Unraveling the Fundamental Mechanism of Interface Conductive Network Influence on the Fast-Charging Performance of SiO-Based Anode for Lithium-Ion Batteries
Corresponding Author: Fei Wei
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 43
Abstract
Progress in the fast charging of high-capacity silicon monoxide (SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion. The construction of an interface conductive network effectively addresses the aforementioned problems; however, the impact of its quality on lithium-ion transfer and structure durability is yet to be explored. Herein, the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time. 2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier. Furthermore, atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network, which is critical to the linear reduction of electrode residual stress. This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.
Highlights:
1 Influence of interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.
2 The mitigation of interface polarization is precisely revealed by the combination of 2D modeling simulation and Cryo-TEM observation, which can be attributed to a higher fraction formation of conductive inorganic species in bilayer SEI, and primarily contributes to a linear decrease in ionic diffusion energy barrier.
3 The improved stress dissipation presented by AFM and Raman shift is critical for the linear reduction in electrode residual stress and thickness swelling.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Li, J. Lu, Z. Chen, K. Amine, 30 years of lithium-ion batteries. Adv. Mater. 30(33), 1800561 (2018). https://doi.org/10.1002/adma.201800561
- Y. Liu, Y. Zhu, Y. Cui, Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4(7), 540–550 (2019). https://doi.org/10.1038/s41560-019-0405-3
- Z. Ju, X. Xu, X. Zhang, K.U. Raigama, G. Yu, Towards fast-charging high-energy lithium-ion batteries: from nano- to micro-structuring perspectives. Chem. Eng. J. 454, 140003 (2023). https://doi.org/10.1016/j.cej.2022.140003
- N. Wassiliadis, J. Schneider, A. Frank, L. Wildfeuer, X. Lin et al., Review of fast charging strategies for lithium-ion battery systems and their applicability for battery electric vehicles. J. Energy Storage 44, 103306 (2021). https://doi.org/10.1016/j.est.2021.103306
- B.S. Vishnugopi, E. Kazyak, J.A. Lewis, J. Nanda, M.T. McDowell et al., Challenges and opportunities for fast charging of solid-state lithium metal batteries. ACS Energy Lett. 6(10), 3734–3749 (2021). https://doi.org/10.1021/acsenergylett.1c01352
- S. Li, K. Wang, G. Zhang, S. Li, Y. Xu et al., Fast charging anode materials for lithium-ion batteries: current status and perspectives. Adv. Funct. Mater. 32(23), 2200796 (2022). https://doi.org/10.1002/adfm.202200796
- H. Xia, W. Zhang, S. Cao, X. Chen, A figure of merit for fast-charging Li-ion battery materials. ACS Nano 16(6), 8525–8530 (2022). https://doi.org/10.1021/acsnano.2c03922
- P.P. Paul, V. Thampy, C. Cao, H.-G. Steinrück, T.R. Tanim et al., Quantification of heterogeneous, irreversible lithium plating in extreme fast charging of lithium-ion batteries. Energy Environ. Sci. 14(9), 4979–4988 (2021). https://doi.org/10.1039/D1EE01216A
- A.S. Ho, D.Y. Parkinson, D.P. Finegan, S.E. Trask, A.N. Jansen et al., 3D detection of lithiation and lithium plating in graphite anodes during fast charging. ACS Nano 15(6), 10480–10487 (2021). https://doi.org/10.1021/acsnano.1c02942
- M. Keyser, A. Pesaran, Q. Li, S. Santhanagopalan, K. Smith et al., Enabling fast charging: battery thermal considerations. J. Power. Sources 367, 228–236 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.009
- W. Cai, Y. Yao, G. Zhu, C. Yan, L. Jiang et al., A review on energy chemistry of fast-charging anodes. Chem. Soc. Rev. 49(12), 3806–3833 (2020). https://doi.org/10.1039/C9CS00728H
- L. Sun, Y. Liu, R. Shao, J. Wu, R. Jiang et al., Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Mater. 46, 482–502 (2022). https://doi.org/10.1016/j.ensm.2022.01.042
- G. Zhu, D. Chao, W. Xu, M. Wu, H. Zhang, Microscale silicon-based anodes: fundamental understanding and industrial prospects for practical high-energy lithium-ion batteries. ACS Nano 15(10), 15567–15593 (2021). https://doi.org/10.1021/acsnano.1c05898
- Y. Zhang, B. Wu, G. Mu, C. Ma, D. Mu et al., Recent progress and perspectives on silicon anode: synthesis and prelithiation for libs energy storage. J. Energy Chem. 64, 615–650 (2022). https://doi.org/10.1016/j.jechem.2021.04.013
- K. Pan, F. Zou, M. Canova, Y. Zhu, J.-H. Kim, Systematic electrochemical characterizations of Si and SiO anodes for high-capacity Li-ion batteries. J. Power. Sources 413, 20–28 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.010
- X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng, Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31, 113–143 (2017). https://doi.org/10.1016/j.nanoen.2016.11.013
- S. Chae, M. Ko, K. Kim, K. Ahn, J. Cho, Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries. Joule 1(1), 47–60 (2017). https://doi.org/10.1016/j.joule.2017.07.006
- H. Li, H. Li, Z. Yang, L. Yang, J. Gong et al., SiOx anode: from fundamental mechanism toward industrial application. Small 17(51), 2102641 (2021). https://doi.org/10.1002/smll.202102641
- Z. Liu, Q. Yu, Y. Zhao, R. He, M. Xu et al., Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 48(1), 285–309 (2019). https://doi.org/10.1039/C8CS00441B
- T. Chen, J. Wu, Q. Zhang, X. Su, Recent advancement of SiOx based anodes for lithium-ion batteries. J. Power. Sources 363, 126–144 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.073
- G. Zhu, C. Zhao, J. Huang, C. He, J. Zhang et al., Fast charging lithium batteries: recent progress and future prospects. Small 15(15), 1805389 (2019). https://doi.org/10.1002/smll.201805389
- S. Deng, M. Jiang, A. Rao, X. Lin, K. Doyle-Davis et al., Fast-charging halide-based all-solid-state batteries by manipulation of current collector interface. Adv. Funct. Mater. 32(25), 2200767 (2022). https://doi.org/10.1002/adfm.202200767
- B. Deng, R. Xu, X. Wang, L. An, K. Zhao et al., Roll to roll manufacturing of fast charging, mechanically robust 0D/2D nanolayered Si-graphene anode with well-interfaced and defect engineered structures. Energy Storage Mater. 22, 450–460 (2019). https://doi.org/10.1016/j.ensm.2019.07.019
- X. Han, Z. Zhang, H. Chen, L. Luo, Q. Zhang et al., Bulk boron doping and surface carbon coating enabling fast-charging and stable Si anodes: from thin film to thick Si electrodes. J. Mater. Chem. A 9(6), 3628–3636 (2021). https://doi.org/10.1039/D0TA10282B
- Q. Huang, S. Ni, M. Jiao, X. Zhong, G. Zhou et al., Aligned carbon-based electrodes for fast-charging batteries: a review. Small 17(48), 2007676 (2021). https://doi.org/10.1002/smll.202007676
- J. Kim, H.I. Cho, Y.S. Cho, S.H. Lee, C.R. Park, New insights into the effects of available space characteristics within graphite-based anodes on the accessibility of solvated Li-ions under fast charging conditions. Carbon 203, 152–160 (2023). https://doi.org/10.1016/j.carbon.2022.11.032
- M. Doyle, T.F. Fuller, J. Newman, Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J. Electrochem. Soc. 140(6), 1526 (1993). https://doi.org/10.1149/1.2221597
- M. Schönleber, C. Uhlmann, P. Braun, A. Weber, E. Ivers-Tiffée, A consistent derivation of the impedance of a lithium-ion battery electrode and its dependency on the state-of-charge. Electrochim. Acta 243, 250–259 (2017). https://doi.org/10.1016/j.electacta.2017.05.009
- M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N.R. Levy et al., Fast charging of lithium-ion batteries: a review of materials aspects. Adv. Energy Mater. 11(33), 2101126 (2021). https://doi.org/10.1002/aenm.202101126
- A.J. Bard, L.R. Faulkner, H.S. White, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, 2022)
- L. Shi, W. Wang, A. Wang, K. Yuan, Z. Jin et al., Scalable synthesis of core-shell structured SiOx/nitrogen-doped carbon composite as a high-performance anode material for lithium-ion batteries. J. Power. Sources 318, 184–191 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.111
- N. Zhang, K. Liu, H. Zhang, X. Wang, Y. Zhou et al., Constructing biomass-based ultrahigh-rate performance SnOy@C/SiOx anode for LIBs via disproportionation effect. Small 19(1), 2204867 (2023). https://doi.org/10.1002/smll.202204867
- Y. Tian, G. Li, D. Xu, Z. Lu, M. Yan et al., Micrometer-sized SiMgyOx with stable internal structure evolution for high-performance Li-ion battery anodes. Adv. Mater. 34(15), 2200672 (2022). https://doi.org/10.1002/adma.202200672
- Y. Ren, L. Xiang, X. Yin, R. Xiao, P. Zuo et al., Ultrathin Si nanosheets dispersed in graphene matrix enable stable interface and high rate capability of anode for lithium-ion batteries. Adv. Funct. Mater. 32(16), 2110046 (2022). https://doi.org/10.1002/adfm.202110046
- S. Xu, J. Zhou, J. Wang, S. Pathiranage, N. Oncel et al., In situ synthesis of graphene-coated silicon monoxide anodes from coal-derived humic acid for high-performance lithium-ion batteries. Adv. Funct. Mater. 31(32), 2101645 (2021). https://doi.org/10.1002/adfm.202101645
- X. Guo, Y. Zhang, F. Zhang, Q. Li, D.H. Anjum et al., A novel strategy for the synthesis of highly stable ternary SiOx composites for Li-ion-battery anodes. J. Mater. Chem. A 7(26), 15969–15974 (2019). https://doi.org/10.1039/C9TA04062E
- Z. Yang, Z. Li, Y. Yang, Q. Zhang, H. Xie et al., Well-dispersed Fe nanoclusters for effectively increasing the initial coulombic efficiency of the SiO anode. ACS Nano 17(8), 7806–7812 (2023). https://doi.org/10.1021/acsnano.3c00709
- J. Tao, L. Liu, J. Han, J. Peng, Y. Chen et al., New perspectives on spatial dynamics of lithiation and lithium plating in graphite/silicon composite anodes. Energy Storage Mater. 60, 102809 (2023). https://doi.org/10.1016/j.ensm.2023.102809
- Z. Yang, M. Jiang, X. Wang, Y. Wang, M. Cao, Constructing a stable Si–N-enriched interface boosts lithium storage kinetics in a silicon-based anode. ACS Appl. Mater. Interfaces 13(44), 52636–52646 (2021). https://doi.org/10.1021/acsami.1c15483
- W. He, Y. Liang, H. Tian, S. Zhang, Z. Meng et al., A facile in situ synthesis of nanocrystal-FeSi-embedded Si/SiOx anode for long-cycle-life lithium ion batteries. Energy Storage Mater. 8, 119–126 (2017). https://doi.org/10.1016/j.ensm.2017.05.003
- Z. Li, H. Zhao, P. Lv, Z. Zhang, Y. Zhang et al., Watermelon-like structured SiOx–TiO2@C nanocomposite as a high-performance lithium-ion battery anode. Adv. Funct. Mater. 28(31), 1605711 (2018). https://doi.org/10.1002/adfm.201605711
- H. Tian, H. Tian, W. Yang, F. Zhang, W. Yang et al., Stable hollow-structured silicon suboxide-based anodes toward high-performance lithium-ion batteries. Adv. Funct. Mater. 31(25), 2101796 (2021). https://doi.org/10.1002/adfm.202101796
- J. Im, J.-D. Kwon, D.-H. Kim, S. Yoon, K.Y. Cho, P-doped SiOx/Si/SiOx sandwich anode for Li-ion batteries to achieve high initial coulombic efficiency and low capacity decay. Small Methods 6(3), 2101052 (2022). https://doi.org/10.1002/smtd.202101052
- Q. Wang, M. Zhu, G. Chen, N. Dudko, Y. Li et al., High-performance microsized Si anodes for lithium-ion batteries: insights into the polymer configuration conversion mechanism. Adv. Mater. 34(16), 2109658 (2022). https://doi.org/10.1002/adma.202109658
- R. Gao, J. Tang, K. Zhang, K. Ozawa, L.-C. Qin, A sandwich-like silicon–carbon composite prepared by surface-polymerization for rapid lithium-ion storage. Nano Energy 78, 105341 (2020). https://doi.org/10.1016/j.nanoen.2020.105341
- T.-G. Jeong, D.S. Choi, H. Song, J. Choi, S.-A. Park et al., Heterogeneous catalysis for lithium–sulfur batteries: enhanced rate performance by promoting polysulfide fragmentations. ACS Energy Lett. 2(2), 327–333 (2017). https://doi.org/10.1021/acsenergylett.6b00603
- J. Fang, Y. Cao, S. Chang, F. Teng, D. Wu et al., Dual-design of nanoporous to compact interface via atomic/molecular layer deposition enabling a long-life silicon anode. Adv. Funct. Mater. 32(7), 2109682 (2021). https://doi.org/10.1002/adfm.202109682
- S. Xiao, X. Li, W. Zhang, Y. Xiang, T. Li et al., Bilateral interfaces in In2Se3–CoIn2–CoSe2 heterostructures for high-rate reversible sodium storage. ACS Nano 15(8), 13307–13318 (2021). https://doi.org/10.1021/acsnano.1c03056
- L. Hu, M. Jin, Z. Zhang, H. Chen, F. Boorboor Ajdari et al., Interface-adaptive binder enabled by supramolecular interactions for high-capacity Si/C composite anodes in lithium-ion batteries. Adv. Funct. Mater. 32(26), 2111560 (2022). https://doi.org/10.1002/adfm.202111560
- Z. Li, Y. Zhang, T. Liu, X. Gao, S. Li et al., Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries. Adv. Energy Mater. 10(20), 1903110 (2020). https://doi.org/10.1002/aenm.201903110
- Z. Lei, X. Chen, W. Sun, Y. Zhang, Y. Wang, Exfoliated triazine-based covalent organic nanosheets with multielectron redox for high-performance lithium organic batteries. Adv. Energy Mater. 9(3), 1801010 (2019). https://doi.org/10.1002/aenm.201801010
- Z. Li, Z. Zhao, S. Pan, Y. Wang, S. Chi et al., Covalent coating of micro-sized silicon with dynamically bonded graphene layers toward stably cycled lithium storage. Adv. Energy Mater. 13(28), 2300874 (2023). https://doi.org/10.1002/aenm.202300874
- D. Wang, Y. Ma, W. Xu, S. Zhang, B. Wang et al., Controlled isotropic canalization of micro-sized silicon enabling stable high-rate and high-loading lithium storage. Adv. Mater. 35(21), 2212157 (2023). https://doi.org/10.1002/adma.202212157
- J. Peng, R. Shao, S. Huang, Z. Cao, T. Zhang et al., An interface-enhanced continuous 2D-carbon network enabling high-performance Si anodes for Li-ion batteries. J. Mater. Chem. A 10(43), 23008–23014 (2022). https://doi.org/10.1039/D2TA06859A
- J. Zhou, H. Zhao, N. Lin, T. Li, Y. Li et al., Silicothermic reduction reaction for fabricating interconnected Si–Ge nanocrystals with fast and stable Li-storage. J. Mater. Chem. A 8(14), 6597–6606 (2020). https://doi.org/10.1039/D0TA00109K
- Z. Ju, H. Yuan, O. Sheng, T. Liu, J. Nai et al., Cryo-electron microscopy for unveiling the sensitive battery materials. Small Sci. 1(11), 2100055 (2021). https://doi.org/10.1002/smsc.202100055
- X. Ren, X. Zhang, R. Xu, J. Huang, Q. Zhang, Analyzing energy materials by cryogenic electron microscopy. Adv. Mater. 32(24), 1908293 (2020). https://doi.org/10.1002/adma.201908293
- M.J. Zachman, Z. Tu, S. Choudhury, L.A. Archer, L.F. Kourkoutis, Cryo-stem mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature 560, 345–349 (2018). https://doi.org/10.1038/s41586-018-0397-3
- D.E. Gray, American institute of physics (AIP), Handbook (McGraw-Hill, New York, 1972)
- M. Chandrasekhar, J.B. Renucci, M. Cardona, Effects of interband excitations on raman phonons in heavily doped n-Si. Phys. Rev. B 17(4), 1623–1633 (1978). https://doi.org/10.1103/PhysRevB.17.1623
- E. Anastassakis, A. Pinczuk, E. Burstein, F.H. Pollak, M. Cardona, Effect of static uniaxial stress on the raman spectrum of silicon. Solid State Commun. 8(2), 133–138 (1970). https://doi.org/10.1016/0038-1098(70)90588-0
- M. Jana, R.N. Singh, A study of evolution of residual stress in single crystal silicon electrode using raman spectroscopy. Appl. Phys. Lett. 111(6), 063901 (2017). https://doi.org/10.1063/1.4997768
References
M. Li, J. Lu, Z. Chen, K. Amine, 30 years of lithium-ion batteries. Adv. Mater. 30(33), 1800561 (2018). https://doi.org/10.1002/adma.201800561
Y. Liu, Y. Zhu, Y. Cui, Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4(7), 540–550 (2019). https://doi.org/10.1038/s41560-019-0405-3
Z. Ju, X. Xu, X. Zhang, K.U. Raigama, G. Yu, Towards fast-charging high-energy lithium-ion batteries: from nano- to micro-structuring perspectives. Chem. Eng. J. 454, 140003 (2023). https://doi.org/10.1016/j.cej.2022.140003
N. Wassiliadis, J. Schneider, A. Frank, L. Wildfeuer, X. Lin et al., Review of fast charging strategies for lithium-ion battery systems and their applicability for battery electric vehicles. J. Energy Storage 44, 103306 (2021). https://doi.org/10.1016/j.est.2021.103306
B.S. Vishnugopi, E. Kazyak, J.A. Lewis, J. Nanda, M.T. McDowell et al., Challenges and opportunities for fast charging of solid-state lithium metal batteries. ACS Energy Lett. 6(10), 3734–3749 (2021). https://doi.org/10.1021/acsenergylett.1c01352
S. Li, K. Wang, G. Zhang, S. Li, Y. Xu et al., Fast charging anode materials for lithium-ion batteries: current status and perspectives. Adv. Funct. Mater. 32(23), 2200796 (2022). https://doi.org/10.1002/adfm.202200796
H. Xia, W. Zhang, S. Cao, X. Chen, A figure of merit for fast-charging Li-ion battery materials. ACS Nano 16(6), 8525–8530 (2022). https://doi.org/10.1021/acsnano.2c03922
P.P. Paul, V. Thampy, C. Cao, H.-G. Steinrück, T.R. Tanim et al., Quantification of heterogeneous, irreversible lithium plating in extreme fast charging of lithium-ion batteries. Energy Environ. Sci. 14(9), 4979–4988 (2021). https://doi.org/10.1039/D1EE01216A
A.S. Ho, D.Y. Parkinson, D.P. Finegan, S.E. Trask, A.N. Jansen et al., 3D detection of lithiation and lithium plating in graphite anodes during fast charging. ACS Nano 15(6), 10480–10487 (2021). https://doi.org/10.1021/acsnano.1c02942
M. Keyser, A. Pesaran, Q. Li, S. Santhanagopalan, K. Smith et al., Enabling fast charging: battery thermal considerations. J. Power. Sources 367, 228–236 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.009
W. Cai, Y. Yao, G. Zhu, C. Yan, L. Jiang et al., A review on energy chemistry of fast-charging anodes. Chem. Soc. Rev. 49(12), 3806–3833 (2020). https://doi.org/10.1039/C9CS00728H
L. Sun, Y. Liu, R. Shao, J. Wu, R. Jiang et al., Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Mater. 46, 482–502 (2022). https://doi.org/10.1016/j.ensm.2022.01.042
G. Zhu, D. Chao, W. Xu, M. Wu, H. Zhang, Microscale silicon-based anodes: fundamental understanding and industrial prospects for practical high-energy lithium-ion batteries. ACS Nano 15(10), 15567–15593 (2021). https://doi.org/10.1021/acsnano.1c05898
Y. Zhang, B. Wu, G. Mu, C. Ma, D. Mu et al., Recent progress and perspectives on silicon anode: synthesis and prelithiation for libs energy storage. J. Energy Chem. 64, 615–650 (2022). https://doi.org/10.1016/j.jechem.2021.04.013
K. Pan, F. Zou, M. Canova, Y. Zhu, J.-H. Kim, Systematic electrochemical characterizations of Si and SiO anodes for high-capacity Li-ion batteries. J. Power. Sources 413, 20–28 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.010
X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng, Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31, 113–143 (2017). https://doi.org/10.1016/j.nanoen.2016.11.013
S. Chae, M. Ko, K. Kim, K. Ahn, J. Cho, Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries. Joule 1(1), 47–60 (2017). https://doi.org/10.1016/j.joule.2017.07.006
H. Li, H. Li, Z. Yang, L. Yang, J. Gong et al., SiOx anode: from fundamental mechanism toward industrial application. Small 17(51), 2102641 (2021). https://doi.org/10.1002/smll.202102641
Z. Liu, Q. Yu, Y. Zhao, R. He, M. Xu et al., Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 48(1), 285–309 (2019). https://doi.org/10.1039/C8CS00441B
T. Chen, J. Wu, Q. Zhang, X. Su, Recent advancement of SiOx based anodes for lithium-ion batteries. J. Power. Sources 363, 126–144 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.073
G. Zhu, C. Zhao, J. Huang, C. He, J. Zhang et al., Fast charging lithium batteries: recent progress and future prospects. Small 15(15), 1805389 (2019). https://doi.org/10.1002/smll.201805389
S. Deng, M. Jiang, A. Rao, X. Lin, K. Doyle-Davis et al., Fast-charging halide-based all-solid-state batteries by manipulation of current collector interface. Adv. Funct. Mater. 32(25), 2200767 (2022). https://doi.org/10.1002/adfm.202200767
B. Deng, R. Xu, X. Wang, L. An, K. Zhao et al., Roll to roll manufacturing of fast charging, mechanically robust 0D/2D nanolayered Si-graphene anode with well-interfaced and defect engineered structures. Energy Storage Mater. 22, 450–460 (2019). https://doi.org/10.1016/j.ensm.2019.07.019
X. Han, Z. Zhang, H. Chen, L. Luo, Q. Zhang et al., Bulk boron doping and surface carbon coating enabling fast-charging and stable Si anodes: from thin film to thick Si electrodes. J. Mater. Chem. A 9(6), 3628–3636 (2021). https://doi.org/10.1039/D0TA10282B
Q. Huang, S. Ni, M. Jiao, X. Zhong, G. Zhou et al., Aligned carbon-based electrodes for fast-charging batteries: a review. Small 17(48), 2007676 (2021). https://doi.org/10.1002/smll.202007676
J. Kim, H.I. Cho, Y.S. Cho, S.H. Lee, C.R. Park, New insights into the effects of available space characteristics within graphite-based anodes on the accessibility of solvated Li-ions under fast charging conditions. Carbon 203, 152–160 (2023). https://doi.org/10.1016/j.carbon.2022.11.032
M. Doyle, T.F. Fuller, J. Newman, Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J. Electrochem. Soc. 140(6), 1526 (1993). https://doi.org/10.1149/1.2221597
M. Schönleber, C. Uhlmann, P. Braun, A. Weber, E. Ivers-Tiffée, A consistent derivation of the impedance of a lithium-ion battery electrode and its dependency on the state-of-charge. Electrochim. Acta 243, 250–259 (2017). https://doi.org/10.1016/j.electacta.2017.05.009
M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N.R. Levy et al., Fast charging of lithium-ion batteries: a review of materials aspects. Adv. Energy Mater. 11(33), 2101126 (2021). https://doi.org/10.1002/aenm.202101126
A.J. Bard, L.R. Faulkner, H.S. White, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, 2022)
L. Shi, W. Wang, A. Wang, K. Yuan, Z. Jin et al., Scalable synthesis of core-shell structured SiOx/nitrogen-doped carbon composite as a high-performance anode material for lithium-ion batteries. J. Power. Sources 318, 184–191 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.111
N. Zhang, K. Liu, H. Zhang, X. Wang, Y. Zhou et al., Constructing biomass-based ultrahigh-rate performance SnOy@C/SiOx anode for LIBs via disproportionation effect. Small 19(1), 2204867 (2023). https://doi.org/10.1002/smll.202204867
Y. Tian, G. Li, D. Xu, Z. Lu, M. Yan et al., Micrometer-sized SiMgyOx with stable internal structure evolution for high-performance Li-ion battery anodes. Adv. Mater. 34(15), 2200672 (2022). https://doi.org/10.1002/adma.202200672
Y. Ren, L. Xiang, X. Yin, R. Xiao, P. Zuo et al., Ultrathin Si nanosheets dispersed in graphene matrix enable stable interface and high rate capability of anode for lithium-ion batteries. Adv. Funct. Mater. 32(16), 2110046 (2022). https://doi.org/10.1002/adfm.202110046
S. Xu, J. Zhou, J. Wang, S. Pathiranage, N. Oncel et al., In situ synthesis of graphene-coated silicon monoxide anodes from coal-derived humic acid for high-performance lithium-ion batteries. Adv. Funct. Mater. 31(32), 2101645 (2021). https://doi.org/10.1002/adfm.202101645
X. Guo, Y. Zhang, F. Zhang, Q. Li, D.H. Anjum et al., A novel strategy for the synthesis of highly stable ternary SiOx composites for Li-ion-battery anodes. J. Mater. Chem. A 7(26), 15969–15974 (2019). https://doi.org/10.1039/C9TA04062E
Z. Yang, Z. Li, Y. Yang, Q. Zhang, H. Xie et al., Well-dispersed Fe nanoclusters for effectively increasing the initial coulombic efficiency of the SiO anode. ACS Nano 17(8), 7806–7812 (2023). https://doi.org/10.1021/acsnano.3c00709
J. Tao, L. Liu, J. Han, J. Peng, Y. Chen et al., New perspectives on spatial dynamics of lithiation and lithium plating in graphite/silicon composite anodes. Energy Storage Mater. 60, 102809 (2023). https://doi.org/10.1016/j.ensm.2023.102809
Z. Yang, M. Jiang, X. Wang, Y. Wang, M. Cao, Constructing a stable Si–N-enriched interface boosts lithium storage kinetics in a silicon-based anode. ACS Appl. Mater. Interfaces 13(44), 52636–52646 (2021). https://doi.org/10.1021/acsami.1c15483
W. He, Y. Liang, H. Tian, S. Zhang, Z. Meng et al., A facile in situ synthesis of nanocrystal-FeSi-embedded Si/SiOx anode for long-cycle-life lithium ion batteries. Energy Storage Mater. 8, 119–126 (2017). https://doi.org/10.1016/j.ensm.2017.05.003
Z. Li, H. Zhao, P. Lv, Z. Zhang, Y. Zhang et al., Watermelon-like structured SiOx–TiO2@C nanocomposite as a high-performance lithium-ion battery anode. Adv. Funct. Mater. 28(31), 1605711 (2018). https://doi.org/10.1002/adfm.201605711
H. Tian, H. Tian, W. Yang, F. Zhang, W. Yang et al., Stable hollow-structured silicon suboxide-based anodes toward high-performance lithium-ion batteries. Adv. Funct. Mater. 31(25), 2101796 (2021). https://doi.org/10.1002/adfm.202101796
J. Im, J.-D. Kwon, D.-H. Kim, S. Yoon, K.Y. Cho, P-doped SiOx/Si/SiOx sandwich anode for Li-ion batteries to achieve high initial coulombic efficiency and low capacity decay. Small Methods 6(3), 2101052 (2022). https://doi.org/10.1002/smtd.202101052
Q. Wang, M. Zhu, G. Chen, N. Dudko, Y. Li et al., High-performance microsized Si anodes for lithium-ion batteries: insights into the polymer configuration conversion mechanism. Adv. Mater. 34(16), 2109658 (2022). https://doi.org/10.1002/adma.202109658
R. Gao, J. Tang, K. Zhang, K. Ozawa, L.-C. Qin, A sandwich-like silicon–carbon composite prepared by surface-polymerization for rapid lithium-ion storage. Nano Energy 78, 105341 (2020). https://doi.org/10.1016/j.nanoen.2020.105341
T.-G. Jeong, D.S. Choi, H. Song, J. Choi, S.-A. Park et al., Heterogeneous catalysis for lithium–sulfur batteries: enhanced rate performance by promoting polysulfide fragmentations. ACS Energy Lett. 2(2), 327–333 (2017). https://doi.org/10.1021/acsenergylett.6b00603
J. Fang, Y. Cao, S. Chang, F. Teng, D. Wu et al., Dual-design of nanoporous to compact interface via atomic/molecular layer deposition enabling a long-life silicon anode. Adv. Funct. Mater. 32(7), 2109682 (2021). https://doi.org/10.1002/adfm.202109682
S. Xiao, X. Li, W. Zhang, Y. Xiang, T. Li et al., Bilateral interfaces in In2Se3–CoIn2–CoSe2 heterostructures for high-rate reversible sodium storage. ACS Nano 15(8), 13307–13318 (2021). https://doi.org/10.1021/acsnano.1c03056
L. Hu, M. Jin, Z. Zhang, H. Chen, F. Boorboor Ajdari et al., Interface-adaptive binder enabled by supramolecular interactions for high-capacity Si/C composite anodes in lithium-ion batteries. Adv. Funct. Mater. 32(26), 2111560 (2022). https://doi.org/10.1002/adfm.202111560
Z. Li, Y. Zhang, T. Liu, X. Gao, S. Li et al., Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries. Adv. Energy Mater. 10(20), 1903110 (2020). https://doi.org/10.1002/aenm.201903110
Z. Lei, X. Chen, W. Sun, Y. Zhang, Y. Wang, Exfoliated triazine-based covalent organic nanosheets with multielectron redox for high-performance lithium organic batteries. Adv. Energy Mater. 9(3), 1801010 (2019). https://doi.org/10.1002/aenm.201801010
Z. Li, Z. Zhao, S. Pan, Y. Wang, S. Chi et al., Covalent coating of micro-sized silicon with dynamically bonded graphene layers toward stably cycled lithium storage. Adv. Energy Mater. 13(28), 2300874 (2023). https://doi.org/10.1002/aenm.202300874
D. Wang, Y. Ma, W. Xu, S. Zhang, B. Wang et al., Controlled isotropic canalization of micro-sized silicon enabling stable high-rate and high-loading lithium storage. Adv. Mater. 35(21), 2212157 (2023). https://doi.org/10.1002/adma.202212157
J. Peng, R. Shao, S. Huang, Z. Cao, T. Zhang et al., An interface-enhanced continuous 2D-carbon network enabling high-performance Si anodes for Li-ion batteries. J. Mater. Chem. A 10(43), 23008–23014 (2022). https://doi.org/10.1039/D2TA06859A
J. Zhou, H. Zhao, N. Lin, T. Li, Y. Li et al., Silicothermic reduction reaction for fabricating interconnected Si–Ge nanocrystals with fast and stable Li-storage. J. Mater. Chem. A 8(14), 6597–6606 (2020). https://doi.org/10.1039/D0TA00109K
Z. Ju, H. Yuan, O. Sheng, T. Liu, J. Nai et al., Cryo-electron microscopy for unveiling the sensitive battery materials. Small Sci. 1(11), 2100055 (2021). https://doi.org/10.1002/smsc.202100055
X. Ren, X. Zhang, R. Xu, J. Huang, Q. Zhang, Analyzing energy materials by cryogenic electron microscopy. Adv. Mater. 32(24), 1908293 (2020). https://doi.org/10.1002/adma.201908293
M.J. Zachman, Z. Tu, S. Choudhury, L.A. Archer, L.F. Kourkoutis, Cryo-stem mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature 560, 345–349 (2018). https://doi.org/10.1038/s41586-018-0397-3
D.E. Gray, American institute of physics (AIP), Handbook (McGraw-Hill, New York, 1972)
M. Chandrasekhar, J.B. Renucci, M. Cardona, Effects of interband excitations on raman phonons in heavily doped n-Si. Phys. Rev. B 17(4), 1623–1633 (1978). https://doi.org/10.1103/PhysRevB.17.1623
E. Anastassakis, A. Pinczuk, E. Burstein, F.H. Pollak, M. Cardona, Effect of static uniaxial stress on the raman spectrum of silicon. Solid State Commun. 8(2), 133–138 (1970). https://doi.org/10.1016/0038-1098(70)90588-0
M. Jana, R.N. Singh, A study of evolution of residual stress in single crystal silicon electrode using raman spectroscopy. Appl. Phys. Lett. 111(6), 063901 (2017). https://doi.org/10.1063/1.4997768