Recent Advances in Patterning Strategies for Full-Color Perovskite Light-Emitting Diodes
Corresponding Author: Moon Kee Choi
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 45
Abstract
Metal halide perovskites have emerged as promising light-emitting materials for next-generation displays owing to their remarkable material characteristics including broad color tunability, pure color emission with remarkably narrow bandwidths, high quantum yield, and solution processability. Despite recent advances have pushed the luminance efficiency of monochromic perovskite light-emitting diodes (PeLEDs) to their theoretical limits, their current fabrication using the spin-coating process poses limitations for fabrication of full-color displays. To integrate PeLEDs into full-color display panels, it is crucial to pattern red–green–blue (RGB) perovskite pixels, while mitigating issues such as cross-contamination and reductions in luminous efficiency. Herein, we present state-of-the-art patterning technologies for the development of full-color PeLEDs. First, we highlight recent advances in the development of efficient PeLEDs. Second, we discuss various patterning techniques of MPHs (i.e., photolithography, inkjet printing, electron beam lithography and laser-assisted lithography, electrohydrodynamic jet printing, thermal evaporation, and transfer printing) for fabrication of RGB pixelated displays. These patterning techniques can be classified into two distinct approaches: in situ crystallization patterning using perovskite precursors and patterning of colloidal perovskite nanocrystals. This review highlights advancements and limitations in patterning techniques for PeLEDs, paving the way for integrating PeLEDs into full-color panels.
Highlights:
1 This article reviews the recent progress in the patterning techniques of metal halide perovskites for full-color displays.
2 Patterning techniques of perovskites are subdivided into in situ crystallization and patterning of colloidal perovskite nanocrystals, including photolithography, inkjet printing, thermal evaporation, laser ablation, transfer printing, and so on.
3 The strength and weakness of each patterning methods are discussed in detail from the viewpoint of their applications in full-color displays.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Wang, A. Badal, X. Jia, J.S. Maltz, K. Mueller et al., Development of metaverse for intelligent healthcare. Nat. Mach. Intell. 4(11), 922–929 (2022). https://doi.org/10.1038/s42256-022-00549-6
- F.Y. Wang, R. Qin, X. Wang, B. Hu, Metasocieties in metaverse: Metaeconomics and metamanagement for metaenterprises and metacities. IEEE Trans. Comput. Soc. Syst. 9(1), 2–7 (2022). https://doi.org/10.1109/TCSS.2022.3145165
- J. Yang, M.K. Choi, U.J. Yang, S.Y. Kim, Y.S. Kim et al., Toward full-color electroluminescent quantum dot displays. Nano Lett. 21(1), 26–33 (2021). https://doi.org/10.1021/acs.nanolett.0c03939
- J. Yang, J. Yoo, W.S. Yu, M.K. Choi, Polymer-assisted high-resolution printing techniques for colloidal quantum dots. Macromol. Res. 29(6), 391–401 (2021). https://doi.org/10.1007/s13233-021-9055-y
- S.J. Anderson, K.T. Mullen, R.F. Hess, Human peripheral spatial resolution for achromatic and chromatic stimuli: Limits imposed by optical and retinal factors. J. Physiol. 442(1), 47–64 (1991). https://doi.org/10.1113/jphysiol.1991.sp018781
- H. Wang, X. Gong, D. Zhao, Y.B. Zhao, S. Wang et al., A multi-functional molecular modifier enabling efficient large-area perovskite light-emitting diodes. Joule 4(9), 1977–1987 (2020). https://doi.org/10.1016/j.Joule2020.07.002
- M.T. Hoang, A.S. Pannu, Y. Yang, S. Madani, P. Shaw et al., Surface treatment of inorganic CsPbI3 nanocrystals with guanidinium iodide for efficient perovskite light-emitting diodes with high brightness. Nano-Micro Lett. 14(1), 69 (2022). https://doi.org/10.1007/s40820-022-00813-9
- M. Karlsson, Z. Yi, S. Reichert, X. Luo, W. Lin et al., Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat. Commun. 12(1), 361 (2021). https://doi.org/10.1038/s41467-020-20582-6
- M.C. Weidman, M. Seitz, S.D. Stranks, W.A. Tisdale, Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. ACS Nano 10(8), 7830–7839 (2016). https://doi.org/10.1021/acsnano.6b03496
- T.J. Milstein, D.M. Kroupa, D.R. Gamelin, Picosecond quantum cutting generates photoluminescence quantum yields over 100% in ytterbium-doped CsPbCl3 nanocrystals. Nano Lett. 18(6), 3792–3799 (2018). https://doi.org/10.1021/acs.nanolett.8b01066
- J. Kang, L.W. Wang, High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 8(2), 489–493 (2017). https://doi.org/10.1021/acs.jpclett.6b02800
- Y. Ling, Z. Yuan, Y. Tian, X. Wang, J.C. Wang et al., Bright light-emitting diodes based on organometal halide perovskite nanoplatelets. Adv. Mater. 28(2), 305–311 (2016). https://doi.org/10.1002/adma.201503954
- J. Jiang, Z. Chu, Z. Yin, J. Li, Y. Yang et al., Red perovskite light-emitting diodes with efficiency exceeding 25% realized by co-spacer cations. Adv. Mater. 34(36), 2204460 (2022). https://doi.org/10.1002/adma.202204460
- J.S. Kim, J.M. Heo, G.S. Park, S.J. Woo, C. Cho et al., Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611(7937), 688–694 (2022). https://doi.org/10.1038/s41586-022-05304-w
- Y. Jiang, C. Sun, J. Xu, S. Li, M. Cui et al., Synthesis-on-substrate of quantum dot solids. Nature 612(7941), 679–684 (2022). https://doi.org/10.1038/s41586-022-05486-3
- K. Lin, J. Xing, L.N. Quan, F.P.G. De Arquer, X. Gong et al., Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562(7726), 245–248 (2018). https://doi.org/10.1038/s41586-018-0575-3
- J. Li, C. Duan, Q. Zhang, C. Chen, Q. Wen et al., Self-generated buried submicrocavities for high-performance near-infrared perovskite light-emitting diode. Nano-Micro Lett. 15(1), 125 (2023). https://doi.org/10.1007/s40820-023-01097-3
- D. Ma, K. Lin, Y. Dong, H. Choubisa, A.H. Proppe et al., Distribution control enables efficient reduced-dimensional perovskite leds. Nature 599(7886), 594–598 (2021). https://doi.org/10.1038/s41586-021-03997-z
- P. Zhang, G. Yang, F. Li, J. Shi, H. Zhong, Direct in situ photolithography of perovskite quantum dots based on photocatalysis of lead bromide complexes. Nat. Commun. 13(1), 6713 (2022). https://doi.org/10.1038/s41467-022-34453-9
- C. Zou, C. Chang, D. Sun, K.F. Böhringer, L.Y. Lin, Photolithographic patterning of perovskite thin films for multicolor display applications. Nano Lett. 20(5), 3710–3717 (2020). https://doi.org/10.1021/acs.nanolett.0c00701
- D. Liu, K. Weng, S. Lu, F. Li, H. Abudukeremu et al., Direct optical patterning of perovskite nanocrystals with ligand cross-linkers. Sci. Adv. 8(11), eabm8433 (2022). https://doi.org/10.1126/sciadv.abm8433
- J. Wang, D. Li, L. Mu, M. Li, Y. Luo et al., Inkjet-printed full-color matrix quasi-two-dimensional perovskite light-emitting diodes. ACS Appl. Mater. Interfaces 13(35), 41773–41781 (2021). https://doi.org/10.1021/acsami.1c07526
- J. Zhao, L.W. Lo, H. Wan, P. Mao, Z. Yu et al., High-speed fabrication of all-inkjet-printed organometallic halide perovskite light-emitting diodes on elastic substrates. Adv. Mater. 33(48), 2102095 (2021). https://doi.org/10.1002/adma.202102095
- H. Lee, J.W. Jeong, M.G. So, G.Y. Jung, C.L. Lee, Design of chemically stable organic perovskite quantum dots for micropatterned light-emitting diodes through kinetic control of a cross-linkable ligand system. Adv. Mater. 33(23), 2007855 (2021). https://doi.org/10.1002/adma.202007855
- W. Bai, T. Xuan, H. Zhao, S. Shi, X. Zhang et al., Microscale perovskite quantum dot light-emitting diodes (micro-peleds) for full-color displays. Adv. Opt. Mater. 10(12), 2200087 (2022). https://doi.org/10.1002/adom.202200087
- D.Y. Shin, S.S. Yoo, H.E. Song, H. Tak, D. Byun, Electrostatic-force-assisted dispensing printing to construct high-aspect-ratio of 0.79 electrodes on a textured surface with improved adhesion and contact resistivity. Sci. Rep. 5(1), 16704 (2015). https://doi.org/10.1038/srep16704
- M.A.A. Rehmani, K.M. Arif, High resolution electrohydrodynamic printing of conductive ink with an aligned aperture coaxial printhead. Int. J. Adv. Manuf. Technol. 115(9), 2785–2800 (2021). https://doi.org/10.1007/s00170-021-07075-6
- M. Chen, S. Hu, Z. Zhou, N. Huang, S. Lee et al., Three-dimensional perovskite nanopixels for ultrahigh-resolution color displays and multilevel anticounterfeiting. Nano Lett. 21(12), 5186–5194 (2021). https://doi.org/10.1021/acs.nanolett.1c01261
- G. Kang, H. Lee, J. Moon, H.S. Jang, D.H. Cho et al., Electrohydrodynamic jet-printed MaPbBr3 perovskite/polyacrylonitrile nanostructures for water-stable, flexible, and transparent displays. ACS Appl. Nano Mater. 5(5), 6726–6735 (2022). https://doi.org/10.1021/acsanm.2c00753
- Z. Li, S. Chu, Y. Zhang, W. Chen, J. Chen et al., Mass transfer printing of metal-halide perovskite films and nanostructures. Adv. Mater. 34(35), 2203529 (2022). https://doi.org/10.1002/adma.202203529
- J.I. Kwon, G. Park, G.H. Lee, J.H. Jang, N.J. Sung et al., Ultrahigh-resolution full-color perovskite nanocrystal patterning for ultrathin skin-attachable displays. Sci. Adv. 8(43), eadd0697 (2022). https://doi.org/10.1126/sciadv.add0697
- Y. Tan, R. Li, H. Xu, Y. Qin, T. Song et al., Ultrastable and reversible fluorescent perovskite films used for flexible instantaneous display. Adv. Funct. Mater. 29(23), 1900730 (2019). https://doi.org/10.1002/adfm.201900730
- P. Du, J. Li, L. Wang, L. Sun, X. Wang et al., Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement. Nat. Commun. 12(1), 4751 (2021). https://doi.org/10.1038/s41467-021-25093-6
- K. Sun, D. Tan, X. Fang, X. Xia, D. Lin et al., Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science 375(6578), 307–310 (2022). https://doi.org/10.1126/science.abj2691
- S.Y. Liang, Y.F. Liu, H.J. Zhang, Z.K. Ji, H. Xia, High-quality patterning of CsPbBr3 perovskite films through lamination-assisted femtosecond laser ablation toward light-emitting diodes. ACS Appl. Mater. Interfaces 14(41), 46958–46963 (2022). https://doi.org/10.1021/acsami.2c11870
- K. Wang, Y. Du, J. Liang, J. Zhao, F.F. Xu et al., Wettability-guided screen printing of perovskite microlaser arrays for current-driven displays. Adv. Mater. 32(29), 2001999 (2020). https://doi.org/10.1002/adma.202001999
- A.L. Palma, F. Matteocci, A. Agresti, S. Pescetelli, E. Calabrò et al., Laser-patterning engineering for perovskite solar modules with 95% aperture ratio. IEEE J. Photovolt. 7(6), 1674–1680 (2017). https://doi.org/10.1109/JPHOTOV.2017.2732223
- V.V. Klepov, M.C. De Siena, I.R. Pandey, L. Pan, K.S. Bayikadi et al., Laser scribing for electrode patterning of perovskite spectrometer-grade CsPbBr3 gamma-ray detectors. ACS Appl. Mater. Interfaces 15(13), 16895–16901 (2023). https://doi.org/10.1021/acsami.3c01212
- F. Palazon, Q.A. Akkerman, M. Prato, L. Manna, X-ray lithography on perovskite nanocrystals films: From patterning with anion-exchange reactions to enhanced stability in air and water. ACS Nano 10(1), 1224–1230 (2016). https://doi.org/10.1021/acsnano.5b06536
- Y. Li, Z. Chen, D. Liang, J. Zang, Z. Song et al., Coffee-stain-free perovskite film for efficient printed light-emitting diode. Adv. Opt. Mater. 9(17), 2100553 (2021). https://doi.org/10.1002/adom.202100553
- C. Wei, W. Su, J. Li, B. Xu, Q. Shan et al., A universal ternary-solvent-ink strategy toward efficient inkjet-printed perovskite quantum dot light-emitting diodes. Adv. Mater. 34(10), 2107798 (2022). https://doi.org/10.1002/adma.202107798
- J. Wang, D. Li, Y. Luo, J. Wang, J. Peng, Inkjet printing efficient defined-pixel matrix perovskite light-emitting diodes with a polar polymer modification layer. Adv. Mater. Technol. 7(12), 2200370 (2022). https://doi.org/10.1002/admt.202200370
- J. Li, P. Du, Q. Guo, L. Sun, Z. Shen et al., Efficient all-thermally evaporated perovskite light-emitting diodes for active-matrix displays. Nat. Photon. 17(5), 435–441 (2023). https://doi.org/10.1038/s41566-023-01177-1
- H. Xu, X. Wang, Y. Li, L. Cai, Y. Tan et al., Prominent heat dissipation in perovskite light-emitting diodes with reduced efficiency droop for silicon-based display. J. Phys. Chem. Lett. 11(9), 3689–3698 (2020). https://doi.org/10.1021/acs.jpclett.0c00792
- J. Xie, L. Liu, J. Piao, H. Ge, Y. Wang et al., Triple-functional fluoropolymers for inkjet-printing perovskite light-emitting diodes. Mater. Today Chem. 26, 101105 (2022). https://doi.org/10.1016/j.mtchem.2022.101105
- D. Li, J. Wang, M. Li, G. Xie, B. Guo et al., Inkjet printing matrix perovskite quantum dot light-emitting devices. Adv. Mater. Technol. 5(6), 2000099 (2020). https://doi.org/10.1002/admt.202000099
- J. Shamsi, A.S. Urban, M. Imran, L. De Trizio, L. Manna, Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119(5), 3296–3348 (2019). https://doi.org/10.1021/acs.chemrev.8b00644
- L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15(6), 3692–3696 (2015). https://doi.org/10.1021/nl5048779
- A. Fakharuddin, M.K. Gangishetty, M. Abdi-Jalebi, S.H. Chin, A. Rashidbin Mohd Yusoff et al., Perovskite light-emitting diodes. Nat. Electron. 5(4), 203–216 (2022). https://doi.org/10.1038/s41928-022-00745-7
- X.K. Liu, W. Xu, S. Bai, Y. Jin, J. Wang et al., Metal halide perovskites for light-emitting diodes. Nat. Mater. 20(1), 10–21 (2021). https://doi.org/10.1038/s41563-020-0784-7
- T. Wu, J. Li, Y. Zou, H. Xu, K. Wen et al., High-performance perovskite light-emitting diode with enhanced operational stability using lithium halide passivation. Angew. Chem. Int. Ed. 59(10), 4099–4105 (2020). https://doi.org/10.1002/anie.201914000
- J. Xu, J. Cui, S. Yang, Y. Han, X. Guo et al., Unraveling passivation mechanism of imidazolium-based ionic liquids on inorganic perovskite to achieve near-record-efficiency CsPbI2Br solar cells. Nano-Micro Lett. 14(1), 7 (2021). https://doi.org/10.1007/s40820-021-00763-8
- Z. Gao, Y. Zheng, Z. Wang, J. Yu, Improving the stability and efficiency of perovskite light-emitting diodes via an insulating layer of polyethylenimine ethoxylated. J. Lumin. 201, 359–363 (2018). https://doi.org/10.1016/j.jlumin.2018.05.019
- B. Liu, L. Wang, H. Gu, H. Sun, H.V. Demir, Highly efficient green light-emitting diodes from all-inorganic perovskite nanocrystals enabled by a new electron transport layer. Adv. Opt. Mater. 6(11), 1800220 (2018). https://doi.org/10.1002/adom.201800220
- W.A. Dunlap-Shohl, Y. Zhou, N.P. Padture, D.B. Mitzi, Synthetic approaches for halide perovskite thin films. Chem. Rev. 119(5), 3193–3295 (2019). https://doi.org/10.1021/acs.chemrev.8b00318
- B.W. Kim, J.H. Heo, J.K. Park, D.S. Lee, H. Park et al., Morphology controlled nanocrystalline CsPbBr3 thin-film for metal halide perovskite light emitting diodes. J. Ind. Eng. Chem. 97, 417–425 (2021). https://doi.org/10.1016/j.jiec.2021.02.028
- Z. Chen, C. Zhang, X.F. Jiang, M. Liu, R. Xia et al., High-performance color-tunable perovskite light emitting devices through structural modulation from bulk to layered film. Adv. Mater. 29(8), 1603157 (2017). https://doi.org/10.1002/adma.201603157
- Z. Xiao, R.A. Kerner, L. Zhao, N. Tran, K.M. Lee et al., Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11(2), 108–115 (2017). https://doi.org/10.1038/nphoton.2016.269
- M.H. Park, S.H. Jeong, H.K. Seo, C. Wolf, Y.H. Kim et al., Unravelling additive-based nanocrystal pinning for high efficiency organic-inorganic halide perovskite light-emitting diodes. Nano Energy 42, 157–165 (2017). https://doi.org/10.1016/j.nanoen.2017.10.012
- H. Cho, S.H. Jeong, M.H. Park, Y.H. Kim, C. Wolf et al., Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350(6265), 1222–1225 (2015). https://doi.org/10.1126/science.aad1818
- L. Zhang, C. Sun, T. He, Y. Jiang, J. Wei et al., High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light Sci. Appl. 10(1), 61 (2021). https://doi.org/10.1038/s41377-021-00501-0
- M. Yuan, L.N. Quan, R. Comin, G. Walters, R. Sabatini et al., Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11(10), 872–877 (2016). https://doi.org/10.1038/nnano.2016.110
- J. Byun, H. Cho, C. Wolf, M. Jang, A. Sadhanala et al., Efficient visible quasi-2D perovskite light-emitting diodes. Adv. Mater. 28(34), 7515–7520 (2016). https://doi.org/10.1002/adma.201601369
- Z. Li, Z. Chen, Y. Yang, Q. Xue, H.L. Yip et al., Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%. Nat. Commun. 10(1), 1027 (2019). https://doi.org/10.1038/s41467-019-09011-5
- Z. Ren, J. Sun, J. Yu, X. Xiao, Z. Wang et al., High-performance blue quasi-2D perovskite light-emitting diodes via balanced carrier confinement and transfer. Nano-Micro Lett. 14(1), 66 (2022). https://doi.org/10.1007/s40820-022-00807-7
- G. Xing, B. Wu, X. Wu, M. Li, B. Du et al., Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 8(1), 14558 (2017). https://doi.org/10.1038/ncomms14558
- C.H. Lu, G.V. Biesold-McGee, Y. Liu, Z. Kang, Z. Lin, Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chem. Soc. Rev. 49(14), 4953–5007 (2020). https://doi.org/10.1039/C9CS00790C
- R.K. Behera, A. Dutta, D. Ghosh, S. Bera, S. Bhattacharyya et al., Doping the smallest shannon radii transition metal ion ni(ii) for stabilizing α-CsPbI3 perovskite nanocrystals. J. Phys. Chem. Lett. 10(24), 7916–7921 (2019). https://doi.org/10.1021/acs.jpclett.9b03306
- Y.H. Kim, S. Kim, A. Kakekhani, J. Park, J. Park et al., Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photon. 15(2), 148–155 (2021). https://doi.org/10.1038/s41566-020-00732-4
- J. Park, H.M. Jang, S. Kim, S.H. Jo, T.W. Lee, Electroluminescence of perovskite nanocrystals with ligand engineering. Trends Chem. 2(9), 837–849 (2020). https://doi.org/10.1016/j.trechm.2020.07.002
- G. Li, J. Huang, H. Zhu, Y. Li, J.X. Tang et al., Surface ligand engineering for near-unity quantum yield inorganic halide perovskite QDs and high-performance QLEDs. Chem. Mater. 30(17), 6099–6107 (2018). https://doi.org/10.1021/acs.chemmater.8b02544
- J. Song, T. Fang, J. Li, L. Xu, F. Zhang et al., Organic–inorganic hybrid passivation enables perovskite QLEDs with an eqe of 16.48%. Adv. Mater. 30(50), 1805409 (2018). https://doi.org/10.1002/adma.201805409
- H. Zhao, H. Chen, S. Bai, C. Kuang, X. Luo et al., High-brightness perovskite light-emitting diodes based on FaPbBr3 nanocrystals with rationally designed aromatic ligands. ACS Energy Lett. 6(7), 2395–2403 (2021). https://doi.org/10.1021/acsenergylett.1c00812
- V.A. Hintermayr, C. Lampe, M. Löw, J. Roemer, W. Vanderlinden et al., Polymer nanoreactors shield perovskite nanocrystals from degradation. Nano Lett. 19(8), 4928–4933 (2019). https://doi.org/10.1021/acs.nanolett.9b00982
- M. Meyns, M. Perálvarez, A. Heuer-Jungemann, W. Hertog, M. Ibáñez et al., Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion leds. ACS Appl. Mater. Interfaces 8(30), 19579–19586 (2016). https://doi.org/10.1021/acsami.6b02529
- Z.J. Li, E. Hofman, J. Li, A.H. Davis, C.H. Tung et al., Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Adv. Funct. Mater. 28(1), 1704288 (2018). https://doi.org/10.1002/adfm.201704288
- J. Yin, J.L. Brédas, O.M. Bakr, O.F. Mohammed, Boosting self-trapped emissions in zero-dimensional perovskite heterostructures. Chem. Mater. 32(12), 5036–5043 (2020). https://doi.org/10.1021/acs.chemmater.0c00658
- S. Wang, C. Bi, J. Yuan, L. Zhang, J. Tian, Original core–shell structure of cubic CsPbBr3@amorphous CsPbbrx perovskite quantum dots with a high blue photoluminescence quantum yield of over 80%. ACS Energy Lett. 3(1), 245–251 (2018). https://doi.org/10.1021/acsenergylett.7b01243
- M. Lee, H. Seung, J.I. Kwon, M.K. Choi, D.H. Kim et al., Nanomaterial-based synaptic optoelectronic devices for in-sensor preprocessing of image data. ACS Omega 8(6), 5209–5224 (2023). https://doi.org/10.1021/acsomega.3c00440
- X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning et al., Highly efficient quantum dot near-infrared light-emitting diodes. Nat. Photonics 10(4), 253–257 (2016). https://doi.org/10.1038/nphoton.2016.11
- X. Zhang, M. Lu, Y. Zhang, H. Wu, X. Shen et al., Pbs capped CsPbI3 nanocrystals for efficient and stable light-emitting devices using p–i–n structures. ACS Cent. Sci. 4(10), 1352–1359 (2018). https://doi.org/10.1021/acscentsci.8b00386
- V.M. Arivunithi, H.Y. Park, S.S. Reddy, Y. Do, H. Park et al., Introducing an organic hole transporting material as a bilayer to improve the efficiency and stability of perovskite solar cells. Macromol. Res. 29(2), 149–156 (2021). https://doi.org/10.1007/s13233-021-9020-9
- Y. Ma, J. Gong, P. Zeng, M. Liu, Recent progress in interfacial dipole engineering for perovskite solar cells. Nano-Micro Lett. 15(1), 173 (2023). https://doi.org/10.1007/s40820-023-01131-4
- J.Y. Park, J.W. Jang, X. Shen, J.H. Jang, S.L. Kwak et al., Fluorene- and arylamine-based photo-crosslinkable hole transporting polymer for solution-processed perovskite and organic light-emitting diodes. Macromol. Res. 31, 721–732 (2023). https://doi.org/10.1007/s13233-023-00151-8
- J.E. Jeong, J.H. Park, C.H. Jang, M.H. Song, H.Y. Woo, Multifunctional charge transporting materials for perovskite light-emitting diodes. Adv. Mater. 32(51), 2002176 (2020). https://doi.org/10.1002/adma.202002176
- J. Zhuang, J. Wang, F. Yan, Review on chemical stability of lead halide perovskite solar cells. Nano-Micro Lett. 15(1), 84 (2023). https://doi.org/10.1007/s40820-023-01046-0
- S. Lee, D.B. Kim, I. Hamilton, M. Daboczi, Y.S. Nam et al., Control of interface defects for efficient and stable quasi-2D perovskite light-emitting diodes using nickel oxide hole injection layer. Adv. Sci. 5(11), 1801350 (2018). https://doi.org/10.1002/advs.201801350
- C. Zhang, B. Wang, W. Zheng, S. Huang, L. Kong et al., Hydrofluoroethers as orthogonal solvents for all-solution processed perovskite quantum-dot light-emitting diodes. Nano Energy 51, 358–365 (2018). https://doi.org/10.1016/j.nanoen.2018.06.056
- Z. Shi, S. Li, Y. Li, H. Ji, X. Li et al., Strategy of solution-processed all-inorganic heterostructure for humidity/temperature-stable perovskite quantum dot light-emitting diodes. ACS Nano 12(2), 1462–1472 (2018). https://doi.org/10.1021/acsnano.7b07856
- Y.H. Kim, C. Wolf, Y.T. Kim, H. Cho, W. Kwon et al., Highly efficient light-emitting diodes of colloidal metal–halide perovskite nanocrystals beyond quantum size. ACS Nano 11(7), 6586–6593 (2017). https://doi.org/10.1021/acsnano.6b07617
- T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato et al., Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photon. 12(11), 681–687 (2018). https://doi.org/10.1038/s41566-018-0260-y
- Q. Wan, W. Zheng, C. Zou, F. Carulli, C. Zhang et al., Ultrathin light-emitting diodes with external efficiency over 26% based on resurfaced perovskite nanocrystals. ACS Energy Lett. 8(2), 927–934 (2023). https://doi.org/10.1021/acsenergylett.2c02802
- S. Hou, M.K. Gangishetty, Q. Quan, D.N. Congreve, Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule 2(11), 2421–2433 (2018). https://doi.org/10.1016/j.Joule2018.08.005
- Q. Zhang, D. Zhang, Y. Fu, S. Poddar, L. Shu et al., Light out-coupling management in perovskite leds—What can we learn from the past? Adv. Funct. Mater. 30(38), 2002570 (2020). https://doi.org/10.1002/adfm.202002570
- Y. Shen, L.P. Cheng, Y.Q. Li, W. Li, J.D. Chen et al., High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement. Adv. Mater. 31(24), 1901517 (2019). https://doi.org/10.1002/adma.201901517
- Y. Liu, F. Li, L. Qiu, K. Yang, Q. Li et al., Fluorescent microarrays of in situ crystallized perovskite nanocomposites fabricated for patterned applications by using inkjet printing. ACS Nano 13(2), 2042–2049 (2019). https://doi.org/10.1021/acsnano.8b08582
- X. Wang, L. Wang, T. Shan, S. Leng, H. Zhong et al., Low-temperature aging provides 22% efficient bromine-free and passivation layer-free planar perovskite solar cells. Nano-Micro Lett. 12(1), 84 (2020). https://doi.org/10.1007/s40820-020-00418-0
- Y. Yang, S. Feng, M. Li, W. Xu, G. Yin et al., Annealing induced re-crystallization in ch3nh3pbi3−xclx for high performance perovskite solar cells. Sci. Rep. 7(1), 46724 (2017). https://doi.org/10.1038/srep46724
- A. Günzler, E. Bermúdez-Ureña, L.A. Muscarella, M. Ochoa, E. Ochoa-Martínez et al., Shaping perovskites: In situ crystallization mechanism of rapid thermally annealed, prepatterned perovskite films. ACS Appl. Mater. Interfaces 13(5), 6854–6863 (2021). https://doi.org/10.1021/acsami.0c20958
- F.X. Xie, D. Zhang, H. Su, X. Ren, K.S. Wong et al., Vacuum-assisted thermal annealing of ch3nh3pbi3 for highly stable and efficient perovskite solar cells. ACS Nano 9(1), 639–646 (2015). https://doi.org/10.1021/nn505978r
- Y. Tu, J. Wu, X. He, P. Guo, T. Wu et al., Solvent engineering for forming stonehenge-like pbi2 nano-structures towards efficient perovskite solar cells. J. Mater. Chem. A 5(9), 4376–4383 (2017). https://doi.org/10.1039/C6TA11004E
- Y. Zou, F. Cao, P. Chen, R. He, A. Tong et al., Stable and highly efficient all-inorganic CsPbBr3 perovskite solar cells by interface engineering with nio ncs modification. Electrochim. Acta 435, 141392 (2022). https://doi.org/10.1016/j.electacta.2022.141392
- J.W. Lee, N.G. Park, Two-step deposition method for high-efficiency perovskite solar cells. MRS Bull. 40(8), 654–659 (2015). https://doi.org/10.1557/mrs.2015.166
- L. Wang, G. Liu, X. Xi, G. Yang, L. Hu et al., Annealing engineering in the growth of perovskite grains. Crystals 12(7), 1 (2022). https://doi.org/10.3390/cryst12070894
- H. Chen, Two-step sequential deposition of organometal halide perovskite for photovoltaic application. Adv. Funct. Mater. 27(8), 1605654 (2017). https://doi.org/10.1002/adfm.201605654
- J.H. Im, I.H. Jang, N. Pellet, M. Grätzel, N.G. Park, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9(11), 927–932 (2014). https://doi.org/10.1038/nnano.2014.181
- S. Myeong, B. Chon, S. Kumar, H.J. Son, S.O. Kang et al., Quantum dot photolithography using a quantum dot photoresist composed of an organic–inorganic hybrid coating layer. Nanoscale Adv. 4(4), 1080–1087 (2022). https://doi.org/10.1039/D1NA00744K
- J.S. Park, J. Kyhm, H.H. Kim, S. Jeong, J. Kang et al., Alternative patterning process for realization of large-area, full-color, active quantum dot display. Nano Lett. 16(11), 6946–6953 (2016). https://doi.org/10.1021/acs.nanolett.6b03007
- T. Manouras, P. Argitis, High sensitivity resists for euv lithography: A review of material design strategies and performance results. Nanomaterials 10(8), 1 (2020). https://doi.org/10.3390/nano10081593
- J. Harwell, J. Burch, A. Fikouras, M.C. Gather, A. Di Falco et al., Patterning multicolor hybrid perovskite films via top-down lithography. ACS Nano 13(4), 3823–3829 (2019). https://doi.org/10.1021/acsnano.8b09592
- J.H. Hah, S. Mayya, M. Hata, Y.K. Jang, H.W. Kim et al., Converging lithography by combination of electrostatic layer-by-layer self-assembly and 193 nm photolithography: Top-down meets bottom-up. J. Vac. Sci. Technol. B 24(5), 2209–2213 (2006). https://doi.org/10.1116/1.2244541
- A. Verma, J. Jennings, R.D. Johnson, M.H. Weber, K.G. Lynn, Fabrication of 3D charged p trap using through-silicon vias etched by deep reactive ion etching. J. Vac. Sci. Technol. B 31(3), 032001 (2013). https://doi.org/10.1116/1.4799662
- T. Chen, J. Xie, P. Gao, Ultraviolet photocatalytic degradation of perovskite solar cells: Progress, challenges, and strategies. Adv. Energy Sustain. Res. 3(6), 2100218 (2022). https://doi.org/10.1002/aesr.202100218
- X. Zhu, Y. Lin, Y. Sun, M.C. Beard, Y. Yan, Lead-halide perovskites for photocatalytic α-alkylation of aldehydes. J. Am. Chem. Soc. 141(2), 733–738 (2019). https://doi.org/10.1021/jacs.8b08720
- W. Kim, S.K. Kim, S. Jeon, J. Ahn, B.K. Jung et al., Patterning all-inorganic halide perovskite with adjustable phase for high-resolution color filter and photodetector arrays. Adv. Funct. Mater. 32(16), 2111409 (2022). https://doi.org/10.1002/adfm.202111409
- C. Wu, X. Zhu, T. Man, P.S. Chung, M.A. Teitell et al., Lift-off cell lithography for cell patterning with clean background. Lab Chip 18(20), 3074–3078 (2018). https://doi.org/10.1039/C8LC00726H
- H. Keum, Y. Jiang, J.K. Park, J.C. Flanagan, M. Shim et al., Photoresist contact patterning of quantum dot films. ACS Nano 12(10), 10024–10031 (2018). https://doi.org/10.1021/acsnano.8b04462
- B. Xia, M. Tu, B. Pradhan, F. Ceyssens, M.L. Tietze et al., Flexible metal halide perovskite photodetector arrays via photolithography and dry lift-off patterning. Adv. Eng. Mater. 24(1), 2100930 (2022). https://doi.org/10.1002/adem.202100930
- C.H. Lin, Q. Zeng, E. Lafalce, S. Yu, M.J. Smith et al., Large-area lasing and multicolor perovskite quantum dot patterns. Adv. Opt. Mater. 6(16), 1800474 (2018). https://doi.org/10.1002/adom.201800474
- S. Ouyang, Y. Xie, D. Wang, D. Zhu, X. Xu et al., Surface patterning of PEDOT:PSS by photolithography for organic electronic devices. J. Nanomater. 2015, 603148 (2015). https://doi.org/10.1155/2015/603148
- S. Kar, N.F. Jamaludin, N. Yantara, S.G. Mhaisalkar, W.L. Leong, Recent advancements and perspectives on light management and high performance in perovskite light-emitting diodes. Nanophotonics 10(8), 2103–2143 (2020). https://doi.org/10.1515/nanoph-2021-0033
- C. Hsu, S. Tian, Y. Lian, G. Zhang, Q. Zhou et al., Efficient mini/micro-perovskite light-emitting diodes. Cell Rep. Phys. Sci. 2(9), 100582 (2021). https://doi.org/10.1016/j.xcrp.2021.100582
- Y. Wang, J.A. Pan, H. Wu, D.V. Talapin, Direct wavelength-selective optical and electron-beam lithography of functional inorganic nanomaterials. ACS Nano 13(12), 13917–13931 (2019). https://doi.org/10.1021/acsnano.9b05491
- M. Tu, B. Xia, D.E. Kravchenko, M.L. Tietze, A.J. Cruz et al., Direct x-ray and electron-beam lithography of halogenated zeolitic imidazolate frameworks. Nat. Mater. 20(1), 93–99 (2021). https://doi.org/10.1038/s41563-020-00827-x
- A. Xomalis, C. Hain, A. Groetsch, F.F. Klimashin, T. Nelis et al., Resist-free e-beam lithography for patterning nanoscale thick films on flexible substrates. ACS Appl. Nano Mater. 6(5), 3388–3394 (2023). https://doi.org/10.1021/acsanm.2c05161
- H.C. Lin, F. Stehlin, O. Soppera, H.W. Zan, C.H. Li et al., Deep ultraviolet laser direct write for patterning sol-gel ingazno semiconducting micro/nanowires and improving field-effect mobility. Sci. Rep. 5(1), 10490 (2015). https://doi.org/10.1038/srep10490
- L. Huang, K. Xu, D. Yuan, J. Hu, X. Wang et al., Sub-wavelength patterned pulse laser lithography for efficient fabrication of large-area metasurfaces. Nat. Commun. 13(1), 5823 (2022). https://doi.org/10.1038/s41467-022-33644-8
- H. Shahali, J. Hasan, H. Wang, T. Tesfamichael, C. Yan et al., Evaluation of p beam lithography for fabrication of metallic nano-structures. Procedia Manuf. 30, 261–267 (2019). https://doi.org/10.1016/j.promfg.2019.02.038
- X. Zhang, R. Son, Y.J. Lin, A. Gill, S. Chen et al., Rapid prototyping of functional acoustic devices using laser manufacturing. Lab Chip 22(22), 4327–4334 (2022). https://doi.org/10.1039/D2LC00725H
- W. Lee, J. Lee, H. Yun, J. Kim, J. Park et al., High-resolution spin-on-patterning of perovskite thin films for a multiplexed image sensor array. Adv. Mater. 29(40), 1702902 (2017). https://doi.org/10.1002/adma.201702902
- Y. Song, W. Bi, A. Wang, X. Liu, Y. Kang et al., Efficient lateral-structure perovskite single crystal solar cells with high operational stability. Nat. Commun. 11(1), 274 (2020). https://doi.org/10.1038/s41467-019-13998-2
- M. Yang, Z. Nie, X. Li, R. Wang, Y. Zhao et al., Advances of metal halide perovskite large-size single crystals in photodetectors: From crystal materials to growth techniques. J. Mater. Chem. C 11(18), 5908–5967 (2023). https://doi.org/10.1039/D2TC04913A
- S.S. Rong, M.B. Faheem, Y.B. Li, Perovskite single crystals: Synthesis, properties, and applications. J. Electron. Sci. Technol. 19(2), 100081 (2021). https://doi.org/10.1016/j.jnlest.2021.100081
- Z. Wang, J. Zheng, G. Chen, K. Zhang, T. Wei et al., Laser-assisted thermal exposure lithography: Arbitrary feature sizes. Adv. Eng. Mater. 23(5), 2001468 (2021). https://doi.org/10.1002/adem.202001468
- Y. Dong, H. Hu, X. Xu, Y. Gu, C.C. Chueh et al., Photon-induced reshaping in perovskite material yields of nanocrystals with accurate control of size and morphology. J. Phys. Chem. Lett. 10(15), 4149–4156 (2019). https://doi.org/10.1021/acs.jpclett.9b01673
- X. Huang, Q. Guo, D. Yang, X. Xiao, X. Liu et al., Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photon. 14(2), 82–88 (2020). https://doi.org/10.1038/s41566-019-0538-8
- S.J. Yoon, K.G. Stamplecoskie, P.V. Kamat, How lead halide complex chemistry dictates the composition of mixed halide perovskites. J. Phys. Chem. Lett. 7(7), 1368–1373 (2016). https://doi.org/10.1021/acs.jpclett.6b00433
- B. Andò, S. Baglio, A.R. Bulsara, T. Emery, V. Marletta et al., Low-cost inkjet printing technology for the rapid prototyping of transducers. Sensors 17(4), 748 (2017). https://doi.org/10.3390/s17040748
- B. Jeong, H. Han, C. Park, Micro-and nanopatterning of halide perovskites where crystal engineering for emerging photoelectronics meets integrated device array technology. Adv. Mater. 32(30), 2000597 (2020). https://doi.org/10.1002/adma.202000597
- D. Corzo, K. Almasabi, E. Bihar, S. Macphee, D. Rosas-Villalva et al., Digital inkjet printing of high-efficiency large-area nonfullerene organic solar cells. Adv. Mater. Technol. 4(7), 1900040 (2019). https://doi.org/10.1002/admt.201900040
- K.Y. Shin, J.Y. Hong, J. Jang, Flexible and transparent graphene films as acoustic actuator electrodes using inkjet printing. Chem. Commun. 47(30), 8527–8529 (2011). https://doi.org/10.1039/C1CC12913A
- Y.F. Liu, M.H. Tsai, Y.F. Pai, W.S. Hwang, Control of droplet formation by operating waveform for inks with various viscosities in piezoelectric inkjet printing. Appl. Phys. A 111(2), 509–516 (2013). https://doi.org/10.1007/s00339-013-7569-7
- R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel et al., Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653), 827–829 (1997). https://doi.org/10.1038/39827
- G. Azzellino, F.S. Freyria, M. Nasilowski, M.G. Bawendi, V. Bulović, Micron-scale patterning of high quantum yield quantum dot leds. Adv. Mater. Technol. 4(7), 1800727 (2019). https://doi.org/10.1002/admt.201800727
- Z. Wei, H. Chen, K. Yan, S. Yang, Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew. Chem. Int. Ed. 53(48), 13239–13243 (2014). https://doi.org/10.1002/anie.201408638
- X. Peng, J. Yuan, S. Shen, M. Gao, A.S.R. Chesman et al., Perovskite and organic solar cells fabricated by inkjet printing: progress and prospects. Adv. Funct. Mater. 27(41), 1703704 (2017). https://doi.org/10.1002/adfm.201703704
- Z. Gu, K. Wang, H. Li, M. Gao, L. Li et al., Direct-writing multifunctional perovskite single crystal arrays by inkjet printing. Small 13(8), 1603217 (2017). https://doi.org/10.1002/smll.201603217
- Y. Wang, J. He, H. Chen, J. Chen, R. Zhu et al., Ultrastable, highly luminescent organic–inorganic perovskite–polymer composite films. Adv. Mater. 28(48), 10710–10717 (2016). https://doi.org/10.1002/adma.201603964
- S. Jia, G. Li, P. Liu, R. Cai, H. Tang et al., Highly luminescent and stable green quasi-2D perovskite-embedded polymer sheets by inkjet printing. Adv. Funct. Mater. 30(24), 1910817 (2020). https://doi.org/10.1002/adfm.201910817
- L. Shi, L. Meng, F. Jiang, Y. Ge, F. Li et al., In situ inkjet printing strategy for fabricating perovskite quantum dot patterns. Adv. Funct. Mater. 29(37), 1903648 (2019). https://doi.org/10.1002/adfm.201903648
- Y. Chen, B. He, J. Lee, N.A. Patankar, Anisotropy in the wetting of rough surfaces. J. Colloid Interface Sci. 281(2), 458–464 (2005). https://doi.org/10.1016/j.jcis.2004.07.038
- A. Smirnov, T. Pogosian, L. Zelenkov, S. Butonova, S. Makarov et al., Structural color image augmented by inkjet printed perovskite patterning. Appl. Mater. Today 28, 101545 (2022). https://doi.org/10.1016/j.apmt.2022.101545
- M. Duan, Z. Feng, Y. Wu, Y. Yin, Z. Hu et al., Inkjet-printed micrometer-thick patterned perovskite quantum dot films for efficient blue-to-green photoconversion. Adv. Mater. Technol. 4(12), 1900779 (2019). https://doi.org/10.1002/admt.201900779
- B. Derby, Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 40(1), 395–414 (2010). https://doi.org/10.1146/annurev-matsci-070909-104502
- G.H. McKinley, M. Renardy, Wolfgang von ohnesorge. Phys. Fluids 23(12), 127101 (2011). https://doi.org/10.1063/1.3663616
- L. Liang, T. Ma, Z. Chen, J. Wang, J. Hu et al., Patterning technologies for metal halide perovskites: a review. Adv. Mater. Technol. 8(3), 2200419 (2023). https://doi.org/10.1002/admt.202200419
- L. Zhang, M. Zhou, Z. Zhang, J. Yuan, B. Li et al., Ultra-long photoluminescence lifetime in an inorganic halide perovskite thin film. J. Mater. Chem. A 7(39), 22229–22234 (2019). https://doi.org/10.1039/C9TA07412K
- S. Shi, W. Bai, T. Xuan, T. Zhou, G. Dong et al., In situ inkjet printing patterned lead halide perovskite quantum dot color conversion films by using cheap and eco-friendly aqueous inks. Small Methods 5(3), 2000889 (2021). https://doi.org/10.1002/smtd.202000889
- Z. Gu, Z. Huang, X. Hu, Y. Wang, L. Li et al., In situ inkjet printing of the perovskite single-crystal array-embedded polydimethylsiloxane film for wearable light-emitting devices. ACS Appl. Mater. Interfaces 12(19), 22157–22162 (2020). https://doi.org/10.1021/acsami.0c04131
- N. Mkhize, H. Bhaskaran, Electrohydrodynamic jet printing: Introductory concepts and considerations. Small Sci. 2(2), 2100073 (2022). https://doi.org/10.1002/smsc.202100073
- J.U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair et al., High-resolution electrohydrodynamic jet printing. Nat. Mater. 6(10), 782–789 (2007). https://doi.org/10.1038/nmat1974
- S.Y. Kim, K. Kim, Y.H. Hwang, J. Park, J. Jang et al., High-resolution electrohydrodynamic inkjet printing of stretchable metal oxide semiconductor transistors with high performance. Nanoscale 8(39), 17113–17121 (2016). https://doi.org/10.1039/C6NR05577J
- E. Sutanto, K. Shigeta, Y.K. Kim, P.G. Graf, D.J. Hoelzle et al., A multimaterial electrohydrodynamic jet (e-jet) printing system. J. Micromech. Microeng. 22(4), 045008 (2012). https://doi.org/10.1088/0960-1317/22/4/045008
- I. Liashenko, A. Ramon, A. Cabot, J. Rosell-Llompart, Ultrafast electrohydrodynamic 3D printing with in situ jet speed monitoring. Mater. Des. 206, 109791 (2021). https://doi.org/10.1016/j.matdes.2021.109791
- Q. Wang, G. Zhang, H. Zhang, Y. Duan, Y. Huang, Electrohydrodynamically printed multicolor perovskite image sensor array. 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems, Xiamen, China (2021). https://doi.org/10.1109/NEMS51815.2021.9451509
- M.S. Onses, E. Sutanto, P.M. Ferreira, A.G. Alleyne, J.A. Rogers, Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing. Small 11(34), 4237–4266 (2015). https://doi.org/10.1002/smll.201500593
- M. Li, I. Katsouras, C. Piliego, G. Glasser, I. Lieberwirth et al., Controlling the microstructure of poly(vinylidene-fluoride) (pvdf) thin films for microelectronics. J. Mater. Chem. C 1(46), 7695–7702 (2013). https://doi.org/10.1039/C3TC31774A
- S.W. Jung, K.S. Kim, H.U. Park, R. Lampande, S.K. Kim et al., Patternable semi-transparent cathode using thermal evaporation for oled display applications. Adv. Electron. Mater. 7(4), 2001101 (2021). https://doi.org/10.1002/aelm.202001101
- P. Du, L. Wang, J. Li, J. Luo, Y. Ma et al., Thermal evaporation for halide perovskite optoelectronics: fundamentals, progress, and outlook. Adv. Opt. Mater. 10(4), 2101770 (2022). https://doi.org/10.1002/adom.202101770
- S.I. Park, Y.J. Quan, S.H. Kim, H. Kim, S. Kim et al., A review on fabrication processes for electrochromic devices. Int. J. Precis. Eng. Manuf. Green Tech. 3(4), 397–421 (2016). https://doi.org/10.1007/s40684-016-0049-8
- A.A. Najim, M.A.H. Muhi, K.R. Gbashi, A.T. Salih, Synthesis of efficient and effective γ-mno2/α-bi2o3/a-si solar cell by vacuum thermal evaporation technique. Plasmonics 13(3), 891–895 (2018). https://doi.org/10.1007/s11468-017-0585-2
- S.H. Lim, H.K. Kim, Deposition rate effect on optical and electrical properties of thermally evaporated WO3/Ag/WO3 multilayer electrode for transparent and flexible thin film heaters. Sci. Rep. 10(1), 8357 (2020). https://doi.org/10.1038/s41598-020-65260-1
- Z.H. Zheng, H.B. Lan, Z.H. Su, H.X. Peng, J.T. Luo et al., Single source thermal evaporation of two-dimensional perovskite thin films for photovoltaic applications. Sci. Rep. 9(1), 17422 (2019). https://doi.org/10.1038/s41598-019-53609-0
- Y.H. Chiang, M. Anaya, S.D. Stranks, Multisource vacuum deposition of methylammonium-free perovskite solar cells. ACS Energy Lett. 5(8), 2498–2504 (2020). https://doi.org/10.1021/acsenergylett.0c00839
- H. Li, J. Zhou, L. Tan, M. Li, C. Jiang et al., Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Sci. Adv. 8(28), 7422 (2022). https://doi.org/10.1126/sciadv.abo7422
- J. Li, L. Yang, Q. Guo, P. Du, L. Wang et al., All-vacuum fabrication of yellow perovskite light-emitting diodes. Sci. Bull. 67(2), 178–185 (2022). https://doi.org/10.1016/j.scib.2021.09.003
- P. Du, J. Li, L. Wang, J. Liu, S. Li et al., Vacuum-deposited blue inorganic perovskite light-emitting diodes. ACS Appl. Mater. Interfaces 11(50), 47083–47090 (2019). https://doi.org/10.1021/acsami.9b17164
- S. Kumar, J. Jagielski, T. Marcato, S.F. Solari, C.J. Shih, Understanding the ligand effects on photophysical, optical, and electroluminescent characteristics of hybrid lead halide perovskite nanocrystal solids. J. Phys. Chem. Lett. 10(24), 7560–7567 (2019). https://doi.org/10.1021/acs.jpclett.9b02950
- X. Yang, Z.J. Yan, C.M. Zhong, H. Jia, G.L. Chen et al., Electrohydrodynamically printed high-resolution arrays based on stabilized CsPbBr3 quantum dot inks. Adv. Opt. Mater. 11(9), 2202673 (2023). https://doi.org/10.1002/adom.202202673
- G. Vescio, J.L. Frieiro, A.F. Gualdrón-Reyes, S. Hernández, I. Mora-Seró et al., High quality inkjet printed-emissive nanocrystalline perovskite CsPbBr3 layers for color conversion layer and leds applications. Adv. Mater. Technol. 7(7), 2101525 (2022). https://doi.org/10.1002/admt.202101525
- S. Shin, Y. Kim, N. Gwak, I. Jeong, M. Lee et al., Light-induced crosslinking of perovskite nanocrystals for all-solution-processed electroluminescent devices. Appl. Surf. Sci. 608, 155016 (2023). https://doi.org/10.1016/j.apsusc.2022.155016
- J. Pan, L.N. Quan, Y. Zhao, W. Peng, B. Murali et al., Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 28(39), 8718–8725 (2016). https://doi.org/10.1002/adma.201600784
- H. Kim, N. Hight-Huf, J.H. Kang, P. Bisnoff, S. Sundararajan et al., Polymer zwitterions for stabilization of CsPbBr3 perovskite nanops and nanocomposite films. Angew. Chem. Int. Ed. 59(27), 10802–10806 (2020). https://doi.org/10.1002/anie.201916492
- D. Xing, C.C. Lin, Y.L. Ho, A.S.A. Kamal, I.T. Wang et al., Self-healing lithographic patterning of perovskite nanocrystals for large-area single-mode laser array. Adv. Funct. Mater. 31(1), 2006283 (2021). https://doi.org/10.1002/adfm.202006283
- T.A. Berhe, W.N. Su, C.H. Chen, C.J. Pan, J.H. Cheng et al., Organometal halide perovskite solar cells: Degradation and stability. Energy Environ. Sci. 9(2), 323–356 (2016). https://doi.org/10.1039/C5EE02733K
- M.V. Kovalenko, L. Protesescu, M.I. Bodnarchuk, Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358(6364), 745–750 (2017). https://doi.org/10.1126/science.aam7093
- Y. Lin, X. Zheng, Z. Shangguan, G. Chen, W. Huang et al., All-inorganic encapsulation for remarkably stable cesium lead halide perovskite nanocrystals: Toward full-color display applications. J. Mater. Chem. C 9(36), 12303–12313 (2021). https://doi.org/10.1039/D1TC02685B
- S. Jeon, S.Y. Lee, S.K. Kim, W. Kim, T. Park et al., All-solution processed multicolor patterning technique of perovskite nanocrystal for color pixel array and flexible optoelectronic devices. Adv. Opt. Mater. 8(17), 2000501 (2020). https://doi.org/10.1002/adom.202000501
- F. Palazon, M. Prato, L. Manna, Writing on nanocrystals: Patterning colloidal inorganic nanocrystal films through irradiation-induced chemical transformations of surface ligands. J. Am. Chem. Soc. 139(38), 13250–13259 (2017). https://doi.org/10.1021/jacs.7b05888
- J.A. Pan, J.C. Ondry, D.V. Talapin, Direct optical lithography of CsPbX3 nanocrystals via photoinduced ligand cleavage with postpatterning chemical modification and electronic coupling. Nano Lett. 21(18), 7609–7616 (2021). https://doi.org/10.1021/acs.nanolett.1c02249
- J. Ko, K. Ma, J.F. Joung, S. Park, J. Bang, Ligand-assisted direct photolithography of perovskite nanocrystals encapsulated with multifunctional polymer ligands for stable, full-colored, high-resolution displays. Nano Lett. 21(5), 2288–2295 (2021). https://doi.org/10.1021/acs.nanolett.1c00134
- A. Gao, J. Yan, Z. Wang, P. Liu, D. Wu et al., Printable CsPbBr3 perovskite quantum dot ink for coffee ring-free fluorescent microarrays using inkjet printing. Nanoscale 12(4), 2569–2577 (2020). https://doi.org/10.1039/C9NR09651E
- C. Zheng, X. Zheng, C. Feng, S. Ju, Z. Xu et al., High-brightness perovskite quantum dot light-emitting devices using inkjet printing. Org. Electron. 93, 106168 (2021). https://doi.org/10.1016/j.orgel.2021.106168
- H. Wang, W. Yao, Q. Tian, M. Li, B. Tian et al., Printable monodisperse all-inorganic perovskite quantum dots: synthesis and banknotes protection applications. Adv. Mater. Technol. 3(11), 1800150 (2018). https://doi.org/10.1002/admt.201800150
- S.Y. Lee, G. Lee, D.Y. Kim, S.H. Jang, I. Choi et al., Investigation of high-performance perovskite nanocrystals for inkjet-printed color conversion layers with superior color purity. APL Photon. 6(5), 056104 (2021). https://doi.org/10.1063/5.0044284
- Y.C. Wong, W.B. Wu, T. Wang, J.D.A. Ng, K.H. Khoo et al., Color patterning of luminescent perovskites via light-mediated halide exchange with haloalkanes. Adv. Mater. 31(24), 1901247 (2019). https://doi.org/10.1002/adma.201901247
- C. Kang, Z. Zhou, J.E. Halpert, A.K. Srivastava, Inkjet printed patterned bank structure with encapsulated perovskite colour filters for modern display. Nanoscale 14(22), 8060–8068 (2022). https://doi.org/10.1039/D2NR00849A
- T.H. Kim, K.S. Cho, E.K. Lee, S.J. Lee, J. Chae et al., Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 5(3), 176–182 (2011). https://doi.org/10.1038/nphoton.2011.12
- T.H. Kim, D.Y. Chung, J. Ku, I. Song, S. Sul et al., Heterogeneous stacking of nanodot monolayers by dry pick-and-place transfer and its applications in quantum dot light-emitting diodes. Nat. Commun. 4(1), 2637 (2013). https://doi.org/10.1038/ncomms3637
- H. Jang, K. Sel, E. Kim, S. Kim, X. Yang et al., Graphene e-tattoos for unobstructive ambulatory electrodermal activity sensing on the palm enabled by heterogeneous serpentine ribbons. Nat. Commun. 13(1), 6604 (2022). https://doi.org/10.1038/s41467-022-34406-2
- B. Liang, Z. Zhang, W. Chen, D. Lu, L. Yang et al., Direct patterning of carbon nanotube via stamp contact printing process for stretchable and sensitive sensing devices. Nano-Micro Lett. 11(1), 92 (2019). https://doi.org/10.1007/s40820-019-0323-8
- H.J. Kim-Lee, A. Carlson, D.S. Grierson, J.A. Rogers, K.T. Turner, Interface mechanics of adhesiveless microtransfer printing processes. J. Appl. Phys. 115(14), 1 (2014). https://doi.org/10.1063/1.4870873
- M.A. Meitl, Z.T. Zhu, V. Kumar, K.J. Lee, X. Feng et al., Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5(1), 33–38 (2006). https://doi.org/10.1038/nmat1532
- C. Linghu, S. Zhang, C. Wang, J. Song, Transfer printing techniques for flexible and stretchable inorganic electronics. NPJ Flex. Electron. 2(1), 26 (2018). https://doi.org/10.1038/s41528-018-0037-x
- S.Y. Kim, J.I. Kwon, H.H. Song, G.H. Lee, W.S. Yu et al., Effects of the surface ligands of quantum dots on the intaglio transfer printing process. Appl. Surf. Sci. 610, 155579 (2023). https://doi.org/10.1016/j.apsusc.2022.155579
- M.K. Choi, J. Yang, K. Kang, D.C. Kim, C. Choi et al., Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 6(1), 7149 (2015). https://doi.org/10.1038/ncomms8149
- M.K. Choi, J. Yang, D.C. Kim, Z. Dai, J. Kim et al., Extremely vivid, highly transparent, and ultrathin quantum dot light-emitting diodes. Adv. Mater. 30(1), 1703279 (2018). https://doi.org/10.1002/adma.201703279
- C.Y. Huang, H. Li, Y. Wu, C.H. Lin, X. Guan et al., Inorganic halide perovskite quantum dots: a versatile nanomaterial platform for electronic applications. Nano-Micro Lett. 15(1), 16 (2022). https://doi.org/10.1007/s40820-022-00983-6
- Z. Zhang, B. Saparov, Charge carrier mobility of halide perovskite single crystals for ionizing radiation detection. Appl. Phys. Lett. 119(3), 030502 (2021). https://doi.org/10.1063/5.0057411
- T. Liu, W. Tang, S. Luong, O. Fenwick, High charge carrier mobility in solution processed one-dimensional lead halide perovskite single crystals and their application as photodetectors. Nanoscale 12(17), 9688–9695 (2020). https://doi.org/10.1039/D0NR01495H
- V.M. Le Corre, E.A. Duijnstee, O.E. Tambouli, J.M. Ball, H.J. Snaith et al., Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements. ACS Energy Lett. 6(3), 1087–1094 (2021). https://doi.org/10.1021/acsenergylett.0c02599
- S. Shrestha, X. Li, H. Tsai, C.H. Hou, H.H. Huang et al., Long carrier diffusion length in two-dimensional lead halide perovskite single crystals. Chem 8(4), 1107–1120 (2022). https://doi.org/10.1016/j.chempr.2022.01.008
- W. Tian, C. Zhao, J. Leng, R. Cui, S. Jin, Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates. J. Am. Chem. Soc. 137(39), 12458–12461 (2015). https://doi.org/10.1021/jacs.5b08045
- A.L. Efros, D.J. Nesbitt, Origin and control of blinking in quantum dots. Nat. Nanotechnol. 11(8), 661–671 (2016). https://doi.org/10.1038/nnano.2016.140
- Y. Jiang, M. Cui, S. Li, C. Sun, Y. Huang et al., Reducing the impact of auger recombination in quasi-2D perovskite light-emitting diodes. Nat. Commun. 12(1), 336 (2021). https://doi.org/10.1038/s41467-020-20555-9
- C. Bi, Z. Yao, J. Hu, X. Wang, M. Zhang et al., Suppressing auger recombination of perovskite quantum dots for efficient pure-blue-light-emitting diodes. ACS Energy Lett. 8(1), 731–739 (2023). https://doi.org/10.1021/acsenergylett.2c02613
- L. Lee, J. Baek, K.S. Park, Y.E. Lee, N.K. Shrestha et al., Wafer-scale single-crystal perovskite patterned thin films based on geometrically-confined lateral crystal growth. Nat. Commun. 8(1), 15882 (2017). https://doi.org/10.1038/ncomms15882
- L. Li, J. Liu, M. Zeng, L. Fu, Space-confined growth of metal halide perovskite crystal films. Nano Res. 14(6), 1609–1624 (2021). https://doi.org/10.1007/s12274-020-3050-z
- Y.H. Kim, G.H. Lee, Y.T. Kim, C. Wolf, H.J. Yun et al., High efficiency perovskite light-emitting diodes of ligand-engineered colloidal formamidinium lead bromide nanops. Nano Energy 38, 51–58 (2017). https://doi.org/10.1016/j.nanoen.2017.05.002
- J.W. Lee, S.M. Kang, Patterning of metal halide perovskite thin films and functional layers for optoelectronic applications. Nano-Micro Lett. 15(1), 184 (2023). https://doi.org/10.1007/s40820-023-01154-x
- Q. Dong, L. Lei, J. Mendes, F. So, Operational stability of perovskite light emitting diodes. J. Phys. Mater. 3(1), 012002 (2020). https://doi.org/10.1088/2515-7639/ab60c4
- S.J. Woo, J.S. Kim, T.W. Lee, Characterization of stability and challenges to improve lifetime in perovskite leds. Nat. Photon. 15(9), 630–634 (2021). https://doi.org/10.1038/s41566-021-00863-2
- H. Kim, J.S. Kim, J.M. Heo, M. Pei, I.H. Park et al., Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and reduce luminance overshoot. Nat. Commun. 11(1), 3378 (2020). https://doi.org/10.1038/s41467-020-17072-0
- P. Vashishtha, J.E. Halpert, Field-driven ion migration and color instability in red-emitting mixed halide perovskite nanocrystal light-emitting diodes. Chem. Mater. 29(14), 5965–5973 (2017). https://doi.org/10.1021/acs.chemmater.7b01609
- V.K. Ravi, S. Saikia, S. Yadav, V.V. Nawale, A. Nag, CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability. ACS Energy Lett. 5(6), 1794–1796 (2020). https://doi.org/10.1021/acsenergylett.0c00858
- W. Fu, A.G. Ricciardulli, Q.A. Akkerman, R.A. John, M.M. Tavakoli et al., Stability of perovskite materials and devices. Mater. Today 58, 275–296 (2022). https://doi.org/10.1016/j.mattod.2022.06.020
- S. Liang, G.M. Biesold, M. Zhuang, Z. Kang, B. Wagner et al., Continuous manufacturing of highly stable lead halide perovskite nanocrystals via a dual-reactor strategy. Nanosc. Adv. 5(7), 2038–2044 (2023). https://doi.org/10.1039/D2NA00744D
- S. Liang, M. Zhang, S. He, M. Tian, W. Choi et al., Metal halide perovskite nanorods with tailored dimensions, compositions and stabilities. Nat. Synth. 2(8), 719–728 (2023). https://doi.org/10.1038/s44160-023-00307-5
- Y. Zhang, C. Zhou, L. Lin, F. Pei, M. Xiao et al., Gelation of hole transport layer to improve the stability of perovskite solar cells. Nano-Micro Lett. 15(1), 175 (2023). https://doi.org/10.1007/s40820-023-01145-y
- A.J. Barker, A. Sadhanala, F. Deschler, M. Gandini, S.P. Senanayak et al., Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett. 2(6), 1416–1424 (2017). https://doi.org/10.1021/acsenergylett.7b00282
- Y. Shen, Y.Q. Li, K. Zhang, L.J. Zhang, F.M. Xie et al., Multifunctional crystal regulation enables efficient and stable sky-blue perovskite light-emitting diodes. Adv. Funct. Mater. 32(41), 2206574 (2022). https://doi.org/10.1002/adfm.202206574
- A.J. Knight, A.D. Wright, J.B. Patel, D.P. McMeekin, H.J. Snaith et al., Electronic traps and phase segregation in lead mixed-halide perovskite. ACS Energy Lett. 4(1), 75–84 (2019). https://doi.org/10.1021/acsenergylett.8b02002
- H. Ma, D. Kim, S.I. Park, B.K. Choi, G. Park et al., Direct observation of off-stoichiometry-induced phase transformation of 2D CdSe quantum nanosheets. Adv. Sci. 10(7), 2205690 (2023). https://doi.org/10.1002/advs.202205690
- J. Zhang, J. Li, Z. Ye, J. Cui, X. Peng, Hot-electron-induced photochemical properties of CdSe/ZnSe core/shell quantum dots under an ambient environment. J. Am. Chem. Soc. 145(25), 13938–13949 (2023). https://doi.org/10.1021/jacs.3c03443
- H. Ma, S. Kang, S. Lee, G. Park, Y. Bae et al., Moisture-induced degradation of quantum-sized semiconductor nanocrystals through amorphous intermediates. ACS Nano 17(14), 13734–13745 (2023). https://doi.org/10.1021/acsnano.3c03103
- J.H. Yu, J. Kim, T. Hyeon, J. Yang, Facile synthesis of manganese (ii)-doped ZnSe nanocrystals with controlled dimensionality. J. Chem. Phys. 151(24), 1 (2019). https://doi.org/10.1063/1.5128511
- X. Zhao, L.J. Lim, S.S. Ang, Z.K. Tan, Efficient short-wave infrared light-emitting diodes based on heavy-metal-free quantum dots. Adv. Mater. 34(45), 2206409 (2022). https://doi.org/10.1002/adma.202206409
- L.J. Lim, X. Zhao, Z.K. Tan, Non-toxic CuInS2/ZnS colloidal quantum dots for near-infrared light-emitting diodes. Adv. Mater. 35(28), 2301887 (2023). https://doi.org/10.1002/adma.202301887
- S. Li, S.M. Jung, W. Chung, J.W. Seo, H. Kim et al., Defect engineering of ternary Cu–In–Se quantum dots for boosting photoelectrochemical hydrogen generation. Carbon Energy 1, e384 (2023). https://doi.org/10.1002/cey2.384
- A. Kumar, A. Kumar, M.M.S. Cabral-Pinto, A.K. Chaturvedi, A.A. Shabnam et al., Lead toxicity: Health hazards, influence on food chain, and sustainable remediation approaches. Int. J. Environ. Res. Public Health 17(7), 2179 (2020). https://doi.org/10.3390/ijerph17072179
- Y.M. Li, Y. Wang, M.J. Chen, T.Y. Huang, F.H. Yang et al., Current status and technological progress in lead recovery from electronic waste. Int. J. Environ. Sci. Technol. 20(1), 1037–1052 (2023). https://doi.org/10.1007/s13762-022-04009-x
- T.C. Jellicoe, J.M. Richter, H.F.J. Glass, M. Tabachnyk, R. Brady et al., Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 138(9), 2941–2944 (2016). https://doi.org/10.1021/jacs.5b13470
- A. Karmakar, M.S. Dodd, S. Agnihotri, E. Ravera, V.K. Michaelis, Cu(ii)-doped Cs2SbAgCl6 double perovskite: a lead-free, low-bandgap material. Chem. Mater. 30(22), 8280–8290 (2018). https://doi.org/10.1021/acs.chemmater.8b03755
- M. Leng, Y. Yang, K. Zeng, Z. Chen, Z. Tan et al., All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Adv. Funct. Mater. 28(1), 1704446 (2018). https://doi.org/10.1002/adfm.201704446
- M. Wang, W. Wang, B. Ma, W. Shen, L. Liu et al., Lead-free perovskite materials for solar cells. Nano-Micro Lett. 13(1), 62 (2021). https://doi.org/10.1007/s40820-020-00578-z
- N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera et al., Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7(9), 3061–3068 (2014). https://doi.org/10.1039/C4EE01076K
- P. Li, X. Cao, J. Li, B. Jiao, X. Hou et al., Ligand engineering in tin-based perovskite solar cells. Nano-Micro Lett. 15(1), 167 (2023). https://doi.org/10.1007/s40820-023-01143-0
- S. Yue, S.C. McGuire, H. Yan, Y.S. Chu, M. Cotlet et al., Synthesis, characterization, and stability studies of ge-based perovskites of controllable mixed cation composition, produced with an ambient surfactant-free approach. ACS Omega 4(19), 18219–18233 (2019). https://doi.org/10.1021/acsomega.9b02203
- R. Chiara, M. Morana, L. Malavasi, Germanium-based halide perovskites: Materials, properties, and applications. ChemPlusChem 86(6), 879–888 (2021). https://doi.org/10.1002/cplu.202100191
- X. Li, X. Gao, X. Zhang, X. Shen, M. Lu et al., Lead-free halide perovskites for light emission: recent advances and perspectives. Adv. Sci. 8(4), 2003334 (2021). https://doi.org/10.1002/advs.202003334
- C. Ming, Z. Chen, F. Zhang, S. Gong, X. Wu et al., Mixed chalcogenide-halides for stable, lead-free and defect-tolerant photovoltaics: computational screening and experimental validation of CuBiSCl2 with ideal band gap. Adv. Funct. Mater. 32(27), 2112682 (2022). https://doi.org/10.1002/adfm.202112682
- M. Datta, Manufacturing processes for fabrication of flip-chip micro-bumps used in microelectronic packaging: an overview. J. Micromanuf. 3(1), 69–83 (2020). https://doi.org/10.1177/2516598419880124
- Y. Xu, Z. Lin, W. Wei, Y. Hao, S. Liu et al., Recent progress of electrode materials for flexible perovskite solar cells. Nano-Micro Lett. 14(1), 117 (2022). https://doi.org/10.1007/s40820-022-00859-9
- J. Kim, H. Jung, M. Kim, H. Bae, Y. Lee, Conductive polymer composites for soft tactile sensors. Macromol. Res. 29, 761–775 (2017). https://doi.org/10.1007/s13233-021-9092-6
- J. Yang, M.K. Choi, D.H. Kim, T. Hyeon, Designed assembly and integration of colloidal nanocrystals for device applications. Adv. Mater. 28(6), 1176–1207 (2016). https://doi.org/10.1002/adma.201502851
- Y.M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung et al., Digital cameras with designs inspired by the arthropod eye. Nature 497(7447), 95–99 (2013). https://doi.org/10.1038/nature12083
- D.C. Kim, H. Yun, J. Kim, H. Seung, W.S. Yu et al., Three-dimensional foldable quantum dot light-emitting diodes. Nat. Electron. 4(9), 671–680 (2021). https://doi.org/10.1038/s41928-021-00643-4
- Y. Lee, D.S. Kim, S.W. Jin, H. Lee, Y.R. Jeong et al., Stretchable array of CdSe/ZnS quantum-dot light emitting diodes for visual display of bio-signals. Chem. Eng. J. 427, 130858 (2022). https://doi.org/10.1016/j.cej.2021.130858
- H. Seung, C. Choi, D.C. Kim, J.S. Kim, J.H. Kim et al., Integration of synaptic phototransistors and quantum dot light-emitting diodes for visualization and recognition of UV patterns. Sci. Adv. 8(41), eabq3101 (2022). https://doi.org/10.1126/sciadv.abq3101
- J. Zhu, S. Zhang, N. Yi, C. Song, D. Qiu et al., Strain-insensitive hierarchically structured stretchable microstrip antennas for robust wireless communication. Nano-Micro Lett. 13(1), 108 (2021). https://doi.org/10.1007/s40820-021-00631-5
- Z. Zhang, W. Wang, Y. Jiang, Y.X. Wang, Y. Wu et al., High-brightness all-polymer stretchable led with charge-trapping dilution. Nature 603(7902), 624–630 (2022). https://doi.org/10.1038/s41586-022-04400-1
- M.W. Jeong, J.H. Ma, J.S. Shin, J.S. Kim, G. Ma et al., Intrinsically stretchable three primary light-emitting films enabled by elastomer blend for polymer light-emitting diodes. Sci. Adv. 9(25), eadh1504 (2023). https://doi.org/10.1126/sciadv.adh1504
- S.G.R. Bade, X. Shan, P.T. Hoang, J. Li, T. Geske et al., Stretchable light-emitting diodes with organometal-halide-perovskite–polymer composite emitters. Adv. Mater. 29(23), 1607053 (2017). https://doi.org/10.1002/adma.201607053
- Y.F. Li, S.Y. Chou, P. Huang, C. Xiao, X. Liu et al., Stretchable organometal-halide-perovskite quantum-dot light-emitting diodes. Adv. Mater. 31(22), 1807516 (2019). https://doi.org/10.1002/adma.201807516
- T.I. Kim, S. Hyun Lee, Y. Li, Y. Shi, G. Shin et al., Temperature- and size-dependent characteristics in ultrathin inorganic light-emitting diodes assembled by transfer printing. Appl. Phys. Lett. 104(5), 1 (2014). https://doi.org/10.1063/1.4863856
- H. Jinno, T. Yokota, M. Koizumi, W. Yukita, M. Saito et al., Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes. Nat. Commun. 12(1), 2234 (2021). https://doi.org/10.1038/s41467-021-22558-6
- J. Zhang, Y. Hu, L. Zhang, J. Zhou, A. Lu, Transparent, ultra-stretching, tough, adhesive carboxyethyl chitin/polyacrylamide hydrogel toward high-performance soft electronics. Nano-Micro Lett. 15(1), 8 (2022). https://doi.org/10.1007/s40820-022-00980-9
- J. Yoo, S. Ha, G.H. Lee, Y. Kim, M.K. Choi, Stretchable high-resolution user-interactive synesthesia displays for visual-acoustic encryption. Adv. Funct. Mater. 33, 2302473 (2023). https://doi.org/10.1002/adfm.202302473
- J.H. Jang, S. Li, D.H. Kim, J. Yang, M.K. Choi, Materials, device structures, and applications of flexible perovskite light-emitting diodes. Adv. Electron. Mater. 9(9), 2201271 (2023). https://doi.org/10.1002/aelm.202201271
References
G. Wang, A. Badal, X. Jia, J.S. Maltz, K. Mueller et al., Development of metaverse for intelligent healthcare. Nat. Mach. Intell. 4(11), 922–929 (2022). https://doi.org/10.1038/s42256-022-00549-6
F.Y. Wang, R. Qin, X. Wang, B. Hu, Metasocieties in metaverse: Metaeconomics and metamanagement for metaenterprises and metacities. IEEE Trans. Comput. Soc. Syst. 9(1), 2–7 (2022). https://doi.org/10.1109/TCSS.2022.3145165
J. Yang, M.K. Choi, U.J. Yang, S.Y. Kim, Y.S. Kim et al., Toward full-color electroluminescent quantum dot displays. Nano Lett. 21(1), 26–33 (2021). https://doi.org/10.1021/acs.nanolett.0c03939
J. Yang, J. Yoo, W.S. Yu, M.K. Choi, Polymer-assisted high-resolution printing techniques for colloidal quantum dots. Macromol. Res. 29(6), 391–401 (2021). https://doi.org/10.1007/s13233-021-9055-y
S.J. Anderson, K.T. Mullen, R.F. Hess, Human peripheral spatial resolution for achromatic and chromatic stimuli: Limits imposed by optical and retinal factors. J. Physiol. 442(1), 47–64 (1991). https://doi.org/10.1113/jphysiol.1991.sp018781
H. Wang, X. Gong, D. Zhao, Y.B. Zhao, S. Wang et al., A multi-functional molecular modifier enabling efficient large-area perovskite light-emitting diodes. Joule 4(9), 1977–1987 (2020). https://doi.org/10.1016/j.Joule2020.07.002
M.T. Hoang, A.S. Pannu, Y. Yang, S. Madani, P. Shaw et al., Surface treatment of inorganic CsPbI3 nanocrystals with guanidinium iodide for efficient perovskite light-emitting diodes with high brightness. Nano-Micro Lett. 14(1), 69 (2022). https://doi.org/10.1007/s40820-022-00813-9
M. Karlsson, Z. Yi, S. Reichert, X. Luo, W. Lin et al., Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat. Commun. 12(1), 361 (2021). https://doi.org/10.1038/s41467-020-20582-6
M.C. Weidman, M. Seitz, S.D. Stranks, W.A. Tisdale, Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. ACS Nano 10(8), 7830–7839 (2016). https://doi.org/10.1021/acsnano.6b03496
T.J. Milstein, D.M. Kroupa, D.R. Gamelin, Picosecond quantum cutting generates photoluminescence quantum yields over 100% in ytterbium-doped CsPbCl3 nanocrystals. Nano Lett. 18(6), 3792–3799 (2018). https://doi.org/10.1021/acs.nanolett.8b01066
J. Kang, L.W. Wang, High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 8(2), 489–493 (2017). https://doi.org/10.1021/acs.jpclett.6b02800
Y. Ling, Z. Yuan, Y. Tian, X. Wang, J.C. Wang et al., Bright light-emitting diodes based on organometal halide perovskite nanoplatelets. Adv. Mater. 28(2), 305–311 (2016). https://doi.org/10.1002/adma.201503954
J. Jiang, Z. Chu, Z. Yin, J. Li, Y. Yang et al., Red perovskite light-emitting diodes with efficiency exceeding 25% realized by co-spacer cations. Adv. Mater. 34(36), 2204460 (2022). https://doi.org/10.1002/adma.202204460
J.S. Kim, J.M. Heo, G.S. Park, S.J. Woo, C. Cho et al., Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611(7937), 688–694 (2022). https://doi.org/10.1038/s41586-022-05304-w
Y. Jiang, C. Sun, J. Xu, S. Li, M. Cui et al., Synthesis-on-substrate of quantum dot solids. Nature 612(7941), 679–684 (2022). https://doi.org/10.1038/s41586-022-05486-3
K. Lin, J. Xing, L.N. Quan, F.P.G. De Arquer, X. Gong et al., Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562(7726), 245–248 (2018). https://doi.org/10.1038/s41586-018-0575-3
J. Li, C. Duan, Q. Zhang, C. Chen, Q. Wen et al., Self-generated buried submicrocavities for high-performance near-infrared perovskite light-emitting diode. Nano-Micro Lett. 15(1), 125 (2023). https://doi.org/10.1007/s40820-023-01097-3
D. Ma, K. Lin, Y. Dong, H. Choubisa, A.H. Proppe et al., Distribution control enables efficient reduced-dimensional perovskite leds. Nature 599(7886), 594–598 (2021). https://doi.org/10.1038/s41586-021-03997-z
P. Zhang, G. Yang, F. Li, J. Shi, H. Zhong, Direct in situ photolithography of perovskite quantum dots based on photocatalysis of lead bromide complexes. Nat. Commun. 13(1), 6713 (2022). https://doi.org/10.1038/s41467-022-34453-9
C. Zou, C. Chang, D. Sun, K.F. Böhringer, L.Y. Lin, Photolithographic patterning of perovskite thin films for multicolor display applications. Nano Lett. 20(5), 3710–3717 (2020). https://doi.org/10.1021/acs.nanolett.0c00701
D. Liu, K. Weng, S. Lu, F. Li, H. Abudukeremu et al., Direct optical patterning of perovskite nanocrystals with ligand cross-linkers. Sci. Adv. 8(11), eabm8433 (2022). https://doi.org/10.1126/sciadv.abm8433
J. Wang, D. Li, L. Mu, M. Li, Y. Luo et al., Inkjet-printed full-color matrix quasi-two-dimensional perovskite light-emitting diodes. ACS Appl. Mater. Interfaces 13(35), 41773–41781 (2021). https://doi.org/10.1021/acsami.1c07526
J. Zhao, L.W. Lo, H. Wan, P. Mao, Z. Yu et al., High-speed fabrication of all-inkjet-printed organometallic halide perovskite light-emitting diodes on elastic substrates. Adv. Mater. 33(48), 2102095 (2021). https://doi.org/10.1002/adma.202102095
H. Lee, J.W. Jeong, M.G. So, G.Y. Jung, C.L. Lee, Design of chemically stable organic perovskite quantum dots for micropatterned light-emitting diodes through kinetic control of a cross-linkable ligand system. Adv. Mater. 33(23), 2007855 (2021). https://doi.org/10.1002/adma.202007855
W. Bai, T. Xuan, H. Zhao, S. Shi, X. Zhang et al., Microscale perovskite quantum dot light-emitting diodes (micro-peleds) for full-color displays. Adv. Opt. Mater. 10(12), 2200087 (2022). https://doi.org/10.1002/adom.202200087
D.Y. Shin, S.S. Yoo, H.E. Song, H. Tak, D. Byun, Electrostatic-force-assisted dispensing printing to construct high-aspect-ratio of 0.79 electrodes on a textured surface with improved adhesion and contact resistivity. Sci. Rep. 5(1), 16704 (2015). https://doi.org/10.1038/srep16704
M.A.A. Rehmani, K.M. Arif, High resolution electrohydrodynamic printing of conductive ink with an aligned aperture coaxial printhead. Int. J. Adv. Manuf. Technol. 115(9), 2785–2800 (2021). https://doi.org/10.1007/s00170-021-07075-6
M. Chen, S. Hu, Z. Zhou, N. Huang, S. Lee et al., Three-dimensional perovskite nanopixels for ultrahigh-resolution color displays and multilevel anticounterfeiting. Nano Lett. 21(12), 5186–5194 (2021). https://doi.org/10.1021/acs.nanolett.1c01261
G. Kang, H. Lee, J. Moon, H.S. Jang, D.H. Cho et al., Electrohydrodynamic jet-printed MaPbBr3 perovskite/polyacrylonitrile nanostructures for water-stable, flexible, and transparent displays. ACS Appl. Nano Mater. 5(5), 6726–6735 (2022). https://doi.org/10.1021/acsanm.2c00753
Z. Li, S. Chu, Y. Zhang, W. Chen, J. Chen et al., Mass transfer printing of metal-halide perovskite films and nanostructures. Adv. Mater. 34(35), 2203529 (2022). https://doi.org/10.1002/adma.202203529
J.I. Kwon, G. Park, G.H. Lee, J.H. Jang, N.J. Sung et al., Ultrahigh-resolution full-color perovskite nanocrystal patterning for ultrathin skin-attachable displays. Sci. Adv. 8(43), eadd0697 (2022). https://doi.org/10.1126/sciadv.add0697
Y. Tan, R. Li, H. Xu, Y. Qin, T. Song et al., Ultrastable and reversible fluorescent perovskite films used for flexible instantaneous display. Adv. Funct. Mater. 29(23), 1900730 (2019). https://doi.org/10.1002/adfm.201900730
P. Du, J. Li, L. Wang, L. Sun, X. Wang et al., Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement. Nat. Commun. 12(1), 4751 (2021). https://doi.org/10.1038/s41467-021-25093-6
K. Sun, D. Tan, X. Fang, X. Xia, D. Lin et al., Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science 375(6578), 307–310 (2022). https://doi.org/10.1126/science.abj2691
S.Y. Liang, Y.F. Liu, H.J. Zhang, Z.K. Ji, H. Xia, High-quality patterning of CsPbBr3 perovskite films through lamination-assisted femtosecond laser ablation toward light-emitting diodes. ACS Appl. Mater. Interfaces 14(41), 46958–46963 (2022). https://doi.org/10.1021/acsami.2c11870
K. Wang, Y. Du, J. Liang, J. Zhao, F.F. Xu et al., Wettability-guided screen printing of perovskite microlaser arrays for current-driven displays. Adv. Mater. 32(29), 2001999 (2020). https://doi.org/10.1002/adma.202001999
A.L. Palma, F. Matteocci, A. Agresti, S. Pescetelli, E. Calabrò et al., Laser-patterning engineering for perovskite solar modules with 95% aperture ratio. IEEE J. Photovolt. 7(6), 1674–1680 (2017). https://doi.org/10.1109/JPHOTOV.2017.2732223
V.V. Klepov, M.C. De Siena, I.R. Pandey, L. Pan, K.S. Bayikadi et al., Laser scribing for electrode patterning of perovskite spectrometer-grade CsPbBr3 gamma-ray detectors. ACS Appl. Mater. Interfaces 15(13), 16895–16901 (2023). https://doi.org/10.1021/acsami.3c01212
F. Palazon, Q.A. Akkerman, M. Prato, L. Manna, X-ray lithography on perovskite nanocrystals films: From patterning with anion-exchange reactions to enhanced stability in air and water. ACS Nano 10(1), 1224–1230 (2016). https://doi.org/10.1021/acsnano.5b06536
Y. Li, Z. Chen, D. Liang, J. Zang, Z. Song et al., Coffee-stain-free perovskite film for efficient printed light-emitting diode. Adv. Opt. Mater. 9(17), 2100553 (2021). https://doi.org/10.1002/adom.202100553
C. Wei, W. Su, J. Li, B. Xu, Q. Shan et al., A universal ternary-solvent-ink strategy toward efficient inkjet-printed perovskite quantum dot light-emitting diodes. Adv. Mater. 34(10), 2107798 (2022). https://doi.org/10.1002/adma.202107798
J. Wang, D. Li, Y. Luo, J. Wang, J. Peng, Inkjet printing efficient defined-pixel matrix perovskite light-emitting diodes with a polar polymer modification layer. Adv. Mater. Technol. 7(12), 2200370 (2022). https://doi.org/10.1002/admt.202200370
J. Li, P. Du, Q. Guo, L. Sun, Z. Shen et al., Efficient all-thermally evaporated perovskite light-emitting diodes for active-matrix displays. Nat. Photon. 17(5), 435–441 (2023). https://doi.org/10.1038/s41566-023-01177-1
H. Xu, X. Wang, Y. Li, L. Cai, Y. Tan et al., Prominent heat dissipation in perovskite light-emitting diodes with reduced efficiency droop for silicon-based display. J. Phys. Chem. Lett. 11(9), 3689–3698 (2020). https://doi.org/10.1021/acs.jpclett.0c00792
J. Xie, L. Liu, J. Piao, H. Ge, Y. Wang et al., Triple-functional fluoropolymers for inkjet-printing perovskite light-emitting diodes. Mater. Today Chem. 26, 101105 (2022). https://doi.org/10.1016/j.mtchem.2022.101105
D. Li, J. Wang, M. Li, G. Xie, B. Guo et al., Inkjet printing matrix perovskite quantum dot light-emitting devices. Adv. Mater. Technol. 5(6), 2000099 (2020). https://doi.org/10.1002/admt.202000099
J. Shamsi, A.S. Urban, M. Imran, L. De Trizio, L. Manna, Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119(5), 3296–3348 (2019). https://doi.org/10.1021/acs.chemrev.8b00644
L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15(6), 3692–3696 (2015). https://doi.org/10.1021/nl5048779
A. Fakharuddin, M.K. Gangishetty, M. Abdi-Jalebi, S.H. Chin, A. Rashidbin Mohd Yusoff et al., Perovskite light-emitting diodes. Nat. Electron. 5(4), 203–216 (2022). https://doi.org/10.1038/s41928-022-00745-7
X.K. Liu, W. Xu, S. Bai, Y. Jin, J. Wang et al., Metal halide perovskites for light-emitting diodes. Nat. Mater. 20(1), 10–21 (2021). https://doi.org/10.1038/s41563-020-0784-7
T. Wu, J. Li, Y. Zou, H. Xu, K. Wen et al., High-performance perovskite light-emitting diode with enhanced operational stability using lithium halide passivation. Angew. Chem. Int. Ed. 59(10), 4099–4105 (2020). https://doi.org/10.1002/anie.201914000
J. Xu, J. Cui, S. Yang, Y. Han, X. Guo et al., Unraveling passivation mechanism of imidazolium-based ionic liquids on inorganic perovskite to achieve near-record-efficiency CsPbI2Br solar cells. Nano-Micro Lett. 14(1), 7 (2021). https://doi.org/10.1007/s40820-021-00763-8
Z. Gao, Y. Zheng, Z. Wang, J. Yu, Improving the stability and efficiency of perovskite light-emitting diodes via an insulating layer of polyethylenimine ethoxylated. J. Lumin. 201, 359–363 (2018). https://doi.org/10.1016/j.jlumin.2018.05.019
B. Liu, L. Wang, H. Gu, H. Sun, H.V. Demir, Highly efficient green light-emitting diodes from all-inorganic perovskite nanocrystals enabled by a new electron transport layer. Adv. Opt. Mater. 6(11), 1800220 (2018). https://doi.org/10.1002/adom.201800220
W.A. Dunlap-Shohl, Y. Zhou, N.P. Padture, D.B. Mitzi, Synthetic approaches for halide perovskite thin films. Chem. Rev. 119(5), 3193–3295 (2019). https://doi.org/10.1021/acs.chemrev.8b00318
B.W. Kim, J.H. Heo, J.K. Park, D.S. Lee, H. Park et al., Morphology controlled nanocrystalline CsPbBr3 thin-film for metal halide perovskite light emitting diodes. J. Ind. Eng. Chem. 97, 417–425 (2021). https://doi.org/10.1016/j.jiec.2021.02.028
Z. Chen, C. Zhang, X.F. Jiang, M. Liu, R. Xia et al., High-performance color-tunable perovskite light emitting devices through structural modulation from bulk to layered film. Adv. Mater. 29(8), 1603157 (2017). https://doi.org/10.1002/adma.201603157
Z. Xiao, R.A. Kerner, L. Zhao, N. Tran, K.M. Lee et al., Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11(2), 108–115 (2017). https://doi.org/10.1038/nphoton.2016.269
M.H. Park, S.H. Jeong, H.K. Seo, C. Wolf, Y.H. Kim et al., Unravelling additive-based nanocrystal pinning for high efficiency organic-inorganic halide perovskite light-emitting diodes. Nano Energy 42, 157–165 (2017). https://doi.org/10.1016/j.nanoen.2017.10.012
H. Cho, S.H. Jeong, M.H. Park, Y.H. Kim, C. Wolf et al., Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350(6265), 1222–1225 (2015). https://doi.org/10.1126/science.aad1818
L. Zhang, C. Sun, T. He, Y. Jiang, J. Wei et al., High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light Sci. Appl. 10(1), 61 (2021). https://doi.org/10.1038/s41377-021-00501-0
M. Yuan, L.N. Quan, R. Comin, G. Walters, R. Sabatini et al., Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11(10), 872–877 (2016). https://doi.org/10.1038/nnano.2016.110
J. Byun, H. Cho, C. Wolf, M. Jang, A. Sadhanala et al., Efficient visible quasi-2D perovskite light-emitting diodes. Adv. Mater. 28(34), 7515–7520 (2016). https://doi.org/10.1002/adma.201601369
Z. Li, Z. Chen, Y. Yang, Q. Xue, H.L. Yip et al., Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%. Nat. Commun. 10(1), 1027 (2019). https://doi.org/10.1038/s41467-019-09011-5
Z. Ren, J. Sun, J. Yu, X. Xiao, Z. Wang et al., High-performance blue quasi-2D perovskite light-emitting diodes via balanced carrier confinement and transfer. Nano-Micro Lett. 14(1), 66 (2022). https://doi.org/10.1007/s40820-022-00807-7
G. Xing, B. Wu, X. Wu, M. Li, B. Du et al., Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 8(1), 14558 (2017). https://doi.org/10.1038/ncomms14558
C.H. Lu, G.V. Biesold-McGee, Y. Liu, Z. Kang, Z. Lin, Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chem. Soc. Rev. 49(14), 4953–5007 (2020). https://doi.org/10.1039/C9CS00790C
R.K. Behera, A. Dutta, D. Ghosh, S. Bera, S. Bhattacharyya et al., Doping the smallest shannon radii transition metal ion ni(ii) for stabilizing α-CsPbI3 perovskite nanocrystals. J. Phys. Chem. Lett. 10(24), 7916–7921 (2019). https://doi.org/10.1021/acs.jpclett.9b03306
Y.H. Kim, S. Kim, A. Kakekhani, J. Park, J. Park et al., Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photon. 15(2), 148–155 (2021). https://doi.org/10.1038/s41566-020-00732-4
J. Park, H.M. Jang, S. Kim, S.H. Jo, T.W. Lee, Electroluminescence of perovskite nanocrystals with ligand engineering. Trends Chem. 2(9), 837–849 (2020). https://doi.org/10.1016/j.trechm.2020.07.002
G. Li, J. Huang, H. Zhu, Y. Li, J.X. Tang et al., Surface ligand engineering for near-unity quantum yield inorganic halide perovskite QDs and high-performance QLEDs. Chem. Mater. 30(17), 6099–6107 (2018). https://doi.org/10.1021/acs.chemmater.8b02544
J. Song, T. Fang, J. Li, L. Xu, F. Zhang et al., Organic–inorganic hybrid passivation enables perovskite QLEDs with an eqe of 16.48%. Adv. Mater. 30(50), 1805409 (2018). https://doi.org/10.1002/adma.201805409
H. Zhao, H. Chen, S. Bai, C. Kuang, X. Luo et al., High-brightness perovskite light-emitting diodes based on FaPbBr3 nanocrystals with rationally designed aromatic ligands. ACS Energy Lett. 6(7), 2395–2403 (2021). https://doi.org/10.1021/acsenergylett.1c00812
V.A. Hintermayr, C. Lampe, M. Löw, J. Roemer, W. Vanderlinden et al., Polymer nanoreactors shield perovskite nanocrystals from degradation. Nano Lett. 19(8), 4928–4933 (2019). https://doi.org/10.1021/acs.nanolett.9b00982
M. Meyns, M. Perálvarez, A. Heuer-Jungemann, W. Hertog, M. Ibáñez et al., Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion leds. ACS Appl. Mater. Interfaces 8(30), 19579–19586 (2016). https://doi.org/10.1021/acsami.6b02529
Z.J. Li, E. Hofman, J. Li, A.H. Davis, C.H. Tung et al., Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Adv. Funct. Mater. 28(1), 1704288 (2018). https://doi.org/10.1002/adfm.201704288
J. Yin, J.L. Brédas, O.M. Bakr, O.F. Mohammed, Boosting self-trapped emissions in zero-dimensional perovskite heterostructures. Chem. Mater. 32(12), 5036–5043 (2020). https://doi.org/10.1021/acs.chemmater.0c00658
S. Wang, C. Bi, J. Yuan, L. Zhang, J. Tian, Original core–shell structure of cubic CsPbBr3@amorphous CsPbbrx perovskite quantum dots with a high blue photoluminescence quantum yield of over 80%. ACS Energy Lett. 3(1), 245–251 (2018). https://doi.org/10.1021/acsenergylett.7b01243
M. Lee, H. Seung, J.I. Kwon, M.K. Choi, D.H. Kim et al., Nanomaterial-based synaptic optoelectronic devices for in-sensor preprocessing of image data. ACS Omega 8(6), 5209–5224 (2023). https://doi.org/10.1021/acsomega.3c00440
X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning et al., Highly efficient quantum dot near-infrared light-emitting diodes. Nat. Photonics 10(4), 253–257 (2016). https://doi.org/10.1038/nphoton.2016.11
X. Zhang, M. Lu, Y. Zhang, H. Wu, X. Shen et al., Pbs capped CsPbI3 nanocrystals for efficient and stable light-emitting devices using p–i–n structures. ACS Cent. Sci. 4(10), 1352–1359 (2018). https://doi.org/10.1021/acscentsci.8b00386
V.M. Arivunithi, H.Y. Park, S.S. Reddy, Y. Do, H. Park et al., Introducing an organic hole transporting material as a bilayer to improve the efficiency and stability of perovskite solar cells. Macromol. Res. 29(2), 149–156 (2021). https://doi.org/10.1007/s13233-021-9020-9
Y. Ma, J. Gong, P. Zeng, M. Liu, Recent progress in interfacial dipole engineering for perovskite solar cells. Nano-Micro Lett. 15(1), 173 (2023). https://doi.org/10.1007/s40820-023-01131-4
J.Y. Park, J.W. Jang, X. Shen, J.H. Jang, S.L. Kwak et al., Fluorene- and arylamine-based photo-crosslinkable hole transporting polymer for solution-processed perovskite and organic light-emitting diodes. Macromol. Res. 31, 721–732 (2023). https://doi.org/10.1007/s13233-023-00151-8
J.E. Jeong, J.H. Park, C.H. Jang, M.H. Song, H.Y. Woo, Multifunctional charge transporting materials for perovskite light-emitting diodes. Adv. Mater. 32(51), 2002176 (2020). https://doi.org/10.1002/adma.202002176
J. Zhuang, J. Wang, F. Yan, Review on chemical stability of lead halide perovskite solar cells. Nano-Micro Lett. 15(1), 84 (2023). https://doi.org/10.1007/s40820-023-01046-0
S. Lee, D.B. Kim, I. Hamilton, M. Daboczi, Y.S. Nam et al., Control of interface defects for efficient and stable quasi-2D perovskite light-emitting diodes using nickel oxide hole injection layer. Adv. Sci. 5(11), 1801350 (2018). https://doi.org/10.1002/advs.201801350
C. Zhang, B. Wang, W. Zheng, S. Huang, L. Kong et al., Hydrofluoroethers as orthogonal solvents for all-solution processed perovskite quantum-dot light-emitting diodes. Nano Energy 51, 358–365 (2018). https://doi.org/10.1016/j.nanoen.2018.06.056
Z. Shi, S. Li, Y. Li, H. Ji, X. Li et al., Strategy of solution-processed all-inorganic heterostructure for humidity/temperature-stable perovskite quantum dot light-emitting diodes. ACS Nano 12(2), 1462–1472 (2018). https://doi.org/10.1021/acsnano.7b07856
Y.H. Kim, C. Wolf, Y.T. Kim, H. Cho, W. Kwon et al., Highly efficient light-emitting diodes of colloidal metal–halide perovskite nanocrystals beyond quantum size. ACS Nano 11(7), 6586–6593 (2017). https://doi.org/10.1021/acsnano.6b07617
T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato et al., Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photon. 12(11), 681–687 (2018). https://doi.org/10.1038/s41566-018-0260-y
Q. Wan, W. Zheng, C. Zou, F. Carulli, C. Zhang et al., Ultrathin light-emitting diodes with external efficiency over 26% based on resurfaced perovskite nanocrystals. ACS Energy Lett. 8(2), 927–934 (2023). https://doi.org/10.1021/acsenergylett.2c02802
S. Hou, M.K. Gangishetty, Q. Quan, D.N. Congreve, Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule 2(11), 2421–2433 (2018). https://doi.org/10.1016/j.Joule2018.08.005
Q. Zhang, D. Zhang, Y. Fu, S. Poddar, L. Shu et al., Light out-coupling management in perovskite leds—What can we learn from the past? Adv. Funct. Mater. 30(38), 2002570 (2020). https://doi.org/10.1002/adfm.202002570
Y. Shen, L.P. Cheng, Y.Q. Li, W. Li, J.D. Chen et al., High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement. Adv. Mater. 31(24), 1901517 (2019). https://doi.org/10.1002/adma.201901517
Y. Liu, F. Li, L. Qiu, K. Yang, Q. Li et al., Fluorescent microarrays of in situ crystallized perovskite nanocomposites fabricated for patterned applications by using inkjet printing. ACS Nano 13(2), 2042–2049 (2019). https://doi.org/10.1021/acsnano.8b08582
X. Wang, L. Wang, T. Shan, S. Leng, H. Zhong et al., Low-temperature aging provides 22% efficient bromine-free and passivation layer-free planar perovskite solar cells. Nano-Micro Lett. 12(1), 84 (2020). https://doi.org/10.1007/s40820-020-00418-0
Y. Yang, S. Feng, M. Li, W. Xu, G. Yin et al., Annealing induced re-crystallization in ch3nh3pbi3−xclx for high performance perovskite solar cells. Sci. Rep. 7(1), 46724 (2017). https://doi.org/10.1038/srep46724
A. Günzler, E. Bermúdez-Ureña, L.A. Muscarella, M. Ochoa, E. Ochoa-Martínez et al., Shaping perovskites: In situ crystallization mechanism of rapid thermally annealed, prepatterned perovskite films. ACS Appl. Mater. Interfaces 13(5), 6854–6863 (2021). https://doi.org/10.1021/acsami.0c20958
F.X. Xie, D. Zhang, H. Su, X. Ren, K.S. Wong et al., Vacuum-assisted thermal annealing of ch3nh3pbi3 for highly stable and efficient perovskite solar cells. ACS Nano 9(1), 639–646 (2015). https://doi.org/10.1021/nn505978r
Y. Tu, J. Wu, X. He, P. Guo, T. Wu et al., Solvent engineering for forming stonehenge-like pbi2 nano-structures towards efficient perovskite solar cells. J. Mater. Chem. A 5(9), 4376–4383 (2017). https://doi.org/10.1039/C6TA11004E
Y. Zou, F. Cao, P. Chen, R. He, A. Tong et al., Stable and highly efficient all-inorganic CsPbBr3 perovskite solar cells by interface engineering with nio ncs modification. Electrochim. Acta 435, 141392 (2022). https://doi.org/10.1016/j.electacta.2022.141392
J.W. Lee, N.G. Park, Two-step deposition method for high-efficiency perovskite solar cells. MRS Bull. 40(8), 654–659 (2015). https://doi.org/10.1557/mrs.2015.166
L. Wang, G. Liu, X. Xi, G. Yang, L. Hu et al., Annealing engineering in the growth of perovskite grains. Crystals 12(7), 1 (2022). https://doi.org/10.3390/cryst12070894
H. Chen, Two-step sequential deposition of organometal halide perovskite for photovoltaic application. Adv. Funct. Mater. 27(8), 1605654 (2017). https://doi.org/10.1002/adfm.201605654
J.H. Im, I.H. Jang, N. Pellet, M. Grätzel, N.G. Park, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9(11), 927–932 (2014). https://doi.org/10.1038/nnano.2014.181
S. Myeong, B. Chon, S. Kumar, H.J. Son, S.O. Kang et al., Quantum dot photolithography using a quantum dot photoresist composed of an organic–inorganic hybrid coating layer. Nanoscale Adv. 4(4), 1080–1087 (2022). https://doi.org/10.1039/D1NA00744K
J.S. Park, J. Kyhm, H.H. Kim, S. Jeong, J. Kang et al., Alternative patterning process for realization of large-area, full-color, active quantum dot display. Nano Lett. 16(11), 6946–6953 (2016). https://doi.org/10.1021/acs.nanolett.6b03007
T. Manouras, P. Argitis, High sensitivity resists for euv lithography: A review of material design strategies and performance results. Nanomaterials 10(8), 1 (2020). https://doi.org/10.3390/nano10081593
J. Harwell, J. Burch, A. Fikouras, M.C. Gather, A. Di Falco et al., Patterning multicolor hybrid perovskite films via top-down lithography. ACS Nano 13(4), 3823–3829 (2019). https://doi.org/10.1021/acsnano.8b09592
J.H. Hah, S. Mayya, M. Hata, Y.K. Jang, H.W. Kim et al., Converging lithography by combination of electrostatic layer-by-layer self-assembly and 193 nm photolithography: Top-down meets bottom-up. J. Vac. Sci. Technol. B 24(5), 2209–2213 (2006). https://doi.org/10.1116/1.2244541
A. Verma, J. Jennings, R.D. Johnson, M.H. Weber, K.G. Lynn, Fabrication of 3D charged p trap using through-silicon vias etched by deep reactive ion etching. J. Vac. Sci. Technol. B 31(3), 032001 (2013). https://doi.org/10.1116/1.4799662
T. Chen, J. Xie, P. Gao, Ultraviolet photocatalytic degradation of perovskite solar cells: Progress, challenges, and strategies. Adv. Energy Sustain. Res. 3(6), 2100218 (2022). https://doi.org/10.1002/aesr.202100218
X. Zhu, Y. Lin, Y. Sun, M.C. Beard, Y. Yan, Lead-halide perovskites for photocatalytic α-alkylation of aldehydes. J. Am. Chem. Soc. 141(2), 733–738 (2019). https://doi.org/10.1021/jacs.8b08720
W. Kim, S.K. Kim, S. Jeon, J. Ahn, B.K. Jung et al., Patterning all-inorganic halide perovskite with adjustable phase for high-resolution color filter and photodetector arrays. Adv. Funct. Mater. 32(16), 2111409 (2022). https://doi.org/10.1002/adfm.202111409
C. Wu, X. Zhu, T. Man, P.S. Chung, M.A. Teitell et al., Lift-off cell lithography for cell patterning with clean background. Lab Chip 18(20), 3074–3078 (2018). https://doi.org/10.1039/C8LC00726H
H. Keum, Y. Jiang, J.K. Park, J.C. Flanagan, M. Shim et al., Photoresist contact patterning of quantum dot films. ACS Nano 12(10), 10024–10031 (2018). https://doi.org/10.1021/acsnano.8b04462
B. Xia, M. Tu, B. Pradhan, F. Ceyssens, M.L. Tietze et al., Flexible metal halide perovskite photodetector arrays via photolithography and dry lift-off patterning. Adv. Eng. Mater. 24(1), 2100930 (2022). https://doi.org/10.1002/adem.202100930
C.H. Lin, Q. Zeng, E. Lafalce, S. Yu, M.J. Smith et al., Large-area lasing and multicolor perovskite quantum dot patterns. Adv. Opt. Mater. 6(16), 1800474 (2018). https://doi.org/10.1002/adom.201800474
S. Ouyang, Y. Xie, D. Wang, D. Zhu, X. Xu et al., Surface patterning of PEDOT:PSS by photolithography for organic electronic devices. J. Nanomater. 2015, 603148 (2015). https://doi.org/10.1155/2015/603148
S. Kar, N.F. Jamaludin, N. Yantara, S.G. Mhaisalkar, W.L. Leong, Recent advancements and perspectives on light management and high performance in perovskite light-emitting diodes. Nanophotonics 10(8), 2103–2143 (2020). https://doi.org/10.1515/nanoph-2021-0033
C. Hsu, S. Tian, Y. Lian, G. Zhang, Q. Zhou et al., Efficient mini/micro-perovskite light-emitting diodes. Cell Rep. Phys. Sci. 2(9), 100582 (2021). https://doi.org/10.1016/j.xcrp.2021.100582
Y. Wang, J.A. Pan, H. Wu, D.V. Talapin, Direct wavelength-selective optical and electron-beam lithography of functional inorganic nanomaterials. ACS Nano 13(12), 13917–13931 (2019). https://doi.org/10.1021/acsnano.9b05491
M. Tu, B. Xia, D.E. Kravchenko, M.L. Tietze, A.J. Cruz et al., Direct x-ray and electron-beam lithography of halogenated zeolitic imidazolate frameworks. Nat. Mater. 20(1), 93–99 (2021). https://doi.org/10.1038/s41563-020-00827-x
A. Xomalis, C. Hain, A. Groetsch, F.F. Klimashin, T. Nelis et al., Resist-free e-beam lithography for patterning nanoscale thick films on flexible substrates. ACS Appl. Nano Mater. 6(5), 3388–3394 (2023). https://doi.org/10.1021/acsanm.2c05161
H.C. Lin, F. Stehlin, O. Soppera, H.W. Zan, C.H. Li et al., Deep ultraviolet laser direct write for patterning sol-gel ingazno semiconducting micro/nanowires and improving field-effect mobility. Sci. Rep. 5(1), 10490 (2015). https://doi.org/10.1038/srep10490
L. Huang, K. Xu, D. Yuan, J. Hu, X. Wang et al., Sub-wavelength patterned pulse laser lithography for efficient fabrication of large-area metasurfaces. Nat. Commun. 13(1), 5823 (2022). https://doi.org/10.1038/s41467-022-33644-8
H. Shahali, J. Hasan, H. Wang, T. Tesfamichael, C. Yan et al., Evaluation of p beam lithography for fabrication of metallic nano-structures. Procedia Manuf. 30, 261–267 (2019). https://doi.org/10.1016/j.promfg.2019.02.038
X. Zhang, R. Son, Y.J. Lin, A. Gill, S. Chen et al., Rapid prototyping of functional acoustic devices using laser manufacturing. Lab Chip 22(22), 4327–4334 (2022). https://doi.org/10.1039/D2LC00725H
W. Lee, J. Lee, H. Yun, J. Kim, J. Park et al., High-resolution spin-on-patterning of perovskite thin films for a multiplexed image sensor array. Adv. Mater. 29(40), 1702902 (2017). https://doi.org/10.1002/adma.201702902
Y. Song, W. Bi, A. Wang, X. Liu, Y. Kang et al., Efficient lateral-structure perovskite single crystal solar cells with high operational stability. Nat. Commun. 11(1), 274 (2020). https://doi.org/10.1038/s41467-019-13998-2
M. Yang, Z. Nie, X. Li, R. Wang, Y. Zhao et al., Advances of metal halide perovskite large-size single crystals in photodetectors: From crystal materials to growth techniques. J. Mater. Chem. C 11(18), 5908–5967 (2023). https://doi.org/10.1039/D2TC04913A
S.S. Rong, M.B. Faheem, Y.B. Li, Perovskite single crystals: Synthesis, properties, and applications. J. Electron. Sci. Technol. 19(2), 100081 (2021). https://doi.org/10.1016/j.jnlest.2021.100081
Z. Wang, J. Zheng, G. Chen, K. Zhang, T. Wei et al., Laser-assisted thermal exposure lithography: Arbitrary feature sizes. Adv. Eng. Mater. 23(5), 2001468 (2021). https://doi.org/10.1002/adem.202001468
Y. Dong, H. Hu, X. Xu, Y. Gu, C.C. Chueh et al., Photon-induced reshaping in perovskite material yields of nanocrystals with accurate control of size and morphology. J. Phys. Chem. Lett. 10(15), 4149–4156 (2019). https://doi.org/10.1021/acs.jpclett.9b01673
X. Huang, Q. Guo, D. Yang, X. Xiao, X. Liu et al., Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photon. 14(2), 82–88 (2020). https://doi.org/10.1038/s41566-019-0538-8
S.J. Yoon, K.G. Stamplecoskie, P.V. Kamat, How lead halide complex chemistry dictates the composition of mixed halide perovskites. J. Phys. Chem. Lett. 7(7), 1368–1373 (2016). https://doi.org/10.1021/acs.jpclett.6b00433
B. Andò, S. Baglio, A.R. Bulsara, T. Emery, V. Marletta et al., Low-cost inkjet printing technology for the rapid prototyping of transducers. Sensors 17(4), 748 (2017). https://doi.org/10.3390/s17040748
B. Jeong, H. Han, C. Park, Micro-and nanopatterning of halide perovskites where crystal engineering for emerging photoelectronics meets integrated device array technology. Adv. Mater. 32(30), 2000597 (2020). https://doi.org/10.1002/adma.202000597
D. Corzo, K. Almasabi, E. Bihar, S. Macphee, D. Rosas-Villalva et al., Digital inkjet printing of high-efficiency large-area nonfullerene organic solar cells. Adv. Mater. Technol. 4(7), 1900040 (2019). https://doi.org/10.1002/admt.201900040
K.Y. Shin, J.Y. Hong, J. Jang, Flexible and transparent graphene films as acoustic actuator electrodes using inkjet printing. Chem. Commun. 47(30), 8527–8529 (2011). https://doi.org/10.1039/C1CC12913A
Y.F. Liu, M.H. Tsai, Y.F. Pai, W.S. Hwang, Control of droplet formation by operating waveform for inks with various viscosities in piezoelectric inkjet printing. Appl. Phys. A 111(2), 509–516 (2013). https://doi.org/10.1007/s00339-013-7569-7
R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel et al., Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653), 827–829 (1997). https://doi.org/10.1038/39827
G. Azzellino, F.S. Freyria, M. Nasilowski, M.G. Bawendi, V. Bulović, Micron-scale patterning of high quantum yield quantum dot leds. Adv. Mater. Technol. 4(7), 1800727 (2019). https://doi.org/10.1002/admt.201800727
Z. Wei, H. Chen, K. Yan, S. Yang, Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew. Chem. Int. Ed. 53(48), 13239–13243 (2014). https://doi.org/10.1002/anie.201408638
X. Peng, J. Yuan, S. Shen, M. Gao, A.S.R. Chesman et al., Perovskite and organic solar cells fabricated by inkjet printing: progress and prospects. Adv. Funct. Mater. 27(41), 1703704 (2017). https://doi.org/10.1002/adfm.201703704
Z. Gu, K. Wang, H. Li, M. Gao, L. Li et al., Direct-writing multifunctional perovskite single crystal arrays by inkjet printing. Small 13(8), 1603217 (2017). https://doi.org/10.1002/smll.201603217
Y. Wang, J. He, H. Chen, J. Chen, R. Zhu et al., Ultrastable, highly luminescent organic–inorganic perovskite–polymer composite films. Adv. Mater. 28(48), 10710–10717 (2016). https://doi.org/10.1002/adma.201603964
S. Jia, G. Li, P. Liu, R. Cai, H. Tang et al., Highly luminescent and stable green quasi-2D perovskite-embedded polymer sheets by inkjet printing. Adv. Funct. Mater. 30(24), 1910817 (2020). https://doi.org/10.1002/adfm.201910817
L. Shi, L. Meng, F. Jiang, Y. Ge, F. Li et al., In situ inkjet printing strategy for fabricating perovskite quantum dot patterns. Adv. Funct. Mater. 29(37), 1903648 (2019). https://doi.org/10.1002/adfm.201903648
Y. Chen, B. He, J. Lee, N.A. Patankar, Anisotropy in the wetting of rough surfaces. J. Colloid Interface Sci. 281(2), 458–464 (2005). https://doi.org/10.1016/j.jcis.2004.07.038
A. Smirnov, T. Pogosian, L. Zelenkov, S. Butonova, S. Makarov et al., Structural color image augmented by inkjet printed perovskite patterning. Appl. Mater. Today 28, 101545 (2022). https://doi.org/10.1016/j.apmt.2022.101545
M. Duan, Z. Feng, Y. Wu, Y. Yin, Z. Hu et al., Inkjet-printed micrometer-thick patterned perovskite quantum dot films for efficient blue-to-green photoconversion. Adv. Mater. Technol. 4(12), 1900779 (2019). https://doi.org/10.1002/admt.201900779
B. Derby, Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 40(1), 395–414 (2010). https://doi.org/10.1146/annurev-matsci-070909-104502
G.H. McKinley, M. Renardy, Wolfgang von ohnesorge. Phys. Fluids 23(12), 127101 (2011). https://doi.org/10.1063/1.3663616
L. Liang, T. Ma, Z. Chen, J. Wang, J. Hu et al., Patterning technologies for metal halide perovskites: a review. Adv. Mater. Technol. 8(3), 2200419 (2023). https://doi.org/10.1002/admt.202200419
L. Zhang, M. Zhou, Z. Zhang, J. Yuan, B. Li et al., Ultra-long photoluminescence lifetime in an inorganic halide perovskite thin film. J. Mater. Chem. A 7(39), 22229–22234 (2019). https://doi.org/10.1039/C9TA07412K
S. Shi, W. Bai, T. Xuan, T. Zhou, G. Dong et al., In situ inkjet printing patterned lead halide perovskite quantum dot color conversion films by using cheap and eco-friendly aqueous inks. Small Methods 5(3), 2000889 (2021). https://doi.org/10.1002/smtd.202000889
Z. Gu, Z. Huang, X. Hu, Y. Wang, L. Li et al., In situ inkjet printing of the perovskite single-crystal array-embedded polydimethylsiloxane film for wearable light-emitting devices. ACS Appl. Mater. Interfaces 12(19), 22157–22162 (2020). https://doi.org/10.1021/acsami.0c04131
N. Mkhize, H. Bhaskaran, Electrohydrodynamic jet printing: Introductory concepts and considerations. Small Sci. 2(2), 2100073 (2022). https://doi.org/10.1002/smsc.202100073
J.U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair et al., High-resolution electrohydrodynamic jet printing. Nat. Mater. 6(10), 782–789 (2007). https://doi.org/10.1038/nmat1974
S.Y. Kim, K. Kim, Y.H. Hwang, J. Park, J. Jang et al., High-resolution electrohydrodynamic inkjet printing of stretchable metal oxide semiconductor transistors with high performance. Nanoscale 8(39), 17113–17121 (2016). https://doi.org/10.1039/C6NR05577J
E. Sutanto, K. Shigeta, Y.K. Kim, P.G. Graf, D.J. Hoelzle et al., A multimaterial electrohydrodynamic jet (e-jet) printing system. J. Micromech. Microeng. 22(4), 045008 (2012). https://doi.org/10.1088/0960-1317/22/4/045008
I. Liashenko, A. Ramon, A. Cabot, J. Rosell-Llompart, Ultrafast electrohydrodynamic 3D printing with in situ jet speed monitoring. Mater. Des. 206, 109791 (2021). https://doi.org/10.1016/j.matdes.2021.109791
Q. Wang, G. Zhang, H. Zhang, Y. Duan, Y. Huang, Electrohydrodynamically printed multicolor perovskite image sensor array. 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems, Xiamen, China (2021). https://doi.org/10.1109/NEMS51815.2021.9451509
M.S. Onses, E. Sutanto, P.M. Ferreira, A.G. Alleyne, J.A. Rogers, Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing. Small 11(34), 4237–4266 (2015). https://doi.org/10.1002/smll.201500593
M. Li, I. Katsouras, C. Piliego, G. Glasser, I. Lieberwirth et al., Controlling the microstructure of poly(vinylidene-fluoride) (pvdf) thin films for microelectronics. J. Mater. Chem. C 1(46), 7695–7702 (2013). https://doi.org/10.1039/C3TC31774A
S.W. Jung, K.S. Kim, H.U. Park, R. Lampande, S.K. Kim et al., Patternable semi-transparent cathode using thermal evaporation for oled display applications. Adv. Electron. Mater. 7(4), 2001101 (2021). https://doi.org/10.1002/aelm.202001101
P. Du, L. Wang, J. Li, J. Luo, Y. Ma et al., Thermal evaporation for halide perovskite optoelectronics: fundamentals, progress, and outlook. Adv. Opt. Mater. 10(4), 2101770 (2022). https://doi.org/10.1002/adom.202101770
S.I. Park, Y.J. Quan, S.H. Kim, H. Kim, S. Kim et al., A review on fabrication processes for electrochromic devices. Int. J. Precis. Eng. Manuf. Green Tech. 3(4), 397–421 (2016). https://doi.org/10.1007/s40684-016-0049-8
A.A. Najim, M.A.H. Muhi, K.R. Gbashi, A.T. Salih, Synthesis of efficient and effective γ-mno2/α-bi2o3/a-si solar cell by vacuum thermal evaporation technique. Plasmonics 13(3), 891–895 (2018). https://doi.org/10.1007/s11468-017-0585-2
S.H. Lim, H.K. Kim, Deposition rate effect on optical and electrical properties of thermally evaporated WO3/Ag/WO3 multilayer electrode for transparent and flexible thin film heaters. Sci. Rep. 10(1), 8357 (2020). https://doi.org/10.1038/s41598-020-65260-1
Z.H. Zheng, H.B. Lan, Z.H. Su, H.X. Peng, J.T. Luo et al., Single source thermal evaporation of two-dimensional perovskite thin films for photovoltaic applications. Sci. Rep. 9(1), 17422 (2019). https://doi.org/10.1038/s41598-019-53609-0
Y.H. Chiang, M. Anaya, S.D. Stranks, Multisource vacuum deposition of methylammonium-free perovskite solar cells. ACS Energy Lett. 5(8), 2498–2504 (2020). https://doi.org/10.1021/acsenergylett.0c00839
H. Li, J. Zhou, L. Tan, M. Li, C. Jiang et al., Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Sci. Adv. 8(28), 7422 (2022). https://doi.org/10.1126/sciadv.abo7422
J. Li, L. Yang, Q. Guo, P. Du, L. Wang et al., All-vacuum fabrication of yellow perovskite light-emitting diodes. Sci. Bull. 67(2), 178–185 (2022). https://doi.org/10.1016/j.scib.2021.09.003
P. Du, J. Li, L. Wang, J. Liu, S. Li et al., Vacuum-deposited blue inorganic perovskite light-emitting diodes. ACS Appl. Mater. Interfaces 11(50), 47083–47090 (2019). https://doi.org/10.1021/acsami.9b17164
S. Kumar, J. Jagielski, T. Marcato, S.F. Solari, C.J. Shih, Understanding the ligand effects on photophysical, optical, and electroluminescent characteristics of hybrid lead halide perovskite nanocrystal solids. J. Phys. Chem. Lett. 10(24), 7560–7567 (2019). https://doi.org/10.1021/acs.jpclett.9b02950
X. Yang, Z.J. Yan, C.M. Zhong, H. Jia, G.L. Chen et al., Electrohydrodynamically printed high-resolution arrays based on stabilized CsPbBr3 quantum dot inks. Adv. Opt. Mater. 11(9), 2202673 (2023). https://doi.org/10.1002/adom.202202673
G. Vescio, J.L. Frieiro, A.F. Gualdrón-Reyes, S. Hernández, I. Mora-Seró et al., High quality inkjet printed-emissive nanocrystalline perovskite CsPbBr3 layers for color conversion layer and leds applications. Adv. Mater. Technol. 7(7), 2101525 (2022). https://doi.org/10.1002/admt.202101525
S. Shin, Y. Kim, N. Gwak, I. Jeong, M. Lee et al., Light-induced crosslinking of perovskite nanocrystals for all-solution-processed electroluminescent devices. Appl. Surf. Sci. 608, 155016 (2023). https://doi.org/10.1016/j.apsusc.2022.155016
J. Pan, L.N. Quan, Y. Zhao, W. Peng, B. Murali et al., Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 28(39), 8718–8725 (2016). https://doi.org/10.1002/adma.201600784
H. Kim, N. Hight-Huf, J.H. Kang, P. Bisnoff, S. Sundararajan et al., Polymer zwitterions for stabilization of CsPbBr3 perovskite nanops and nanocomposite films. Angew. Chem. Int. Ed. 59(27), 10802–10806 (2020). https://doi.org/10.1002/anie.201916492
D. Xing, C.C. Lin, Y.L. Ho, A.S.A. Kamal, I.T. Wang et al., Self-healing lithographic patterning of perovskite nanocrystals for large-area single-mode laser array. Adv. Funct. Mater. 31(1), 2006283 (2021). https://doi.org/10.1002/adfm.202006283
T.A. Berhe, W.N. Su, C.H. Chen, C.J. Pan, J.H. Cheng et al., Organometal halide perovskite solar cells: Degradation and stability. Energy Environ. Sci. 9(2), 323–356 (2016). https://doi.org/10.1039/C5EE02733K
M.V. Kovalenko, L. Protesescu, M.I. Bodnarchuk, Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358(6364), 745–750 (2017). https://doi.org/10.1126/science.aam7093
Y. Lin, X. Zheng, Z. Shangguan, G. Chen, W. Huang et al., All-inorganic encapsulation for remarkably stable cesium lead halide perovskite nanocrystals: Toward full-color display applications. J. Mater. Chem. C 9(36), 12303–12313 (2021). https://doi.org/10.1039/D1TC02685B
S. Jeon, S.Y. Lee, S.K. Kim, W. Kim, T. Park et al., All-solution processed multicolor patterning technique of perovskite nanocrystal for color pixel array and flexible optoelectronic devices. Adv. Opt. Mater. 8(17), 2000501 (2020). https://doi.org/10.1002/adom.202000501
F. Palazon, M. Prato, L. Manna, Writing on nanocrystals: Patterning colloidal inorganic nanocrystal films through irradiation-induced chemical transformations of surface ligands. J. Am. Chem. Soc. 139(38), 13250–13259 (2017). https://doi.org/10.1021/jacs.7b05888
J.A. Pan, J.C. Ondry, D.V. Talapin, Direct optical lithography of CsPbX3 nanocrystals via photoinduced ligand cleavage with postpatterning chemical modification and electronic coupling. Nano Lett. 21(18), 7609–7616 (2021). https://doi.org/10.1021/acs.nanolett.1c02249
J. Ko, K. Ma, J.F. Joung, S. Park, J. Bang, Ligand-assisted direct photolithography of perovskite nanocrystals encapsulated with multifunctional polymer ligands for stable, full-colored, high-resolution displays. Nano Lett. 21(5), 2288–2295 (2021). https://doi.org/10.1021/acs.nanolett.1c00134
A. Gao, J. Yan, Z. Wang, P. Liu, D. Wu et al., Printable CsPbBr3 perovskite quantum dot ink for coffee ring-free fluorescent microarrays using inkjet printing. Nanoscale 12(4), 2569–2577 (2020). https://doi.org/10.1039/C9NR09651E
C. Zheng, X. Zheng, C. Feng, S. Ju, Z. Xu et al., High-brightness perovskite quantum dot light-emitting devices using inkjet printing. Org. Electron. 93, 106168 (2021). https://doi.org/10.1016/j.orgel.2021.106168
H. Wang, W. Yao, Q. Tian, M. Li, B. Tian et al., Printable monodisperse all-inorganic perovskite quantum dots: synthesis and banknotes protection applications. Adv. Mater. Technol. 3(11), 1800150 (2018). https://doi.org/10.1002/admt.201800150
S.Y. Lee, G. Lee, D.Y. Kim, S.H. Jang, I. Choi et al., Investigation of high-performance perovskite nanocrystals for inkjet-printed color conversion layers with superior color purity. APL Photon. 6(5), 056104 (2021). https://doi.org/10.1063/5.0044284
Y.C. Wong, W.B. Wu, T. Wang, J.D.A. Ng, K.H. Khoo et al., Color patterning of luminescent perovskites via light-mediated halide exchange with haloalkanes. Adv. Mater. 31(24), 1901247 (2019). https://doi.org/10.1002/adma.201901247
C. Kang, Z. Zhou, J.E. Halpert, A.K. Srivastava, Inkjet printed patterned bank structure with encapsulated perovskite colour filters for modern display. Nanoscale 14(22), 8060–8068 (2022). https://doi.org/10.1039/D2NR00849A
T.H. Kim, K.S. Cho, E.K. Lee, S.J. Lee, J. Chae et al., Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 5(3), 176–182 (2011). https://doi.org/10.1038/nphoton.2011.12
T.H. Kim, D.Y. Chung, J. Ku, I. Song, S. Sul et al., Heterogeneous stacking of nanodot monolayers by dry pick-and-place transfer and its applications in quantum dot light-emitting diodes. Nat. Commun. 4(1), 2637 (2013). https://doi.org/10.1038/ncomms3637
H. Jang, K. Sel, E. Kim, S. Kim, X. Yang et al., Graphene e-tattoos for unobstructive ambulatory electrodermal activity sensing on the palm enabled by heterogeneous serpentine ribbons. Nat. Commun. 13(1), 6604 (2022). https://doi.org/10.1038/s41467-022-34406-2
B. Liang, Z. Zhang, W. Chen, D. Lu, L. Yang et al., Direct patterning of carbon nanotube via stamp contact printing process for stretchable and sensitive sensing devices. Nano-Micro Lett. 11(1), 92 (2019). https://doi.org/10.1007/s40820-019-0323-8
H.J. Kim-Lee, A. Carlson, D.S. Grierson, J.A. Rogers, K.T. Turner, Interface mechanics of adhesiveless microtransfer printing processes. J. Appl. Phys. 115(14), 1 (2014). https://doi.org/10.1063/1.4870873
M.A. Meitl, Z.T. Zhu, V. Kumar, K.J. Lee, X. Feng et al., Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5(1), 33–38 (2006). https://doi.org/10.1038/nmat1532
C. Linghu, S. Zhang, C. Wang, J. Song, Transfer printing techniques for flexible and stretchable inorganic electronics. NPJ Flex. Electron. 2(1), 26 (2018). https://doi.org/10.1038/s41528-018-0037-x
S.Y. Kim, J.I. Kwon, H.H. Song, G.H. Lee, W.S. Yu et al., Effects of the surface ligands of quantum dots on the intaglio transfer printing process. Appl. Surf. Sci. 610, 155579 (2023). https://doi.org/10.1016/j.apsusc.2022.155579
M.K. Choi, J. Yang, K. Kang, D.C. Kim, C. Choi et al., Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 6(1), 7149 (2015). https://doi.org/10.1038/ncomms8149
M.K. Choi, J. Yang, D.C. Kim, Z. Dai, J. Kim et al., Extremely vivid, highly transparent, and ultrathin quantum dot light-emitting diodes. Adv. Mater. 30(1), 1703279 (2018). https://doi.org/10.1002/adma.201703279
C.Y. Huang, H. Li, Y. Wu, C.H. Lin, X. Guan et al., Inorganic halide perovskite quantum dots: a versatile nanomaterial platform for electronic applications. Nano-Micro Lett. 15(1), 16 (2022). https://doi.org/10.1007/s40820-022-00983-6
Z. Zhang, B. Saparov, Charge carrier mobility of halide perovskite single crystals for ionizing radiation detection. Appl. Phys. Lett. 119(3), 030502 (2021). https://doi.org/10.1063/5.0057411
T. Liu, W. Tang, S. Luong, O. Fenwick, High charge carrier mobility in solution processed one-dimensional lead halide perovskite single crystals and their application as photodetectors. Nanoscale 12(17), 9688–9695 (2020). https://doi.org/10.1039/D0NR01495H
V.M. Le Corre, E.A. Duijnstee, O.E. Tambouli, J.M. Ball, H.J. Snaith et al., Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements. ACS Energy Lett. 6(3), 1087–1094 (2021). https://doi.org/10.1021/acsenergylett.0c02599
S. Shrestha, X. Li, H. Tsai, C.H. Hou, H.H. Huang et al., Long carrier diffusion length in two-dimensional lead halide perovskite single crystals. Chem 8(4), 1107–1120 (2022). https://doi.org/10.1016/j.chempr.2022.01.008
W. Tian, C. Zhao, J. Leng, R. Cui, S. Jin, Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates. J. Am. Chem. Soc. 137(39), 12458–12461 (2015). https://doi.org/10.1021/jacs.5b08045
A.L. Efros, D.J. Nesbitt, Origin and control of blinking in quantum dots. Nat. Nanotechnol. 11(8), 661–671 (2016). https://doi.org/10.1038/nnano.2016.140
Y. Jiang, M. Cui, S. Li, C. Sun, Y. Huang et al., Reducing the impact of auger recombination in quasi-2D perovskite light-emitting diodes. Nat. Commun. 12(1), 336 (2021). https://doi.org/10.1038/s41467-020-20555-9
C. Bi, Z. Yao, J. Hu, X. Wang, M. Zhang et al., Suppressing auger recombination of perovskite quantum dots for efficient pure-blue-light-emitting diodes. ACS Energy Lett. 8(1), 731–739 (2023). https://doi.org/10.1021/acsenergylett.2c02613
L. Lee, J. Baek, K.S. Park, Y.E. Lee, N.K. Shrestha et al., Wafer-scale single-crystal perovskite patterned thin films based on geometrically-confined lateral crystal growth. Nat. Commun. 8(1), 15882 (2017). https://doi.org/10.1038/ncomms15882
L. Li, J. Liu, M. Zeng, L. Fu, Space-confined growth of metal halide perovskite crystal films. Nano Res. 14(6), 1609–1624 (2021). https://doi.org/10.1007/s12274-020-3050-z
Y.H. Kim, G.H. Lee, Y.T. Kim, C. Wolf, H.J. Yun et al., High efficiency perovskite light-emitting diodes of ligand-engineered colloidal formamidinium lead bromide nanops. Nano Energy 38, 51–58 (2017). https://doi.org/10.1016/j.nanoen.2017.05.002
J.W. Lee, S.M. Kang, Patterning of metal halide perovskite thin films and functional layers for optoelectronic applications. Nano-Micro Lett. 15(1), 184 (2023). https://doi.org/10.1007/s40820-023-01154-x
Q. Dong, L. Lei, J. Mendes, F. So, Operational stability of perovskite light emitting diodes. J. Phys. Mater. 3(1), 012002 (2020). https://doi.org/10.1088/2515-7639/ab60c4
S.J. Woo, J.S. Kim, T.W. Lee, Characterization of stability and challenges to improve lifetime in perovskite leds. Nat. Photon. 15(9), 630–634 (2021). https://doi.org/10.1038/s41566-021-00863-2
H. Kim, J.S. Kim, J.M. Heo, M. Pei, I.H. Park et al., Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and reduce luminance overshoot. Nat. Commun. 11(1), 3378 (2020). https://doi.org/10.1038/s41467-020-17072-0
P. Vashishtha, J.E. Halpert, Field-driven ion migration and color instability in red-emitting mixed halide perovskite nanocrystal light-emitting diodes. Chem. Mater. 29(14), 5965–5973 (2017). https://doi.org/10.1021/acs.chemmater.7b01609
V.K. Ravi, S. Saikia, S. Yadav, V.V. Nawale, A. Nag, CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability. ACS Energy Lett. 5(6), 1794–1796 (2020). https://doi.org/10.1021/acsenergylett.0c00858
W. Fu, A.G. Ricciardulli, Q.A. Akkerman, R.A. John, M.M. Tavakoli et al., Stability of perovskite materials and devices. Mater. Today 58, 275–296 (2022). https://doi.org/10.1016/j.mattod.2022.06.020
S. Liang, G.M. Biesold, M. Zhuang, Z. Kang, B. Wagner et al., Continuous manufacturing of highly stable lead halide perovskite nanocrystals via a dual-reactor strategy. Nanosc. Adv. 5(7), 2038–2044 (2023). https://doi.org/10.1039/D2NA00744D
S. Liang, M. Zhang, S. He, M. Tian, W. Choi et al., Metal halide perovskite nanorods with tailored dimensions, compositions and stabilities. Nat. Synth. 2(8), 719–728 (2023). https://doi.org/10.1038/s44160-023-00307-5
Y. Zhang, C. Zhou, L. Lin, F. Pei, M. Xiao et al., Gelation of hole transport layer to improve the stability of perovskite solar cells. Nano-Micro Lett. 15(1), 175 (2023). https://doi.org/10.1007/s40820-023-01145-y
A.J. Barker, A. Sadhanala, F. Deschler, M. Gandini, S.P. Senanayak et al., Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett. 2(6), 1416–1424 (2017). https://doi.org/10.1021/acsenergylett.7b00282
Y. Shen, Y.Q. Li, K. Zhang, L.J. Zhang, F.M. Xie et al., Multifunctional crystal regulation enables efficient and stable sky-blue perovskite light-emitting diodes. Adv. Funct. Mater. 32(41), 2206574 (2022). https://doi.org/10.1002/adfm.202206574
A.J. Knight, A.D. Wright, J.B. Patel, D.P. McMeekin, H.J. Snaith et al., Electronic traps and phase segregation in lead mixed-halide perovskite. ACS Energy Lett. 4(1), 75–84 (2019). https://doi.org/10.1021/acsenergylett.8b02002
H. Ma, D. Kim, S.I. Park, B.K. Choi, G. Park et al., Direct observation of off-stoichiometry-induced phase transformation of 2D CdSe quantum nanosheets. Adv. Sci. 10(7), 2205690 (2023). https://doi.org/10.1002/advs.202205690
J. Zhang, J. Li, Z. Ye, J. Cui, X. Peng, Hot-electron-induced photochemical properties of CdSe/ZnSe core/shell quantum dots under an ambient environment. J. Am. Chem. Soc. 145(25), 13938–13949 (2023). https://doi.org/10.1021/jacs.3c03443
H. Ma, S. Kang, S. Lee, G. Park, Y. Bae et al., Moisture-induced degradation of quantum-sized semiconductor nanocrystals through amorphous intermediates. ACS Nano 17(14), 13734–13745 (2023). https://doi.org/10.1021/acsnano.3c03103
J.H. Yu, J. Kim, T. Hyeon, J. Yang, Facile synthesis of manganese (ii)-doped ZnSe nanocrystals with controlled dimensionality. J. Chem. Phys. 151(24), 1 (2019). https://doi.org/10.1063/1.5128511
X. Zhao, L.J. Lim, S.S. Ang, Z.K. Tan, Efficient short-wave infrared light-emitting diodes based on heavy-metal-free quantum dots. Adv. Mater. 34(45), 2206409 (2022). https://doi.org/10.1002/adma.202206409
L.J. Lim, X. Zhao, Z.K. Tan, Non-toxic CuInS2/ZnS colloidal quantum dots for near-infrared light-emitting diodes. Adv. Mater. 35(28), 2301887 (2023). https://doi.org/10.1002/adma.202301887
S. Li, S.M. Jung, W. Chung, J.W. Seo, H. Kim et al., Defect engineering of ternary Cu–In–Se quantum dots for boosting photoelectrochemical hydrogen generation. Carbon Energy 1, e384 (2023). https://doi.org/10.1002/cey2.384
A. Kumar, A. Kumar, M.M.S. Cabral-Pinto, A.K. Chaturvedi, A.A. Shabnam et al., Lead toxicity: Health hazards, influence on food chain, and sustainable remediation approaches. Int. J. Environ. Res. Public Health 17(7), 2179 (2020). https://doi.org/10.3390/ijerph17072179
Y.M. Li, Y. Wang, M.J. Chen, T.Y. Huang, F.H. Yang et al., Current status and technological progress in lead recovery from electronic waste. Int. J. Environ. Sci. Technol. 20(1), 1037–1052 (2023). https://doi.org/10.1007/s13762-022-04009-x
T.C. Jellicoe, J.M. Richter, H.F.J. Glass, M. Tabachnyk, R. Brady et al., Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 138(9), 2941–2944 (2016). https://doi.org/10.1021/jacs.5b13470
A. Karmakar, M.S. Dodd, S. Agnihotri, E. Ravera, V.K. Michaelis, Cu(ii)-doped Cs2SbAgCl6 double perovskite: a lead-free, low-bandgap material. Chem. Mater. 30(22), 8280–8290 (2018). https://doi.org/10.1021/acs.chemmater.8b03755
M. Leng, Y. Yang, K. Zeng, Z. Chen, Z. Tan et al., All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Adv. Funct. Mater. 28(1), 1704446 (2018). https://doi.org/10.1002/adfm.201704446
M. Wang, W. Wang, B. Ma, W. Shen, L. Liu et al., Lead-free perovskite materials for solar cells. Nano-Micro Lett. 13(1), 62 (2021). https://doi.org/10.1007/s40820-020-00578-z
N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera et al., Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7(9), 3061–3068 (2014). https://doi.org/10.1039/C4EE01076K
P. Li, X. Cao, J. Li, B. Jiao, X. Hou et al., Ligand engineering in tin-based perovskite solar cells. Nano-Micro Lett. 15(1), 167 (2023). https://doi.org/10.1007/s40820-023-01143-0
S. Yue, S.C. McGuire, H. Yan, Y.S. Chu, M. Cotlet et al., Synthesis, characterization, and stability studies of ge-based perovskites of controllable mixed cation composition, produced with an ambient surfactant-free approach. ACS Omega 4(19), 18219–18233 (2019). https://doi.org/10.1021/acsomega.9b02203
R. Chiara, M. Morana, L. Malavasi, Germanium-based halide perovskites: Materials, properties, and applications. ChemPlusChem 86(6), 879–888 (2021). https://doi.org/10.1002/cplu.202100191
X. Li, X. Gao, X. Zhang, X. Shen, M. Lu et al., Lead-free halide perovskites for light emission: recent advances and perspectives. Adv. Sci. 8(4), 2003334 (2021). https://doi.org/10.1002/advs.202003334
C. Ming, Z. Chen, F. Zhang, S. Gong, X. Wu et al., Mixed chalcogenide-halides for stable, lead-free and defect-tolerant photovoltaics: computational screening and experimental validation of CuBiSCl2 with ideal band gap. Adv. Funct. Mater. 32(27), 2112682 (2022). https://doi.org/10.1002/adfm.202112682
M. Datta, Manufacturing processes for fabrication of flip-chip micro-bumps used in microelectronic packaging: an overview. J. Micromanuf. 3(1), 69–83 (2020). https://doi.org/10.1177/2516598419880124
Y. Xu, Z. Lin, W. Wei, Y. Hao, S. Liu et al., Recent progress of electrode materials for flexible perovskite solar cells. Nano-Micro Lett. 14(1), 117 (2022). https://doi.org/10.1007/s40820-022-00859-9
J. Kim, H. Jung, M. Kim, H. Bae, Y. Lee, Conductive polymer composites for soft tactile sensors. Macromol. Res. 29, 761–775 (2017). https://doi.org/10.1007/s13233-021-9092-6
J. Yang, M.K. Choi, D.H. Kim, T. Hyeon, Designed assembly and integration of colloidal nanocrystals for device applications. Adv. Mater. 28(6), 1176–1207 (2016). https://doi.org/10.1002/adma.201502851
Y.M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung et al., Digital cameras with designs inspired by the arthropod eye. Nature 497(7447), 95–99 (2013). https://doi.org/10.1038/nature12083
D.C. Kim, H. Yun, J. Kim, H. Seung, W.S. Yu et al., Three-dimensional foldable quantum dot light-emitting diodes. Nat. Electron. 4(9), 671–680 (2021). https://doi.org/10.1038/s41928-021-00643-4
Y. Lee, D.S. Kim, S.W. Jin, H. Lee, Y.R. Jeong et al., Stretchable array of CdSe/ZnS quantum-dot light emitting diodes for visual display of bio-signals. Chem. Eng. J. 427, 130858 (2022). https://doi.org/10.1016/j.cej.2021.130858
H. Seung, C. Choi, D.C. Kim, J.S. Kim, J.H. Kim et al., Integration of synaptic phototransistors and quantum dot light-emitting diodes for visualization and recognition of UV patterns. Sci. Adv. 8(41), eabq3101 (2022). https://doi.org/10.1126/sciadv.abq3101
J. Zhu, S. Zhang, N. Yi, C. Song, D. Qiu et al., Strain-insensitive hierarchically structured stretchable microstrip antennas for robust wireless communication. Nano-Micro Lett. 13(1), 108 (2021). https://doi.org/10.1007/s40820-021-00631-5
Z. Zhang, W. Wang, Y. Jiang, Y.X. Wang, Y. Wu et al., High-brightness all-polymer stretchable led with charge-trapping dilution. Nature 603(7902), 624–630 (2022). https://doi.org/10.1038/s41586-022-04400-1
M.W. Jeong, J.H. Ma, J.S. Shin, J.S. Kim, G. Ma et al., Intrinsically stretchable three primary light-emitting films enabled by elastomer blend for polymer light-emitting diodes. Sci. Adv. 9(25), eadh1504 (2023). https://doi.org/10.1126/sciadv.adh1504
S.G.R. Bade, X. Shan, P.T. Hoang, J. Li, T. Geske et al., Stretchable light-emitting diodes with organometal-halide-perovskite–polymer composite emitters. Adv. Mater. 29(23), 1607053 (2017). https://doi.org/10.1002/adma.201607053
Y.F. Li, S.Y. Chou, P. Huang, C. Xiao, X. Liu et al., Stretchable organometal-halide-perovskite quantum-dot light-emitting diodes. Adv. Mater. 31(22), 1807516 (2019). https://doi.org/10.1002/adma.201807516
T.I. Kim, S. Hyun Lee, Y. Li, Y. Shi, G. Shin et al., Temperature- and size-dependent characteristics in ultrathin inorganic light-emitting diodes assembled by transfer printing. Appl. Phys. Lett. 104(5), 1 (2014). https://doi.org/10.1063/1.4863856
H. Jinno, T. Yokota, M. Koizumi, W. Yukita, M. Saito et al., Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes. Nat. Commun. 12(1), 2234 (2021). https://doi.org/10.1038/s41467-021-22558-6
J. Zhang, Y. Hu, L. Zhang, J. Zhou, A. Lu, Transparent, ultra-stretching, tough, adhesive carboxyethyl chitin/polyacrylamide hydrogel toward high-performance soft electronics. Nano-Micro Lett. 15(1), 8 (2022). https://doi.org/10.1007/s40820-022-00980-9
J. Yoo, S. Ha, G.H. Lee, Y. Kim, M.K. Choi, Stretchable high-resolution user-interactive synesthesia displays for visual-acoustic encryption. Adv. Funct. Mater. 33, 2302473 (2023). https://doi.org/10.1002/adfm.202302473
J.H. Jang, S. Li, D.H. Kim, J. Yang, M.K. Choi, Materials, device structures, and applications of flexible perovskite light-emitting diodes. Adv. Electron. Mater. 9(9), 2201271 (2023). https://doi.org/10.1002/aelm.202201271