Biological Interaction and Imaging of Ultrasmall Gold Nanoparticles
Corresponding Author: Jinbin Liu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 44
Abstract
Ultrasmall gold nanoparticles (AuNPs) typically includes atomically precise gold nanoclusters (AuNCs) and AuNPs with a core size below 3 nm. Serving as a bridge between small molecules and traditional inorganic nanoparticles, the ultrasmall AuNPs show the unique advantages of both small molecules (e.g., rapid distribution, renal clearance, low non-specific organ accumulation) and nanoparticles (e.g., long blood circulation and enhanced permeability and retention effect). The emergence of ultrasmall AuNPs creates significant opportunities to address many challenges in the health field including disease diagnosis, monitoring and treatment. Since the nano–bio interaction dictates the overall biological applications of the ultrasmall AuNPs, this review elucidates the recent advances in the biological interactions and imaging of ultrasmall AuNPs. We begin with the introduction of the factors that influence the cellular interactions of ultrasmall AuNPs. We then discuss the organ interactions, especially focus on the interactions of the liver and kidneys. We further present the recent advances in the tumor interactions of ultrasmall AuNPs. In addition, the imaging performance of the ultrasmall AuNPs is summarized and discussed. Finally, we summarize this review and provide some perspective on the future research direction of the ultrasmall AuNPs, aiming to accelerate their clinical translation.
Highlights:
1 The ultrasmall gold nanoparticles (AuNPs), serving as a bridge between small molecules and traditional inorganic nanoparticles, create significant opportunities to address many challenges in the health field.
2 This review discusses the recent advances in the biological interactions and imaging of ultrasmall AuNPs.
3 The challenges and the future development directions of the ultrasmall AuNPs are presented.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Kang, Y. Li, M. Zhu, R. Jin, Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chem. Soc. Rev. 49(17), 6443–6514 (2020). https://doi.org/10.1039/c9cs00633h
- L. Zhang, E. Wang, Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today 9(1), 132–157 (2014). https://doi.org/10.1016/j.nantod.2014.02.010
- R. Jin, Atomically precise metal nanoclusters: stable sizes and optical properties. Nanoscale 7(5), 1549–1565 (2015). https://doi.org/10.1039/c4nr05794e
- X. Luo, J. Liu, Ultrasmall luminescent metal nanops: surface engineering strategies for biological targeting and imaging. Adv. Sci. 9(3), e2103971 (2022). https://doi.org/10.1002/advs.202103971
- Y. Huang, L. Fuksman, J. Zheng, Luminescence mechanisms of ultrasmall gold nanops. Dalton Trans. 47(18), 6267–6273 (2018). https://doi.org/10.1039/c8dt00420j
- K. Pyo, V.D. Thanthirige, K. Kwak, P. Pandurangan, G. Ramakrishna et al., Ultrabright luminescence from gold nanoclusters: rigidifying the Au(I)-thiolate shell. J. Am. Chem. Soc. 137(25), 8244–8250 (2015). https://doi.org/10.1021/jacs.5b04210
- L. Howard-Fabretto, G.G. Andersson, Metal clusters on semiconductor surfaces and application in catalysis with a focus on Au and Ru. Adv. Mater. 32(18), e1904122 (2020). https://doi.org/10.1002/adma.201904122
- H. Qian, M. Zhu, Z. Wu, R. Jin, Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 45(9), 1470–1479 (2012). https://doi.org/10.1021/ar200331z
- T. Zhou, X. Jiang, Modulating luminescence and assembled shapes of ultrasmall Au nanops towards hierarchical information encryption. Chem. Sci. 13(41), 12107–12113 (2022). https://doi.org/10.1039/d2sc04031j
- H. Ma, X. Zhang, L. Liu, Y. Huang, S. Sun et al., Bioactive NIR-II gold clusters for three-dimensional imaging and acute inflammation inhibition. Sci. Adv. 9(31), eadh7828 (2023). https://doi.org/10.1126/sciadv.adh7828
- M. Yu, J. Xu, J. Zheng, Renal clearable luminescent gold nanops: From the bench to the clinic. Angew. Chem. Int. Ed. 58(13), 4112–4128 (2019). https://doi.org/10.1002/anie.201807847
- J. Liu, M. Yu, C. Zhou, J. Zheng, Renal clearable inorganic nanops: a new frontier of bionanotechnology. Mater. Today 16(12), 477–486 (2013). https://doi.org/10.1016/j.mattod.2013.11.003
- L. Shang, G.U. Nienhaus, Gold nanoclusters as novel optical probes for in vitro and in vivo fluorescence imaging. Biophys. Rev. 4(4), 313–322 (2012). https://doi.org/10.1007/s12551-012-0076-9
- H. Zhang, R. Peng, Y. Luo, Q. Cui, F. Gong et al., In situ synthesis of gold nanoclusters in covalent organic frameworks with enhanced photodynamic properties and antibacterial performance. ACS Appl. Bio Mater. 5(6), 3115–3125 (2022). https://doi.org/10.1021/acsabm.2c00451
- A. Master, M. Livingston, A. Sen Gupta, Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges. J. Controll. Release 168(1), 88–102 (2013). https://doi.org/10.1016/j.jconrel.2013.02.020
- H. Deng, Y. Zhong, M. Du, Q. Liu, Z. Fan et al., Theranostic self-assembly structure of gold nanops for NIR photothermal therapy and X-ray computed tomography imaging. Theranostics 4(9), 904–918 (2014). https://doi.org/10.7150/thno.9448
- T.-T. Jia, B.-J. Li, G. Yang, Y. Hua, J.-Q. Liu et al., Enantiomeric alkynyl-protected Au10 clusters with chirality-dependent radiotherapy enhancing effects. Nano Today 39, 101222 (2021). https://doi.org/10.1016/j.nantod.2021.101222
- M.P. Antosh, D.D. Wijesinghe, S. Shrestha, R. Lanou, Y.H. Huang et al., Enhancement of radiation effect on cancer cells by gold-phlip. Proc. Natl. Acad. Sci. U.S.A. 112(17), 5372–5376 (2015). https://doi.org/10.1073/pnas.1501628112
- M. Tavakkoli Yaraki, B. Liu, Y.N. Tan, Emerging strategies in enhancing singlet oxygen generation of nano-photosensitizers toward advanced phototherapy. Nano-Micro Lett. 14(1), 123 (2022). https://doi.org/10.1007/s40820-022-00856-y
- Q. Fu, X. Zhang, J. Song, H. Yang, Plasmonic gold nanoagents for cancer imaging and therapy. View 2(5), 20200149 (2021). https://doi.org/10.1002/viw.20200149
- Y. Yang, Y. Peng, C. Lin, L. Long, J. Hu et al., Human ACE2-functionalized gold “virus-trap” nanostructures for accurate capture of SARS-COV-2 and single-virus sers detection. Nano-Micro Lett. 13(1), 109 (2021). https://doi.org/10.1007/s40820-021-00620-8
- M. Tavakkoli Yaraki, M. Wu, E. Middha, W. Wu, S. Daqiqeh Rezaei et al., Gold nanostars-AIE theranostic nanodots with enhanced fluorescence and photosensitization towards effective image-guided photodynamic therapy. Nano-Micro Lett. 13(1), 58 (2021). https://doi.org/10.1007/s40820-020-00583-2
- M. Sharifi, F. Attar, A.A. Saboury, K. Akhtari, N. Hooshmand et al., Plasmonic gold nanops: optical manipulation, imaging, drug delivery and therapy. J. Controll Release 311–312, 170–189 (2019). https://doi.org/10.1016/j.jconrel.2019.08.032
- A. Lindsey-Crosthwait, D. Rodriguez-Lema, M. Walko, C.M. Pask, A.J. Wilson, Structural optimization of reversible dibromomaleimide peptide stapling. Pept. Sci. 113(1), e24157 (2021). https://doi.org/10.1002/pep2.24157
- G. Li, B. Sun, Y. Li, C. Luo, Z. He et al., Small-molecule prodrug nanoassemblies: an emerging nanoplatform for anticancer drug delivery. Small 17(52), e2101460 (2021). https://doi.org/10.1002/smll.202101460
- X. Huang, J. Song, B.C. Yung, X. Huang, Y. Xiong et al., Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem. Soc. Rev. 47(8), 2873–2920 (2018). https://doi.org/10.1039/c7cs00612h
- J. Cardellini, A. Ridolfi, M. Donati, V. Giampietro, M. Severi et al., Probing the coverage of nanops by biomimetic membranes through nanoplasmonics. J. Colloid Interface Sci. 640, 100–109 (2023). https://doi.org/10.1016/j.jcis.2023.02.073
- L. Zhang, L. Wang, S. He, C. Zhu, Z. Gong et al., High-performance organic electrochemical transistor based on photo-annealed plasmonic gold nanop-doped PEDOT:PSS. ACS Appl. Mater. Interfaces 15(2), 3224–3234 (2023). https://doi.org/10.1021/acsami.2c19867
- Y. Zhou, X. Yang, J. Zhang, S. Xu, J. Li et al., Small molecule fluorescent probes for the detection of reactive nitrogen species in biological systems. Coord. Chem. Rev. 493, 215258 (2023). https://doi.org/10.1016/j.ccr.2023.215258
- Y. Su, B. Yu, S. Wang, H. Cong, Y. Shen, NIR-II bioimaging of small organic molecule. Biomaterials 271, 120717 (2021). https://doi.org/10.1016/j.biomaterials.2021.120717
- X. Liu, B. Yu, Y. Shen, H. Cong, Design of NIR-II high performance organic small molecule fluorescent probes and summary of their biomedical applications. Coord. Chem. Rev. 468, 214609 (2022). https://doi.org/10.1016/j.ccr.2022.214609
- J. Lou-Franco, B. Das, C. Elliott, C. Cao, Gold nanozymes: from concept to biomedical applications. Nano-Micro Lett. 13(1), 10 (2020). https://doi.org/10.1007/s40820-020-00532-z
- S.M. van de Looij, E.R. Hebels, M. Viola, M. Hembury, S. Oliveira et al., Gold nanoclusters: imaging, therapy, and theranostic roles in biomedical applications. Bioconjugate Chem. 33(1), 4–23 (2022). https://doi.org/10.1021/acs.bioconjchem.1c00475
- X. Wang, H. He, Y. Wang, J. Wang, X. Sun et al., Active tumor-targeting luminescent gold clusters with efficient urinary excretion. Chem. Commun. 52(59), 9232–9235 (2016). https://doi.org/10.1039/c6cc03814j
- H. Chen, S. Li, B. Li, X. Ren, S. Li et al., Folate-modified gold nanoclusters as near-infrared fluorescent probes for tumor imaging and therapy. Nanoscale 4(19), 6050–6064 (2012). https://doi.org/10.1039/c2nr31616a
- P. Zhang, X.X. Yang, Y. Wang, N.W. Zhao, Z.H. Xiong et al., Rapid synthesis of highly luminescent and stable Au20 nanoclusters for active tumor-targeted imaging in vitro and in vivo. Nanoscale 6(4), 2261–2269 (2014). https://doi.org/10.1039/c3nr05269a
- M. Jiang, Y. Lin, X. Fang, M. Liu, L. Ma et al., Enhancement of gold-nanocluster-mediated chemotherapeutic efficiency of cisplatin in lung cancer. J. Mater. Chem. B 9(24), 4895–4905 (2021). https://doi.org/10.1039/d1tb00276g
- M. Fan, Y. Han, S. Gao, H. Yan, L. Cao et al., Ultrasmall gold nanops in cancer diagnosis and therapy. Theranostics 10(11), 4944–4957 (2020). https://doi.org/10.7150/thno.42471
- Y. Li, O. Zaluzhna, B. Xu, Y. Gao, J.M. Modest et al., Mechanistic insights into the brust-schiffrin two-phase synthesis of organo-chalcogenate-protected metal nanops. J. Am. Chem. Soc. 133(7), 2092–2095 (2011). https://doi.org/10.1021/ja1105078
- C.J. Ackerson, P.D. Jadzinsky, R.D. Kornberg, Thiolate ligands for synthesis of water-soluble gold clusters. J. Am. Chem. Soc. 127(18), 6550–6551 (2005). https://doi.org/10.1021/ja046114i
- R.H. Adnan, J.M.L. Madridejos, A.S. Alotabi, G.F. Metha, G.G. Andersson, A review of state of the art in phosphine ligated gold clusters and application in catalysis. Adv. Sci. 9(15), 2105692 (2022). https://doi.org/10.1002/advs.202105692
- Z.-H. Gao, K. Wei, T. Wu, J. Dong, D.-E. Jiang et al., A heteroleptic gold hydride nanocluster for efficient and selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 144(12), 5258–5262 (2022). https://doi.org/10.1021/jacs.2c00725
- J.J. Li, Z.J. Guan, S.F. Yuan, F. Hu, Q.M. Wang, Enriching structural diversity of alkynyl-protected gold nanoclusters with chlorides. Angew. Chem. Int. Ed. 60(12), 6699–6703 (2021). https://doi.org/10.1002/anie.202014154
- Z.-J. Guan, F. Hu, J.-J. Li, Z.-R. Wen, Y.-M. Lin et al., Isomerization in alkynyl-protected gold nanoclusters. J. Am. Chem. Soc. 142(6), 2995–3001 (2020). https://doi.org/10.1021/jacs.9b11836
- K.L.D.M. Weerawardene, P. Pandeya, M. Zhou, Y. Chen, R. Jin et al., Luminescence and electron dynamics in atomically precise nanoclusters with eight superatomic electrons. J. Am. Chem. Soc. 141(47), 18715–18726 (2019). https://doi.org/10.1021/jacs.9b07626
- D.M. Chevrier, L. Raich, C. Rovira, A. Das, Z. Luo et al., Molecular-scale ligand effects in small gold-thiolate nanoclusters. J. Am. Chem. Soc. 140(45), 15430–15436 (2018). https://doi.org/10.1021/jacs.8b09440
- W. Kurashige, Y. Niihori, S. Sharma, Y. Negishi, Precise synthesis, functionalization and application of thiolate-protected gold clusters. Coord. Chem. Rev. 320–321, 238–250 (2016). https://doi.org/10.1016/j.ccr.2016.02.013
- Z. Wu, M.A. MacDonald, J. Chen, P. Zhang, R. Jin, Kinetic control and thermodynamic selection in the synthesis of atomically precise gold nanoclusters. J. Am. Chem. Soc. 133(25), 9670–9673 (2011). https://doi.org/10.1021/ja2028102
- M. Zhu, E. Lanni, N. Garg, M.E. Bier, R. Jin, Kinetically controlled, high-yield synthesis of Au25 clusters. J. Am. Chem. Soc. 130(4), 1138–1139 (2008). https://doi.org/10.1021/ja0782448
- T. Chen, Q. Yao, R.R. Nasaruddin, J. Xie, Electrospray ionization mass spectrometry: A powerful platform for noble-metal nanocluster analysis. Angew. Chem. Int. Ed. 58(35), 11967–11977 (2019). https://doi.org/10.1002/anie.201901970
- C. Zeng, Y. Chen, K. Kirschbaum, K. Appavoo, M.Y. Sfeir et al., Structural patterns at all scales in a nonmetallic chiral Au133(SR)52 nanop. Sci. Adv. 1(2), e1500045 (2015). https://doi.org/10.1126/sciadv.1500045
- Z. Luo, V. Nachammai, B. Zhang, N. Yan, D.T. Leong et al., Toward understanding the growth mechanism: tracing all stable intermediate species from reduction of Au(I)-thiolate complexes to evolution of Au25 nanoclusters. J. Am. Chem. Soc. 136(30), 10577–10580 (2014). https://doi.org/10.1021/ja505429f
- H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849), 426–430 (2007). https://doi.org/10.1126/science.1147241
- A. Dass, S. Theivendran, P.R. Nimmala, C. Kumara, V.R. Jupally et al., Au133(SPh-tBu)52 nanomolecules: X-ray crystallography, optical, electrochemical, and theoretical analysis. J. Am. Chem. Soc. 137(14), 4610–4613 (2015). https://doi.org/10.1021/ja513152h
- Z. Liu, Z. Wu, Q. Yao, Y. Cao, O.J.H. Chai et al., Correlations between the fundamentals and applications of ultrasmall metal nanoclusters: recent advances in catalysis and biomedical applications. Nano Today 36, 101053 (2021). https://doi.org/10.1016/j.nantod.2020.101053
- S. Han, T. Zal, K.V. Sokolov, Fate of antibody-targeted ultrasmall gold nanops in cancer cells after receptor-mediated uptake. ACS Nano 15(6), 9495–9508 (2021). https://doi.org/10.1021/acsnano.0c08128
- Y. Huang, W. Xiao, S. Ahrari, M. Yu, J. Zheng, Crosstalk between hepatic glutathione efflux and tumor targeting of ICG-conjugated gold nanops. Angew. Chem. Int. Ed. (2023). https://doi.org/10.1002/anie.202308909
- N. Xia, Z. Wu, Controlling ultrasmall gold nanops with atomic precision. Chem. Sci. 12(7), 2368–2380 (2021). https://doi.org/10.1039/d0sc05363e
- N. Goswami, Q. Yao, T. Chen, J. Xie, Mechanistic exploration and controlled synthesis of precise thiolate-gold nanoclusters. Coord. Chem. Rev. 329, 1–15 (2016). https://doi.org/10.1016/j.ccr.2016.09.001
- J. Zheng, C. Zhou, M. Yu, J. Liu, Different sized luminescent gold nanops. Nanoscale 4(14), 4073–4083 (2012). https://doi.org/10.1039/c2nr31192e
- Y. Du, H. Sheng, D. Astruc, M. Zhu, Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chem. Rev. 120(2), 526–622 (2019). https://doi.org/10.1021/acs.chemrev.8b00726
- X. Kang, M. Zhu, Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 48(8), 2422–2457 (2019). https://doi.org/10.1039/c8cs00800k
- X. Jiang, B. Du, Y. Huang, J. Zheng, Ultrasmall noble metal nanops: breakthroughs and biomedical implications. Nano Today 21, 106–125 (2018). https://doi.org/10.1016/j.nantod.2018.06.006
- L. Gong, Y. Wang, J. Liu, Bioapplications of renal-clearable luminescent metal nanops. Biomater. Sci. 5(8), 1393–1406 (2017). https://doi.org/10.1039/c7bm00257b
- X. Song, W. Zhu, X. Ge, R. Li, S. Li et al., A new class of NIR-II gold nanocluster-based protein biolabels for in vivo tumor-targeted imaging. Angew. Chem. Int. Ed. 60(3), 1306–1312 (2021). https://doi.org/10.1002/anie.202010870
- G. Yang, X. Mu, X. Pan, Y. Tang, Q. Yao et al., Ligand engineering of Au44 nanoclusters for NIR-II luminescent and photoacoustic imaging-guided cancer photothermal therapy. Chem. Sci. 14(16), 4308–4318 (2023). https://doi.org/10.1039/d2sc05729h
- J.H. Yu, M.S. Jeong, E.O. Cruz, I.S. Alam, S.K. Tumbale et al., Highly excretable gold supraclusters for translatable in vivo raman imaging of tumors. ACS Nano 17(3), 2554–2567 (2023). https://doi.org/10.1021/acsnano.2c10378
- Y. Wang, C. Xu, J. Zhai, F. Gao, R. Liu et al., Label-free Au cluster used for in vivo 2D and 3D computed tomography of murine kidneys. Anal. Chem. 87(1), 343–345 (2015). https://doi.org/10.1021/ac503887c
- E.P. Stater, A.Y. Sonay, C. Hart, J. Grimm, The ancillary effects of nanops and their implications for nanomedicine. Nat. Nanotechnol. 16(11), 1180–1194 (2021). https://doi.org/10.1038/s41565-021-01017-9
- Y. Liu, J. Wang, Q. Xiong, D. Hornburg, W. Tao et al., Nano-bio interactions in cancer: from therapeutics delivery to early detection. Acc. Chem. Res. 54(2), 291–301 (2020). https://doi.org/10.1021/acs.accounts.0c00413
- M.J. Mitchell, M.M. Billingsley, R.M. Haley, M.E. Wechsler, N.A. Peppas et al., Engineering precision nanops for drug delivery. Nat. Rev. Drug Discovery 20(2), 101–124 (2021). https://doi.org/10.1038/s41573-020-0090-8
- J. Lin, H. Zhang, Z. Chen, Y. Zheng, Penetration of lipid membranes by gold nanops: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano 4(9), 5421–5429 (2010). https://doi.org/10.1021/nn1010792
- L.W.C. Ho, Y. Liu, R. Han, Q. Bai, C.H.J. Choi, Nano-cell interactions of non-cationic bionanomaterials. Acc. Chem. Res. 52(6), 1519–1530 (2019). https://doi.org/10.1021/acs.accounts.9b00103
- A. Verma, F. Stellacci, Effect of surface properties on nanop-cell interactions. Small 6(1), 12–21 (2010). https://doi.org/10.1002/smll.200901158
- M. Wen, J. Li, W. Zhong, J. Xu, S. Qu et al., High-throughput colorimetric analysis of nanop-protein interactions based on the enzyme-mimic properties of nanops. Anal. Chem. 94(24), 8783–8791 (2022). https://doi.org/10.1021/acs.analchem.2c01618
- J. Zhu, Z. Zhao, H. Chen, X. Chen, J. Liu, Surface-regulated injection dose response of ultrasmall luminescent gold nanops. Nanoscale 14(24), 8818–8824 (2022). https://doi.org/10.1039/d2nr01784a
- H.S. Han, J.D. Martin, J. Lee, D.K. Harris, D. Fukumura et al., Spatial charge configuration regulates nanop transport and binding behavior in vivo. Angew. Chem. Int. Ed. 52(5), 1414–1419 (2013). https://doi.org/10.1002/anie.201208331
- Z.J. Zhu, P.S. Ghosh, O.R. Miranda, R.W. Vachet, V.M. Rotello, Multiplexed screening of cellular uptake of gold nanops using laser desorption/ionization mass spectrometry. J. Am. Chem. Soc. 130(43), 14139–14143 (2008). https://doi.org/10.1021/ja805392f
- D.B. Chithrani, Intracellular uptake, transport, and processing of gold nanostructures. Mol. Membr. Biol. 27(7), 299–311 (2010). https://doi.org/10.3109/09687688.2010.507787
- L.C. Cheng, X. Jiang, J. Wang, C. Chen, R.S. Liu, Nano-bio effects: interaction of nanomaterials with cells. Nanoscale 5(9), 3547–3569 (2013). https://doi.org/10.1039/c3nr34276j
- S. Behzadi, V. Serpooshan, W. Tao, M.A. Hamaly, M.Y. Alkawareek et al., Cellular uptake of nanops: Journey inside the cell. Chem. Soc. Rev. 46(14), 4218–4244 (2017). https://doi.org/10.1039/c6cs00636a
- W.G. Kreyling, A.M. Abdelmonem, Z. Ali, F. Alves, M. Geiser et al., In vivo integrity of polymer-coated gold nanops. Nat. Nanotechnol. 10(7), 619–623 (2015). https://doi.org/10.1038/nnano.2015.111
- Y. Li, S. Qu, Y. Xue, L. Zhang, L. Shang, Cationic antibacterial metal nanoclusters with traceable capability for fluorescent imaging the nano-bio interactions. Nano Res. 16(1), 999–1008 (2022). https://doi.org/10.1007/s12274-022-4837-x
- C. Shen, Y. Xue, Y. Li, M. Wei, M. Wen et al., Kinetically regulated one-pot synthesis of cationic gold nanops and their size-dependent antibacterial mechanism. J. Mate. Sci. Technol. 162, 145–156 (2023). https://doi.org/10.1016/j.jmst.2023.03.061
- E.C. Cho, J. Xie, P.A. Wurm, Y. Xia, Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanops on the cell surface with a I2/KI etchant. Nano Lett. 9(3), 1080–1084 (2009). https://doi.org/10.1021/nl803487r
- Y. Jiang, S. Huo, T. Mizuhara, R. Das, Y.W. Lee et al., The interplay of size and surface functionality on the cellular uptake of sub-10 nm gold nanops. ACS Nano 9(10), 9986–9993 (2015). https://doi.org/10.1021/acsnano.5b03521
- M. Yu, C. Zhou, J. Liu, J.D. Hankins, J. Zheng, Luminescent gold nanops with pH-dependent membrane adsorption. J. Am. Chem. Soc. 133(29), 11014–11017 (2011). https://doi.org/10.1021/ja201930p
- J. Zhu, K. He, Z. Dai, L. Gong, T. Zhou et al., Self-assembly of luminescent gold nanops with sensitive pH-stimulated structure transformation and emission response toward lysosome escape and intracellular imaging. Anal. Chem. 91(13), 8237–8243 (2019). https://doi.org/10.1021/acs.analchem.9b00877
- N.M. Schaeublin, L.K. Braydich-Stolle, A.M. Schrand, J.M. Miller, J. Hutchison et al., Surface charge of gold nanops mediates mechanism of toxicity. Nanoscale 3(2), 410–420 (2011). https://doi.org/10.1039/c0nr00478b
- C. Kim, S.S. Agasti, Z. Zhu, L. Isaacs, V.M. Rotello, Recognition-mediated activation of therapeutic gold nanops inside living cells. Nat. Chem. 2(11), 962–966 (2010). https://doi.org/10.1038/nchem.858
- L.M. Koch, E.S. Birkeland, S. Battaglioni, X. Helle, M. Meerang et al., Cytosolic pH regulates proliferation and tumour growth by promoting expression of cyclin D1. Nat. Metab. 2(11), 1212–1222 (2020). https://doi.org/10.1038/s42255-020-00297-0
- B.A. Webb, M. Chimenti, M.P. Jacobson, D.L. Barber, Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer 11(9), 671–677 (2011). https://doi.org/10.1038/nrc3110
- T. Mizuhara, K. Saha, D.F. Moyano, C.S. Kim, B. Yan et al., Acylsulfonamide-functionalized zwitterionic gold nanops for enhanced cellular uptake at tumor pH. Angew. Chem. Int. Ed. 54(22), 6567–6570 (2015). https://doi.org/10.1002/anie.201411615
- L. Gong, Y. Chen, K. He, J. Liu, Surface coverage-regulated cellular interaction of ultrasmall luminescent gold nanops. ACS Nano 13(2), 1893–1899 (2019). https://doi.org/10.1021/acsnano.8b08103
- A. Verma, O. Uzun, Y. Hu, Y. Hu, H.S. Han et al., Surface-structure-regulated cell-membrane penetration by monolayer-protected nanops. Nat. Mater. 7(7), 588–595 (2008). https://doi.org/10.1038/nmat2202
- Y.F. Huang, H. Liu, X. Xiong, Y. Chen, W. Tan, Nanop-mediated lgE-receptor aggregation and signaling in RBL mast cells. J. Am. Chem. Soc. 131(47), 17328–17334 (2009). https://doi.org/10.1021/ja907125t
- H. Liu, T.L. Doane, Y. Cheng, F. Lu, S. Srinivasan et al., Control of surface ligand density on pegylated gold nanops for optimized cancer cell uptake. Part. Part. Syst. Charact. 32(2), 197–204 (2015). https://doi.org/10.1002/ppsc.201400067
- L.W.C. Ho, B. Yin, G. Dai, C.H.J. Choi, Effect of surface modification with hydrocarbyl groups on the exocytosis of nanops. Biochemistry 60(13), 1019–1030 (2021). https://doi.org/10.1021/acs.biochem.0c00631
- V. Mailander, K. Landfester, Interaction of nanops with cells. Biomacromol 10(9), 2379–2400 (2009). https://doi.org/10.1021/bm900266r
- H.T. McMahon, E. Boucrot, Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12(8), 517–533 (2011). https://doi.org/10.1038/nrm3151
- Y. Guo, E. Terazzi, R. Seemann, J.B. Fleury, V.A. Baulin, Direct proof of spontaneous translocation of lipid-covered hydrophobic nanops through a phospholipid bilayer. Sci. Adv. 2(11), e1600261 (2016). https://doi.org/10.1126/sciadv.1600261
- S. Sun, Y. Huang, C. Zhou, S. Chen, M. Yu et al., Effect of hydrophobicity on nano-bio interactions of zwitterionic luminescent gold nanops at the cellular level. Bioconjugate Chem. 29(6), 1841–1846 (2018). https://doi.org/10.1021/acs.bioconjchem.8b00202
- D.F. Moyano, M. Goldsmith, D.J. Solfiell, D. Landesman-Milo, O.R. Miranda et al., Nanop hydrophobicity dictates immune response. J. Am. Chem. Soc. 134(9), 3965–3967 (2012). https://doi.org/10.1021/ja2108905
- A. Chompoosor, K. Saha, P.S. Ghosh, D.J. Macarthy, O.R. Miranda et al., The role of surface functionality on acute cytotoxicity, ros generation and DNA damage by cationic gold nanops. Small 6(20), 2246–2249 (2010). https://doi.org/10.1002/smll.201000463
- J. Zhai, L. Zhao, L. Zheng, F. Gao, L. Gao et al., Peptide-Au cluster probe: precisely detecting epidermal growth factor receptor of three tumor cell lines at a single-cell level. ACS Omega 2(1), 276–282 (2017). https://doi.org/10.1021/acsomega.6b00390
- L. Zhao, J. Zhai, X. Zhang, X. Gao, X. Fang et al., Computational design of peptide-Au cluster probe for sensitive detection of αIIbβ3 integrin. Nanoscale 8(7), 4203–4208 (2016). https://doi.org/10.1039/c5nr09175f
- F. Xiao, Y. Chen, J. Qi, Q. Yao, J. Xie et al., Multi-targeted peptide-modified gold nanoclusters for treating solid tumors in the liver. Adv. Mater. 35(20), 2210412 (2023). https://doi.org/10.1002/adma.202210412
- E.S. Kryachko, F. Remacle, Complexes of DNA bases and gold clusters Au3 and Au4 involving nonconventional N-H…Au hydrogen bonding. Nano Lett. 5(4), 735–739 (2005). https://doi.org/10.1021/nl050194m
- V. Rojas-Cervellera, L. Raich, J. Akola, C. Rovira, The molecular mechanism of the ligand exchange reaction of an antibody against a glutathione-coated gold cluster. Nanoscale 9(9), 3121–3127 (2017). https://doi.org/10.1039/c6nr08498b
- A. Retnakumari, J. Jayasimhan, P. Chandran, D. Menon, S. Nair et al., CD33 monoclonal antibody conjugated Au cluster nano-bioprobe for targeted flow-cytometric detection of acute myeloid leukaemia. Nanotechnology 22(28), 285102 (2011). https://doi.org/10.1088/0957-4484/22/28/285102
- Z. Dai, Y. Tan, K. He, H. Chen, J. Liu, Strict DNA valence control in ultrasmall thiolate-protected near-infrared-emitting gold nanops. J. Am. Chem. Soc. 142(33), 14023–14027 (2020). https://doi.org/10.1021/jacs.0c00443
- Y. Pan, Q. Li, Q. Zhou, W. Zhang, P. Yue et al., Cancer cell specific fluorescent methionine protected gold nanoclusters for in-vitro cell imaging studies. Talanta 188, 259–265 (2018). https://doi.org/10.1016/j.talanta.2018.05.079
- Y. Yang, S. Wang, S. Chen, Y. Shen, M. Zhu, Switching the subcellular organelle targeting of atomically precise gold nanoclusters by modifying the capping ligand. Chem. Commun. 54(66), 9222–9225 (2018). https://doi.org/10.1039/c8cc04474k
- A. Nagy, N.L. Robbins, The hurdles of nanotoxicity in transplant nanomedicine. Nanomedicine 14(20), 2749–2762 (2019). https://doi.org/10.2217/nnm-2019-0192
- Y. Wang, T. Yang, Q. He, Strategies for engineering advanced nanomedicines for gas therapy of cancer. Natl. Sci. Rev. 7(9), 1485–1512 (2020). https://doi.org/10.1093/nsr/nwaa034
- O. Bar-Ilan, R.M. Albrecht, V.E. Fako, D.Y. Furgeson, Toxicity assessments of multisized gold and silver nanops in zebrafish embryos. Small 5(16), 1897–1910 (2009). https://doi.org/10.1002/smll.200801716
- R. Coradeghini, S. Gioria, C.P. Garcia, P. Nativo, F. Franchini et al., Size-dependent toxicity and cell interaction mechanisms of gold nanops on mouse fibroblasts. Toxicol. Lett. 217(3), 205–216 (2013). https://doi.org/10.1016/j.toxlet.2012.11.022
- C.M. Goodman, C.D. McCusker, T. Yilmaz, V.M. Rotello, Toxicity of gold nanops functionalized with cationic and anionic side chains. Bioconjugate Chem. 15(4), 897–900 (2004). https://doi.org/10.1021/bc049951i
- L. Gong, K. He, J. Liu, Concentration-dependent subcellular distribution of ultrasmall near-infrared-emitting gold nanops. Angew. Chem. Int. Ed. 60(11), 5739–5743 (2021). https://doi.org/10.1002/anie.202014833
- W. Poon, B.R. Kingston, B. Ouyang, W. Ngo, W.C.W. Chan, A framework for designing delivery systems. Nat. Nanotechnol. 15(10), 819–829 (2020). https://doi.org/10.1038/s41565-020-0759-5
- Y. Zhang, Y. Bai, J. Jia, N. Gao, Y. Li et al., Perturbation of physiological systems by nanops. Chem. Soc. Rev. 43(10), 3762–3809 (2014). https://doi.org/10.1039/c3cs60338e
- Y.N. Zhang, W. Poon, A.J. Tavares, I.D. McGilvray, W.C.W. Chan, Nanop-liver interactions: cellular uptake and hepatobiliary elimination. J. Controll.Release 240, 332–348 (2016). https://doi.org/10.1016/j.jconrel.2016.01.020
- S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet et al., Analysis of nanop delivery to tumours. Nat. Rev. Mater. 1(5), 16014 (2016). https://doi.org/10.1038/natrevmats.2016.14
- S.G. Elci, Y. Jiang, B. Yan, S.T. Kim, K. Saha et al., Surface charge controls the suborgan biodistributions of gold nanops. ACS Nano 10(5), 5536–5542 (2016). https://doi.org/10.1021/acsnano.6b02086
- K.M. Tsoi, S.A. MacParland, X.Z. Ma, V.N. Spetzler, J. Echeverri et al., Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 15(11), 1212–1221 (2016). https://doi.org/10.1038/nmat4718
- J. Wang, J.J. Masehi-Lano, E.J. Chung, Peptide and antibody ligands for renal targeting: Nanomedicine strategies for kidney disease. Biomater. Sci. 5(8), 1450–1459 (2017). https://doi.org/10.1039/c7bm00271h
- Y. Huang, J. Wang, K. Jiang, E.J. Chung, Improving kidney targeting: The influence of nanop physicochemical properties on kidney interactions. J. Controll. Release 334, 127–137 (2021). https://doi.org/10.1016/j.jconrel.2021.04.016
- Q. Chen, F. Ding, S. Zhang, Q. Li, X. Liu et al., Sequential therapy of acute kidney injury with a DNA nanodevice. Nano Lett. 21(10), 4394–4402 (2021). https://doi.org/10.1021/acs.nanolett.1c01044
- B. Haraldsson, J. Nyström, W.M. Deen, Properties of the glomerular barrier and mechanisms of proteinuria. Physiol. Rev. 88(2), 451–487 (2008). https://doi.org/10.1152/physrev.00055.2006
- B. Du, X. Jiang, A. Das, Q. Zhou, M. Yu et al., Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 12(11), 1096–1102 (2017). https://doi.org/10.1038/nnano.2017.170
- B. Du, M. Yu, J. Zheng, Transport and interactions of nanops in the kidneys. Nat. Rev. Mater. 3(10), 358–374 (2018). https://doi.org/10.1038/s41578-018-0038-3
- F. Oroojalian, F. Charbgoo, M. Hashemi, A. Amani, R. Yazdian-Robati et al., Recent advances in nanotechnology-based drug delivery systems for the kidney. J. Controll. Release 321, 442–462 (2020). https://doi.org/10.1016/j.jconrel.2020.02.027
- B.A. Molitoris, R.M. Sandoval, S.P.S. Yadav, M.C. Wagner, Albumin uptake and processing by the proximal tubule: physiological, pathological, and therapeutic implications. Physiol. Rev. 102(4), 1625–1667 (2022). https://doi.org/10.1152/physrev.00014.2021
- Y. Huang, M. Yu, J. Zheng, Proximal tubules eliminate endocytosed gold nanops through an organelle-extrusion-mediated self-renewal mechanism. Nat. Nanotechnol. 18(6), 637–646 (2023). https://doi.org/10.1038/s41565-023-01366-7
- J. Huang, J. Li, Y. Lyu, Q. Miao, K. Pu, Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat. Mater. 18(10), 1133–1143 (2019). https://doi.org/10.1038/s41563-019-0378-4
- Y. Tan, M. Chen, H. Chen, J. Wu, J. Liu, Enhanced ultrasound contrast of renal-clearable luminescent gold nanops. Angew. Chem. Int. Ed. 60(21), 11713–11717 (2021). https://doi.org/10.1002/anie.202017273
- F.A. Blocki, P.M. Schlievert, L.P. Wackett, Rat liver protein linking chemical and immunological detoxification systems. Nature 360(6401), 269–270 (1992). https://doi.org/10.1038/360269a0
- H. Wang, C.A. Thorling, X. Liang, K.R. Bridle, J.E. Grice et al., Diagnostic imaging and therapeutic application of nanops targeting the liver. J. Mater. Chem. B 3(6), 939–958 (2015). https://doi.org/10.1039/c4tb01611d
- W. Poon, Y.-N. Zhang, B. Ouyang, B.R. Kingston, J.L.Y. Wu et al., Elimination pathways of nanops. ACS Nano 13(5), 5785–5798 (2019). https://doi.org/10.1021/acsnano.9b01383
- A. Boey, H.K. Ho, All roads lead to the liver: metal nanops and their implications for liver health. Small 16(21), e2000153 (2020). https://doi.org/10.1002/smll.202000153
- W. Cai, Y. Tan, K. He, B. Tang, J. Liu, Manganese(II)-guided separation in the sub-nanometer regime for precise identification of in vivo size dependence. Angew. Chem. Int. Ed. 62(10), e202214720 (2023). https://doi.org/10.1002/anie.202214720
- X. Jiang, B. Du, J. Zheng, Glutathione-mediated biotransformation in the liver modulates nanop transport. Nat. Nanotechnol. 14(9), 874–882 (2019). https://doi.org/10.1038/s41565-019-0499-6
- X. Jiang, Q. Zhou, B. Du, S. Li, Y. Huang et al., Noninvasive monitoring of hepatic glutathione depletion through fluorescence imaging and blood testing. Sci. Adv. (2021). https://doi.org/10.1126/sciadv.abd9847
- Z. Zhao, H. Chen, K. He, J. Lin, W. Cai et al., Glutathione-activated emission of ultrasmall gold nanops in the second near-infrared window for imaging of early kidney injury. Anal. Chem. 95(11), 5061–5068 (2023). https://doi.org/10.1021/acs.analchem.2c05612
- Y. Tan, W. Cai, C. Luo, J. Tang, R.T.K. Kwok et al., Rapid biotransformation of luminescent bimetallic nanops in hepatic sinusoids. J. Am. Chem. Soc. 144(45), 20653–20660 (2022). https://doi.org/10.1021/jacs.2c07657
- L.C. Davies, S.J. Jenkins, J.E. Allen, P.R. Taylor, Tissue-resident macrophages. Nat. Immunol. 14(10), 986–995 (2013). https://doi.org/10.1038/ni.2705
- J. He, C. Li, L. Ding, Y. Huang, X. Yin et al., Tumor targeting strategies of smart fluorescent nanops and their applications in cancer diagnosis and treatment. Adv. Mater. 31(40), e1902409 (2019). https://doi.org/10.1002/adma.201902409
- D. Zhang, J. He, M. Zhou, Radiation-assisted strategies provide new perspectives to improve the nanop delivery to tumor. Adv. Drug Deliv. Rev. 193, 114642 (2023). https://doi.org/10.1016/j.addr.2022.114642
- S. Jeon, E. Jun, H. Chang, J.Y. Yhee, E.Y. Koh et al., Prediction the clinical EPR effect of nanops in patient-derived xenograft models. J. Controll. Release 351, 37–49 (2022). https://doi.org/10.1016/j.jconrel.2022.09.007
- L. Xu, M. Xu, X. Sun, N. Feliu, L. Feng et al., Quantitative comparison of gold nanop delivery via the enhanced permeation and retention (EPR) effect and mesenchymal stem cell (MSC)-based targeting. ACS Nano 17(3), 2039–2052 (2023). https://doi.org/10.1021/acsnano.2c07295
- S. Thakkar, D. Sharma, K. Kalia, R.K. Tekade, Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: A review. Acta Biomater. 101, 43–68 (2020). https://doi.org/10.1016/j.actbio.2019.09.009
- G. Yang, S.Z.F. Phua, A.K. Bindra, Y. Zhao, Degradability and clearance of inorganic nanops for biomedical applications. Adv. Mater. (2019). https://doi.org/10.1002/adma.201805730
- K. Huang, H. Ma, J. Liu, S. Huo, A. Kumar et al., Size-dependent localization and penetration of ultrasmall gold nanops in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano 6(5), 4483–4493 (2012). https://doi.org/10.1021/nn301282m
- B. Kim, G. Han, B.J. Toley, C.K. Kim, V.M. Rotello et al., Tuning payload delivery in tumour cylindroids using gold nanops. Nat. Nanotechnol. 5(6), 465–472 (2010). https://doi.org/10.1038/nnano.2010.58
- C. Zhou, M. Long, Y. Qin, X. Sun, J. Zheng, Luminescent gold nanops with efficient renal clearance. Angew. Chem. Int. Ed. 50(14), 3168–3172 (2011). https://doi.org/10.1002/anie.201007321
- C. Zhou, G. Hao, P. Thomas, J. Liu, M. Yu et al., Near-infrared emitting radioactive gold nanops with molecular pharmacokinetics. Angew. Chem. Int. Ed. 51(40), 10118–10122 (2012). https://doi.org/10.1002/anie.201203031
- D. Luo, X. Wang, S. Zeng, G. Ramamurthy, C. Burda et al., Targeted gold nanocluster-enhanced radiotherapy of prostate cancer. Small 15(34), e1900968 (2019). https://doi.org/10.1002/smll.201900968
- C. Alric, I. Miladi, D. Kryza, J. Taleb, F. Lux et al., The biodistribution of gold nanops designed for renal clearance. Nanoscale 5(13), 5930–5939 (2013). https://doi.org/10.1039/c3nr00012e
- Y. Tan, K. He, B. Tang, H. Chen, Z. Zhao et al., Precisely regulated luminescent gold nanops for identification of cancer metastases. ACS Nano 14(10), 13975–13985 (2020). https://doi.org/10.1021/acsnano.0c06388
- J. Liu, M. Yu, X. Ning, C. Zhou, S. Yang et al., Pegylation and zwitterionization: Pros and cons in the renal clearance and tumor targeting of near-ir-emitting gold nanops. Angew. Chem. Int. Ed. 52(48), 12572–12576 (2013). https://doi.org/10.1002/anie.201304465
- X.D. Zhang, J. Chen, Z. Luo, D. Wu, X. Shen et al., Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy. Adv. Healthcare Mater. 3(1), 133–141 (2014). https://doi.org/10.1002/adhm.201300189
- J. Gao, K. Chen, R. Xie, J. Xie, S. Lee et al., Ultrasmall near-infrared non-cadmium quantum dots for in vivo tumor imaging. Small 6(2), 256–261 (2010). https://doi.org/10.1002/smll.200901672
- Y. Wang, X.-P. Yan, Fabrication of vascular endothelial growth factor antibody bioconjugated ultrasmall near-infrared fluorescent Ag2S quantum dots for targeted cancer imaging in vivo. Chem. Commun. 49(32), 3324–3326 (2013). https://doi.org/10.1039/c3cc41141a
- R. Hu, Y. Fang, M. Huo, H. Yao, C. Wang et al., Ultrasmall Cu2-xS nanodots as photothermal-enhanced fenton nanocatalysts for synergistic tumor therapy at NIR-II biowindow. Biomaterials 206, 101–114 (2019). https://doi.org/10.1016/j.biomaterials.2019.03.014
- J. Shao, J. Zhang, C. Jiang, J. Lin, P. Huang, Biodegradable titanium nitride mxene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chem. Eng. J. 400, 126009 (2020). https://doi.org/10.1016/j.cej.2020.126009
- Z. Xu, H. Huang, X. Xiong, X. Wei, X. Guo et al., A near-infrared light-responsive extracellular vesicle as a “trojan horse” for tumor deep penetration and imaging-guided therapy. Biomaterials 269, 120647 (2021). https://doi.org/10.1016/j.biomaterials.2020.120647
- X. Yu, A. Li, C. Zhao, K. Yang, X. Chen et al., Ultrasmall semimetal nanops of bismuth for dual-modal computed tomography/photoacoustic imaging and synergistic thermoradiotherapy. ACS Nano 11(4), 3990–4001 (2017). https://doi.org/10.1021/acsnano.7b00476
- L. Wen, L. Chen, S. Zheng, J. Zeng, G. Duan et al., Ultrasmall biocompatible WO3-x nanodots for multi-modality imaging and combined therapy of cancers. Adv. Mater. 28(25), 5072–5079 (2016). https://doi.org/10.1002/adma.201506428
- D. Liu, X. Dai, W. Zhang, X. Zhu, Z. Zha et al., Liquid exfoliation of ultrasmall zirconium carbide nanodots as a noninflammatory photothermal agent in the treatment of glioma. Biomaterials 292, 121917 (2023). https://doi.org/10.1016/j.biomaterials.2022.121917
- J. Liu, M. Yu, C. Zhou, S. Yang, X. Ning et al., Passive tumor targeting of renal-clearable luminescent gold nanops: Long tumor retention and fast normal tissue clearance. J. Am. Chem. Soc. 135(13), 4978–4981 (2013). https://doi.org/10.1021/ja401612x
- K. He, Y. Tan, Z. Zhao, H. Chen, J. Liu, Weak anchoring sites of thiolate-protected luminescent gold nanops. Small 17(38), e2102481 (2021). https://doi.org/10.1002/smll.202102481
- H.S. Choi, B.I. Ipe, P. Misra, J.H. Lee, M.G. Bawendi et al., Tissue- and organ-selective biodistribution of nir fluorescent quantum dots. Nano Lett. 9(6), 2354–2359 (2009). https://doi.org/10.1021/nl900872r
- S. Huo, S. Chen, N. Gong, J. Liu, X. Li et al., Ultrasmall gold nanops behavior in vivo modulated by surface polyethylene glycol (PEG) grafting. Bioconjugate Chem. 28(1), 239–243 (2017). https://doi.org/10.1021/acs.bioconjchem.6b00488
- Y. Kong, D. Santos-Carballal, D. Martin, N. N. Sergeeva, W. Wang et al., A NIR-II-emitting gold nanocluster-based drug delivery system for smartphone-triggered photodynamic theranostics with rapid body clearance. Mater. Today 51, 96–107 (2021). https://doi.org/10.1016/j.mattod.2021.09.022
- T. Zhou, J. Zhu, L. Gong, L. Nong, J. Liu, Amphiphilic block copolymer-guided in situ fabrication of stable and highly controlled luminescent copper nanoassemblies. J. Am. Chem. Soc. 141(7), 2852–2856 (2019). https://doi.org/10.1021/jacs.8b12026
- Z.L. Tyrrell, Y. Shen, M. Radosz, Fabrication of micellar nanops for drug delivery through the self-assembly of block copolymers. Prog. Polymer. Sci. 35(9), 1128–1143 (2010). https://doi.org/10.1016/j.progpolymsci.2010.06.003
- L. Nong, T. Zhou, H. Chen, B. Tang, J. Liu, Growth regulation of luminescent gold nanops directed from amphiphilic block copolymers: highly-controlled nanoassemblies toward tailored in-vivo transport. Sci. China Chem. 64(1), 157–164 (2020). https://doi.org/10.1007/s11426-020-9862-1
- K. Bourzac, News feature: cancer nanomedicine, reengineered. Proc. Natl. Acad. Sci. U. S. A. 113(45), 12600–12603 (2016). https://doi.org/10.1073/pnas.1616895113
- Q. Yuan, Y. Wang, L. Zhao, R. Liu, F. Gao et al., Peptide protected gold clusters: chemical synthesis and biomedical applications. Nanoscale 8(24), 12095–12104 (2016). https://doi.org/10.1039/c6nr02750d
- S. Dixit, T. Novak, K. Miller, Y. Zhu, M.E. Kenney et al., Transferrin receptor-targeted theranostic gold nanops for photosensitizer delivery in brain tumors. Nanoscale 7(5), 1782–1790 (2015). https://doi.org/10.1039/c4nr04853a
- X. Ran, Z. Wang, F. Pu, Z. Liu, J. Ren et al., Aggregation-induced emission-active Au nanoclusters for ratiometric sensing and bioimaging of highly reactive oxygen species. Chem. Commun. 55(100), 15097–15100 (2019). https://doi.org/10.1039/c9cc08170d
- J. Xia, X. Wang, S. Zhu, L. Liu, L. Li, Gold nanocluster-decorated nanocomposites with enhanced emission and reactive oxygen species generation. ACS Appl. Mater. Interfaces 11(7), 7369–7378 (2019). https://doi.org/10.1021/acsami.8b19679
- N. Li, Y. Chen, Y.M. Zhang, Y. Yang, Y. Su et al., Polysaccharide-gold nanocluster supramolecular conjugates as a versatile platform for the targeted delivery of anticancer drugs. Sci. Rep. 4, 4164 (2014). https://doi.org/10.1038/srep04164
- M.S. Muthu, R.V. Kutty, Z. Luo, J. Xie, S.S. Feng, Theranostic vitamin E TPGS micelles of transferrin conjugation for targeted co-delivery of docetaxel and ultra bright gold nanoclusters. Biomaterials 39, 234–248 (2015). https://doi.org/10.1016/j.biomaterials.2014.11.008
- Y. Wang, J.T. Chen, X.P. Yan, Fabrication of transferrin functionalized gold nanoclusters/graphene oxide nanocomposite for turn-on near-infrared fluorescent bioimaging of cancer cells and small animals. Anal. Chem. 85(4), 2529–2535 (2013). https://doi.org/10.1021/ac303747t
- A. Retnakumari, S. Setua, D. Menon, P. Ravindran, H. Muhammed et al., Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging. Nanotechnology 21(5), 055103 (2010). https://doi.org/10.1088/0957-4484/21/5/055103
- C. Ding, Y. Tian, Gold nanocluster-based fluorescence biosensor for targeted imaging in cancer cells and ratiometric determination of intracellular pH. Biosens. Bioelectron. 65, 183–190 (2015). https://doi.org/10.1016/j.bios.2014.10.034
- Y. Wang, S. Ma, Z. Dai, Z. Rong, J. Liu, Facile in situ synthesis of ultrasmall near-infrared-emitting gold glyconanops with enhanced cellular uptake and tumor targeting. Nanoscale 11(35), 16336–16341 (2019). https://doi.org/10.1039/c9nr03821c
- S. Su, H. Wang, X. Liu, Y. Wu, G. Nie, IRGD-coupled responsive fluorescent nanogel for targeted drug delivery. Biomaterials 34(13), 3523–3533 (2013). https://doi.org/10.1016/j.biomaterials.2013.01.083
- G. Liang, X. Jin, S. Zhang, D. Xing, RGD peptide-modified fluorescent gold nanoclusters as highly efficient tumor-targeted radiotherapy sensitizers. Biomaterials 144, 95–104 (2017). https://doi.org/10.1016/j.biomaterials.2017.08.017
- Z. Du, Z. He, J. Fan, Y. Huo, B. He et al., Au4 cluster inhibits human thioredoxin reductase activity via specifically binding of au to cys189. Nano Today 47, 101686 (2022). https://doi.org/10.1016/j.nantod.2022.101686
- J. Zhang, A. Rakhimbekova, X. Duan, Q. Yin, C.A. Foss et al., A prostate-specific membrane antigen activated molecular rotor for real-time fluorescence imaging. Nat. Commun. 12(1), 5460 (2021). https://doi.org/10.1038/s41467-021-25746-6
- X. Han, Z. He, W. Niu, C. Zhang, Z. Du et al., The precise detection of HER-2 expression in breast cancer cell via Au25 probes. Nanomaterials 12(6), 923 (2022). https://doi.org/10.3390/nano12060923
- Y. Wang, J. Chen, J. Irudayaraj, Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer. ACS Nano 5(12), 9718–9725 (2011). https://doi.org/10.1021/nn2032177
- Y. Tao, M. Li, B. Kim, D.T. Auguste, Incorporating gold nanoclusters and target-directed liposomes as a synergistic amplified colorimetric sensor for HER2-positive breast cancer cell detection. Theranostics 7(4), 899–911 (2017). https://doi.org/10.7150/thno.17927
- H. Xu, J. Ding, Y. Du, L. Li, Y. Li et al., Aptamer-functionalized AuNCs nanogel for targeted delivery of docosahexaenoic acid to induce browning of white adipocytes. J. Mater. Chem. B. 11(22), 4972–4979 (2023). https://doi.org/10.1039/d2tb02709g
- K. Yu, X. Hai, S. Yue, W. Song, S. Bi, Glutathione-activated DNA-Au nanomachine as targeted drug delivery platform for imaging-guided combinational cancer therapy. Chem. Eng. J. 419, 129535 (2021). https://doi.org/10.1016/j.cej.2021.129535
- J. Carvalho, J. Lopes-Nunes, B. Vialet, T. Rosado, E. Gallardo et al., Nanoaggregate-forming lipid-conjugated AS1411 aptamer as a promising tumor-targeted delivery system of anticancer agents in vitro. Nanomedicine 36, 102429 (2021). https://doi.org/10.1016/j.nano.2021.102429
- D. Chen, B. Li, S. Cai, P. Wang, S. Peng et al., Dual targeting luminescent gold nanoclusters for tumor imaging and deep tissue therapy. Biomaterials 100, 1–16 (2016). https://doi.org/10.1016/j.biomaterials.2016.05.017
- B. Feng, Y. Xing, J. Lan, Z. Su, F. Wang, Synthesis of muc1 aptamer-stabilized gold nanoclusters for cell-specific imaging. Talanta 212, 120796 (2020). https://doi.org/10.1016/j.talanta.2020.120796
- J. Liu, Q. Chen, L. Feng, Z. Liu, Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement. Nano Today 21, 55–73 (2018). https://doi.org/10.1016/j.nantod.2018.06.008
- Y. Zi, K. Yang, J. He, Z. Wu, J. Liu et al., Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Adv. Drug Deliv. Rev. 188, 114449 (2022). https://doi.org/10.1016/j.addr.2022.114449
- Z. Luo, Z. Yi, X. Liu, Surface engineering of lanthanide nanops for oncotherapy. Acc. Chem. Res. 56(4), 425–439 (2023). https://doi.org/10.1021/acs.accounts.2c00681
- X. Yang, C. Xu, X. Zhang, P. Li, F. Sun et al., Development of sulfonamide-functionalized charge-reversal aie photosensitizers for precise photodynamic therapy in the acidic tumor microenvironment. Adv. Funct. Mater. 33(30), 2300746 (2023). https://doi.org/10.1002/adfm.202300746
- R. Sun, Y. Zhang, X. Lin, Y. Piao, T. Xie et al., Aminopeptidase n-responsive conjugates with tunable charge-reversal properties for highly efficient tumor accumulation and penetration. Angew. Chem. Int. Ed. 62(9), e202217408 (2023). https://doi.org/10.1002/anie.202217408
- M. Yu, C. Zhou, L. Liu, S. Zhang, S. Sun et al., Interactions of renal-clearable gold nanops with tumor microenvironments: vasculature and acidity effects. Angew. Chem. Int. Ed. 56(15), 4314–4319 (2017). https://doi.org/10.1002/anie.201612647
- Y. Tan, L. Liu, Y. Wang, J. Liu, pH-regulated surface plasmon absorption from ultrasmall luminescent gold nanops. Adv. Opt. Mater. 6(10), 1701324 (2018). https://doi.org/10.1002/adom.201701324
- M. Zhou, X. Du, H. Wang, R. Jin, The critical number of gold atoms for a metallic state nanocluster: resolving a decades-long question. ACS Nano 15(9), 13980–13992 (2021). https://doi.org/10.1021/acsnano.1c04705
- C. Zhang, Z. Zhou, Q. Qian, G. Gao, C. Li et al., Glutathione-capped fluorescent gold nanoclusters for dual-modal fluorescence/X-ray computed tomography imaging. J. Mater. Chem. B 1(38), 5045–5053 (2013). https://doi.org/10.1039/c3tb20784f
- K. Hayashi, M. Nakamura, H. Miki, S. Ozaki, M. Abe et al., Gold nanop cluster-plasmon-enhanced fluorescent silica core-shell nanops for X-ray computed tomography-fluorescence dual-mode imaging of tumors. Chem. Commun. 49(46), 5334–5336 (2013). https://doi.org/10.1039/c3cc41876f
- C. Xu, Y. Wang, C. Zhang, Y. Jia, Y. Luo et al., AuGd integrated nanoprobes for optical/MRI/CT triple-modal in vivo tumor imaging. Nanoscale 9(13), 4620–4628 (2017). https://doi.org/10.1039/c7nr01064h
- G. Jarockyte, M. Stasys, V. Poderys, K. Buivydaite, M. Pleckaitis et al., Biodistribution of multimodal gold nanoclusters designed for photoluminescence-SPET/CT imaging and diagnostic. Nanomaterials (2022). https://doi.org/10.3390/nano12193259
- H. Hu, P. Huang, O.J. Weiss, X. Yan, X. Yue et al., PET and NIR optical imaging using self-illuminating 64Cu-doped chelator-free gold nanoclusters. Biomaterials 35(37), 9868–9876 (2014). https://doi.org/10.1016/j.biomaterials.2014.08.038
- X. Chen, W. Niu, Z. Du, Y. Zhang, D. Su et al., 64Cu radiolabeled nanomaterials for positron emission tomography (PET) imaging. Chin. Chem. Lett. 33(7), 3349–3360 (2022). https://doi.org/10.1016/j.cclet.2022.02.070
- T. Wang, Y. Chen, B. Wang, M. Wu, Recent progress of second near-infrared (NIR-II) fluorescence microscopy in bioimaging. Front. Physiol. 14, 1126805 (2023). https://doi.org/10.3389/fphys.2023.1126805
- Y. Guo, J. Hu, P. Wang, H. Yang, S. Liang et al., In vivo NIR-II fluorescence lifetime imaging of whole-body vascular using high quantum yield lanthanide-doped nanops. Small 19(35), 2300392 (2023). https://doi.org/10.1002/smll.202300392
- Y. Dai, F. Zhang, K. Chen, Z. Sun, Z. Wang et al., An activatable phototheranostic nanoplatform for tumor specific NIR-II fluorescence imaging and synergistic nir-ii photothermal-chemodynamic therapy. Small 19(22), e2206053 (2023). https://doi.org/10.1002/smll.202206053
- D. Gao, Y. Li, Y. Wu, Y. Liu, D. Hu et al., Albumin-consolidated aiegens for boosting glioma and cerebrovascular NIR-II fluorescence imaging. ACS Appl. Mater. Interfaces 15(1), 3–13 (2023). https://doi.org/10.1021/acsami.1c22700
- H. Ma, J. Wang, X.-D. Zhang, Near-infrared II emissive metal clusters: From atom physics to biomedicine. Coord. Chem. Rev. 448, 214184 (2021). https://doi.org/10.1016/j.ccr.2021.214184
- Y. Huang, K. Chen, L. Liu, H. Ma, X. Zhang et al., Single atom-engineered NIR-II gold clusters with ultrahigh brightness and stability for acute kidney injury. Small 19(30), 2300145 (2023). https://doi.org/10.1002/smll.202300145
- K. Zhou, W. Cai, Y. Tan, Z. Zhao, J. Liu, Hihly controllable nanoassemblies of luminescent gold nanops with abnormal disassembly-induced emission enhancement for in vivo imaging applications. Angew. Chem. Int. Ed. 61(47), e202212214 (2022). https://doi.org/10.1002/anie.202212214
- B. Tang, W. Xia, W. Cai, J. Liu, Luminescent gold nanops with controllable hydrophobic interactions. Nano Lett. 22(20), 8109–8114 (2022). https://doi.org/10.1021/acs.nanolett.2c02486
- D. Li, Q. Liu, Q. Qi, H. Shi, E.C. Hsu et al., Gold nanoclusters for NIR-II fluorescence imaging of bones. Small 16(43), e2003851 (2020). https://doi.org/10.1002/smll.202003851
- H. Liu, G. Hong, Z. Luo, J. Chen, J. Chang et al., Atomic-precision gold clusters for NIR-II imaging. Adv. Mater. 31(46), e1901015 (2019). https://doi.org/10.1002/adma.201901015
- Z. Pang, W. Yan, J. Yang, Q. Li, Y. Guo et al., Multifunctional gold nanoclusters for effective targeting, near-infrared fluorescence imaging, diagnosis, and treatment of cancer lymphatic metastasis. ACS Nano 16(10), 16019–16037 (2022). https://doi.org/10.1021/acsnano.2c03752
- M. Liang, Q. Hu, S. Yi, Y. Chi, Y. Xiao, Development of an Au nanoclusters based activatable nanoprobe for NIR-II fluorescence imaging of gastric acid. Biosens. Bioelectron. 224, 115062 (2023). https://doi.org/10.1016/j.bios.2023.115062
- A. Baghdasaryan, F. Wang, F. Ren, Z. Ma, J. Li et al., Phosphorylcholine-conjugated gold-molecular clusters improve signal for lymph node NIR-II fluorescence imaging in preclinical cancer models. Nat. Commun. 13(1), 5613 (2022). https://doi.org/10.1038/s41467-022-33341-6
- X. Jiang, B. Du, S. Tang, J.T. Hsieh, J. Zheng, Photoacoustic imaging of nanop transport in the kidneys at high temporal resolution. Angew. Chem. Int. Ed. 58(18), 5994–6000 (2019). https://doi.org/10.1002/anie.201901525
- H. Cui, D. Hu, J. Zhang, G. Gao, Z. Chen et al., Gold nanoclusters-indocyanine green nanoprobes for synchronous cancer imaging, treatment, and real-time monitoring based on fluorescence resonance energy transfer. ACS Appl. Mater. Interfaces 9(30), 25114–25127 (2017). https://doi.org/10.1021/acsami.7b06192
- H. Zhu, Y. Zhou, Y. Wang, S. Xu, T.D. James et al., Stepwise-enhanced tumor targeting of near-infrared emissive Au nanoclusters with high quantum yields and long-term stability. Anal. Chem. 94(38), 13189–13196 (2022). https://doi.org/10.1021/acs.analchem.2c02717
- L.V. Nair, R.V. Nair, S.J. Shenoy, A. Thekkuveettil, R.S. Jayasree, Blood brain barrier permeable gold nanocluster for targeted brain imaging and therapy: an in vitro and in vivo study. J. Mater. Chem. B 5(42), 8314–8321 (2017). https://doi.org/10.1039/c7tb02247f
- D. Sultan, D. Ye, G.S. Heo, X. Zhang, H. Luehmann et al., Focused ultrasound enabled trans-blood brain barrier delivery of gold nanoclusters: effect of surface charges and quantification using positron emission tomography. Small 14(30), e1703115 (2018). https://doi.org/10.1002/smll.201703115
- C.A. Smith, C.A. Simpson, G. Kim, C.J. Carter, D.L. Feldheim, Gastrointestinal bioavailability of 2.0 nm diameter gold nanops. ACS Nano 7(5), 3991–3996 (2013). https://doi.org/10.1021/nn305930e
References
X. Kang, Y. Li, M. Zhu, R. Jin, Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chem. Soc. Rev. 49(17), 6443–6514 (2020). https://doi.org/10.1039/c9cs00633h
L. Zhang, E. Wang, Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today 9(1), 132–157 (2014). https://doi.org/10.1016/j.nantod.2014.02.010
R. Jin, Atomically precise metal nanoclusters: stable sizes and optical properties. Nanoscale 7(5), 1549–1565 (2015). https://doi.org/10.1039/c4nr05794e
X. Luo, J. Liu, Ultrasmall luminescent metal nanops: surface engineering strategies for biological targeting and imaging. Adv. Sci. 9(3), e2103971 (2022). https://doi.org/10.1002/advs.202103971
Y. Huang, L. Fuksman, J. Zheng, Luminescence mechanisms of ultrasmall gold nanops. Dalton Trans. 47(18), 6267–6273 (2018). https://doi.org/10.1039/c8dt00420j
K. Pyo, V.D. Thanthirige, K. Kwak, P. Pandurangan, G. Ramakrishna et al., Ultrabright luminescence from gold nanoclusters: rigidifying the Au(I)-thiolate shell. J. Am. Chem. Soc. 137(25), 8244–8250 (2015). https://doi.org/10.1021/jacs.5b04210
L. Howard-Fabretto, G.G. Andersson, Metal clusters on semiconductor surfaces and application in catalysis with a focus on Au and Ru. Adv. Mater. 32(18), e1904122 (2020). https://doi.org/10.1002/adma.201904122
H. Qian, M. Zhu, Z. Wu, R. Jin, Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 45(9), 1470–1479 (2012). https://doi.org/10.1021/ar200331z
T. Zhou, X. Jiang, Modulating luminescence and assembled shapes of ultrasmall Au nanops towards hierarchical information encryption. Chem. Sci. 13(41), 12107–12113 (2022). https://doi.org/10.1039/d2sc04031j
H. Ma, X. Zhang, L. Liu, Y. Huang, S. Sun et al., Bioactive NIR-II gold clusters for three-dimensional imaging and acute inflammation inhibition. Sci. Adv. 9(31), eadh7828 (2023). https://doi.org/10.1126/sciadv.adh7828
M. Yu, J. Xu, J. Zheng, Renal clearable luminescent gold nanops: From the bench to the clinic. Angew. Chem. Int. Ed. 58(13), 4112–4128 (2019). https://doi.org/10.1002/anie.201807847
J. Liu, M. Yu, C. Zhou, J. Zheng, Renal clearable inorganic nanops: a new frontier of bionanotechnology. Mater. Today 16(12), 477–486 (2013). https://doi.org/10.1016/j.mattod.2013.11.003
L. Shang, G.U. Nienhaus, Gold nanoclusters as novel optical probes for in vitro and in vivo fluorescence imaging. Biophys. Rev. 4(4), 313–322 (2012). https://doi.org/10.1007/s12551-012-0076-9
H. Zhang, R. Peng, Y. Luo, Q. Cui, F. Gong et al., In situ synthesis of gold nanoclusters in covalent organic frameworks with enhanced photodynamic properties and antibacterial performance. ACS Appl. Bio Mater. 5(6), 3115–3125 (2022). https://doi.org/10.1021/acsabm.2c00451
A. Master, M. Livingston, A. Sen Gupta, Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges. J. Controll. Release 168(1), 88–102 (2013). https://doi.org/10.1016/j.jconrel.2013.02.020
H. Deng, Y. Zhong, M. Du, Q. Liu, Z. Fan et al., Theranostic self-assembly structure of gold nanops for NIR photothermal therapy and X-ray computed tomography imaging. Theranostics 4(9), 904–918 (2014). https://doi.org/10.7150/thno.9448
T.-T. Jia, B.-J. Li, G. Yang, Y. Hua, J.-Q. Liu et al., Enantiomeric alkynyl-protected Au10 clusters with chirality-dependent radiotherapy enhancing effects. Nano Today 39, 101222 (2021). https://doi.org/10.1016/j.nantod.2021.101222
M.P. Antosh, D.D. Wijesinghe, S. Shrestha, R. Lanou, Y.H. Huang et al., Enhancement of radiation effect on cancer cells by gold-phlip. Proc. Natl. Acad. Sci. U.S.A. 112(17), 5372–5376 (2015). https://doi.org/10.1073/pnas.1501628112
M. Tavakkoli Yaraki, B. Liu, Y.N. Tan, Emerging strategies in enhancing singlet oxygen generation of nano-photosensitizers toward advanced phototherapy. Nano-Micro Lett. 14(1), 123 (2022). https://doi.org/10.1007/s40820-022-00856-y
Q. Fu, X. Zhang, J. Song, H. Yang, Plasmonic gold nanoagents for cancer imaging and therapy. View 2(5), 20200149 (2021). https://doi.org/10.1002/viw.20200149
Y. Yang, Y. Peng, C. Lin, L. Long, J. Hu et al., Human ACE2-functionalized gold “virus-trap” nanostructures for accurate capture of SARS-COV-2 and single-virus sers detection. Nano-Micro Lett. 13(1), 109 (2021). https://doi.org/10.1007/s40820-021-00620-8
M. Tavakkoli Yaraki, M. Wu, E. Middha, W. Wu, S. Daqiqeh Rezaei et al., Gold nanostars-AIE theranostic nanodots with enhanced fluorescence and photosensitization towards effective image-guided photodynamic therapy. Nano-Micro Lett. 13(1), 58 (2021). https://doi.org/10.1007/s40820-020-00583-2
M. Sharifi, F. Attar, A.A. Saboury, K. Akhtari, N. Hooshmand et al., Plasmonic gold nanops: optical manipulation, imaging, drug delivery and therapy. J. Controll Release 311–312, 170–189 (2019). https://doi.org/10.1016/j.jconrel.2019.08.032
A. Lindsey-Crosthwait, D. Rodriguez-Lema, M. Walko, C.M. Pask, A.J. Wilson, Structural optimization of reversible dibromomaleimide peptide stapling. Pept. Sci. 113(1), e24157 (2021). https://doi.org/10.1002/pep2.24157
G. Li, B. Sun, Y. Li, C. Luo, Z. He et al., Small-molecule prodrug nanoassemblies: an emerging nanoplatform for anticancer drug delivery. Small 17(52), e2101460 (2021). https://doi.org/10.1002/smll.202101460
X. Huang, J. Song, B.C. Yung, X. Huang, Y. Xiong et al., Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem. Soc. Rev. 47(8), 2873–2920 (2018). https://doi.org/10.1039/c7cs00612h
J. Cardellini, A. Ridolfi, M. Donati, V. Giampietro, M. Severi et al., Probing the coverage of nanops by biomimetic membranes through nanoplasmonics. J. Colloid Interface Sci. 640, 100–109 (2023). https://doi.org/10.1016/j.jcis.2023.02.073
L. Zhang, L. Wang, S. He, C. Zhu, Z. Gong et al., High-performance organic electrochemical transistor based on photo-annealed plasmonic gold nanop-doped PEDOT:PSS. ACS Appl. Mater. Interfaces 15(2), 3224–3234 (2023). https://doi.org/10.1021/acsami.2c19867
Y. Zhou, X. Yang, J. Zhang, S. Xu, J. Li et al., Small molecule fluorescent probes for the detection of reactive nitrogen species in biological systems. Coord. Chem. Rev. 493, 215258 (2023). https://doi.org/10.1016/j.ccr.2023.215258
Y. Su, B. Yu, S. Wang, H. Cong, Y. Shen, NIR-II bioimaging of small organic molecule. Biomaterials 271, 120717 (2021). https://doi.org/10.1016/j.biomaterials.2021.120717
X. Liu, B. Yu, Y. Shen, H. Cong, Design of NIR-II high performance organic small molecule fluorescent probes and summary of their biomedical applications. Coord. Chem. Rev. 468, 214609 (2022). https://doi.org/10.1016/j.ccr.2022.214609
J. Lou-Franco, B. Das, C. Elliott, C. Cao, Gold nanozymes: from concept to biomedical applications. Nano-Micro Lett. 13(1), 10 (2020). https://doi.org/10.1007/s40820-020-00532-z
S.M. van de Looij, E.R. Hebels, M. Viola, M. Hembury, S. Oliveira et al., Gold nanoclusters: imaging, therapy, and theranostic roles in biomedical applications. Bioconjugate Chem. 33(1), 4–23 (2022). https://doi.org/10.1021/acs.bioconjchem.1c00475
X. Wang, H. He, Y. Wang, J. Wang, X. Sun et al., Active tumor-targeting luminescent gold clusters with efficient urinary excretion. Chem. Commun. 52(59), 9232–9235 (2016). https://doi.org/10.1039/c6cc03814j
H. Chen, S. Li, B. Li, X. Ren, S. Li et al., Folate-modified gold nanoclusters as near-infrared fluorescent probes for tumor imaging and therapy. Nanoscale 4(19), 6050–6064 (2012). https://doi.org/10.1039/c2nr31616a
P. Zhang, X.X. Yang, Y. Wang, N.W. Zhao, Z.H. Xiong et al., Rapid synthesis of highly luminescent and stable Au20 nanoclusters for active tumor-targeted imaging in vitro and in vivo. Nanoscale 6(4), 2261–2269 (2014). https://doi.org/10.1039/c3nr05269a
M. Jiang, Y. Lin, X. Fang, M. Liu, L. Ma et al., Enhancement of gold-nanocluster-mediated chemotherapeutic efficiency of cisplatin in lung cancer. J. Mater. Chem. B 9(24), 4895–4905 (2021). https://doi.org/10.1039/d1tb00276g
M. Fan, Y. Han, S. Gao, H. Yan, L. Cao et al., Ultrasmall gold nanops in cancer diagnosis and therapy. Theranostics 10(11), 4944–4957 (2020). https://doi.org/10.7150/thno.42471
Y. Li, O. Zaluzhna, B. Xu, Y. Gao, J.M. Modest et al., Mechanistic insights into the brust-schiffrin two-phase synthesis of organo-chalcogenate-protected metal nanops. J. Am. Chem. Soc. 133(7), 2092–2095 (2011). https://doi.org/10.1021/ja1105078
C.J. Ackerson, P.D. Jadzinsky, R.D. Kornberg, Thiolate ligands for synthesis of water-soluble gold clusters. J. Am. Chem. Soc. 127(18), 6550–6551 (2005). https://doi.org/10.1021/ja046114i
R.H. Adnan, J.M.L. Madridejos, A.S. Alotabi, G.F. Metha, G.G. Andersson, A review of state of the art in phosphine ligated gold clusters and application in catalysis. Adv. Sci. 9(15), 2105692 (2022). https://doi.org/10.1002/advs.202105692
Z.-H. Gao, K. Wei, T. Wu, J. Dong, D.-E. Jiang et al., A heteroleptic gold hydride nanocluster for efficient and selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 144(12), 5258–5262 (2022). https://doi.org/10.1021/jacs.2c00725
J.J. Li, Z.J. Guan, S.F. Yuan, F. Hu, Q.M. Wang, Enriching structural diversity of alkynyl-protected gold nanoclusters with chlorides. Angew. Chem. Int. Ed. 60(12), 6699–6703 (2021). https://doi.org/10.1002/anie.202014154
Z.-J. Guan, F. Hu, J.-J. Li, Z.-R. Wen, Y.-M. Lin et al., Isomerization in alkynyl-protected gold nanoclusters. J. Am. Chem. Soc. 142(6), 2995–3001 (2020). https://doi.org/10.1021/jacs.9b11836
K.L.D.M. Weerawardene, P. Pandeya, M. Zhou, Y. Chen, R. Jin et al., Luminescence and electron dynamics in atomically precise nanoclusters with eight superatomic electrons. J. Am. Chem. Soc. 141(47), 18715–18726 (2019). https://doi.org/10.1021/jacs.9b07626
D.M. Chevrier, L. Raich, C. Rovira, A. Das, Z. Luo et al., Molecular-scale ligand effects in small gold-thiolate nanoclusters. J. Am. Chem. Soc. 140(45), 15430–15436 (2018). https://doi.org/10.1021/jacs.8b09440
W. Kurashige, Y. Niihori, S. Sharma, Y. Negishi, Precise synthesis, functionalization and application of thiolate-protected gold clusters. Coord. Chem. Rev. 320–321, 238–250 (2016). https://doi.org/10.1016/j.ccr.2016.02.013
Z. Wu, M.A. MacDonald, J. Chen, P. Zhang, R. Jin, Kinetic control and thermodynamic selection in the synthesis of atomically precise gold nanoclusters. J. Am. Chem. Soc. 133(25), 9670–9673 (2011). https://doi.org/10.1021/ja2028102
M. Zhu, E. Lanni, N. Garg, M.E. Bier, R. Jin, Kinetically controlled, high-yield synthesis of Au25 clusters. J. Am. Chem. Soc. 130(4), 1138–1139 (2008). https://doi.org/10.1021/ja0782448
T. Chen, Q. Yao, R.R. Nasaruddin, J. Xie, Electrospray ionization mass spectrometry: A powerful platform for noble-metal nanocluster analysis. Angew. Chem. Int. Ed. 58(35), 11967–11977 (2019). https://doi.org/10.1002/anie.201901970
C. Zeng, Y. Chen, K. Kirschbaum, K. Appavoo, M.Y. Sfeir et al., Structural patterns at all scales in a nonmetallic chiral Au133(SR)52 nanop. Sci. Adv. 1(2), e1500045 (2015). https://doi.org/10.1126/sciadv.1500045
Z. Luo, V. Nachammai, B. Zhang, N. Yan, D.T. Leong et al., Toward understanding the growth mechanism: tracing all stable intermediate species from reduction of Au(I)-thiolate complexes to evolution of Au25 nanoclusters. J. Am. Chem. Soc. 136(30), 10577–10580 (2014). https://doi.org/10.1021/ja505429f
H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849), 426–430 (2007). https://doi.org/10.1126/science.1147241
A. Dass, S. Theivendran, P.R. Nimmala, C. Kumara, V.R. Jupally et al., Au133(SPh-tBu)52 nanomolecules: X-ray crystallography, optical, electrochemical, and theoretical analysis. J. Am. Chem. Soc. 137(14), 4610–4613 (2015). https://doi.org/10.1021/ja513152h
Z. Liu, Z. Wu, Q. Yao, Y. Cao, O.J.H. Chai et al., Correlations between the fundamentals and applications of ultrasmall metal nanoclusters: recent advances in catalysis and biomedical applications. Nano Today 36, 101053 (2021). https://doi.org/10.1016/j.nantod.2020.101053
S. Han, T. Zal, K.V. Sokolov, Fate of antibody-targeted ultrasmall gold nanops in cancer cells after receptor-mediated uptake. ACS Nano 15(6), 9495–9508 (2021). https://doi.org/10.1021/acsnano.0c08128
Y. Huang, W. Xiao, S. Ahrari, M. Yu, J. Zheng, Crosstalk between hepatic glutathione efflux and tumor targeting of ICG-conjugated gold nanops. Angew. Chem. Int. Ed. (2023). https://doi.org/10.1002/anie.202308909
N. Xia, Z. Wu, Controlling ultrasmall gold nanops with atomic precision. Chem. Sci. 12(7), 2368–2380 (2021). https://doi.org/10.1039/d0sc05363e
N. Goswami, Q. Yao, T. Chen, J. Xie, Mechanistic exploration and controlled synthesis of precise thiolate-gold nanoclusters. Coord. Chem. Rev. 329, 1–15 (2016). https://doi.org/10.1016/j.ccr.2016.09.001
J. Zheng, C. Zhou, M. Yu, J. Liu, Different sized luminescent gold nanops. Nanoscale 4(14), 4073–4083 (2012). https://doi.org/10.1039/c2nr31192e
Y. Du, H. Sheng, D. Astruc, M. Zhu, Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chem. Rev. 120(2), 526–622 (2019). https://doi.org/10.1021/acs.chemrev.8b00726
X. Kang, M. Zhu, Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 48(8), 2422–2457 (2019). https://doi.org/10.1039/c8cs00800k
X. Jiang, B. Du, Y. Huang, J. Zheng, Ultrasmall noble metal nanops: breakthroughs and biomedical implications. Nano Today 21, 106–125 (2018). https://doi.org/10.1016/j.nantod.2018.06.006
L. Gong, Y. Wang, J. Liu, Bioapplications of renal-clearable luminescent metal nanops. Biomater. Sci. 5(8), 1393–1406 (2017). https://doi.org/10.1039/c7bm00257b
X. Song, W. Zhu, X. Ge, R. Li, S. Li et al., A new class of NIR-II gold nanocluster-based protein biolabels for in vivo tumor-targeted imaging. Angew. Chem. Int. Ed. 60(3), 1306–1312 (2021). https://doi.org/10.1002/anie.202010870
G. Yang, X. Mu, X. Pan, Y. Tang, Q. Yao et al., Ligand engineering of Au44 nanoclusters for NIR-II luminescent and photoacoustic imaging-guided cancer photothermal therapy. Chem. Sci. 14(16), 4308–4318 (2023). https://doi.org/10.1039/d2sc05729h
J.H. Yu, M.S. Jeong, E.O. Cruz, I.S. Alam, S.K. Tumbale et al., Highly excretable gold supraclusters for translatable in vivo raman imaging of tumors. ACS Nano 17(3), 2554–2567 (2023). https://doi.org/10.1021/acsnano.2c10378
Y. Wang, C. Xu, J. Zhai, F. Gao, R. Liu et al., Label-free Au cluster used for in vivo 2D and 3D computed tomography of murine kidneys. Anal. Chem. 87(1), 343–345 (2015). https://doi.org/10.1021/ac503887c
E.P. Stater, A.Y. Sonay, C. Hart, J. Grimm, The ancillary effects of nanops and their implications for nanomedicine. Nat. Nanotechnol. 16(11), 1180–1194 (2021). https://doi.org/10.1038/s41565-021-01017-9
Y. Liu, J. Wang, Q. Xiong, D. Hornburg, W. Tao et al., Nano-bio interactions in cancer: from therapeutics delivery to early detection. Acc. Chem. Res. 54(2), 291–301 (2020). https://doi.org/10.1021/acs.accounts.0c00413
M.J. Mitchell, M.M. Billingsley, R.M. Haley, M.E. Wechsler, N.A. Peppas et al., Engineering precision nanops for drug delivery. Nat. Rev. Drug Discovery 20(2), 101–124 (2021). https://doi.org/10.1038/s41573-020-0090-8
J. Lin, H. Zhang, Z. Chen, Y. Zheng, Penetration of lipid membranes by gold nanops: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano 4(9), 5421–5429 (2010). https://doi.org/10.1021/nn1010792
L.W.C. Ho, Y. Liu, R. Han, Q. Bai, C.H.J. Choi, Nano-cell interactions of non-cationic bionanomaterials. Acc. Chem. Res. 52(6), 1519–1530 (2019). https://doi.org/10.1021/acs.accounts.9b00103
A. Verma, F. Stellacci, Effect of surface properties on nanop-cell interactions. Small 6(1), 12–21 (2010). https://doi.org/10.1002/smll.200901158
M. Wen, J. Li, W. Zhong, J. Xu, S. Qu et al., High-throughput colorimetric analysis of nanop-protein interactions based on the enzyme-mimic properties of nanops. Anal. Chem. 94(24), 8783–8791 (2022). https://doi.org/10.1021/acs.analchem.2c01618
J. Zhu, Z. Zhao, H. Chen, X. Chen, J. Liu, Surface-regulated injection dose response of ultrasmall luminescent gold nanops. Nanoscale 14(24), 8818–8824 (2022). https://doi.org/10.1039/d2nr01784a
H.S. Han, J.D. Martin, J. Lee, D.K. Harris, D. Fukumura et al., Spatial charge configuration regulates nanop transport and binding behavior in vivo. Angew. Chem. Int. Ed. 52(5), 1414–1419 (2013). https://doi.org/10.1002/anie.201208331
Z.J. Zhu, P.S. Ghosh, O.R. Miranda, R.W. Vachet, V.M. Rotello, Multiplexed screening of cellular uptake of gold nanops using laser desorption/ionization mass spectrometry. J. Am. Chem. Soc. 130(43), 14139–14143 (2008). https://doi.org/10.1021/ja805392f
D.B. Chithrani, Intracellular uptake, transport, and processing of gold nanostructures. Mol. Membr. Biol. 27(7), 299–311 (2010). https://doi.org/10.3109/09687688.2010.507787
L.C. Cheng, X. Jiang, J. Wang, C. Chen, R.S. Liu, Nano-bio effects: interaction of nanomaterials with cells. Nanoscale 5(9), 3547–3569 (2013). https://doi.org/10.1039/c3nr34276j
S. Behzadi, V. Serpooshan, W. Tao, M.A. Hamaly, M.Y. Alkawareek et al., Cellular uptake of nanops: Journey inside the cell. Chem. Soc. Rev. 46(14), 4218–4244 (2017). https://doi.org/10.1039/c6cs00636a
W.G. Kreyling, A.M. Abdelmonem, Z. Ali, F. Alves, M. Geiser et al., In vivo integrity of polymer-coated gold nanops. Nat. Nanotechnol. 10(7), 619–623 (2015). https://doi.org/10.1038/nnano.2015.111
Y. Li, S. Qu, Y. Xue, L. Zhang, L. Shang, Cationic antibacterial metal nanoclusters with traceable capability for fluorescent imaging the nano-bio interactions. Nano Res. 16(1), 999–1008 (2022). https://doi.org/10.1007/s12274-022-4837-x
C. Shen, Y. Xue, Y. Li, M. Wei, M. Wen et al., Kinetically regulated one-pot synthesis of cationic gold nanops and their size-dependent antibacterial mechanism. J. Mate. Sci. Technol. 162, 145–156 (2023). https://doi.org/10.1016/j.jmst.2023.03.061
E.C. Cho, J. Xie, P.A. Wurm, Y. Xia, Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanops on the cell surface with a I2/KI etchant. Nano Lett. 9(3), 1080–1084 (2009). https://doi.org/10.1021/nl803487r
Y. Jiang, S. Huo, T. Mizuhara, R. Das, Y.W. Lee et al., The interplay of size and surface functionality on the cellular uptake of sub-10 nm gold nanops. ACS Nano 9(10), 9986–9993 (2015). https://doi.org/10.1021/acsnano.5b03521
M. Yu, C. Zhou, J. Liu, J.D. Hankins, J. Zheng, Luminescent gold nanops with pH-dependent membrane adsorption. J. Am. Chem. Soc. 133(29), 11014–11017 (2011). https://doi.org/10.1021/ja201930p
J. Zhu, K. He, Z. Dai, L. Gong, T. Zhou et al., Self-assembly of luminescent gold nanops with sensitive pH-stimulated structure transformation and emission response toward lysosome escape and intracellular imaging. Anal. Chem. 91(13), 8237–8243 (2019). https://doi.org/10.1021/acs.analchem.9b00877
N.M. Schaeublin, L.K. Braydich-Stolle, A.M. Schrand, J.M. Miller, J. Hutchison et al., Surface charge of gold nanops mediates mechanism of toxicity. Nanoscale 3(2), 410–420 (2011). https://doi.org/10.1039/c0nr00478b
C. Kim, S.S. Agasti, Z. Zhu, L. Isaacs, V.M. Rotello, Recognition-mediated activation of therapeutic gold nanops inside living cells. Nat. Chem. 2(11), 962–966 (2010). https://doi.org/10.1038/nchem.858
L.M. Koch, E.S. Birkeland, S. Battaglioni, X. Helle, M. Meerang et al., Cytosolic pH regulates proliferation and tumour growth by promoting expression of cyclin D1. Nat. Metab. 2(11), 1212–1222 (2020). https://doi.org/10.1038/s42255-020-00297-0
B.A. Webb, M. Chimenti, M.P. Jacobson, D.L. Barber, Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer 11(9), 671–677 (2011). https://doi.org/10.1038/nrc3110
T. Mizuhara, K. Saha, D.F. Moyano, C.S. Kim, B. Yan et al., Acylsulfonamide-functionalized zwitterionic gold nanops for enhanced cellular uptake at tumor pH. Angew. Chem. Int. Ed. 54(22), 6567–6570 (2015). https://doi.org/10.1002/anie.201411615
L. Gong, Y. Chen, K. He, J. Liu, Surface coverage-regulated cellular interaction of ultrasmall luminescent gold nanops. ACS Nano 13(2), 1893–1899 (2019). https://doi.org/10.1021/acsnano.8b08103
A. Verma, O. Uzun, Y. Hu, Y. Hu, H.S. Han et al., Surface-structure-regulated cell-membrane penetration by monolayer-protected nanops. Nat. Mater. 7(7), 588–595 (2008). https://doi.org/10.1038/nmat2202
Y.F. Huang, H. Liu, X. Xiong, Y. Chen, W. Tan, Nanop-mediated lgE-receptor aggregation and signaling in RBL mast cells. J. Am. Chem. Soc. 131(47), 17328–17334 (2009). https://doi.org/10.1021/ja907125t
H. Liu, T.L. Doane, Y. Cheng, F. Lu, S. Srinivasan et al., Control of surface ligand density on pegylated gold nanops for optimized cancer cell uptake. Part. Part. Syst. Charact. 32(2), 197–204 (2015). https://doi.org/10.1002/ppsc.201400067
L.W.C. Ho, B. Yin, G. Dai, C.H.J. Choi, Effect of surface modification with hydrocarbyl groups on the exocytosis of nanops. Biochemistry 60(13), 1019–1030 (2021). https://doi.org/10.1021/acs.biochem.0c00631
V. Mailander, K. Landfester, Interaction of nanops with cells. Biomacromol 10(9), 2379–2400 (2009). https://doi.org/10.1021/bm900266r
H.T. McMahon, E. Boucrot, Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12(8), 517–533 (2011). https://doi.org/10.1038/nrm3151
Y. Guo, E. Terazzi, R. Seemann, J.B. Fleury, V.A. Baulin, Direct proof of spontaneous translocation of lipid-covered hydrophobic nanops through a phospholipid bilayer. Sci. Adv. 2(11), e1600261 (2016). https://doi.org/10.1126/sciadv.1600261
S. Sun, Y. Huang, C. Zhou, S. Chen, M. Yu et al., Effect of hydrophobicity on nano-bio interactions of zwitterionic luminescent gold nanops at the cellular level. Bioconjugate Chem. 29(6), 1841–1846 (2018). https://doi.org/10.1021/acs.bioconjchem.8b00202
D.F. Moyano, M. Goldsmith, D.J. Solfiell, D. Landesman-Milo, O.R. Miranda et al., Nanop hydrophobicity dictates immune response. J. Am. Chem. Soc. 134(9), 3965–3967 (2012). https://doi.org/10.1021/ja2108905
A. Chompoosor, K. Saha, P.S. Ghosh, D.J. Macarthy, O.R. Miranda et al., The role of surface functionality on acute cytotoxicity, ros generation and DNA damage by cationic gold nanops. Small 6(20), 2246–2249 (2010). https://doi.org/10.1002/smll.201000463
J. Zhai, L. Zhao, L. Zheng, F. Gao, L. Gao et al., Peptide-Au cluster probe: precisely detecting epidermal growth factor receptor of three tumor cell lines at a single-cell level. ACS Omega 2(1), 276–282 (2017). https://doi.org/10.1021/acsomega.6b00390
L. Zhao, J. Zhai, X. Zhang, X. Gao, X. Fang et al., Computational design of peptide-Au cluster probe for sensitive detection of αIIbβ3 integrin. Nanoscale 8(7), 4203–4208 (2016). https://doi.org/10.1039/c5nr09175f
F. Xiao, Y. Chen, J. Qi, Q. Yao, J. Xie et al., Multi-targeted peptide-modified gold nanoclusters for treating solid tumors in the liver. Adv. Mater. 35(20), 2210412 (2023). https://doi.org/10.1002/adma.202210412
E.S. Kryachko, F. Remacle, Complexes of DNA bases and gold clusters Au3 and Au4 involving nonconventional N-H…Au hydrogen bonding. Nano Lett. 5(4), 735–739 (2005). https://doi.org/10.1021/nl050194m
V. Rojas-Cervellera, L. Raich, J. Akola, C. Rovira, The molecular mechanism of the ligand exchange reaction of an antibody against a glutathione-coated gold cluster. Nanoscale 9(9), 3121–3127 (2017). https://doi.org/10.1039/c6nr08498b
A. Retnakumari, J. Jayasimhan, P. Chandran, D. Menon, S. Nair et al., CD33 monoclonal antibody conjugated Au cluster nano-bioprobe for targeted flow-cytometric detection of acute myeloid leukaemia. Nanotechnology 22(28), 285102 (2011). https://doi.org/10.1088/0957-4484/22/28/285102
Z. Dai, Y. Tan, K. He, H. Chen, J. Liu, Strict DNA valence control in ultrasmall thiolate-protected near-infrared-emitting gold nanops. J. Am. Chem. Soc. 142(33), 14023–14027 (2020). https://doi.org/10.1021/jacs.0c00443
Y. Pan, Q. Li, Q. Zhou, W. Zhang, P. Yue et al., Cancer cell specific fluorescent methionine protected gold nanoclusters for in-vitro cell imaging studies. Talanta 188, 259–265 (2018). https://doi.org/10.1016/j.talanta.2018.05.079
Y. Yang, S. Wang, S. Chen, Y. Shen, M. Zhu, Switching the subcellular organelle targeting of atomically precise gold nanoclusters by modifying the capping ligand. Chem. Commun. 54(66), 9222–9225 (2018). https://doi.org/10.1039/c8cc04474k
A. Nagy, N.L. Robbins, The hurdles of nanotoxicity in transplant nanomedicine. Nanomedicine 14(20), 2749–2762 (2019). https://doi.org/10.2217/nnm-2019-0192
Y. Wang, T. Yang, Q. He, Strategies for engineering advanced nanomedicines for gas therapy of cancer. Natl. Sci. Rev. 7(9), 1485–1512 (2020). https://doi.org/10.1093/nsr/nwaa034
O. Bar-Ilan, R.M. Albrecht, V.E. Fako, D.Y. Furgeson, Toxicity assessments of multisized gold and silver nanops in zebrafish embryos. Small 5(16), 1897–1910 (2009). https://doi.org/10.1002/smll.200801716
R. Coradeghini, S. Gioria, C.P. Garcia, P. Nativo, F. Franchini et al., Size-dependent toxicity and cell interaction mechanisms of gold nanops on mouse fibroblasts. Toxicol. Lett. 217(3), 205–216 (2013). https://doi.org/10.1016/j.toxlet.2012.11.022
C.M. Goodman, C.D. McCusker, T. Yilmaz, V.M. Rotello, Toxicity of gold nanops functionalized with cationic and anionic side chains. Bioconjugate Chem. 15(4), 897–900 (2004). https://doi.org/10.1021/bc049951i
L. Gong, K. He, J. Liu, Concentration-dependent subcellular distribution of ultrasmall near-infrared-emitting gold nanops. Angew. Chem. Int. Ed. 60(11), 5739–5743 (2021). https://doi.org/10.1002/anie.202014833
W. Poon, B.R. Kingston, B. Ouyang, W. Ngo, W.C.W. Chan, A framework for designing delivery systems. Nat. Nanotechnol. 15(10), 819–829 (2020). https://doi.org/10.1038/s41565-020-0759-5
Y. Zhang, Y. Bai, J. Jia, N. Gao, Y. Li et al., Perturbation of physiological systems by nanops. Chem. Soc. Rev. 43(10), 3762–3809 (2014). https://doi.org/10.1039/c3cs60338e
Y.N. Zhang, W. Poon, A.J. Tavares, I.D. McGilvray, W.C.W. Chan, Nanop-liver interactions: cellular uptake and hepatobiliary elimination. J. Controll.Release 240, 332–348 (2016). https://doi.org/10.1016/j.jconrel.2016.01.020
S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet et al., Analysis of nanop delivery to tumours. Nat. Rev. Mater. 1(5), 16014 (2016). https://doi.org/10.1038/natrevmats.2016.14
S.G. Elci, Y. Jiang, B. Yan, S.T. Kim, K. Saha et al., Surface charge controls the suborgan biodistributions of gold nanops. ACS Nano 10(5), 5536–5542 (2016). https://doi.org/10.1021/acsnano.6b02086
K.M. Tsoi, S.A. MacParland, X.Z. Ma, V.N. Spetzler, J. Echeverri et al., Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 15(11), 1212–1221 (2016). https://doi.org/10.1038/nmat4718
J. Wang, J.J. Masehi-Lano, E.J. Chung, Peptide and antibody ligands for renal targeting: Nanomedicine strategies for kidney disease. Biomater. Sci. 5(8), 1450–1459 (2017). https://doi.org/10.1039/c7bm00271h
Y. Huang, J. Wang, K. Jiang, E.J. Chung, Improving kidney targeting: The influence of nanop physicochemical properties on kidney interactions. J. Controll. Release 334, 127–137 (2021). https://doi.org/10.1016/j.jconrel.2021.04.016
Q. Chen, F. Ding, S. Zhang, Q. Li, X. Liu et al., Sequential therapy of acute kidney injury with a DNA nanodevice. Nano Lett. 21(10), 4394–4402 (2021). https://doi.org/10.1021/acs.nanolett.1c01044
B. Haraldsson, J. Nyström, W.M. Deen, Properties of the glomerular barrier and mechanisms of proteinuria. Physiol. Rev. 88(2), 451–487 (2008). https://doi.org/10.1152/physrev.00055.2006
B. Du, X. Jiang, A. Das, Q. Zhou, M. Yu et al., Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 12(11), 1096–1102 (2017). https://doi.org/10.1038/nnano.2017.170
B. Du, M. Yu, J. Zheng, Transport and interactions of nanops in the kidneys. Nat. Rev. Mater. 3(10), 358–374 (2018). https://doi.org/10.1038/s41578-018-0038-3
F. Oroojalian, F. Charbgoo, M. Hashemi, A. Amani, R. Yazdian-Robati et al., Recent advances in nanotechnology-based drug delivery systems for the kidney. J. Controll. Release 321, 442–462 (2020). https://doi.org/10.1016/j.jconrel.2020.02.027
B.A. Molitoris, R.M. Sandoval, S.P.S. Yadav, M.C. Wagner, Albumin uptake and processing by the proximal tubule: physiological, pathological, and therapeutic implications. Physiol. Rev. 102(4), 1625–1667 (2022). https://doi.org/10.1152/physrev.00014.2021
Y. Huang, M. Yu, J. Zheng, Proximal tubules eliminate endocytosed gold nanops through an organelle-extrusion-mediated self-renewal mechanism. Nat. Nanotechnol. 18(6), 637–646 (2023). https://doi.org/10.1038/s41565-023-01366-7
J. Huang, J. Li, Y. Lyu, Q. Miao, K. Pu, Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat. Mater. 18(10), 1133–1143 (2019). https://doi.org/10.1038/s41563-019-0378-4
Y. Tan, M. Chen, H. Chen, J. Wu, J. Liu, Enhanced ultrasound contrast of renal-clearable luminescent gold nanops. Angew. Chem. Int. Ed. 60(21), 11713–11717 (2021). https://doi.org/10.1002/anie.202017273
F.A. Blocki, P.M. Schlievert, L.P. Wackett, Rat liver protein linking chemical and immunological detoxification systems. Nature 360(6401), 269–270 (1992). https://doi.org/10.1038/360269a0
H. Wang, C.A. Thorling, X. Liang, K.R. Bridle, J.E. Grice et al., Diagnostic imaging and therapeutic application of nanops targeting the liver. J. Mater. Chem. B 3(6), 939–958 (2015). https://doi.org/10.1039/c4tb01611d
W. Poon, Y.-N. Zhang, B. Ouyang, B.R. Kingston, J.L.Y. Wu et al., Elimination pathways of nanops. ACS Nano 13(5), 5785–5798 (2019). https://doi.org/10.1021/acsnano.9b01383
A. Boey, H.K. Ho, All roads lead to the liver: metal nanops and their implications for liver health. Small 16(21), e2000153 (2020). https://doi.org/10.1002/smll.202000153
W. Cai, Y. Tan, K. He, B. Tang, J. Liu, Manganese(II)-guided separation in the sub-nanometer regime for precise identification of in vivo size dependence. Angew. Chem. Int. Ed. 62(10), e202214720 (2023). https://doi.org/10.1002/anie.202214720
X. Jiang, B. Du, J. Zheng, Glutathione-mediated biotransformation in the liver modulates nanop transport. Nat. Nanotechnol. 14(9), 874–882 (2019). https://doi.org/10.1038/s41565-019-0499-6
X. Jiang, Q. Zhou, B. Du, S. Li, Y. Huang et al., Noninvasive monitoring of hepatic glutathione depletion through fluorescence imaging and blood testing. Sci. Adv. (2021). https://doi.org/10.1126/sciadv.abd9847
Z. Zhao, H. Chen, K. He, J. Lin, W. Cai et al., Glutathione-activated emission of ultrasmall gold nanops in the second near-infrared window for imaging of early kidney injury. Anal. Chem. 95(11), 5061–5068 (2023). https://doi.org/10.1021/acs.analchem.2c05612
Y. Tan, W. Cai, C. Luo, J. Tang, R.T.K. Kwok et al., Rapid biotransformation of luminescent bimetallic nanops in hepatic sinusoids. J. Am. Chem. Soc. 144(45), 20653–20660 (2022). https://doi.org/10.1021/jacs.2c07657
L.C. Davies, S.J. Jenkins, J.E. Allen, P.R. Taylor, Tissue-resident macrophages. Nat. Immunol. 14(10), 986–995 (2013). https://doi.org/10.1038/ni.2705
J. He, C. Li, L. Ding, Y. Huang, X. Yin et al., Tumor targeting strategies of smart fluorescent nanops and their applications in cancer diagnosis and treatment. Adv. Mater. 31(40), e1902409 (2019). https://doi.org/10.1002/adma.201902409
D. Zhang, J. He, M. Zhou, Radiation-assisted strategies provide new perspectives to improve the nanop delivery to tumor. Adv. Drug Deliv. Rev. 193, 114642 (2023). https://doi.org/10.1016/j.addr.2022.114642
S. Jeon, E. Jun, H. Chang, J.Y. Yhee, E.Y. Koh et al., Prediction the clinical EPR effect of nanops in patient-derived xenograft models. J. Controll. Release 351, 37–49 (2022). https://doi.org/10.1016/j.jconrel.2022.09.007
L. Xu, M. Xu, X. Sun, N. Feliu, L. Feng et al., Quantitative comparison of gold nanop delivery via the enhanced permeation and retention (EPR) effect and mesenchymal stem cell (MSC)-based targeting. ACS Nano 17(3), 2039–2052 (2023). https://doi.org/10.1021/acsnano.2c07295
S. Thakkar, D. Sharma, K. Kalia, R.K. Tekade, Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: A review. Acta Biomater. 101, 43–68 (2020). https://doi.org/10.1016/j.actbio.2019.09.009
G. Yang, S.Z.F. Phua, A.K. Bindra, Y. Zhao, Degradability and clearance of inorganic nanops for biomedical applications. Adv. Mater. (2019). https://doi.org/10.1002/adma.201805730
K. Huang, H. Ma, J. Liu, S. Huo, A. Kumar et al., Size-dependent localization and penetration of ultrasmall gold nanops in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano 6(5), 4483–4493 (2012). https://doi.org/10.1021/nn301282m
B. Kim, G. Han, B.J. Toley, C.K. Kim, V.M. Rotello et al., Tuning payload delivery in tumour cylindroids using gold nanops. Nat. Nanotechnol. 5(6), 465–472 (2010). https://doi.org/10.1038/nnano.2010.58
C. Zhou, M. Long, Y. Qin, X. Sun, J. Zheng, Luminescent gold nanops with efficient renal clearance. Angew. Chem. Int. Ed. 50(14), 3168–3172 (2011). https://doi.org/10.1002/anie.201007321
C. Zhou, G. Hao, P. Thomas, J. Liu, M. Yu et al., Near-infrared emitting radioactive gold nanops with molecular pharmacokinetics. Angew. Chem. Int. Ed. 51(40), 10118–10122 (2012). https://doi.org/10.1002/anie.201203031
D. Luo, X. Wang, S. Zeng, G. Ramamurthy, C. Burda et al., Targeted gold nanocluster-enhanced radiotherapy of prostate cancer. Small 15(34), e1900968 (2019). https://doi.org/10.1002/smll.201900968
C. Alric, I. Miladi, D. Kryza, J. Taleb, F. Lux et al., The biodistribution of gold nanops designed for renal clearance. Nanoscale 5(13), 5930–5939 (2013). https://doi.org/10.1039/c3nr00012e
Y. Tan, K. He, B. Tang, H. Chen, Z. Zhao et al., Precisely regulated luminescent gold nanops for identification of cancer metastases. ACS Nano 14(10), 13975–13985 (2020). https://doi.org/10.1021/acsnano.0c06388
J. Liu, M. Yu, X. Ning, C. Zhou, S. Yang et al., Pegylation and zwitterionization: Pros and cons in the renal clearance and tumor targeting of near-ir-emitting gold nanops. Angew. Chem. Int. Ed. 52(48), 12572–12576 (2013). https://doi.org/10.1002/anie.201304465
X.D. Zhang, J. Chen, Z. Luo, D. Wu, X. Shen et al., Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy. Adv. Healthcare Mater. 3(1), 133–141 (2014). https://doi.org/10.1002/adhm.201300189
J. Gao, K. Chen, R. Xie, J. Xie, S. Lee et al., Ultrasmall near-infrared non-cadmium quantum dots for in vivo tumor imaging. Small 6(2), 256–261 (2010). https://doi.org/10.1002/smll.200901672
Y. Wang, X.-P. Yan, Fabrication of vascular endothelial growth factor antibody bioconjugated ultrasmall near-infrared fluorescent Ag2S quantum dots for targeted cancer imaging in vivo. Chem. Commun. 49(32), 3324–3326 (2013). https://doi.org/10.1039/c3cc41141a
R. Hu, Y. Fang, M. Huo, H. Yao, C. Wang et al., Ultrasmall Cu2-xS nanodots as photothermal-enhanced fenton nanocatalysts for synergistic tumor therapy at NIR-II biowindow. Biomaterials 206, 101–114 (2019). https://doi.org/10.1016/j.biomaterials.2019.03.014
J. Shao, J. Zhang, C. Jiang, J. Lin, P. Huang, Biodegradable titanium nitride mxene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chem. Eng. J. 400, 126009 (2020). https://doi.org/10.1016/j.cej.2020.126009
Z. Xu, H. Huang, X. Xiong, X. Wei, X. Guo et al., A near-infrared light-responsive extracellular vesicle as a “trojan horse” for tumor deep penetration and imaging-guided therapy. Biomaterials 269, 120647 (2021). https://doi.org/10.1016/j.biomaterials.2020.120647
X. Yu, A. Li, C. Zhao, K. Yang, X. Chen et al., Ultrasmall semimetal nanops of bismuth for dual-modal computed tomography/photoacoustic imaging and synergistic thermoradiotherapy. ACS Nano 11(4), 3990–4001 (2017). https://doi.org/10.1021/acsnano.7b00476
L. Wen, L. Chen, S. Zheng, J. Zeng, G. Duan et al., Ultrasmall biocompatible WO3-x nanodots for multi-modality imaging and combined therapy of cancers. Adv. Mater. 28(25), 5072–5079 (2016). https://doi.org/10.1002/adma.201506428
D. Liu, X. Dai, W. Zhang, X. Zhu, Z. Zha et al., Liquid exfoliation of ultrasmall zirconium carbide nanodots as a noninflammatory photothermal agent in the treatment of glioma. Biomaterials 292, 121917 (2023). https://doi.org/10.1016/j.biomaterials.2022.121917
J. Liu, M. Yu, C. Zhou, S. Yang, X. Ning et al., Passive tumor targeting of renal-clearable luminescent gold nanops: Long tumor retention and fast normal tissue clearance. J. Am. Chem. Soc. 135(13), 4978–4981 (2013). https://doi.org/10.1021/ja401612x
K. He, Y. Tan, Z. Zhao, H. Chen, J. Liu, Weak anchoring sites of thiolate-protected luminescent gold nanops. Small 17(38), e2102481 (2021). https://doi.org/10.1002/smll.202102481
H.S. Choi, B.I. Ipe, P. Misra, J.H. Lee, M.G. Bawendi et al., Tissue- and organ-selective biodistribution of nir fluorescent quantum dots. Nano Lett. 9(6), 2354–2359 (2009). https://doi.org/10.1021/nl900872r
S. Huo, S. Chen, N. Gong, J. Liu, X. Li et al., Ultrasmall gold nanops behavior in vivo modulated by surface polyethylene glycol (PEG) grafting. Bioconjugate Chem. 28(1), 239–243 (2017). https://doi.org/10.1021/acs.bioconjchem.6b00488
Y. Kong, D. Santos-Carballal, D. Martin, N. N. Sergeeva, W. Wang et al., A NIR-II-emitting gold nanocluster-based drug delivery system for smartphone-triggered photodynamic theranostics with rapid body clearance. Mater. Today 51, 96–107 (2021). https://doi.org/10.1016/j.mattod.2021.09.022
T. Zhou, J. Zhu, L. Gong, L. Nong, J. Liu, Amphiphilic block copolymer-guided in situ fabrication of stable and highly controlled luminescent copper nanoassemblies. J. Am. Chem. Soc. 141(7), 2852–2856 (2019). https://doi.org/10.1021/jacs.8b12026
Z.L. Tyrrell, Y. Shen, M. Radosz, Fabrication of micellar nanops for drug delivery through the self-assembly of block copolymers. Prog. Polymer. Sci. 35(9), 1128–1143 (2010). https://doi.org/10.1016/j.progpolymsci.2010.06.003
L. Nong, T. Zhou, H. Chen, B. Tang, J. Liu, Growth regulation of luminescent gold nanops directed from amphiphilic block copolymers: highly-controlled nanoassemblies toward tailored in-vivo transport. Sci. China Chem. 64(1), 157–164 (2020). https://doi.org/10.1007/s11426-020-9862-1
K. Bourzac, News feature: cancer nanomedicine, reengineered. Proc. Natl. Acad. Sci. U. S. A. 113(45), 12600–12603 (2016). https://doi.org/10.1073/pnas.1616895113
Q. Yuan, Y. Wang, L. Zhao, R. Liu, F. Gao et al., Peptide protected gold clusters: chemical synthesis and biomedical applications. Nanoscale 8(24), 12095–12104 (2016). https://doi.org/10.1039/c6nr02750d
S. Dixit, T. Novak, K. Miller, Y. Zhu, M.E. Kenney et al., Transferrin receptor-targeted theranostic gold nanops for photosensitizer delivery in brain tumors. Nanoscale 7(5), 1782–1790 (2015). https://doi.org/10.1039/c4nr04853a
X. Ran, Z. Wang, F. Pu, Z. Liu, J. Ren et al., Aggregation-induced emission-active Au nanoclusters for ratiometric sensing and bioimaging of highly reactive oxygen species. Chem. Commun. 55(100), 15097–15100 (2019). https://doi.org/10.1039/c9cc08170d
J. Xia, X. Wang, S. Zhu, L. Liu, L. Li, Gold nanocluster-decorated nanocomposites with enhanced emission and reactive oxygen species generation. ACS Appl. Mater. Interfaces 11(7), 7369–7378 (2019). https://doi.org/10.1021/acsami.8b19679
N. Li, Y. Chen, Y.M. Zhang, Y. Yang, Y. Su et al., Polysaccharide-gold nanocluster supramolecular conjugates as a versatile platform for the targeted delivery of anticancer drugs. Sci. Rep. 4, 4164 (2014). https://doi.org/10.1038/srep04164
M.S. Muthu, R.V. Kutty, Z. Luo, J. Xie, S.S. Feng, Theranostic vitamin E TPGS micelles of transferrin conjugation for targeted co-delivery of docetaxel and ultra bright gold nanoclusters. Biomaterials 39, 234–248 (2015). https://doi.org/10.1016/j.biomaterials.2014.11.008
Y. Wang, J.T. Chen, X.P. Yan, Fabrication of transferrin functionalized gold nanoclusters/graphene oxide nanocomposite for turn-on near-infrared fluorescent bioimaging of cancer cells and small animals. Anal. Chem. 85(4), 2529–2535 (2013). https://doi.org/10.1021/ac303747t
A. Retnakumari, S. Setua, D. Menon, P. Ravindran, H. Muhammed et al., Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging. Nanotechnology 21(5), 055103 (2010). https://doi.org/10.1088/0957-4484/21/5/055103
C. Ding, Y. Tian, Gold nanocluster-based fluorescence biosensor for targeted imaging in cancer cells and ratiometric determination of intracellular pH. Biosens. Bioelectron. 65, 183–190 (2015). https://doi.org/10.1016/j.bios.2014.10.034
Y. Wang, S. Ma, Z. Dai, Z. Rong, J. Liu, Facile in situ synthesis of ultrasmall near-infrared-emitting gold glyconanops with enhanced cellular uptake and tumor targeting. Nanoscale 11(35), 16336–16341 (2019). https://doi.org/10.1039/c9nr03821c
S. Su, H. Wang, X. Liu, Y. Wu, G. Nie, IRGD-coupled responsive fluorescent nanogel for targeted drug delivery. Biomaterials 34(13), 3523–3533 (2013). https://doi.org/10.1016/j.biomaterials.2013.01.083
G. Liang, X. Jin, S. Zhang, D. Xing, RGD peptide-modified fluorescent gold nanoclusters as highly efficient tumor-targeted radiotherapy sensitizers. Biomaterials 144, 95–104 (2017). https://doi.org/10.1016/j.biomaterials.2017.08.017
Z. Du, Z. He, J. Fan, Y. Huo, B. He et al., Au4 cluster inhibits human thioredoxin reductase activity via specifically binding of au to cys189. Nano Today 47, 101686 (2022). https://doi.org/10.1016/j.nantod.2022.101686
J. Zhang, A. Rakhimbekova, X. Duan, Q. Yin, C.A. Foss et al., A prostate-specific membrane antigen activated molecular rotor for real-time fluorescence imaging. Nat. Commun. 12(1), 5460 (2021). https://doi.org/10.1038/s41467-021-25746-6
X. Han, Z. He, W. Niu, C. Zhang, Z. Du et al., The precise detection of HER-2 expression in breast cancer cell via Au25 probes. Nanomaterials 12(6), 923 (2022). https://doi.org/10.3390/nano12060923
Y. Wang, J. Chen, J. Irudayaraj, Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer. ACS Nano 5(12), 9718–9725 (2011). https://doi.org/10.1021/nn2032177
Y. Tao, M. Li, B. Kim, D.T. Auguste, Incorporating gold nanoclusters and target-directed liposomes as a synergistic amplified colorimetric sensor for HER2-positive breast cancer cell detection. Theranostics 7(4), 899–911 (2017). https://doi.org/10.7150/thno.17927
H. Xu, J. Ding, Y. Du, L. Li, Y. Li et al., Aptamer-functionalized AuNCs nanogel for targeted delivery of docosahexaenoic acid to induce browning of white adipocytes. J. Mater. Chem. B. 11(22), 4972–4979 (2023). https://doi.org/10.1039/d2tb02709g
K. Yu, X. Hai, S. Yue, W. Song, S. Bi, Glutathione-activated DNA-Au nanomachine as targeted drug delivery platform for imaging-guided combinational cancer therapy. Chem. Eng. J. 419, 129535 (2021). https://doi.org/10.1016/j.cej.2021.129535
J. Carvalho, J. Lopes-Nunes, B. Vialet, T. Rosado, E. Gallardo et al., Nanoaggregate-forming lipid-conjugated AS1411 aptamer as a promising tumor-targeted delivery system of anticancer agents in vitro. Nanomedicine 36, 102429 (2021). https://doi.org/10.1016/j.nano.2021.102429
D. Chen, B. Li, S. Cai, P. Wang, S. Peng et al., Dual targeting luminescent gold nanoclusters for tumor imaging and deep tissue therapy. Biomaterials 100, 1–16 (2016). https://doi.org/10.1016/j.biomaterials.2016.05.017
B. Feng, Y. Xing, J. Lan, Z. Su, F. Wang, Synthesis of muc1 aptamer-stabilized gold nanoclusters for cell-specific imaging. Talanta 212, 120796 (2020). https://doi.org/10.1016/j.talanta.2020.120796
J. Liu, Q. Chen, L. Feng, Z. Liu, Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement. Nano Today 21, 55–73 (2018). https://doi.org/10.1016/j.nantod.2018.06.008
Y. Zi, K. Yang, J. He, Z. Wu, J. Liu et al., Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Adv. Drug Deliv. Rev. 188, 114449 (2022). https://doi.org/10.1016/j.addr.2022.114449
Z. Luo, Z. Yi, X. Liu, Surface engineering of lanthanide nanops for oncotherapy. Acc. Chem. Res. 56(4), 425–439 (2023). https://doi.org/10.1021/acs.accounts.2c00681
X. Yang, C. Xu, X. Zhang, P. Li, F. Sun et al., Development of sulfonamide-functionalized charge-reversal aie photosensitizers for precise photodynamic therapy in the acidic tumor microenvironment. Adv. Funct. Mater. 33(30), 2300746 (2023). https://doi.org/10.1002/adfm.202300746
R. Sun, Y. Zhang, X. Lin, Y. Piao, T. Xie et al., Aminopeptidase n-responsive conjugates with tunable charge-reversal properties for highly efficient tumor accumulation and penetration. Angew. Chem. Int. Ed. 62(9), e202217408 (2023). https://doi.org/10.1002/anie.202217408
M. Yu, C. Zhou, L. Liu, S. Zhang, S. Sun et al., Interactions of renal-clearable gold nanops with tumor microenvironments: vasculature and acidity effects. Angew. Chem. Int. Ed. 56(15), 4314–4319 (2017). https://doi.org/10.1002/anie.201612647
Y. Tan, L. Liu, Y. Wang, J. Liu, pH-regulated surface plasmon absorption from ultrasmall luminescent gold nanops. Adv. Opt. Mater. 6(10), 1701324 (2018). https://doi.org/10.1002/adom.201701324
M. Zhou, X. Du, H. Wang, R. Jin, The critical number of gold atoms for a metallic state nanocluster: resolving a decades-long question. ACS Nano 15(9), 13980–13992 (2021). https://doi.org/10.1021/acsnano.1c04705
C. Zhang, Z. Zhou, Q. Qian, G. Gao, C. Li et al., Glutathione-capped fluorescent gold nanoclusters for dual-modal fluorescence/X-ray computed tomography imaging. J. Mater. Chem. B 1(38), 5045–5053 (2013). https://doi.org/10.1039/c3tb20784f
K. Hayashi, M. Nakamura, H. Miki, S. Ozaki, M. Abe et al., Gold nanop cluster-plasmon-enhanced fluorescent silica core-shell nanops for X-ray computed tomography-fluorescence dual-mode imaging of tumors. Chem. Commun. 49(46), 5334–5336 (2013). https://doi.org/10.1039/c3cc41876f
C. Xu, Y. Wang, C. Zhang, Y. Jia, Y. Luo et al., AuGd integrated nanoprobes for optical/MRI/CT triple-modal in vivo tumor imaging. Nanoscale 9(13), 4620–4628 (2017). https://doi.org/10.1039/c7nr01064h
G. Jarockyte, M. Stasys, V. Poderys, K. Buivydaite, M. Pleckaitis et al., Biodistribution of multimodal gold nanoclusters designed for photoluminescence-SPET/CT imaging and diagnostic. Nanomaterials (2022). https://doi.org/10.3390/nano12193259
H. Hu, P. Huang, O.J. Weiss, X. Yan, X. Yue et al., PET and NIR optical imaging using self-illuminating 64Cu-doped chelator-free gold nanoclusters. Biomaterials 35(37), 9868–9876 (2014). https://doi.org/10.1016/j.biomaterials.2014.08.038
X. Chen, W. Niu, Z. Du, Y. Zhang, D. Su et al., 64Cu radiolabeled nanomaterials for positron emission tomography (PET) imaging. Chin. Chem. Lett. 33(7), 3349–3360 (2022). https://doi.org/10.1016/j.cclet.2022.02.070
T. Wang, Y. Chen, B. Wang, M. Wu, Recent progress of second near-infrared (NIR-II) fluorescence microscopy in bioimaging. Front. Physiol. 14, 1126805 (2023). https://doi.org/10.3389/fphys.2023.1126805
Y. Guo, J. Hu, P. Wang, H. Yang, S. Liang et al., In vivo NIR-II fluorescence lifetime imaging of whole-body vascular using high quantum yield lanthanide-doped nanops. Small 19(35), 2300392 (2023). https://doi.org/10.1002/smll.202300392
Y. Dai, F. Zhang, K. Chen, Z. Sun, Z. Wang et al., An activatable phototheranostic nanoplatform for tumor specific NIR-II fluorescence imaging and synergistic nir-ii photothermal-chemodynamic therapy. Small 19(22), e2206053 (2023). https://doi.org/10.1002/smll.202206053
D. Gao, Y. Li, Y. Wu, Y. Liu, D. Hu et al., Albumin-consolidated aiegens for boosting glioma and cerebrovascular NIR-II fluorescence imaging. ACS Appl. Mater. Interfaces 15(1), 3–13 (2023). https://doi.org/10.1021/acsami.1c22700
H. Ma, J. Wang, X.-D. Zhang, Near-infrared II emissive metal clusters: From atom physics to biomedicine. Coord. Chem. Rev. 448, 214184 (2021). https://doi.org/10.1016/j.ccr.2021.214184
Y. Huang, K. Chen, L. Liu, H. Ma, X. Zhang et al., Single atom-engineered NIR-II gold clusters with ultrahigh brightness and stability for acute kidney injury. Small 19(30), 2300145 (2023). https://doi.org/10.1002/smll.202300145
K. Zhou, W. Cai, Y. Tan, Z. Zhao, J. Liu, Hihly controllable nanoassemblies of luminescent gold nanops with abnormal disassembly-induced emission enhancement for in vivo imaging applications. Angew. Chem. Int. Ed. 61(47), e202212214 (2022). https://doi.org/10.1002/anie.202212214
B. Tang, W. Xia, W. Cai, J. Liu, Luminescent gold nanops with controllable hydrophobic interactions. Nano Lett. 22(20), 8109–8114 (2022). https://doi.org/10.1021/acs.nanolett.2c02486
D. Li, Q. Liu, Q. Qi, H. Shi, E.C. Hsu et al., Gold nanoclusters for NIR-II fluorescence imaging of bones. Small 16(43), e2003851 (2020). https://doi.org/10.1002/smll.202003851
H. Liu, G. Hong, Z. Luo, J. Chen, J. Chang et al., Atomic-precision gold clusters for NIR-II imaging. Adv. Mater. 31(46), e1901015 (2019). https://doi.org/10.1002/adma.201901015
Z. Pang, W. Yan, J. Yang, Q. Li, Y. Guo et al., Multifunctional gold nanoclusters for effective targeting, near-infrared fluorescence imaging, diagnosis, and treatment of cancer lymphatic metastasis. ACS Nano 16(10), 16019–16037 (2022). https://doi.org/10.1021/acsnano.2c03752
M. Liang, Q. Hu, S. Yi, Y. Chi, Y. Xiao, Development of an Au nanoclusters based activatable nanoprobe for NIR-II fluorescence imaging of gastric acid. Biosens. Bioelectron. 224, 115062 (2023). https://doi.org/10.1016/j.bios.2023.115062
A. Baghdasaryan, F. Wang, F. Ren, Z. Ma, J. Li et al., Phosphorylcholine-conjugated gold-molecular clusters improve signal for lymph node NIR-II fluorescence imaging in preclinical cancer models. Nat. Commun. 13(1), 5613 (2022). https://doi.org/10.1038/s41467-022-33341-6
X. Jiang, B. Du, S. Tang, J.T. Hsieh, J. Zheng, Photoacoustic imaging of nanop transport in the kidneys at high temporal resolution. Angew. Chem. Int. Ed. 58(18), 5994–6000 (2019). https://doi.org/10.1002/anie.201901525
H. Cui, D. Hu, J. Zhang, G. Gao, Z. Chen et al., Gold nanoclusters-indocyanine green nanoprobes for synchronous cancer imaging, treatment, and real-time monitoring based on fluorescence resonance energy transfer. ACS Appl. Mater. Interfaces 9(30), 25114–25127 (2017). https://doi.org/10.1021/acsami.7b06192
H. Zhu, Y. Zhou, Y. Wang, S. Xu, T.D. James et al., Stepwise-enhanced tumor targeting of near-infrared emissive Au nanoclusters with high quantum yields and long-term stability. Anal. Chem. 94(38), 13189–13196 (2022). https://doi.org/10.1021/acs.analchem.2c02717
L.V. Nair, R.V. Nair, S.J. Shenoy, A. Thekkuveettil, R.S. Jayasree, Blood brain barrier permeable gold nanocluster for targeted brain imaging and therapy: an in vitro and in vivo study. J. Mater. Chem. B 5(42), 8314–8321 (2017). https://doi.org/10.1039/c7tb02247f
D. Sultan, D. Ye, G.S. Heo, X. Zhang, H. Luehmann et al., Focused ultrasound enabled trans-blood brain barrier delivery of gold nanoclusters: effect of surface charges and quantification using positron emission tomography. Small 14(30), e1703115 (2018). https://doi.org/10.1002/smll.201703115
C.A. Smith, C.A. Simpson, G. Kim, C.J. Carter, D.L. Feldheim, Gastrointestinal bioavailability of 2.0 nm diameter gold nanops. ACS Nano 7(5), 3991–3996 (2013). https://doi.org/10.1021/nn305930e