al., Biocompatible nanogenerators through high piezoelectric coefficient 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3) TiO3 nanowires for in-vivo applications. Adv. Mater. 26(44), 7432–7437 (2014). https://doi.org/10.1002/adma.201402868
- M. Abazari, A. Safari, S.S.N. Bharadwaja, S. Trolier-McKinstry, Dielectric and piezoelectric properties of lead-free (Bi, Na) TiO3-based thin films. Appl. Phys. Lett. 96(8), 082903 (2010). https://doi.org/10.1063/1.3309706
- T. Rojac, A. Bencan, B. Malic, G. Tutuncu, J.L. Jones et al., BiFeO3 ceramics: processing, electrical, and electromechanical properties. J. Am. Ceram. Soc. 97(7), 1993–2011 (2014). https://doi.org/10.1111/jace.12982
- A. Proto, L. Rufer, S. Basrour, M. Penhaker, Modeling and measurement of an ultrasound power delivery system for charging implantable devices using an AIN-based pMUT as receiver. Micromachines (2022). https://doi.org/10.3390/mi13122127
- X. Xiao, X. Meng, D. Kim, S. Jeon, B.J. Park et al., Ultrasound-driven injectable and fully biodegradable triboelectric nanogenerators. Small Methods 7(6), e2201350 (2023). https://doi.org/10.1002/smtd.202201350
- D.-M. Lee, N. Rubab, I.-H. Hyun, W. Kang, Y.-J. Kim et al., Ultrasound-mediated triboelectric nanogenerator for powering on-demand transient electronics. Sci. Adv. 8(1), eabl8423 (2022). https://doi.org/10.1126/sciadv.abl8423
- A.I. Al-Kalbani, M.R. Yuce, J.M. Redouté, A biosafety comparison between capacitive and inductive coupling in biomedical implants. IEEE Antenn. Wirel. Propag. Lett. 13, 1168–1171 (2014). https://doi.org/10.1109/LAWP.2014.2328375
- J. Huang, Y. Zhou, Z. Ning, H. Gharavi, Wireless power transfer and energy harvesting: current status and future prospects. IEEE Wirel. Commun. (2019). https://doi.org/10.1109/mwc.2019.1800378
- T. Ghomian, S. Mehraeen, Survey of energy scavenging for wearable and implantable devices. Energy 178, 33–49 (2019). https://doi.org/10.1016/j.energy.2019.04.088
- Y. Rao, T. Bechtold, D. Hohlfeld, Design optimization of a packaged thermoelectric generator for electrically active implants. Microelectron. Reliab. 139, 114843 (2022). https://doi.org/10.1016/j.microrel.2022.114843
- A. Zhang, L. Zhu, A promising way of energy harvesting for implantable medical devices—thermoelectric generator (TEG), in IEEE International Conference on Smart City Green Energy (2021), pp. 22–25. https://doi.org/10.1109/ICSCGE53744.2021.9654315
- M. Sattar, W.H. Yeo, Recent advances in materials for wearable thermoelectric generators and biosensing devices. Materials 15(12), 4315 (2022). https://doi.org/10.3390/ma15124315
- J. Weber, K. Potje-Kamloth, F. Haase, P. Detemple, F. Völklein et al., Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics. Sens. Actuators A 132(1), 325–330 (2006). https://doi.org/10.1016/j.sna.2006.04.054
- A. Thakre, A. Kumar, H.C. Song, D.Y. Jeong, J. Ryu, Pyroelectric energy conversion and its applications-flexible energy harvesters and sensors. Sensors 19(9), 2170 (2019). https://doi.org/10.3390/s19092170
- Y. Zou, L. Bo, Z. Li, Recent progress in human body energy harvesting for smart bioelectronic system. Fundam. Res. 1(3), 364–382 (2021). https://doi.org/10.1016/j.fmre.2021.05.002
- J. Zhou, C. Liu, H. Yu, N. Tang, C. Lei, Research progresses and application of biofuel cells based on immobilized enzymes. Appl. Sci. (2023). https://doi.org/10.3390/app13105917
- P.P. Mercier, A.P. Chandrakasan, Ultra-Low-Power Short-Range Radios (Springer, Switzerland, 2015)
- Y. Zhong, B. Qian, Y. Zhu, Z. Ren, J. Deng et al., Development of an implantable wireless and batteryless bladder pressure monitor system for lower urinary tract dysfunction. IEEE J. Trans. Eng. Health Med. 8, 2943170 (2020). https://doi.org/10.1109/JTEHM.2019.2943170
- A. Lazaro, M. Boada, R. Villarino, D. Girbau, Study on the reading of energy-harvested implanted NFC tags using mobile phones. IEEE Access 8, 2200–2221 (2020). https://doi.org/10.1109/ACCESS.2019.2962570
- C. Gong, D. Liu, Z. Miao, W. Wang, M. Li, An NFC on two-coil WPT link for implantable biomedical sensors under ultra-weak coupling. Sensors 17(6), 1358 (2017). https://doi.org/10.3390/s17061358
- A. Kiourti, RFID antennas for body-area applications: From wearables to implants. IEEE Antennas Propag. Mag. 60(5), 14–25 (2018). https://doi.org/10.1109/MAP.2018.2859167
- Y. Zhang, C. Liu, X. Liu, K. Zhang, A miniaturized circularly polarized implantable RFID antenna for biomedical applications. Int. J. RF Microw. Comput. Aided Eng. 30(3), e22105 (2020). https://doi.org/10.1002/mmce.22105
- M.J. Weber, Y. Yoshihara, A. Sawaby, J. Charthad, T.C. Chang et al., A miniaturized single-transducer implantable pressure sensor with time-multiplexed ultrasonic data and power links. IEEE J. Solid-State Circuits 53(4), 1089–1101 (2018). https://doi.org/10.1109/JSSC.2017.2782086
- J. Lee, E. Mok, J. Huang, L. Cui, A.H. Lee et al., An implantable wireless network of distributed microscale sensors for neural applications, in International IEEE/EMBS Conference on Neural Engineering (2019), pp. 871–874. https://doi.org/10.1109/NER.2019.8717023
- P. Feng, M. Maslik, T.G. Constandinou, EM-lens enhanced power transfer and multi-node data transmission for implantable medical devices, in IEEE Biomedical Circuits and Systems Conference (2019), p. 8919152. https://doi.org/10.1109/BIOCAS.2019.8919152
- B.M.G. Rosa, S. Anastasova, G.Z. Yang, NFC-powered implantable device for on-body parameters monitoring with secure data exchange link to a medical blockchain type of network. IEEE Trans. Cybern. 53(1), 31–43 (2023). https://doi.org/10.1109/TCYB.2021.3088711
- C.C. Collins, Miniature passive pressure transensor for implanting in the eye. IEEE Trans. Biomed. Eng. 14(2), 74–83 (1967). https://doi.org/10.1109/TBME.1967.4502474
- Y. Peng, B.M.F. Rahman, T. Wang, G. Wang, X. Liu et al., Characterization of a passive telemetric system for ISM band pressure sensors. J. Electron. Test. 30(6), 665–671 (2014). https://doi.org/10.1007/s10836-014-5485-1
- N. Yusof, B. Bais, N. Soin, M.R. Buyong, B.Y. Majlis, Fabrication of planar microcoils for LC-MEMS pressure sensor, in IEEE International Conference on Semiconductor Electronics (2020), pp. 164–167. https://doi.org/10.1109/ICSE49846.2020.9166875
- C. Fearday, T.A. Ward, N. Soin, U. Hashim, N.M. Karim, Development of an inductor incorporated onto a carbon fiber mav structural component. Microsyst. Technol. 23(5), 1433–1442 (2017). https://doi.org/10.1007/s00542-016-2958-4
- X. Huang, Y. Cao, 3D-solenoid MEMS RF inductor design in standard CMOS technology. Electr. Eng. Comput. Sci. 4 (2023). https://people.eecs.berkeley.edu/~pister/245/project/CaoHuang.pdf
- T. Harpster, S. Hauvespre, M. Dokmeci, B. Stark, A. Vosoughi et al., A passive humidity monitoring system for in-situ remote wireless testing of micropackages, in Proceedings IEEE Annual International Workshop on Micro Electro Mechanical Systems (2000), pp. 335–340. https://doi.org/10.1109/MEMSYS.2000.838539
- P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M.M.-C. Cheng et al., Generalized parity–time symmetry condition for enhanced sensor telemetry. Nat. Electron. 1(5), 297–304 (2018). https://doi.org/10.1038/s41928-018-0072-6
- B.-B. Zhou, W.-J. Deng, L.-F. Wang, L. Dong, Q.-A. Huang, Enhancing the remote distance of LC passive wireless sensors by parity-time symmetry breaking. Phys. Rev. Appl. 13(6), 064022 (2020). https://doi.org/10.1103/PhysRevApplied.13.064022
- C. Zhang, L.-F. Wang, Q.-A. Huang, Extending the remote distance of LC passive wireless sensors via strongly coupled magnetic resonances. J. Micromech. Microeng. 24(12), 125021 (2014). https://doi.org/10.1088/0960-1317/24/12/125021
- L. Dong, L.F. Wang, Q.A. Huang, Applying metamaterial-based repeater in LC passive wireless sensors to enhance readout. IEEE Sens. J. 18(4), 1755–1760 (2018). https://doi.org/10.1109/JSEN.2017.2787984
- L. Dong, L.F. Wang, Q.A. Huang, A passive wireless adaptive repeater for enhancing the readout of lc passive wireless sensors. IEEE Microw. Wirel. Compon. Lett. 26(7), 543–545 (2016). https://doi.org/10.1109/LMWC.2016.2575923
- M.Z. Xie, L.F. Wang, B.B. Zhou, Q.A. Huang, An impedance matching method for lc passive wireless sensors. IEEE Sens. J. 20(22), 13833–13841 (2020). https://doi.org/10.1109/JSEN.2020.3004146
- D.F. Williams, On the mechanisms of biocompatibility. Biomaterials 29(20), 2941–2953 (2008). https://doi.org/10.1016/j.biomaterials.2008.04.023
- A. Johnston, A. Callanan, Recent methods for modifying mechanical properties of tissue-engineered scaffolds for clinical applications. Biomimetics 8(2), 205 (2023). https://doi.org/10.3390/biomimetics8020205
- C.J. Cyron, J.D. Humphrey, Growth and remodeling of load-bearing biological soft tissues. Meccanica 52(3), 645–664 (2017). https://doi.org/10.1007/s11012-016-0472-5
- Y. Chen, Y.S. Kim, B.W. Tillman, W.H. Yeo, Y. Chun, Advances in materials for recent low-profile implantable bioelectronics. Materials 11(4), 522 (2018). https://doi.org/10.3390/ma11040522
- K. Scholten, E. Meng, Materials for microfabricated implantable devices: A review. Lab Chip 15(22), 4256–4272 (2015). https://doi.org/10.1039/C5LC00809C
- K. Bazaka, M. Jacob, Implantable devices: issues and challenges. Electronics 2(4), 1–34 (2012). https://doi.org/10.3390/electronics2010001
- S. Bauer, P. Schmuki, K. von der Mark, J. Park, Engineering biocompatible implant surfaces: Part I: materials and surfaces. Prog. Mater. Sci. 58(3), 261–326 (2013). https://doi.org/10.1016/j.pmatsci.2012.09.001
- S. Choi, H. Lee, R. Ghaffari, T. Hyeon, D.-H. Kim, Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 28(22), 4203–4218 (2016). https://doi.org/10.1002/adma.201504150
- J. Liu, H. Zheng, P.S. Poh, H.G. Machens, A.F. Schilling, Hydrogels for engineering of perfusable vascular networks. Int. J. Mol. Sci. 16(7), 15997–16016 (2015). https://doi.org/10.3390/ijms160715997
- M.C. Salvadori, A.R. Vaz, L.L. Melo, M. Cattani, Nanostructured gold thin films: Young modulus measurement. Surf. Rev. Lett. 10(4), 571–575 (2003). https://doi.org/10.1142/S0218625X03005323
- M.A. Hopcroft, W.D. Nix, T.W. Kenny, What is the young’s modulus of silicon? J. Microelectromech. Syst. 19(2), 229–238 (2010). https://doi.org/10.1109/jmems.2009.2039697
- B.E. Song, Soft, biocompatible materials and skin-like electronics as wearable devices: an interview with John A. Rogers. Natl. Sci. Rev. 10(1), nwac191 (2023). https://doi.org/10.1093/nsr/nwac191
- S. Huang, Y. Liu, C.F. Guo, Z. Ren, A highly stretchable and fatigue-free transparent electrode based on an in-plane buckled au nanotrough network. Adv. Electron. Mater. 3(3), 1600534 (2017). https://doi.org/10.1002/aelm.201600534
- Y. Ling, Q. Lyu, Q. Zhai, B. Zhu, S. Gong et al., Design of stretchable holey gold biosensing electrode for real-time cell monitoring. ACS Sens. 5(10), 3165–3171 (2020). https://doi.org/10.1021/acssensors.0c01297
- Q. Zhai, S. Gong, Y. Wang, Q. Lyu, Y. Liu et al., Enokitake mushroom-like standing gold nanowires toward wearable noninvasive bimodal glucose and strain sensing. ACS Appl. Mater. Interfaces 11(10), 9724–9729 (2019). https://doi.org/10.1021/acsami.8b19383
- Y. Wu, R. Zhen, H. Liu, S. Liu, Z. Deng et al., Liquid metal fiber composed of a tubular channel as a high-performance strain sensor. J. Mater. Chem. C 5(47), 12483–12491 (2017). https://doi.org/10.1039/C7TC04311B
- A. Hirsch, H.O. Michaud, A.P. Gerratt, S. de Mulatier, S.P. Lacour, Intrinsically stretchable biphasic (solid–liquid) thin metal films. Adv. Mater. 28(22), 4507–4512 (2016). https://doi.org/10.1002/adma.201506234
- L. Wang, S. Xie, Z. Wang, F. Liu, Y. Yang et al., Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Biomed. Eng. 4(2), 159–171 (2020). https://doi.org/10.1038/s41551-019-0462-8
- S. He, A. Zhang, D. Wang, H. Song, H. Chu et al., An implantable flexible fiber generator without encapsulation made from differentially oxidized carbon nanotube fibers. Chem. Eng. J. 441, 136106 (2022). https://doi.org/10.1016/j.cej.2022.136106
- J.S. Chae, H. Lee, S.-H. Kim, N.R. Chodankar, S.-M. Kang et al., A durable high-energy implantable energy storage system with binder-free electrodes useable in body fluids. J. Mater. Chem. A 10(9), 4611–4620 (2022). https://doi.org/10.1039/D1TA09427K
- X. Jin, G. Li, T. Xu, L. Su, D. Yan et al., Fully integrated flexible biosensor for wearable continuous glucose monitoring. Biosens. Bioelectron. 196, 113760 (2022). https://doi.org/10.1016/j.bios.2021.113760
- H. Yang, Z. Qian, J. Wang, J. Feng, C. Tang et al., Carbon nanotube array-based flexible multifunctional electrodes to record electrophysiology and ions on the cerebral cortex in real time. Adv. Funct. Mater. 32(38), 2204794 (2022). https://doi.org/10.1002/adfm.202204794
- X. Zhang, N. Sheng, L. Wang, Y. Tan, C. Liu et al., Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors. Mater. Horiz. 6(2), 326–333 (2019). https://doi.org/10.1039/C8MH01188E
- Q. Zhang, X. Liu, L. Duan, G. Gao, A DNA-inspired hydrogel mechanoreceptor with skin-like mechanical behavior. J. Mater. Chem. A 9(3), 1835–1844 (2021). https://doi.org/10.1039/D0TA11437E
- Y. Gao, S. Gu, F. Jia, G. Gao, A skin-matchable, recyclable and biofriendly strain sensor based on a hydrolyzed keratin-containing hydrogel. J. Mater. Chem. A 8(45), 24175–24183 (2020). https://doi.org/10.1039/D0TA07883B
- Y. Gao, Y. Wang, Y. Dai, Q. Wang, P. Xiang et al., Amylopectin based hydrogel strain sensor with good biocompatibility, high toughness and stable anti-swelling in multiple liquid media. Eur. Polym. J. 164, 110981 (2022). https://doi.org/10.1016/j.eurpolymj.2021.110981
- D. Zhang, Y. Tang, Y. Zhang, F. Yang, Y. Liu et al., Highly stretchable, self-adhesive, biocompatible, conductive hydrogels as fully polymeric strain sensors. J. Mater. Chem. A 8(39), 20474–20485 (2020). https://doi.org/10.1039/D0TA07390C
- Z. Chen, T. Zhang, C.T. Chen, S. Yang, Z. Lv et al., Mechanically and electrically biocompatible hydrogel ionotronic fibers for fabricating structurally stable implants and enabling noncontact physioelectrical modulation. Mater. Horiz. 9(6), 1735–1749 (2022). https://doi.org/10.1039/d2mh00296e
- Y. Zhang, S. Ye, L. Cao, Z. Lv, J. Ren et al., Natural silk spinning-inspired meso-assembly-processing engineering strategy for fabricating soft tissue-mimicking biomaterials. Adv. Funct. Mater. 32(27), 2200267 (2022). https://doi.org/10.1002/adfm.202200267
- S. Choi, S.I. Han, D. Jung, H.J. Hwang, C. Lim et al., Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13(11), 1048–1056 (2018). https://doi.org/10.1038/s41565-018-0226-8
- Y. Cai, J. Qin, W. Li, A. Tyagi, Z. Liu et al., A stretchable, conformable, and biocompatible graphene strain sensor based on a structured hydrogel for clinical application. J. Mater. Chem. A 7(47), 27099–27109 (2019). https://doi.org/10.1039/C9TA11084D
- S. Park, H. Yuk, R. Zhao, Y.S. Yim, E.W. Woldeghebriel et al., Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity. Nat. Commun. 12, 3435 (2021). https://doi.org/10.1038/s41467-021-23802-9
- Z. Ma, Q. Huang, Q. Xu, Q. Zhuang, X. Zhao et al., Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 20(6), 859–868 (2021). https://doi.org/10.1038/s41563-020-00902-3
- T. Li, M. Qu, C. Carlos, L. Gu, F. Jin et al., High-performance poly(vinylidene difluoride)/dopamine core/shell piezoelectric nanofiber and its application for biomedical sensors. Adv. Mater. 33(3), e2006093 (2021). https://doi.org/10.1002/adma.202006093
- S. Jeong, S. Heo, M. Kang, H.-J. Kim, Mechanical durability enhancement of gold-nanosheet stretchable electrodes for wearable human bio-signal detection. Mater. Des. 196, 109178 (2020). https://doi.org/10.1016/j.matdes.2020.109178
- Y. Wang, S. Gong, D. Gómez, Y. Ling, L.W. Yap et al., Unconventional janus properties of enokitake-like gold nanowire films. ACS Nano 12(8), 8717–8722 (2018). https://doi.org/10.1021/acsnano.8b04748
- C. Wang, C. Wang, Z. Huang, S. Xu, Materials and structures toward soft electronics. Adv. Mater. 30(50), 1801368 (2018). https://doi.org/10.1002/adma.201801368
- M.D. Dickey, Emerging applications of liquid metals featuring surface oxides. ACS Appl. Mater. Interfaces 6(21), 18369–18379 (2014). https://doi.org/10.1021/am5043017
- M. Pumera, Graphene in biosensing. Mater. Today 14(7–8), 308–315 (2011). https://doi.org/10.1016/S1369-7021(11)70160-2
- M. Pumera, A. Ambrosi, A. Bonanni, E.L.K. Chng, H.L. Poh, Graphene for electrochemical sensing and biosensing. TrAC Trends Anal. Chem. 29(9), 954–965 (2010). https://doi.org/10.1016/j.trac.2010.05.011
- C.-M. Tîlmaciu, M.C. Morris, Carbon nanotube biosensors. Front. Chem. 3, 59 (2015). https://doi.org/10.3389/fchem.2015.00059
- S.K. Smart, A.I. Cassady, G.Q. Lu, D.J. Martin, The biocompatibility of carbon nanotubes. Carbon 44(6), 1034–1047 (2006). https://doi.org/10.1016/j.carbon.2005.10.011
- C.-W. Lam, J.T. James, R. McCluskey, R.L. Hunter, Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77(1), 126–134 (2004). https://doi.org/10.1093/toxsci/kfg243
- A. Bianco, K. Kostarelos, M. Prato, Making carbon nanotubes biocompatible and biodegradable. Chem. Commun. 47(37), 10182–10188 (2011). https://doi.org/10.1039/C1CC13011K
- K. Kostarelos, The long and short of carbon nanotube toxicity. Nat. Biotechnol. 26(7), 774–776 (2008). https://doi.org/10.1038/nbt0708-774
- V. Biju, Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev. 43(3), 744–764 (2014). https://doi.org/10.1039/C3CS60273G
- L. Lacerda, H. Ali-Boucetta, M.A. Herrero, G. Pastorin, A. Bianco et al., Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes. Nanomedicine 3(2), 149–161 (2008). https://doi.org/10.2217/17435889.3.2.149
- M. Shim, N.W.S. Kam, R.J. Chen, Y. Li, H. Dai, Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett. 2(4), 285–288 (2002). https://doi.org/10.1021/nl015692j
- J. Muller, M. Delos, N. Panin, V. Rabolli, F. Huaux et al., Absence of carcinogenic response to multiwall carbon nanotubes in a 2-year bioassay in the peritoneal cavity of the rat. Toxicol. Sci. 110(2), 442–448 (2009). https://doi.org/10.1093/toxsci/kfp100
- C. Pang, C. Lee, K.-Y. Suh, Recent advances in flexible sensors for wearable and implantable devices. J. Appl. Polym. Sci. 130(3), 1429–1441 (2013). https://doi.org/10.1002/app.39461
- M. Tanaka, K. Sato, E. Kitakami, S. Kobayashi, T. Hoshiba et al., Design of biocompatible and biodegradable polymers based on intermediate water concept. Polym. J. 47(2), 114–121 (2015). https://doi.org/10.1038/pj.2014.129
- N.A. Kamel, Bio-piezoelectricity: fundamentals and applications in tissue engineering and regenerative medicine. Biophys. Rev. 14, 717–733 (2022). https://doi.org/10.1007/s12551-022-00969-z
- M. Ali, M.J. Bathaei, E. Istif, S.N.H. Karimi, L. Beker, Biodegradable piezoelectric polymers: recent advancements in materials and applications. Adv. Healthc. Mater. 12(23), e2300318 (2023). https://doi.org/10.1002/adhm.202300318
- K. Kapat, Q.T.H. Shubhra, M. Zhou, S. Leeuwenburgh, Piezoelectric nano-biomaterials for biomedicine and tissue regeneration. Adv. Funct. Mater. 30(44), 1909045 (2020). https://doi.org/10.1002/adfm.201909045
- E.K. Akdogan, M. Allahverdi, A. Safari, Piezoelectric composites for sensor and actuator applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(5), 746–775 (2005). https://doi.org/10.1109/TUFFC.2005.1503962
- L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin et al., Properties and applications of the beta phase poly(vinylidene fluoride). Polymers 10(3), 228 (2018). https://doi.org/10.3390/polym10030228
- D. Das, Z. Zhang, T. Winkler, M. Mour, C.I. Günter et al., Schilling. in Bioresorption and Degradation of Biomaterials. (Springer, Berlin Heidelberg, 2012), pp. 317–333.
- G.D. Cha, D. Kang, J. Lee, D.-H. Kim, Bioresorbable electronic implants: history, materials, fabrication, devices, and clinical applications. Adv. Healthc. Mater. 8(11), 1801660 (2019). https://doi.org/10.1002/adhm.201801660
- Y.S. Choi, R.T. Yin, A. Pfenniger, J. Koo, R. Avila et al., Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 39, 1228–1238 (2021). https://doi.org/10.1038/s41587-021-00948-x
- J. Koo, M.R. MacEwan, S.-K. Kang, S.M. Won, M. Stephen et al., Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 24(12), 1830–1836 (2018). https://doi.org/10.1038/s41591-018-0196-2
- D. Lu, T.-L. Liu, J.-K. Chang, D. Peng, Y. Zhang et al., Transient light-emitting diodes constructed from semiconductors and transparent conductors that biodegrade under physiological conditions. Adv. Mater. 31(42), 1902739 (2019). https://doi.org/10.1002/adma.201902739
- J.-Y. Bae, E.-J. Gwak, G.-S. Hwang, H.W. Hwang, D.-J. Lee et al., Biodegradable metallic glass for stretchable transient electronics. Adv. Sci. 8(10), 2004029 (2021). https://doi.org/10.1002/advs.202004029
- L. Wang, C. Lu, S. Yang, P. Sun, Y. Wang et al., A fully biodegradable and self-electrified device for neuroregenerative medicine. Sci. Adv. 6(50), eabc6686 (2020). https://doi.org/10.1126/sciadv.abc6686
- K.J. Yu, D. Kuzum, S.-W. Hwang, B.H. Kim, H. Juul et al., Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 15(7), 782–791 (2016). https://doi.org/10.1038/nmat4624
- S.-K. Kang, R.K.J. Murphy, S.-W. Hwang, S.M. Lee, D.V. Harburg et al., Bioresorbable silicon electronic sensors for the brain. Nature 530(7588), 71–76 (2016). https://doi.org/10.1038/nature16492
- J. Shin, Z. Liu, W. Bai, Y. Liu, Y. Yan et al., Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Sci. Adv. 5(7), eaaw1899 (2019). https://doi.org/10.1126/sciadv.aaw1899
- J. Shin, Y. Yan, W. Bai, Y. Xue, P. Gamble et al., Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nat. Biomed. Eng. 3(1), 37–46 (2019). https://doi.org/10.1038/s41551-018-0300-4
- Y.S. Choi, J. Koo, Y.J. Lee, G. Lee, R. Avila et al., Biodegradable polyanhydrides as encapsulation layers for transient electronics. Adv. Funct. Mater. 30(31), 2000941 (2020). https://doi.org/10.1002/adfm.202000941
- K. Xu, S. Li, S. Dong, S. Zhang, G. Pan et al., Bioresorbable electrode array for electrophysiological and pressure signal recording in the brain. Adv. Healthc. Mater. 8(15), 1801649 (2019). https://doi.org/10.1002/adhm.201801649
- Q. Yang, T. Wei, R.T. Yin, M. Wu, Y. Xu et al., Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat. Mater. 20(11), 1559–1570 (2021). https://doi.org/10.1038/s41563-021-01051-x
- H.-S. Kim, S.M. Yang, T.-M. Jang, N. Oh, H.-S. Kim et al., Bioresorbable silicon nanomembranes and iron catalyst nanops for flexible, transient electrochemical dopamine monitors. Adv. Healthc. Mater. 7(24), 1801071 (2018). https://doi.org/10.1002/adhm.201801071
- S.M. Won, J. Koo, K.E. Crawford, A.D. Mickle, Y. Xue et al., Natural wax for transient electronics. Adv. Funct. Mater. 28(32), 1801819 (2018). https://doi.org/10.1002/adfm.201801819
- S. Zhang, Z. Zhou, J. Zhong, Z. Shi, Y. Mao et al., Body-integrated, enzyme-triggered degradable, silk-based mechanical sensors for customized health/fitness monitoring and in situ treatment. Adv. Sci. 7(13), 1903802 (2020). https://doi.org/10.1002/advs.201903802
- M. Valko, H. Morris, T.D.M. Cronin, Metals, toxicity and oxidative stress. Curr. Med. Chem. 12(10), 1161–1208 (2005). https://doi.org/10.2174/0929867053764635
- A.T. Jan, M. Azam, K. Siddiqui, A. Ali, I. Choi et al., Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci. 16(12), 29592–29630 (2015). https://doi.org/10.3390/ijms161226183
- K. Jomova, M. Valko, Advances in metal-induced oxidative stress and human disease. Toxicology 283(2), 65–87 (2011). https://doi.org/10.1016/j.tox.2011.03.001
- M. Valko, C.J. Rhodes, J. Moncol, M. Izakovic, M. Mazur, Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160(1), 1–40 (2006). https://doi.org/10.1016/j.cbi.2005.12.009
- M. Valko, K. Jomova, C.J. Rhodes, K. Kuča, K. Musílek, Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch. Toxicol. 90, 1–37 (2016). https://doi.org/10.1007/s00204-015-1579-5
- M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew, K.N. Beeregowda, Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7(2), 60–72 (2014). https://doi.org/10.2478/intox-2014-0009
- R. Li, L. Wang, D. Kong, L. Yin, Recent progress on biodegradable materials and transient electronics. Bioact. Mater. 3(3), 322–333 (2018). https://doi.org/10.1016/j.bioactmat.2017.12.001
- L. Yin, H. Cheng, S. Mao, R. Haasch, Y. Liu et al., Dissolvable metals for transient electronics. Adv. Funct. Mater. 24(5), 645–658 (2014). https://doi.org/10.1002/adfm.201301847
- J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327(5973), 1603–1607 (2010). https://doi.org/10.1126/science.1182383
- D.-H. Kim, J.-H. Ahn, W.M. Choi, H.-S. Kim, T.-H. Kim et al., Stretchable and foldable silicon integrated circuits. Science 320(5875), 507–511 (2008). https://doi.org/10.1126/science.1154367
- A.A. La Mattina, S. Mariani, G. Barillaro, Bioresorbable materials on the rise: from electronic components and physical sensors to in vivo monitoring systems. Adv. Sci. 7(4), 1902872 (2020). https://doi.org/10.1002/advs.201902872
- N. Lucas, C. Bienaime, C. Belloy, M. Queneudec, F. Silvestre et al., Polymer biodegradation: mechanisms and estimation techniques—a review. Chemosphere 73(4), 429–442 (2008). https://doi.org/10.1016/j.chemosphere.2008.06.064
- W.S. Pietrzak, D. Sarver, M. Verstynen, Bioresorbable implants—practical considerations. Bone 19(1, Supplement 1), S109–S119 (1996). https://doi.org/10.1016/S8756-3282(96)00139-1
- M. Irimia-Vladu, “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem. Soc. Rev. 43(2), 588–610 (2014). https://doi.org/10.1039/C3CS60235D
- Y.S. Choi, Y.-Y. Hsueh, J. Koo, Q. Yang, R. Avila et al., Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nat. Commun. 11, 5990 (2020). https://doi.org/10.1038/s41467-020-19660-6
- C.M. Boutry, L. Beker, Y. Kaizawa, C. Vassos, H. Tran et al., Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3(1), 47–57 (2019). https://doi.org/10.1038/s41551-018-0336-5
- I.E. Araci, B. Su, S.R. Quake, Y. Mandel, An implantable microfluidic device for self-monitoring of intraocular pressure. Nat. Med. 20(9), 1074–1078 (2014). https://doi.org/10.1038/nm.3621
- J.O. Lee, H. Park, J. Du, A. Balakrishna, O. Chen et al., A microscale optical implant for continuous in vivo monitoring of intraocular pressure. Microsyst. Nanoeng. 3, 17057 (2017). https://doi.org/10.1038/micronano.2017.57
- A.K. Locke, A.K. Means, P. Dong, T.J. Nichols, G.L. Coté et al., A layer-by-layer approach to retain a fluorescent glucose sensing assay within the cavity of a hydrogel membrane. ACS Appl. Bio Mater. 1(5), 1319–1327 (2018). https://doi.org/10.1021/acsabm.8b00267
- W. Bai, J. Shin, R. Fu, I. Kandela, D. Lu et al., Bioresorbable photonic devices for the spectroscopic characterization of physiological status and neural activity. Nat. Biomed. Eng. 3(8), 644–654 (2019). https://doi.org/10.1038/s41551-019-0435-y
- E.J. Curry, K. Ke, M.T. Chorsi, K.S. Wrobel, A.N. Miller et al., Biodegradable piezoelectric force sensor. Proc. Natl. Acad. Sci. 115(5), 909–914 (2018). https://doi.org/10.1073/pnas.1710874115
- V. Narasimhan, J.O. Lee, J. Du, B. Ndjamen, D. Sretavan et al., Black silicon as a multifunctional material for medical implants: First demonstrated use in in-vivo intraocular pressure sensing, in International Conference on Solid-State Sensors, Actuators and Microsystems (2017), pp. 387–390. https://doi.org/10.1109/TRANSDUCERS.2017.7994068
- R.H. Siddique, L. Liedtke, H. Park, S.Y. Lee, H. Raniwala et al., Nanophotonic sensor implants with 3D hybrid periodic-amorphous photonic crystals for wide-angle monitoring of long-term in-vivo intraocular pressure, in IEEE International Electron Devices Meeting (2020), pp. 14.5.1–14.5.4. https://doi.org/10.1109/IEDM13553.2020.9372016
- J. Fernandes, Y.H. Kwon, J.J. Kim, H. Liu, H. Jiang, High contrast grating based strain sensor for intraocular applications. J. Microelectromech. Syst. 27(4), 599–601 (2018). https://doi.org/10.1109/JMEMS.2018.2834875
References
A.P.F. Turner, Biosensors: sense and sensibility. Chem. Soc. Rev. 42(8), 3184–3196 (2013). https://doi.org/10.1039/C3CS35528D
D. Seo, R.M. Neely, K. Shen, U. Singhal, E. Alon et al., Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91(3), 529–539 (2016). https://doi.org/10.1016/j.neuron.2016.06.034
A. Burton, S.N. Obaid, A. Vázquez-Guardado, M.B. Schmit, T. Stuart et al., Wireless, battery-free subdermally implantable photometry systems for chronic recording of neural dynamics. Proc. Natl. Acad. Sci. 117(6), 2835–2845 (2020). https://doi.org/10.1073/pnas.1920073117
R. Herbert, H.-R. Lim, B. Rigo, W.-H. Yeo, Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics. Sci. Adv. 8(19), eabm1175 (2022). https://doi.org/10.1126/sciadv.abm1175
S. Hu, H. Chen, S. Jia, X. Xiao, Y. Cao et al., A wireless passive extra-arterial implantable blood pressure monitoring sensing system for rats. Microsyst. Technol. 27(7), 2595–2603 (2021). https://doi.org/10.1007/s00542-020-05011-4
S. Islam, A. Kim, Ultrasonic energy harvesting scheme for implantable active stent., in International Microwave Biomedical Conference (2018) pp. 70–72. https://doi.org/10.1109/IMBIOC.2018.8428943
R. Herbert, S. Mishra, H.-R. Lim, H. Yoo, W.-H. Yeo, Fully printed, wireless, stretchable implantable biosystem toward batteryless, real-time monitoring of cerebral aneurysm hemodynamics. Adv. Sci. 6(18), 1901034 (2019). https://doi.org/10.1002/advs.201901034
C.-C. Yeh, S.-H. Lo, M.-X. Xu, Y.-J. Yang, Fabrication of a flexible wireless pressure sensor for intravascular blood pressure monitoring. Microelectron. Eng. 213, 55–61 (2019). https://doi.org/10.1016/j.mee.2019.04.009
R. Herbert, M. Elsisy, B. Rigo, H.R. Lim, H. Kim et al., Fully implantable batteryless soft platforms with printed nanomaterial-based arterial stiffness sensors for wireless continuous monitoring of restenosis in real time. Nano Today 46, 101557 (2022). https://doi.org/10.1016/j.nantod.2022.101557
S. Nappi, L. Gargale, F. Naccarata, P.P. Valentini, G. Marrocco, A fractal-RFID based sensing tattoo for the early detection of cracks in implanted metal prostheses. IEEE J. Electromagn. RF Microw. Med. Biol. 6(1), 29–40 (2022). https://doi.org/10.1109/JERM.2021.3108945
H. Mohammadbagherpoor, P. Ierymenko, M.H. Craver, J. Carlson, D. Dausch et al., An implantable wireless inductive sensor system designed to monitor prosthesis motion in total joint replacement surgery. IEEE Trans. Biomed. Eng. 67(6), 1718–1726 (2020). https://doi.org/10.1109/tbme.2019.2943808
P. Westerhoff, F. Graichen, A. Bender, A. Rohlmann, G. Bergmann, An instrumented implant for in vivo measurement of contact forces and contact moments in the shoulder joint. Med. Eng. Phys. 31(2), 207–213 (2009). https://doi.org/10.1016/j.medengphy.2008.07.011
Y. Jang, S.M. Kim, K.J. Kim, H.J. Sim, B.-J. Kim et al., Self-powered coiled carbon-nanotube yarn sensor for gastric electronics. ACS Sens. 4(11), 2893–2899 (2019). https://doi.org/10.1021/acssensors.9b01180
X. Pei, H. Zhang, Y. Zhou, L. Zhou, J. Fu, Stretchable, self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions. Mater. Horiz. 7(7), 1872–1882 (2020). https://doi.org/10.1039/D0MH00361A
F. Stauffer, Q. Zhang, K. Tybrandt, B. Llerena Zambrano, J. Hengsteler et al., Soft electronic strain sensor with chipless wireless readout: toward real-time monitoring of bladder volume. Adv. Mater. Technol. 3(6), 1800031 (2018). https://doi.org/10.1002/admt.201800031
J. Kim, A.S. Campbell, B.E.-F. de Ávila, J. Wang, Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37(4), 389–406 (2019). https://doi.org/10.1038/s41587-019-0045-y
A. Carnicer-Lombarte, S.-T. Chen, G.G. Malliaras, D.G. Barone, Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics. Front. Bioeng. Biotechnol. 9, 622524 (2021). https://doi.org/10.3389/fbioe.2021.622524
J.K. Nguyen, D.J. Park, J.L. Skousen, A.E. Hess-Dunning, D.J. Tyler et al., Mechanically-compliant intracortical implants reduce the neuroinflammatory response. J. Neural Eng. 11(5), 056014 (2014). https://doi.org/10.1088/1741-2560/11/5/056014
I.R. Minev, P. Musienko, A. Hirsch, Q. Barraud, N. Wenger et al., Electronic dura mater for long-term multimodal neural interfaces. Science 347(6218), 159–163 (2015). https://doi.org/10.1126/science.1260318
S. Kwon, Y.T. Kwon, Y.S. Kim, H.R. Lim, M. Mahmood et al., Skin-conformal, soft material-enabled bioelectronic system with minimized motion artifacts for reliable health and performance monitoring of athletes. Biosens. Bioelectron. 151, 111981 (2020). https://doi.org/10.1016/j.bios.2019.111981
S.-K. Kang, J. Koo, Y.K. Lee, J.A. Rogers, Advanced materials and devices for bioresorbable electronics. Acc. Chem. Res. 51(5), 988–998 (2018). https://doi.org/10.1021/acs.accounts.7b00548
M.L. Bernard, Pacing without wires: leadless cardiac pacing. Ochsner J. 16(3), 238–242 (2016)
A.L. Benabid, S. Chabardes, J. Mitrofanis, P. Pollak, Deep brain stimulation of the subthalamic nucleus for the treatment of parkinson’s disease. Lancet Neurol. 8(1), 67–81 (2009). https://doi.org/10.1016/S1474-4422(08)70291-6
C.J. Van Rooden, S.G. Molhoek, F.R. Rosendaal, M.J. Schalij, A.E. Meinders et al., Incidence and risk factors of early venous thrombosis associated with permanent pacemaker leads. J. Cardiovasc. Electrophysiol. 15(11), 1258–1262 (2004). https://doi.org/10.1046/j.1540-8167.2004.04081.x
M. Banaszewski, J. Stępińska, Right heart perforation by pacemaker leads. Arch. Med. Sci. 8(1), 11–13 (2012). https://doi.org/10.5114/aoms.2012.27273
E. Buch, N.G. Boyle, P.H. Belott, Pacemaker and defibrillator lead extraction. Circulation 123(11), e378–e380 (2011). https://doi.org/10.1161/CIRCULATIONAHA.110.987354
R. Luechinger, V.A. Zeijlemaker, E.M. Pedersen, P. Mortensen, E. Falk et al., In vivo heating of pacemaker leads during magnetic resonance imaging. Eur. Heart J. 26(4), 376–383 (2004). https://doi.org/10.1093/eurheartj/ehi009
N. Bhatia, M. El-Chami, Leadless pacemakers: a contemporary review. J. Geriatr. Cardiol. 15(4), 249–253 (2018). https://doi.org/10.11909/j.issn.1671-5411.2018.04.002
P. Blomstedt, M.I. Hariz, Hardware-related complications of deep brain stimulation: a ten year experience. Acta Neurochir. 147(10), 1061–1064 (2005). https://doi.org/10.1007/s00701-005-0576-5
S. Vaddiraju, I. Tomazos, D.J. Burgess, F.C. Jain, F. Papadimitrakopoulos, Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens. Bioelectr. 25(7), 1553–1565 (2010). https://doi.org/10.1016/j.bios.2009.12.001
G. Reach, G.S. Wilson, Can continuous glucose monitoring be used for the treatment of diabetes? Anal. Chem. 64(6), 381A-386A (1992). https://doi.org/10.1021/ac00030a001
J. Zhang, R. Das, J. Zhao, N. Mirzai, J. Mercer et al., Battery-free and wireless technologies for cardiovascular implantable medical devices. Adv. Mater. Technol. 7(6), 2101086 (2022). https://doi.org/10.1002/admt.202101086
X. Huang, L. Wang, H. Wang, B. Zhang, X. Wang et al., Materials strategies and device architectures of emerging power supply devices for implantable bioelectronics. Small 16(15), 1902827 (2020). https://doi.org/10.1002/smll.201902827
A. Zurbuchen, A. Haeberlin, A. Pfenniger, L. Bereuter, J. Schaerer et al., Towards batteryless cardiac implantable electronic devices—the swiss way. IEEE Trans. Biomed. Circuits Syst. 11(1), 78–86 (2017). https://doi.org/10.1109/TBCAS.2016.2580658
S.H. Lee, Y.B. Lee, B.H. Kim, C. Lee, Y.M. Cho et al., Implantable batteryless device for on-demand and pulsatile insulin administration. Nat. Commun. 8(1), 15032 (2017). https://doi.org/10.1038/ncomms15032
A. Cadei, A. Dionisi, E. Sardini, M. Serpelloni, Kinetic and thermal energy harvesters for implantable medical devices and biomedical autonomous sensors. Meas. Sci. Technol. 25(1), 012003 (2013). https://doi.org/10.1088/0957-0233/25/1/012003
H. Zhang, X.-S. Zhang, X. Cheng, Y. Liu, M. Han et al., A flexible and implantable piezoelectric generator harvesting energy from the pulsation of ascending aorta: in vitro and in vivo studies. Nano Energy 12, 296–304 (2015). https://doi.org/10.1016/j.nanoen.2014.12.038
R. Sun, S.C. Carreira, Y. Chen, C. Xiang, L. Xu et al., Stretchable piezoelectric sensing systems for self-powered and wireless health monitoring. Adv. Mater. Technol. 4(5), 1900100 (2019). https://doi.org/10.1002/admt.201900100
Z. Xu, C. Jin, A. Cabe, D. Escobedo, A. Gruslova et al., Implantable cardiac kirigami-inspired lead-based energy harvester fabricated by enhanced piezoelectric composite film. Adv. Healthc. Mater. 10(8), 2002100 (2021). https://doi.org/10.1002/adhm.202002100
J. Li, L. Kang, Y. Long, H. Wei, Y. Yu et al., Implanted battery-free direct-current micro-power supply from in vivo breath energy harvesting. ACS Appl. Mater. Interfaces 10(49), 42030–42038 (2018). https://doi.org/10.1021/acsami.8b15619
M. Sahu, S. Šafranko, S. Hajra, A.M. Padhan, P. Živković et al., Development of triboelectric nanogenerator and mechanical energy harvesting using argon ion-implanted kapton, zinc oxide and kapton. Mater. Lett. 301, 130290 (2021). https://doi.org/10.1016/j.matlet.2021.130290
A. Zurbuchen, A. Haeberlin, L. Bereuter, A. Pfenniger, S. Bosshard et al., Endocardial energy harvesting by electromagnetic induction. IEEE Trans. Biomed. Eng. 65(2), 424–430 (2018). https://doi.org/10.1109/TBME.2017.2773568
L. Bereuter, S. Williner, F. Pianezzi, B. Bissig, S. Buecheler et al., Energy harvesting by subcutaneous solar cells: a long-term study on achievable energy output. Ann. Biomed. Eng. 45(5), 1172–1180 (2017). https://doi.org/10.1007/s10439-016-1774-4
T. Wu, J.M. Redouté, M.R. Yuce, Subcutaneous solar energy harvesting for self-powered wireless implantable sensor systems. in IEEE Engineering in Medicine and Biology Society (2018), pp. 4657–4660. https://doi.org/10.1109/EMBC.2018.8513146
E. Moon, D. Blaauw, J.D. Phillips, Subcutaneous photovoltaic infrared energy harvesting for bio-implantable devices. IEEE Trans. Electron Devices 64(5), 2432–2437 (2017). https://doi.org/10.1109/TED.2017.2681694
J. Kim, J. Seo, D. Jung, T. Lee, H. Ju et al., Active photonic wireless power transfer into live tissues. Proc. Natl. Acad. Sci. 117(29), 16856–16863 (2020). https://doi.org/10.1073/pnas.2002201117
F. Li, D. Li, F. Yan, Improvement of detection sensitivity of microbubbles as sensors to detect ambient pressure. Sensors 18(12), 4083 (2018). https://doi.org/10.3390/s18124083
H. Jiang, I. Woodhouse, V. Selvamani, J.L. Ma, R. Tang et al., A wireless implantable passive intra-abdominal pressure sensing scheme via ultrasonic imaging of a microfluidic device. IEEE Trans. Biomed. Eng. 68(3), 747–758 (2021). https://doi.org/10.1109/TBME.2020.3015485
H. Jiang, N.M. Carter, A. Zareei, S. Nejati, J.F. Waimin et al., A wireless implantable strain sensing scheme using ultrasound imaging of highly stretchable zinc oxide/poly dimethylacrylamide nanocomposite hydrogel. ACS Appl. Bio Mater. 3(7), 4012–4024 (2020). https://doi.org/10.1021/acsabm.9b01032
M. Farooq, T. Iqbal, P. Vazquez, N. Farid, S. Thampi et al., Thin-film flexible wireless pressure sensor for continuous pressure monitoring in medical applications. Sensors 20(22), 6653 (2020). https://doi.org/10.3390/s20226653
P. Yeon, M.G. Kim, O. Brand, M. Ghoovanloo, Optimal design of passive resonating wireless sensors for wearable and implantable devices. IEEE Sens. J. 19(17), 7460–7470 (2019). https://doi.org/10.1109/JSEN.2019.2915299
M. Yang, Z. Ye, N. Alsaab, M. Farhat, P.Y. Chen, In-vitro demonstration of ultra-reliable, wireless and batteryless implanted intracranial sensors operated on loci of exceptional points. IEEE Trans. Biomed. Circuits Syst. 16(2), 287–295 (2022). https://doi.org/10.1109/TBCAS.2022.3164697
Z. Dong, Z. Li, F. Yang, C.-W. Qiu, J.S. Ho, Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point. Nat. Electron. 2, 335–342 (2019). https://doi.org/10.1038/s41928-019-0284-4
R. Feiner, T. Dvir, Tissue–electronics interfaces: from implantable devices to engineered tissues. Nat. Rev. Mater. 3(1), 17076 (2017). https://doi.org/10.1038/natrevmats.2017.76
J.M. Lane, J.E. Mait, A. Unnanuntana, B.P. Hirsch, A.D. Shaffer et al., Materials in Fracture Fixation (Elsevier, Oxford, 2011), pp.219–235
P. Thevenot, W. Hu, L. Tang, Surface chemistry influences implant biocompatibility. Curr. Top. Med. Chem. 8(4), 270–280 (2008). https://doi.org/10.2174/156802608783790901
S. Kamath, D. Bhattacharyya, C. Padukudru, R.B. Timmons, L. Tang, Surface chemistry influences implant-mediated host tissue responses. J. Biomed. Mater. Res. A 86(3), 617–626 (2008). https://doi.org/10.1002/jbm.a.31649
G. Cattaneo, C. Bräuner, G. Siekmeyer, A. Ding, S. Bauer et al., In vitro investigation of chemical properties and biocompatibility of neurovascular braided implants. J. Mater. Sci.-Mater. Med. 30, 67 (2019). https://doi.org/10.1007/s10856-019-6270-6
D.K. Freeman, S.J. Byrnes, Optimal frequency for wireless power transmission into the body: efficiency versus received power. IEEE Trans. Antennas Propag. 67(6), 4073–4083 (2019). https://doi.org/10.1109/TAP.2019.2905672
S. Ma, T. Björninen, L. Sydänheimo, M.H. Voutilainen, L. Ukkonen, Double split rings as extremely small and tuneable antennas for brain implantable wireless medical microsystems. IEEE Trans. Antennas Propag. 69(2), 760–768 (2021). https://doi.org/10.1109/TAP.2020.3016459
H. Bhamra, J. Tsai, Y. Huang, Q. Yuan, J.V. Shah et al., A subcubic millimeter wireless implantable intraocular pressure monitor microsystem. IEEE Trans. Biomed. Circuits Syst. 11(6), 1204–1215 (2017). https://doi.org/10.1109/TBCAS.2017.2755596
H. Lee, J. Lee, H. Park, M.S. Nam, Y.J. Heo et al., Batteryless, miniaturized implantable glucose sensor using a fluorescent hydrogel. Sensors 21(24), 8464 (2021). https://doi.org/10.3390/s21248464
S.S. Mosavinejad, P. Rezaei, A.A. Khazaei, A miniaturized and biocompatible dual-band implantable antenna for fully-passive wireless signal monitoring. AEU-Int. J. Electron. Commun. 154, 154303 (2022). https://doi.org/10.1016/j.aeue.2022.154303
J.H. Lee, H. Kim, J.H. Kim, S.H. Lee, Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation. Lab Chip 16(6), 959–976 (2016). https://doi.org/10.1039/c5lc00842e
S. Gong, W. Cheng, Toward soft skin-like wearable and implantable energy devices. Adv. Energy Mater. 7(23), 1700648 (2017). https://doi.org/10.1002/aenm.201700648
C. Yang, Q. Wu, J. Liu, J. Mo, X. Li et al., Intelligent wireless theranostic contact lens for electrical sensing and regulation of intraocular pressure. Nat. Commun. 13(1), 2556 (2022). https://doi.org/10.1038/s41467-022-29860-x
J. Lee, S.J. Ihle, G.S. Pellegrino, H. Kim, J. Yea et al., Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat. Electron. 4, 291–301 (2021). https://doi.org/10.1038/s41928-021-00557-1
R. Lemdiasov, A. Venkatasubramanian, R. Jegadeesan, Estimating electric field and SAR in tissue in the proximity of RF coils, in Brain and Human Body Modeling (Springer, Cham, 2020), pp. 293–307. https://doi.org/10.1007/978-3-030-45623-8_18
C. Miozzi, G. Saggio, E. Gruppioni, G. Marrocco, Near-field circular array for the transcutaneous telemetry of uhf RFID-based implantable medical devices. IEEE J. Electromagn. RF Microw. Med. Biol. 6(2), 219–227 (2022). https://doi.org/10.1109/JERM.2021.3111128
B. John, C. Spink, M. Braunschweig, R. Ranjan, D. Schroeder et al., Optimisation of inductive telemetry links in an implantable medical device for a wireless range of 25 cm. Electron. Lett. 54(23), 1315–1316 (2018). https://doi.org/10.1049/el.2018.6074
M. Lin, D. Qiu, C. Luo, B. Zhang, W. Xiao, Resonant topology design method for implantable wireless power transfer system. IET Power Electron. 14(4), 862–874 (2021). https://doi.org/10.1049/pel2.12070
D.K. Biswas, M. Sinclair, J. Hyde, I. Mahbub, An NFC (near-field communication) based wireless power transfer system design with miniaturized receiver coil for optogenetic implants, in IEEE Texas Symposium on Wireless & Microwave Circuit and Systems (2018), pp. 1–5. https://doi.org/10.1109/WMCaS.2018.8400620
J. Wang, M.P. Leach, E.G. Lim, Z. Wang, Z. Jiang et al., A conformal split-ring loop as a self-resonator for wireless power transfer. IEEE Access 8, 911–919 (2020). https://doi.org/10.1109/ACCESS.2019.2918640
T. Zhang, H. Liang, Z. Wang, C. Qiu, Y.B. Peng et al., Piezoelectric ultrasound energy–harvesting device for deep brain stimulation and analgesia applications. Sci. Adv. 8(15), eabk0159 (2022). https://doi.org/10.1126/sciadv.abk0159
R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi et al., Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365(6452), 491–494 (2019). https://doi.org/10.1126/science.aan3997
X. Liu, Y. Wang, G. Wang, Y. Ma, Z. Zheng et al., An ultrasound-driven implantable wireless energy harvesting system using a triboelectric transducer. Matter 5(12), 4315–4331 (2022). https://doi.org/10.1016/j.matt.2022.08.016
R. Jegadeesan, K. Agarwal, Y.X. Guo, S.C. Yen, N.V. Thakor, Wireless power delivery to flexible subcutaneous implants using capacitive coupling. IEEE Trans. Microw. Theory Tech. 65(1), 280–292 (2017). https://doi.org/10.1109/TMTT.2016.2615623
R. Erfani, F. Marefat, A.M. Sodagar, P. Mohseni, Transcutaneous capacitive wireless power transfer (C-WPT) for biomedical implants, in IEEE International Symposium on Circuits and Systems (2017), pp. 1–4. https://doi.org/10.1109/ISCAS.2017.8050940
A. Koruprolu, S. Nag, R. Erfani, P. Mohseni, Capacitive wireless power and data transfer for implantable medical devices, in IEEE Biomedical Circuits and Systems (2018), pp. 1–4. https://doi.org/10.1109/BIOCAS.2018.8584824
S. Nag, A. Koruprolu, S.M. Saikh, R. Erfani, P. Mohseni, Auto-resonant tuning for capacitive power and data telemetry using flexible patches. IEEE Trans. Circuits Syst. II Express Briefs 67(10), 1804–1808 (2020). https://doi.org/10.1109/TCSII.2019.2955568
Y. Yang, X.-J. Wei, J. Liu, Suitability of a thermoelectric power generator for implantable medical electronic devices. J. Phys. D Appl. Phys. 40(18), 5790–5800 (2007). https://doi.org/10.1088/0022-3727/40/18/042
W. Jiang, T. Zhao, H. Liu, R. Jia, D. Niu et al., Laminated pyroelectric generator with spin coated transparent poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) electrodes for a flexible self-powered stimulator. RSC Adv. 8(27), 15134–15140 (2018). https://doi.org/10.1039/c8ra00491a
D. Pankratov, L. Ohlsson, P. Gudmundsson, S. Halak, L. Ljunggren et al., Ex vivo electric power generation in human blood using an enzymatic fuel cell in a vein replica. RSC Adv. 6(74), 70215–70220 (2016). https://doi.org/10.1039/c6ra17122b
D. Lee, S.H. Jeong, S. Yun, S. Kim, J. Sung et al., Totally implantable enzymatic biofuel cell and brain stimulator operating in bird through wireless communication. Biosens. Bioelectron. 171, 112746 (2021). https://doi.org/10.1016/j.bios.2020.112746
F.D. Bono, A. Bontempi, N.D. Trani, D. Demarchi, A. Grattoni et al., Wireless power transfer closed-loop control for low-power active implantable medical devices, in IEEE Sensors (2022), p. 22362121. https://doi.org/10.1109/SENSORS52175.2022.9967268
M. Alghrairi, N. Sulaiman, W.Z.W. Hasan, H. Jaafar, S. Mutashar, Efficient wireless power transmission to remote the sensor in restenosis coronary artery. Indones. J. Electr. Eng. Comput. Sci. 25(2), 771–779 (2022). https://doi.org/10.11591/ijeecs.v25.i2.pp771-779
J. Bao, S. Hu, Z. Xie, G. Hu, Y. Lu et al., Optimization of the coupling coefficient of the inductive link for wireless power transfer to biomedical implants. Int. J. Antennas Propag. 2022, 8619514 (2022). https://doi.org/10.1155/2022/8619514
A. Basir, I.A. Shah, H. Yoo, Sphere-shaped receiver coil for misalignment-resilient wireless power transfer systems for implantable devices. IEEE Trans. Antennas Propag. 70(9), 8368–8378 (2022). https://doi.org/10.1109/tap.2022.3161268
A. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulos, P. Fisher et al., Wireless power transfer via strongly coupled magnetic resonances. Science 317(5834), 83–86 (2007). https://doi.org/10.1126/science.1143254
Q. Hua, L.A. Rytoft, B.K. Kroyer, O. Rahbek, S.V. Kold et al., Design and in-vivo test of battery-free implantable temperature sensor based on magnetic resonant wireless power transfer, in IEEE Nordic Circuits and Systems Conference (2022), p. 22238838. https://doi.org/10.1109/NorCAS57515.2022.9934626
A. Denisov, E. Yeatman, Ultrasonic versus inductive power delivery for miniature biomedical implants, in International Conference on Body Sensor Networks (2010), pp. 84–89. https://doi.org/10.1109/BSN.2010.27
B.L. Turner, S. Senevirathne, K. Kilgour, D. McArt, M. Biggs et al., Ultrasound-powered implants: a critical review of piezoelectric material selection and applications. Adv. Healthc. Mater. 10(17), 2100986 (2021). https://doi.org/10.1002/adhm.202100986
X. Wan, P. Chen, Z. Xu, X. Mo, H. Jin et al., Hybrid-piezoelectret based highly efficient ultrasonic energy harvester for implantable electronics. Adv. Funct. Mater. 32(24), 2200589 (2022). https://doi.org/10.1002/adfm.202200589
J. Xing, H. Chen, L. Jiang, C. Zhao, Z. Tan et al., High performance BiFe0.9CO0.1O3 doped KNN-based lead-free ceramics for acoustic energy harvesting. Nano Energy 84, 105900 (2021). https://doi.org/10.1016/j.nanoen.2021.105900
C.K. Jeong, J.H. Han, H. Palneedi, H. Park, G.-T. Hwang et al., Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. APL Mater. 5(7), 074102 (2017). https://doi.org/10.1063/1.4976803
W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103(25), 257602 (2009). https://doi.org/10.1103/PhysRevLett.103.257602
M. Yuan, L. Cheng, Q. Xu, W. Wu, S. Bai et al., Biocompatible nanogenerators through high piezoelectric coefficient 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3) TiO3 nanowires for in-vivo applications. Adv. Mater. 26(44), 7432–7437 (2014). https://doi.org/10.1002/adma.201402868
M. Abazari, A. Safari, S.S.N. Bharadwaja, S. Trolier-McKinstry, Dielectric and piezoelectric properties of lead-free (Bi, Na) TiO3-based thin films. Appl. Phys. Lett. 96(8), 082903 (2010). https://doi.org/10.1063/1.3309706
T. Rojac, A. Bencan, B. Malic, G. Tutuncu, J.L. Jones et al., BiFeO3 ceramics: processing, electrical, and electromechanical properties. J. Am. Ceram. Soc. 97(7), 1993–2011 (2014). https://doi.org/10.1111/jace.12982
A. Proto, L. Rufer, S. Basrour, M. Penhaker, Modeling and measurement of an ultrasound power delivery system for charging implantable devices using an AIN-based pMUT as receiver. Micromachines (2022). https://doi.org/10.3390/mi13122127
X. Xiao, X. Meng, D. Kim, S. Jeon, B.J. Park et al., Ultrasound-driven injectable and fully biodegradable triboelectric nanogenerators. Small Methods 7(6), e2201350 (2023). https://doi.org/10.1002/smtd.202201350
D.-M. Lee, N. Rubab, I.-H. Hyun, W. Kang, Y.-J. Kim et al., Ultrasound-mediated triboelectric nanogenerator for powering on-demand transient electronics. Sci. Adv. 8(1), eabl8423 (2022). https://doi.org/10.1126/sciadv.abl8423
A.I. Al-Kalbani, M.R. Yuce, J.M. Redouté, A biosafety comparison between capacitive and inductive coupling in biomedical implants. IEEE Antenn. Wirel. Propag. Lett. 13, 1168–1171 (2014). https://doi.org/10.1109/LAWP.2014.2328375
J. Huang, Y. Zhou, Z. Ning, H. Gharavi, Wireless power transfer and energy harvesting: current status and future prospects. IEEE Wirel. Commun. (2019). https://doi.org/10.1109/mwc.2019.1800378
T. Ghomian, S. Mehraeen, Survey of energy scavenging for wearable and implantable devices. Energy 178, 33–49 (2019). https://doi.org/10.1016/j.energy.2019.04.088
Y. Rao, T. Bechtold, D. Hohlfeld, Design optimization of a packaged thermoelectric generator for electrically active implants. Microelectron. Reliab. 139, 114843 (2022). https://doi.org/10.1016/j.microrel.2022.114843
A. Zhang, L. Zhu, A promising way of energy harvesting for implantable medical devices—thermoelectric generator (TEG), in IEEE International Conference on Smart City Green Energy (2021), pp. 22–25. https://doi.org/10.1109/ICSCGE53744.2021.9654315
M. Sattar, W.H. Yeo, Recent advances in materials for wearable thermoelectric generators and biosensing devices. Materials 15(12), 4315 (2022). https://doi.org/10.3390/ma15124315
J. Weber, K. Potje-Kamloth, F. Haase, P. Detemple, F. Völklein et al., Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics. Sens. Actuators A 132(1), 325–330 (2006). https://doi.org/10.1016/j.sna.2006.04.054
A. Thakre, A. Kumar, H.C. Song, D.Y. Jeong, J. Ryu, Pyroelectric energy conversion and its applications-flexible energy harvesters and sensors. Sensors 19(9), 2170 (2019). https://doi.org/10.3390/s19092170
Y. Zou, L. Bo, Z. Li, Recent progress in human body energy harvesting for smart bioelectronic system. Fundam. Res. 1(3), 364–382 (2021). https://doi.org/10.1016/j.fmre.2021.05.002
J. Zhou, C. Liu, H. Yu, N. Tang, C. Lei, Research progresses and application of biofuel cells based on immobilized enzymes. Appl. Sci. (2023). https://doi.org/10.3390/app13105917
P.P. Mercier, A.P. Chandrakasan, Ultra-Low-Power Short-Range Radios (Springer, Switzerland, 2015)
Y. Zhong, B. Qian, Y. Zhu, Z. Ren, J. Deng et al., Development of an implantable wireless and batteryless bladder pressure monitor system for lower urinary tract dysfunction. IEEE J. Trans. Eng. Health Med. 8, 2943170 (2020). https://doi.org/10.1109/JTEHM.2019.2943170
A. Lazaro, M. Boada, R. Villarino, D. Girbau, Study on the reading of energy-harvested implanted NFC tags using mobile phones. IEEE Access 8, 2200–2221 (2020). https://doi.org/10.1109/ACCESS.2019.2962570
C. Gong, D. Liu, Z. Miao, W. Wang, M. Li, An NFC on two-coil WPT link for implantable biomedical sensors under ultra-weak coupling. Sensors 17(6), 1358 (2017). https://doi.org/10.3390/s17061358
A. Kiourti, RFID antennas for body-area applications: From wearables to implants. IEEE Antennas Propag. Mag. 60(5), 14–25 (2018). https://doi.org/10.1109/MAP.2018.2859167
Y. Zhang, C. Liu, X. Liu, K. Zhang, A miniaturized circularly polarized implantable RFID antenna for biomedical applications. Int. J. RF Microw. Comput. Aided Eng. 30(3), e22105 (2020). https://doi.org/10.1002/mmce.22105
M.J. Weber, Y. Yoshihara, A. Sawaby, J. Charthad, T.C. Chang et al., A miniaturized single-transducer implantable pressure sensor with time-multiplexed ultrasonic data and power links. IEEE J. Solid-State Circuits 53(4), 1089–1101 (2018). https://doi.org/10.1109/JSSC.2017.2782086
J. Lee, E. Mok, J. Huang, L. Cui, A.H. Lee et al., An implantable wireless network of distributed microscale sensors for neural applications, in International IEEE/EMBS Conference on Neural Engineering (2019), pp. 871–874. https://doi.org/10.1109/NER.2019.8717023
P. Feng, M. Maslik, T.G. Constandinou, EM-lens enhanced power transfer and multi-node data transmission for implantable medical devices, in IEEE Biomedical Circuits and Systems Conference (2019), p. 8919152. https://doi.org/10.1109/BIOCAS.2019.8919152
B.M.G. Rosa, S. Anastasova, G.Z. Yang, NFC-powered implantable device for on-body parameters monitoring with secure data exchange link to a medical blockchain type of network. IEEE Trans. Cybern. 53(1), 31–43 (2023). https://doi.org/10.1109/TCYB.2021.3088711
C.C. Collins, Miniature passive pressure transensor for implanting in the eye. IEEE Trans. Biomed. Eng. 14(2), 74–83 (1967). https://doi.org/10.1109/TBME.1967.4502474
Y. Peng, B.M.F. Rahman, T. Wang, G. Wang, X. Liu et al., Characterization of a passive telemetric system for ISM band pressure sensors. J. Electron. Test. 30(6), 665–671 (2014). https://doi.org/10.1007/s10836-014-5485-1
N. Yusof, B. Bais, N. Soin, M.R. Buyong, B.Y. Majlis, Fabrication of planar microcoils for LC-MEMS pressure sensor, in IEEE International Conference on Semiconductor Electronics (2020), pp. 164–167. https://doi.org/10.1109/ICSE49846.2020.9166875
C. Fearday, T.A. Ward, N. Soin, U. Hashim, N.M. Karim, Development of an inductor incorporated onto a carbon fiber mav structural component. Microsyst. Technol. 23(5), 1433–1442 (2017). https://doi.org/10.1007/s00542-016-2958-4
X. Huang, Y. Cao, 3D-solenoid MEMS RF inductor design in standard CMOS technology. Electr. Eng. Comput. Sci. 4 (2023). https://people.eecs.berkeley.edu/~pister/245/project/CaoHuang.pdf
T. Harpster, S. Hauvespre, M. Dokmeci, B. Stark, A. Vosoughi et al., A passive humidity monitoring system for in-situ remote wireless testing of micropackages, in Proceedings IEEE Annual International Workshop on Micro Electro Mechanical Systems (2000), pp. 335–340. https://doi.org/10.1109/MEMSYS.2000.838539
P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M.M.-C. Cheng et al., Generalized parity–time symmetry condition for enhanced sensor telemetry. Nat. Electron. 1(5), 297–304 (2018). https://doi.org/10.1038/s41928-018-0072-6
B.-B. Zhou, W.-J. Deng, L.-F. Wang, L. Dong, Q.-A. Huang, Enhancing the remote distance of LC passive wireless sensors by parity-time symmetry breaking. Phys. Rev. Appl. 13(6), 064022 (2020). https://doi.org/10.1103/PhysRevApplied.13.064022
C. Zhang, L.-F. Wang, Q.-A. Huang, Extending the remote distance of LC passive wireless sensors via strongly coupled magnetic resonances. J. Micromech. Microeng. 24(12), 125021 (2014). https://doi.org/10.1088/0960-1317/24/12/125021
L. Dong, L.F. Wang, Q.A. Huang, Applying metamaterial-based repeater in LC passive wireless sensors to enhance readout. IEEE Sens. J. 18(4), 1755–1760 (2018). https://doi.org/10.1109/JSEN.2017.2787984
L. Dong, L.F. Wang, Q.A. Huang, A passive wireless adaptive repeater for enhancing the readout of lc passive wireless sensors. IEEE Microw. Wirel. Compon. Lett. 26(7), 543–545 (2016). https://doi.org/10.1109/LMWC.2016.2575923
M.Z. Xie, L.F. Wang, B.B. Zhou, Q.A. Huang, An impedance matching method for lc passive wireless sensors. IEEE Sens. J. 20(22), 13833–13841 (2020). https://doi.org/10.1109/JSEN.2020.3004146
D.F. Williams, On the mechanisms of biocompatibility. Biomaterials 29(20), 2941–2953 (2008). https://doi.org/10.1016/j.biomaterials.2008.04.023
A. Johnston, A. Callanan, Recent methods for modifying mechanical properties of tissue-engineered scaffolds for clinical applications. Biomimetics 8(2), 205 (2023). https://doi.org/10.3390/biomimetics8020205
C.J. Cyron, J.D. Humphrey, Growth and remodeling of load-bearing biological soft tissues. Meccanica 52(3), 645–664 (2017). https://doi.org/10.1007/s11012-016-0472-5
Y. Chen, Y.S. Kim, B.W. Tillman, W.H. Yeo, Y. Chun, Advances in materials for recent low-profile implantable bioelectronics. Materials 11(4), 522 (2018). https://doi.org/10.3390/ma11040522
K. Scholten, E. Meng, Materials for microfabricated implantable devices: A review. Lab Chip 15(22), 4256–4272 (2015). https://doi.org/10.1039/C5LC00809C
K. Bazaka, M. Jacob, Implantable devices: issues and challenges. Electronics 2(4), 1–34 (2012). https://doi.org/10.3390/electronics2010001
S. Bauer, P. Schmuki, K. von der Mark, J. Park, Engineering biocompatible implant surfaces: Part I: materials and surfaces. Prog. Mater. Sci. 58(3), 261–326 (2013). https://doi.org/10.1016/j.pmatsci.2012.09.001
S. Choi, H. Lee, R. Ghaffari, T. Hyeon, D.-H. Kim, Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 28(22), 4203–4218 (2016). https://doi.org/10.1002/adma.201504150
J. Liu, H. Zheng, P.S. Poh, H.G. Machens, A.F. Schilling, Hydrogels for engineering of perfusable vascular networks. Int. J. Mol. Sci. 16(7), 15997–16016 (2015). https://doi.org/10.3390/ijms160715997
M.C. Salvadori, A.R. Vaz, L.L. Melo, M. Cattani, Nanostructured gold thin films: Young modulus measurement. Surf. Rev. Lett. 10(4), 571–575 (2003). https://doi.org/10.1142/S0218625X03005323
M.A. Hopcroft, W.D. Nix, T.W. Kenny, What is the young’s modulus of silicon? J. Microelectromech. Syst. 19(2), 229–238 (2010). https://doi.org/10.1109/jmems.2009.2039697
B.E. Song, Soft, biocompatible materials and skin-like electronics as wearable devices: an interview with John A. Rogers. Natl. Sci. Rev. 10(1), nwac191 (2023). https://doi.org/10.1093/nsr/nwac191
S. Huang, Y. Liu, C.F. Guo, Z. Ren, A highly stretchable and fatigue-free transparent electrode based on an in-plane buckled au nanotrough network. Adv. Electron. Mater. 3(3), 1600534 (2017). https://doi.org/10.1002/aelm.201600534
Y. Ling, Q. Lyu, Q. Zhai, B. Zhu, S. Gong et al., Design of stretchable holey gold biosensing electrode for real-time cell monitoring. ACS Sens. 5(10), 3165–3171 (2020). https://doi.org/10.1021/acssensors.0c01297
Q. Zhai, S. Gong, Y. Wang, Q. Lyu, Y. Liu et al., Enokitake mushroom-like standing gold nanowires toward wearable noninvasive bimodal glucose and strain sensing. ACS Appl. Mater. Interfaces 11(10), 9724–9729 (2019). https://doi.org/10.1021/acsami.8b19383
Y. Wu, R. Zhen, H. Liu, S. Liu, Z. Deng et al., Liquid metal fiber composed of a tubular channel as a high-performance strain sensor. J. Mater. Chem. C 5(47), 12483–12491 (2017). https://doi.org/10.1039/C7TC04311B
A. Hirsch, H.O. Michaud, A.P. Gerratt, S. de Mulatier, S.P. Lacour, Intrinsically stretchable biphasic (solid–liquid) thin metal films. Adv. Mater. 28(22), 4507–4512 (2016). https://doi.org/10.1002/adma.201506234
L. Wang, S. Xie, Z. Wang, F. Liu, Y. Yang et al., Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Biomed. Eng. 4(2), 159–171 (2020). https://doi.org/10.1038/s41551-019-0462-8
S. He, A. Zhang, D. Wang, H. Song, H. Chu et al., An implantable flexible fiber generator without encapsulation made from differentially oxidized carbon nanotube fibers. Chem. Eng. J. 441, 136106 (2022). https://doi.org/10.1016/j.cej.2022.136106
J.S. Chae, H. Lee, S.-H. Kim, N.R. Chodankar, S.-M. Kang et al., A durable high-energy implantable energy storage system with binder-free electrodes useable in body fluids. J. Mater. Chem. A 10(9), 4611–4620 (2022). https://doi.org/10.1039/D1TA09427K
X. Jin, G. Li, T. Xu, L. Su, D. Yan et al., Fully integrated flexible biosensor for wearable continuous glucose monitoring. Biosens. Bioelectron. 196, 113760 (2022). https://doi.org/10.1016/j.bios.2021.113760
H. Yang, Z. Qian, J. Wang, J. Feng, C. Tang et al., Carbon nanotube array-based flexible multifunctional electrodes to record electrophysiology and ions on the cerebral cortex in real time. Adv. Funct. Mater. 32(38), 2204794 (2022). https://doi.org/10.1002/adfm.202204794
X. Zhang, N. Sheng, L. Wang, Y. Tan, C. Liu et al., Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors. Mater. Horiz. 6(2), 326–333 (2019). https://doi.org/10.1039/C8MH01188E
Q. Zhang, X. Liu, L. Duan, G. Gao, A DNA-inspired hydrogel mechanoreceptor with skin-like mechanical behavior. J. Mater. Chem. A 9(3), 1835–1844 (2021). https://doi.org/10.1039/D0TA11437E
Y. Gao, S. Gu, F. Jia, G. Gao, A skin-matchable, recyclable and biofriendly strain sensor based on a hydrolyzed keratin-containing hydrogel. J. Mater. Chem. A 8(45), 24175–24183 (2020). https://doi.org/10.1039/D0TA07883B
Y. Gao, Y. Wang, Y. Dai, Q. Wang, P. Xiang et al., Amylopectin based hydrogel strain sensor with good biocompatibility, high toughness and stable anti-swelling in multiple liquid media. Eur. Polym. J. 164, 110981 (2022). https://doi.org/10.1016/j.eurpolymj.2021.110981
D. Zhang, Y. Tang, Y. Zhang, F. Yang, Y. Liu et al., Highly stretchable, self-adhesive, biocompatible, conductive hydrogels as fully polymeric strain sensors. J. Mater. Chem. A 8(39), 20474–20485 (2020). https://doi.org/10.1039/D0TA07390C
Z. Chen, T. Zhang, C.T. Chen, S. Yang, Z. Lv et al., Mechanically and electrically biocompatible hydrogel ionotronic fibers for fabricating structurally stable implants and enabling noncontact physioelectrical modulation. Mater. Horiz. 9(6), 1735–1749 (2022). https://doi.org/10.1039/d2mh00296e
Y. Zhang, S. Ye, L. Cao, Z. Lv, J. Ren et al., Natural silk spinning-inspired meso-assembly-processing engineering strategy for fabricating soft tissue-mimicking biomaterials. Adv. Funct. Mater. 32(27), 2200267 (2022). https://doi.org/10.1002/adfm.202200267
S. Choi, S.I. Han, D. Jung, H.J. Hwang, C. Lim et al., Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13(11), 1048–1056 (2018). https://doi.org/10.1038/s41565-018-0226-8
Y. Cai, J. Qin, W. Li, A. Tyagi, Z. Liu et al., A stretchable, conformable, and biocompatible graphene strain sensor based on a structured hydrogel for clinical application. J. Mater. Chem. A 7(47), 27099–27109 (2019). https://doi.org/10.1039/C9TA11084D
S. Park, H. Yuk, R. Zhao, Y.S. Yim, E.W. Woldeghebriel et al., Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity. Nat. Commun. 12, 3435 (2021). https://doi.org/10.1038/s41467-021-23802-9
Z. Ma, Q. Huang, Q. Xu, Q. Zhuang, X. Zhao et al., Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 20(6), 859–868 (2021). https://doi.org/10.1038/s41563-020-00902-3
T. Li, M. Qu, C. Carlos, L. Gu, F. Jin et al., High-performance poly(vinylidene difluoride)/dopamine core/shell piezoelectric nanofiber and its application for biomedical sensors. Adv. Mater. 33(3), e2006093 (2021). https://doi.org/10.1002/adma.202006093
S. Jeong, S. Heo, M. Kang, H.-J. Kim, Mechanical durability enhancement of gold-nanosheet stretchable electrodes for wearable human bio-signal detection. Mater. Des. 196, 109178 (2020). https://doi.org/10.1016/j.matdes.2020.109178
Y. Wang, S. Gong, D. Gómez, Y. Ling, L.W. Yap et al., Unconventional janus properties of enokitake-like gold nanowire films. ACS Nano 12(8), 8717–8722 (2018). https://doi.org/10.1021/acsnano.8b04748
C. Wang, C. Wang, Z. Huang, S. Xu, Materials and structures toward soft electronics. Adv. Mater. 30(50), 1801368 (2018). https://doi.org/10.1002/adma.201801368
M.D. Dickey, Emerging applications of liquid metals featuring surface oxides. ACS Appl. Mater. Interfaces 6(21), 18369–18379 (2014). https://doi.org/10.1021/am5043017
M. Pumera, Graphene in biosensing. Mater. Today 14(7–8), 308–315 (2011). https://doi.org/10.1016/S1369-7021(11)70160-2
M. Pumera, A. Ambrosi, A. Bonanni, E.L.K. Chng, H.L. Poh, Graphene for electrochemical sensing and biosensing. TrAC Trends Anal. Chem. 29(9), 954–965 (2010). https://doi.org/10.1016/j.trac.2010.05.011
C.-M. Tîlmaciu, M.C. Morris, Carbon nanotube biosensors. Front. Chem. 3, 59 (2015). https://doi.org/10.3389/fchem.2015.00059
S.K. Smart, A.I. Cassady, G.Q. Lu, D.J. Martin, The biocompatibility of carbon nanotubes. Carbon 44(6), 1034–1047 (2006). https://doi.org/10.1016/j.carbon.2005.10.011
C.-W. Lam, J.T. James, R. McCluskey, R.L. Hunter, Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77(1), 126–134 (2004). https://doi.org/10.1093/toxsci/kfg243
A. Bianco, K. Kostarelos, M. Prato, Making carbon nanotubes biocompatible and biodegradable. Chem. Commun. 47(37), 10182–10188 (2011). https://doi.org/10.1039/C1CC13011K
K. Kostarelos, The long and short of carbon nanotube toxicity. Nat. Biotechnol. 26(7), 774–776 (2008). https://doi.org/10.1038/nbt0708-774
V. Biju, Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev. 43(3), 744–764 (2014). https://doi.org/10.1039/C3CS60273G
L. Lacerda, H. Ali-Boucetta, M.A. Herrero, G. Pastorin, A. Bianco et al., Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes. Nanomedicine 3(2), 149–161 (2008). https://doi.org/10.2217/17435889.3.2.149
M. Shim, N.W.S. Kam, R.J. Chen, Y. Li, H. Dai, Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett. 2(4), 285–288 (2002). https://doi.org/10.1021/nl015692j
J. Muller, M. Delos, N. Panin, V. Rabolli, F. Huaux et al., Absence of carcinogenic response to multiwall carbon nanotubes in a 2-year bioassay in the peritoneal cavity of the rat. Toxicol. Sci. 110(2), 442–448 (2009). https://doi.org/10.1093/toxsci/kfp100
C. Pang, C. Lee, K.-Y. Suh, Recent advances in flexible sensors for wearable and implantable devices. J. Appl. Polym. Sci. 130(3), 1429–1441 (2013). https://doi.org/10.1002/app.39461
M. Tanaka, K. Sato, E. Kitakami, S. Kobayashi, T. Hoshiba et al., Design of biocompatible and biodegradable polymers based on intermediate water concept. Polym. J. 47(2), 114–121 (2015). https://doi.org/10.1038/pj.2014.129
N.A. Kamel, Bio-piezoelectricity: fundamentals and applications in tissue engineering and regenerative medicine. Biophys. Rev. 14, 717–733 (2022). https://doi.org/10.1007/s12551-022-00969-z
M. Ali, M.J. Bathaei, E. Istif, S.N.H. Karimi, L. Beker, Biodegradable piezoelectric polymers: recent advancements in materials and applications. Adv. Healthc. Mater. 12(23), e2300318 (2023). https://doi.org/10.1002/adhm.202300318
K. Kapat, Q.T.H. Shubhra, M. Zhou, S. Leeuwenburgh, Piezoelectric nano-biomaterials for biomedicine and tissue regeneration. Adv. Funct. Mater. 30(44), 1909045 (2020). https://doi.org/10.1002/adfm.201909045
E.K. Akdogan, M. Allahverdi, A. Safari, Piezoelectric composites for sensor and actuator applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(5), 746–775 (2005). https://doi.org/10.1109/TUFFC.2005.1503962
L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin et al., Properties and applications of the beta phase poly(vinylidene fluoride). Polymers 10(3), 228 (2018). https://doi.org/10.3390/polym10030228
D. Das, Z. Zhang, T. Winkler, M. Mour, C.I. Günter et al., Schilling. in Bioresorption and Degradation of Biomaterials. (Springer, Berlin Heidelberg, 2012), pp. 317–333.
G.D. Cha, D. Kang, J. Lee, D.-H. Kim, Bioresorbable electronic implants: history, materials, fabrication, devices, and clinical applications. Adv. Healthc. Mater. 8(11), 1801660 (2019). https://doi.org/10.1002/adhm.201801660
Y.S. Choi, R.T. Yin, A. Pfenniger, J. Koo, R. Avila et al., Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 39, 1228–1238 (2021). https://doi.org/10.1038/s41587-021-00948-x
J. Koo, M.R. MacEwan, S.-K. Kang, S.M. Won, M. Stephen et al., Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 24(12), 1830–1836 (2018). https://doi.org/10.1038/s41591-018-0196-2
D. Lu, T.-L. Liu, J.-K. Chang, D. Peng, Y. Zhang et al., Transient light-emitting diodes constructed from semiconductors and transparent conductors that biodegrade under physiological conditions. Adv. Mater. 31(42), 1902739 (2019). https://doi.org/10.1002/adma.201902739
J.-Y. Bae, E.-J. Gwak, G.-S. Hwang, H.W. Hwang, D.-J. Lee et al., Biodegradable metallic glass for stretchable transient electronics. Adv. Sci. 8(10), 2004029 (2021). https://doi.org/10.1002/advs.202004029
L. Wang, C. Lu, S. Yang, P. Sun, Y. Wang et al., A fully biodegradable and self-electrified device for neuroregenerative medicine. Sci. Adv. 6(50), eabc6686 (2020). https://doi.org/10.1126/sciadv.abc6686
K.J. Yu, D. Kuzum, S.-W. Hwang, B.H. Kim, H. Juul et al., Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 15(7), 782–791 (2016). https://doi.org/10.1038/nmat4624
S.-K. Kang, R.K.J. Murphy, S.-W. Hwang, S.M. Lee, D.V. Harburg et al., Bioresorbable silicon electronic sensors for the brain. Nature 530(7588), 71–76 (2016). https://doi.org/10.1038/nature16492
J. Shin, Z. Liu, W. Bai, Y. Liu, Y. Yan et al., Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Sci. Adv. 5(7), eaaw1899 (2019). https://doi.org/10.1126/sciadv.aaw1899
J. Shin, Y. Yan, W. Bai, Y. Xue, P. Gamble et al., Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nat. Biomed. Eng. 3(1), 37–46 (2019). https://doi.org/10.1038/s41551-018-0300-4
Y.S. Choi, J. Koo, Y.J. Lee, G. Lee, R. Avila et al., Biodegradable polyanhydrides as encapsulation layers for transient electronics. Adv. Funct. Mater. 30(31), 2000941 (2020). https://doi.org/10.1002/adfm.202000941
K. Xu, S. Li, S. Dong, S. Zhang, G. Pan et al., Bioresorbable electrode array for electrophysiological and pressure signal recording in the brain. Adv. Healthc. Mater. 8(15), 1801649 (2019). https://doi.org/10.1002/adhm.201801649
Q. Yang, T. Wei, R.T. Yin, M. Wu, Y. Xu et al., Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat. Mater. 20(11), 1559–1570 (2021). https://doi.org/10.1038/s41563-021-01051-x
H.-S. Kim, S.M. Yang, T.-M. Jang, N. Oh, H.-S. Kim et al., Bioresorbable silicon nanomembranes and iron catalyst nanops for flexible, transient electrochemical dopamine monitors. Adv. Healthc. Mater. 7(24), 1801071 (2018). https://doi.org/10.1002/adhm.201801071
S.M. Won, J. Koo, K.E. Crawford, A.D. Mickle, Y. Xue et al., Natural wax for transient electronics. Adv. Funct. Mater. 28(32), 1801819 (2018). https://doi.org/10.1002/adfm.201801819
S. Zhang, Z. Zhou, J. Zhong, Z. Shi, Y. Mao et al., Body-integrated, enzyme-triggered degradable, silk-based mechanical sensors for customized health/fitness monitoring and in situ treatment. Adv. Sci. 7(13), 1903802 (2020). https://doi.org/10.1002/advs.201903802
M. Valko, H. Morris, T.D.M. Cronin, Metals, toxicity and oxidative stress. Curr. Med. Chem. 12(10), 1161–1208 (2005). https://doi.org/10.2174/0929867053764635
A.T. Jan, M. Azam, K. Siddiqui, A. Ali, I. Choi et al., Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci. 16(12), 29592–29630 (2015). https://doi.org/10.3390/ijms161226183
K. Jomova, M. Valko, Advances in metal-induced oxidative stress and human disease. Toxicology 283(2), 65–87 (2011). https://doi.org/10.1016/j.tox.2011.03.001
M. Valko, C.J. Rhodes, J. Moncol, M. Izakovic, M. Mazur, Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160(1), 1–40 (2006). https://doi.org/10.1016/j.cbi.2005.12.009
M. Valko, K. Jomova, C.J. Rhodes, K. Kuča, K. Musílek, Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch. Toxicol. 90, 1–37 (2016). https://doi.org/10.1007/s00204-015-1579-5
M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew, K.N. Beeregowda, Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7(2), 60–72 (2014). https://doi.org/10.2478/intox-2014-0009
R. Li, L. Wang, D. Kong, L. Yin, Recent progress on biodegradable materials and transient electronics. Bioact. Mater. 3(3), 322–333 (2018). https://doi.org/10.1016/j.bioactmat.2017.12.001
L. Yin, H. Cheng, S. Mao, R. Haasch, Y. Liu et al., Dissolvable metals for transient electronics. Adv. Funct. Mater. 24(5), 645–658 (2014). https://doi.org/10.1002/adfm.201301847
J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327(5973), 1603–1607 (2010). https://doi.org/10.1126/science.1182383
D.-H. Kim, J.-H. Ahn, W.M. Choi, H.-S. Kim, T.-H. Kim et al., Stretchable and foldable silicon integrated circuits. Science 320(5875), 507–511 (2008). https://doi.org/10.1126/science.1154367
A.A. La Mattina, S. Mariani, G. Barillaro, Bioresorbable materials on the rise: from electronic components and physical sensors to in vivo monitoring systems. Adv. Sci. 7(4), 1902872 (2020). https://doi.org/10.1002/advs.201902872
N. Lucas, C. Bienaime, C. Belloy, M. Queneudec, F. Silvestre et al., Polymer biodegradation: mechanisms and estimation techniques—a review. Chemosphere 73(4), 429–442 (2008). https://doi.org/10.1016/j.chemosphere.2008.06.064
W.S. Pietrzak, D. Sarver, M. Verstynen, Bioresorbable implants—practical considerations. Bone 19(1, Supplement 1), S109–S119 (1996). https://doi.org/10.1016/S8756-3282(96)00139-1
M. Irimia-Vladu, “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem. Soc. Rev. 43(2), 588–610 (2014). https://doi.org/10.1039/C3CS60235D
Y.S. Choi, Y.-Y. Hsueh, J. Koo, Q. Yang, R. Avila et al., Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nat. Commun. 11, 5990 (2020). https://doi.org/10.1038/s41467-020-19660-6
C.M. Boutry, L. Beker, Y. Kaizawa, C. Vassos, H. Tran et al., Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3(1), 47–57 (2019). https://doi.org/10.1038/s41551-018-0336-5
I.E. Araci, B. Su, S.R. Quake, Y. Mandel, An implantable microfluidic device for self-monitoring of intraocular pressure. Nat. Med. 20(9), 1074–1078 (2014). https://doi.org/10.1038/nm.3621
J.O. Lee, H. Park, J. Du, A. Balakrishna, O. Chen et al., A microscale optical implant for continuous in vivo monitoring of intraocular pressure. Microsyst. Nanoeng. 3, 17057 (2017). https://doi.org/10.1038/micronano.2017.57
A.K. Locke, A.K. Means, P. Dong, T.J. Nichols, G.L. Coté et al., A layer-by-layer approach to retain a fluorescent glucose sensing assay within the cavity of a hydrogel membrane. ACS Appl. Bio Mater. 1(5), 1319–1327 (2018). https://doi.org/10.1021/acsabm.8b00267
W. Bai, J. Shin, R. Fu, I. Kandela, D. Lu et al., Bioresorbable photonic devices for the spectroscopic characterization of physiological status and neural activity. Nat. Biomed. Eng. 3(8), 644–654 (2019). https://doi.org/10.1038/s41551-019-0435-y
E.J. Curry, K. Ke, M.T. Chorsi, K.S. Wrobel, A.N. Miller et al., Biodegradable piezoelectric force sensor. Proc. Natl. Acad. Sci. 115(5), 909–914 (2018). https://doi.org/10.1073/pnas.1710874115
V. Narasimhan, J.O. Lee, J. Du, B. Ndjamen, D. Sretavan et al., Black silicon as a multifunctional material for medical implants: First demonstrated use in in-vivo intraocular pressure sensing, in International Conference on Solid-State Sensors, Actuators and Microsystems (2017), pp. 387–390. https://doi.org/10.1109/TRANSDUCERS.2017.7994068
R.H. Siddique, L. Liedtke, H. Park, S.Y. Lee, H. Raniwala et al., Nanophotonic sensor implants with 3D hybrid periodic-amorphous photonic crystals for wide-angle monitoring of long-term in-vivo intraocular pressure, in IEEE International Electron Devices Meeting (2020), pp. 14.5.1–14.5.4. https://doi.org/10.1109/IEDM13553.2020.9372016
J. Fernandes, Y.H. Kwon, J.J. Kim, H. Liu, H. Jiang, High contrast grating based strain sensor for intraocular applications. J. Microelectromech. Syst. 27(4), 599–601 (2018). https://doi.org/10.1109/JMEMS.2018.2834875