Recent Developments in Metallic Degradable Micromotors for Biomedical and Environmental Remediation Applications
Corresponding Author: Hongsoo Choi
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 41
Abstract
Synthetic micromotor has gained substantial attention in biomedicine and environmental remediation. Metal-based degradable micromotor composed of magnesium (Mg), zinc (Zn), and iron (Fe) have promise due to their nontoxic fuel-free propulsion, favorable biocompatibility, and safe excretion of degradation products Recent advances in degradable metallic micromotor have shown their fast movement in complex biological media, efficient cargo delivery and favorable biocompatibility. A noteworthy number of degradable metal-based micromotors employ bubble propulsion, utilizing water as fuel to generate hydrogen bubbles. This novel feature has projected degradable metallic micromotors for active in vivo drug delivery applications. In addition, understanding the degradation mechanism of these micromotors is also a key parameter for their design and performance. Its propulsion efficiency and life span govern the overall performance of a degradable metallic micromotor. Here we review the design and recent advancements of metallic degradable micromotors. Furthermore, we describe the controlled degradation, efficient in vivo drug delivery, and built-in acid neutralization capabilities of degradable micromotors with versatile biomedical applications. Moreover, we discuss micromotors’ efficacy in detecting and destroying environmental pollutants. Finally, we address the limitations and future research directions of degradable metallic micromotors.
Highlights:
1 This review discusses the potential of degradable metallic micromotors for a variety of biomedical and environmental applications.
2 The design principles, fabrication techniques and degradation mechanisms of degradable metallic micromotors are reviewed in detail.
3 Challenges and future directions for the development of degradable metallic micromotors for real-life applications are presented.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Jeon, S.H. Park, E. Kim, J. Kim, S.W. Kim et al., A magnetically powered stem cell based microrobot for minimally invasive stem cell delivery via the intranasal pathway in a mouse brain. Adv. Healthc. Mater. 10(19), 2100801 (2021). https://doi.org/10.1002/adhm.202100801
- J. Giltinan, V. Sridhar, U. Bozuyuk, D. Sheehan, M. Sitti, 3D microprinting of iron platinum nanop-based magnetic mobile microrobots. Adv. Intell. Syst. 3(1), 2000204 (2021). https://doi.org/10.1002/aisy.202000204
- J. Vyskocil, C.C. Mayorga-Martinez, E. Jablonska, F. Novotny, T. Ruml et al., Cancer cells microsurgery via asymmetric bent surface Au/Ag/Ni microrobotic scalpels through a transversal rotating magnetic field. ACS Nano 14(7), 8247–8256 (2020). https://doi.org/10.1021/acsnano.0c01705
- S. Fusco, H.-W. Huang, K.E. Peyer, C. Peters, M. Häberli et al., Shape-switching microrobots for medical applications: the influence of shape in drug delivery and locomotion. ACS Appl. Mater. Interfaces 7(12), 6803–6811 (2015). https://doi.org/10.1021/acsami.5b00181
- C.K. Schmidt, M. Medina-Sánchez, R.J. Edmondson, O.G. Schmidt, Engineering microrobots for targeted cancer therapies from a medical perspective. Nat. Commun. 11(1), 5618 (2020). https://doi.org/10.1038/s41467-020-19322-7
- J. Li, H. Shen, H. Zhou, R. Shi, C. Wu et al., Antimicrobial micro/nanorobotic materials design: from passive combat to active therapy. Mater. Sci. Eng. R Rep. 152, 100712 (2023). https://doi.org/10.1016/j.mser.2022.100712
- M. Ussia, M. Urso, M. Kratochvilova, J. Navratil, J. Balvan et al., Magnetically driven self degrading zinc containing cystine microrobots for treatment of prostate cancer. Small 19(17), 2208259 (2023). https://doi.org/10.1002/smll.202208259
- X. Hu, N. Wang, X. Guo, Z. Liang, H. Sun et al., A sub-nanostructural transformable nanozyme for tumor photocatalytic therapy. Nano-micro Lett. 14, 101 (2022). https://doi.org/10.1007/s40820-022-00848-y
- J. Wang, R. Dong, H. Wu, Y. Cai, B. Ren, A review on artificial micro/nanomotors for cancer targeted delivery, diagnosis, and therapy. Nano-micro Lett. 12, 11 (2020). https://doi.org/10.1007/s40820-019-0350-5
- L. Li, Z. Yu, J. Liu, M. Yang, G. Shi et al., Swarming responsive photonic nanorobots for motile-targeting microenvironmental mapping and mapping-guided photothermal treatment. Nano-micro Lett. 15, 141 (2023). https://doi.org/10.1007/s40820-023-01095-5
- X. Wang, X.H. Qin, C. Hu, A. Terzopoulou, X.Z. Chen et al., 3D printed enzymatically biodegradable soft helical microswimmers. Adv. Funct. Mater. 28(45), 1804107 (2018). https://doi.org/10.1002/adfm.201804107
- S. Noh, S. Jeon, E. Kim, U. Oh, D. Park et al., A biodegradable magnetic microrobot based on gelatin methacrylate for precise delivery of stem cells with mass production capability. Small 18(25), 2107888 (2022). https://doi.org/10.1002/smll.202107888
- A. Terzopoulou, X. Wang, X.Z. Chen, M. Palacios Corella, C. Pujante et al., Biodegradable metal organic framework based microrobots (MOFBOTS). Adv. Healthc. Mater. 9(20), 2001031 (2020). https://doi.org/10.1002/adhm.202001031
- T. Wei, J. Liu, D. Li, S. Chen, Y. Zhang et al., Development of magnet driven and image guided degradable microrobots for the precise delivery of engineered stem cells for cancer therapy. Small 16(41), 1906908 (2020). https://doi.org/10.1002/smll.201906908
- P. TirgarBahnamiri, S. Bagheri-Khoulenjani, Biodegradable microrobots for targeting cell delivery. Med. Hypothses 102, 56–60 (2017). https://doi.org/10.1016/j.mehy.2017.02.015
- S. Fusco, F. Ullrich, J. Pokki, G. Chatzipirpiridis, B. Özkale et al., Microrobots: a new era in ocular drug delivery. Expert Opin. Drug Deliv. 11(11), 1815–1826 (2014). https://doi.org/10.1517/17425247.2014.938633
- S. Kim, S. Lee, J. Lee, B.J. Nelson, L. Zhang et al., Fabrication and manipulation of ciliary microrobots with non-reciprocal magnetic actuation. Sci. Rep. 6(1), 30713 (2016). https://doi.org/10.1038/srep30713
- J.-Y. Kim, S. Jeon, J. Lee, S. Lee, J. Lee et al., A simple and rapid fabrication method for biodegradable drug-encapsulating microrobots using laser micromachining, and characterization thereof. Sens. Actuators B Chem. 266, 276–287 (2018). https://doi.org/10.1016/j.snb.2018.03.033
- S.R. Dabbagh, M.R. Sarabi, M.T. Birtek, S. Seyfi, M. Sitti et al., 3D-printed microrobots from design to translation. Nat. Commun. 13(1), 5875 (2022). https://doi.org/10.1038/s41467-022-33409-3
- Q. Chen, N. Wang, M. Zhu, J. Lu, H. Zhong et al., TiO2 nanops cause mitochondrial dysfunction, activate inflammatory responses, and attenuate phagocytosis in macrophages: a proteomic and metabolomic insight. Redox Biol. 15, 266–276 (2018). https://doi.org/10.1016/j.redox.2017.12.011
- E.M. Higbee-Dempsey, A. Amirshaghaghi, M.J. Case, M. Bouché, J. Kim et al., Biodegradable gold nanoclusters with improved excretion due to pH-triggered hydrophobic to hydrophilic transition. J. Am. Chem. Soc. 142(17), 7783–7794 (2020). https://doi.org/10.1021/jacs.9b13813
- H.-J. Liu, M. Wang, S. Shi, X. Hu, P. Xu, A therapeutic sheep in metastatic wolf’s clothing: Trojan horse approach for cancer brain metastases treatment. Nano-micro Lett. 14(1), 114 (2022). https://doi.org/10.1007/s40820-022-00861-1
- J. Park, C. Jin, S. Lee, J.Y. Kim, H. Choi, Magnetically actuated degradable microrobots for actively controlled drug release and hyperthermia therapy. Adv. Healthc. Mater. 8(16), 1900213 (2019). https://doi.org/10.1002/adhm.201900213
- T. Wei, J. Li, L. Zheng, C. Wang, F. Li et al., Development of a cell loading microrobot with simultaneously improved degradability and mechanical strength for performing in vivo delivery tasks. Adv. Intell. Syst. 3(11), 2100052 (2021). https://doi.org/10.1002/aisy.202100052
- J.-M. Lü, X. Wang, C. Marin-Muller, H. Wang, P.H. Lin et al., Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev. Mol. Diagn. 9(4), 325–341 (2009). https://doi.org/10.1586/erm.09.15
- Y. Liu, J. Luo, X. Chen, W. Liu, T. Chen, Cell membrane coating technology: a promising strategy for biomedical applications. Nano-micro Lett. 11, 46 (2019). https://doi.org/10.1007/s40820-019-0330-9
- S. Jin, X. Xia, J. Huang, C. Yuan, Y. Zuo et al., Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater. 127, 56–79 (2021). https://doi.org/10.1016/j.actbio.2021.03.067
- E.J. Go, E.Y. Kang, S.K. Lee, S. Park, J.H. Kim et al., An osteoconductive PLGA scaffold with bioactive β-TCP and anti-inflammatory Mg (OH)2 to improve in vivo bone regeneration. Biomater. Sci. 8(3), 937–948 (2020). https://doi.org/10.1039/c9bm01864f
- S.Y. Choi, W. Hur, B.K. Kim, C. Shasteen, M.H. Kim et al., Bioabsorbable bone fixation plates for X-ray imaging diagnosis by a radiopaque layer of barium sulfate and poly (lactic-co-glycolic acid). J. Biomed. Mater. Res. B Appl. Biomater. 103(3), 596–607 (2015). https://doi.org/10.1002/jbm.b.33235
- A. Srivastava, N. Bhatnagar, Production and characterisation of new bioresorbable radiopaque Mg–Zn–Y alloy to improve X-ray visibility of polymeric scaffolds. J. Magnes. Alloy 10(6), 1694–1703 (2022). https://doi.org/10.1016/j.jma.2020.11.010
- C. Chen, E. Karshalev, J. Guan, J. Wang, Magnesium based micromotors: water powered propulsion, multifunctionality, and biomedical and environmental applications. Small 14(23), 1704252 (2018). https://doi.org/10.1002/smll.201704252
- W. Gao, A. Pei, J. Wang, Water-driven micromotors. ACS Nano 6(9), 8432–8438 (2012). https://doi.org/10.1021/nn303309z
- M. You, C. Chen, L. Xu, F. Mou, J. Guan, Intelligent micro/nanomotors with taxis. Acc. Chem. Res. 51(12), 3006–3014 (2018). https://doi.org/10.1021/acs.accounts.8b00291
- X.Z. Chen, B. Jang, D. Ahmed, C. Hu, C. De Marco et al., Small scale machines driven by external power sources. Adv. Mater. 30(15), 1705061 (2018). https://doi.org/10.1002/adma.201705061
- V. Agrahari, V. Agrahari, M.-L. Chou, C.H. Chew, J. Noll et al., Intelligent micro-/nanorobots as drug and cell carrier devices for biomedical therapeutic advancement: promising development opportunities and translational challenges. Biomaterials 260, 120163 (2020). https://doi.org/10.1016/j.biomaterials.2020.120163
- S. Campuzano, J. Orozco, D. Kagan, M. Guix, W. Gao et al., Bacterial isolation by lectin-modified microengines. Nano Lett. 12(1), 396–401 (2012). https://doi.org/10.1021/nl203717q
- S. Shivalkar, P.K. Gautam, A. Verma, K. Maurya, M.P. Sk et al., Autonomous magnetic microbots for environmental remediation developed by organic waste derived carbon dots. J. Environ. Manag. 297, 113322 (2021). https://doi.org/10.1016/j.jenvman.2021.113322
- T. Maric, M.Z.M. Nasir, N.F. Rosli, M. Budanović, R.D. Webster et al., Microrobots derived from variety plant pollen grains for efficient environmental clean up and as an anti-cancer drug carrier. Adv. Funct. Mater. 30(19), 2000112 (2020). https://doi.org/10.1002/adfm.202000112
- Y. Zhang, K. Yan, F. Ji, L. Zhang, Enhanced removal of toxic heavy metals using swarming biohybrid adsorbents. Adv. Funct. Mater. 28(52), 1806340 (2018). https://doi.org/10.1002/adfm.201806340
- R. Maria-Hormigos, C.C. Mayorga-Martinez, M. Pumera, Soft magnetic microrobots for photoactive pollutant removal. Small Methods 7(1), 2201014 (2023). https://doi.org/10.1002/smtd.202201014
- B. Jurado-Sánchez, J. Wang, Micromotors for environmental applications: a review. Environ. Sci. Nano 5(7), 1530–1544 (2018). https://doi.org/10.1039/C8EN00299A
- J.G.S. Moo, M. Pumera, Chemical energy powered nano/micro/macromotors and the environment. Chem. Eur. J. 21(1), 58–72 (2015). https://doi.org/10.1002/chem.201405011
- M. Guix, J. Orozco, M. Garcia, W. Gao, S. Sattayasamitsathit et al., Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil. ACS Nano 6(5), 4445–4451 (2012). https://doi.org/10.1021/nn301175b
- F. Mou, D. Pan, C. Chen, Y. Gao, L. Xu et al., Magnetically modulated pot-like MnFe2O4 micromotors: nanop assembly fabrication and their capability for direct oil removal. Adv. Funct. Mater. 25(39), 6173–6181 (2015). https://doi.org/10.1002/adfm.201502835
- J. Orozco, G. Pan, S. Sattayasamitsathit, M. Galarnyk, J. Wang, Micromotors to capture and destroy anthrax simulant spores. Analyst 140(5), 1421–1427 (2015). https://doi.org/10.1039/C4AN02169J
- L. Soler, V. Magdanz, V.M. Fomin, S. Sanchez, O.G. Schmidt, Self-propelled micromotors for cleaning polluted water. ACS Nano 7(11), 9611–9620 (2013). https://doi.org/10.1021/nn405075d
- J. Parmar, D. Vilela, E. Pellicer, D. Esqué-de los Ojos, J. Sort et al., Reusable and long-lasting active microcleaners for heterogeneous water remediation. Adv. Funct. Mater. 26(23), 4152–4161 (2016). https://doi.org/10.1002/adfm.201600381
- B. Jurado-Sánchez, S. Sattayasamitsathit, W. Gao, L. Santos, Y. Fedorak et al., Self-propelled activated carbon Janus micromotors for efficient water purification. Small 11(4), 499–506 (2015). https://doi.org/10.1002/smll.201402215
- L. Dąbek, A. Picheta-Oleś, B. Szeląg, J. Szulżyk-Cieplak, G. Łagód, Modeling and optimization of pollutants removal during simultaneous adsorption onto activated carbon with advanced oxidation in aqueous environment. Materials 13(19), 4220 (2020). https://doi.org/10.3390/ma13194220
- W. Gao, X. Feng, A. Pei, Y. Gu, J. Li et al., Seawater-driven magnesium based Janus micromotors for environmental remediation. Nanoscale 5(11), 4696–4700 (2013). https://doi.org/10.1039/C3NR01458D
- D. Liu, T. Wang, Y. Lu, Untethered microrobots for active drug delivery: from rational design to clinical settings. Adv. Healthc. Mater. 11(3), 2102253 (2022). https://doi.org/10.1002/adhm.202102253
- X. Xu, J. Chen, S. Cai, Z. Long, Y. Zhang et al., A real-time wearable UV-radiation monitor based on a high-performance p-CuZns/n-TiO2 photodetector. Adv. Mater. 30(43), 1803165 (2018). https://doi.org/10.1002/adma.201803165
- A.M. Vargason, A.C. Anselmo, S. Mitragotri, The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 5(9), 951–967 (2021). https://doi.org/10.1038/s41551-021-00698-w
- M. Sitti, H. Ceylan, W. Hu, J. Giltinan, M. Turan et al., Biomedical applications of untethered mobile milli/microrobots. Proc. IEEE Inst. Electr. Electron Eng. 103(2), 205–224 (2015). https://doi.org/10.1109/JPROC.2014.2385105
- S. Gervasoni, J. Lussi, S. Viviani, Q. Boehler, N. Ochsenbein et al., Magnetically assisted robotic fetal surgery for the treatment of spina bifida. IEEE Trans. Med. Robot. Bionics 4(1), 85–93 (2022). https://doi.org/10.1109/TMRB.2022.3146351
- F. Soto, E. Karshalev, F. Zhang, B. Esteban Fernandez de Avila, A. Nourhani et al., Smart materials for microrobots. Chem. Rev. 122(5), 5365–5403 (2021). https://doi.org/10.1021/acs.chemrev.0c00999
- G. Katsikis, J.F. Collis, S.M. Knudsen, V. Agache, J.E. Sader et al., Inertial and viscous flywheel sensing of nanops. Nat. Commun. 12(1), 5099 (2021). https://doi.org/10.1038/s41467-021-25266-3
- M. Xie, W. Zhang, C. Fan, C. Wu, Q. Feng et al., Bioinspired soft microrobots with precise magneto-collective control for microvascular thrombolysis. Adv. Mater. 32(26), 2000366 (2020). https://doi.org/10.1002/adma.202000366
- M.A. López, J. Prieto, J.E. Traver, I. Tejado, B.M. Vinagre et al., Testing non reciprocal motion of a swimming flexible small robot with single actuation, in 2018 19th International Carpathian Control Conference (ICCC) (2018), pp. 312–317. https://doi.org/10.1109/CarpathianCC.2018.8399647
- S.R. Goudu, I.C. Yasa, X. Hu, H. Ceylan, W. Hu et al., Biodegradable untethered magnetic hydrogel milli-grippers. Adv. Funct. Mater. 30(50), 2004975 (2020). https://doi.org/10.1002/adfm.202004975
- K.E. Peyer, L. Zhang, B.J. Nelson, Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5(4), 1259–1272 (2013). https://doi.org/10.1039/C2NR32554C
- S. Fusco, M.S. Sakar, S. Kennedy, C. Peters, S. Pane et al., Self-folding mobile microrobots for biomedical applications, in 2014 IEEE International Conference on Robotics and Automation (ICRA) (2014), pp. 3777–3782. https://doi.org/10.1109/ICRA.2014.6907406
- H. Kim, J. Ali, U.K. Cheang, J. Jeong, J.S. Kim et al., Micro manipulation using magnetic microrobots. J. Bionic Eng. 13(4), 515–524 (2016). https://doi.org/10.1016/S1672-6529(16)60324-4
- S. Jeon, S. Kim, S. Ha, S. Lee, E. Kim et al., Magnetically actuated microrobots as a platform for stem cell transplantation. Sci. Robot. 4(30), eaav4317 (2019). https://doi.org/10.1126/scirobotics.aav4317
- M. Dong, X. Wang, X.Z. Chen, F. Mushtaq, S. Deng et al., 3D-printed soft magnetoelectric microswimmers for delivery and differentiation of neuron-like cells. Adv. Funct. Mater. 30(17), 1910323 (2020). https://doi.org/10.1002/adfm.201910323
- F. Qiu, B.J. Nelson, Magnetic helical micro-and nanorobots: toward their biomedical applications. Engineering 1(1), 21–26 (2015). https://doi.org/10.15302/J-ENG-2015005
- M.A. Zeeshan, R. Grisch, E. Pellicer, K.M. Sivaraman, K.E. Peyer et al., Hybrid helical magnetic microrobots obtained by 3D template-assisted electrodeposition. Small 10(7), 1284–1288 (2014). https://doi.org/10.1002/smll.201302856
- R. Venezian, I.S. Khalil, Understanding robustness of magnetically driven helical propulsion in viscous fluids using sensitivity analysis. Adv. Theory Simul. 5(4), 2100519 (2022). https://doi.org/10.1002/adts.202100519
- Y. Liu, Y. Yang, X. Yang, L. Yang, Y. Shen et al., Multi-functionalized micro-helical capsule robots with superior loading and releasing capabilities. J. Mater. Chem. B 9(5), 1441–1451 (2021). https://doi.org/10.1039/D0TB02329A
- K.E. Peyer, S. Tottori, F. Qiu, L. Zhang, B.J. Nelson, Magnetic helical micromachines. Chem. Eur. J. 19(1), 28–38 (2013). https://doi.org/10.1002/chem.201203364
- S. Kim, F. Qiu, S. Kim, A. Ghanbari, C. Moon et al., Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv. Mater. 25(41), 5863–5868 (2013). https://doi.org/10.1002/adma.201301484
- Y. Jia, P. Liao, Y. Wang, D. Sun, Magnet-driven microwalker in surface motion based on frictional anisotropy. Adv. Intell. Syst. 4(11), 2200118 (2022). https://doi.org/10.1002/aisy.202200118
- K. Villa, M. Pumera, Fuel-free light-driven micro/nanomachines: artificial active matter mimicking nature. Chem. Soc. Rev. 48(19), 4966–4978 (2019). https://doi.org/10.1039/C9CS00090A
- L. Wang, A. Kaeer, D. Fischer, J. Simmchen, Photocatalytic TiO2 micromotors for removal of microplastics and suspended matter. ACS A. Mater. Interfaces 11(36), 32937–32944 (2019). https://doi.org/10.1021/acsami.9b06128
- L. Kong, C.C. Mayorga-Martinez, J. Guan, M. Pumera, Photocatalytic micromotors activated by UV to visible light for environmental remediation, micropumps, reversible assembly, transportation, and biomimicry. Small 16(27), 1903179 (2020). https://doi.org/10.1002/smll.201903179
- J. Kim, S. Jo, W.-J. Lee, J. Lim, T.S. Lee, Moving photocatalyst of a titanium dioxide-based micromotor asymmetrically decorated with conjugated polymer dots. Mater. Des. 219, 110743 (2022). https://doi.org/10.1016/j.matdes.2022.110743
- R. Dong, Q. Zhang, W. Gao, A. Pei, B. Ren, Highly efficient light-driven TiO2-Au Janus micromotors. ACS Nano 10(1), 839–844 (2016). https://doi.org/10.1021/acsnano.5b05940
- R. Dong, Y. Hu, Y. Wu, W. Gao, B. Ren et al., Visible-light-driven BiOI-based Janus micromotor in pure water. J. Am. Chem. Soc. 139(5), 1722–1725 (2017). https://doi.org/10.1021/jacs.6b09863
- É. O’Neel-Judy, D. Nicholls, J. Castañeda, J.G. Gibbs, Light-activated, multi-semiconductor hybrid microswimmers. Small 14(32), 1801860 (2018). https://doi.org/10.1002/smll.201801860
- B. Jang, A. Hong, H.E. Kang, C. Alcantara, S. Charreyron et al., Multiwavelength light-responsive Au/B-TiO2 Janus micromotors. ACS Nano 11(6), 6146–6154 (2017). https://doi.org/10.1021/acsnano.7b02177
- Y. Wu, R. Dong, Q. Zhang, B. Ren, Dye-enhanced self-electrophoretic propulsion of light-driven TiO2-Au Janus micromotors. Nano-micro Lett. 9, 12 (2017). https://doi.org/10.1007/s40820-017-0133-9
- J. Vrba, C. Maslen, J. Maxova, J. Duras, I. Rehor et al., An automated platform for assembling light-powered hydrogel microrobots and their subsequent chemical binding. J. Comput. Sci. 55, 101446 (2021). https://doi.org/10.1016/j.jocs.2021.101446
- E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, The golden age: gold nanops for biomedicine. Chem. Soc. Rev. 41(7), 2740–2779 (2012). https://doi.org/10.1039/C1CS15237H
- Y.V. Kaneti, C. Chen, M. Liu, X. Wang, J.L. Yang et al., Carbon-coated gold nanorods: a facile route to biocompatible materials for photothermal applications. ACS A. Mater. Interfaces 7(46), 25658–25668 (2015). https://doi.org/10.1021/acsami.5b07975
- J. Nam, N. Won, H. Jin, H. Chung, S. Kim, pH-induced aggregation of gold nanops for photothermal cancer therapy. J. Am. Chem. Soc. 131(38), 13639–13645 (2009). https://doi.org/10.1021/ja902062j
- W. Wang, L.A. Castro, M. Hoyos, T.E. Mallouk, Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6(7), 6122–6132 (2012). https://doi.org/10.1021/nn301312z
- D. Kagan, M.J. Benchimol, J.C. Claussen, E. Chuluun-Erdene, S. Esener et al., Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. Angew. Chem. Int. Ed. 51(30), 7519–7522 (2012). https://doi.org/10.1002/anie.201201902
- R. Myers, C. Coviello, P. Erbs, J. Foloppe, C. Rowe et al., Polymeric cups for cavitation-mediated delivery of oncolytic vaccinia virus. Mol. Ther. 24(9), 1627–1633 (2016). https://doi.org/10.1038/mt.2016.139
- J.J. Kwan, R. Myers, C.M. Coviello, S.M. Graham, A.R. Shah et al., Ultrasound-propelled nanocups for drug delivery. Small 11(39), 5305–5314 (2015). https://doi.org/10.1002/smll.201501322
- Y. Zhang, S. Li, The secondary bjerknes force between two gas bubbles under dual-frequency acoustic excitation. Ultrason. Sonochem. 29, 129–145 (2016). https://doi.org/10.1016/j.ultsonch.2015.08.022
- N.F. Laubli, M.S. Gerlt, A. Wuthrich, R.T. Lewis, N. Shamsudhin et al., Embedded microbubbles for acoustic manipulation of single cells and microfluidic applications. Anal. Chem. 93(28), 9760–9770 (2021). https://doi.org/10.1021/acs.analchem.1c01209
- A. Aghakhani, A. Pena-Francesch, U. Bozuyuk, H. Cetin, P. Wrede et al., High shear rate propulsion of acoustic microrobots in complex biological fluids. Sci. Adv. 8(10), eabm5126 (2022). https://doi.org/10.1126/sciadv.abm5126
- J. Li, I. Rozen, J. Wang, Rocket science at the nanoscale. ACS Nano 10(6), 5619–5634 (2016). https://doi.org/10.1021/acsnano.6b02518
- W.Z. Teo, H. Wang, M. Pumera, Beyond platinum: silver-catalyst based bubble-propelled tubular micromotors. Chem. Commun. 52(23), 4333–4336 (2016). https://doi.org/10.1039/C6CC00115G
- J.R. Baylis, A.E.S. John, X. Wang, E.B. Lim, M.L. Statz et al., Self-propelled dressings containing thrombin and tranexamic acid improve short-term survival in a swine model of lethal junctional hemorrhage. Shock 46(3), 123–128 (2016). https://doi.org/10.1097/SHK.0000000000000646
- J. Li, V.V. Singh, S. Sattayasamitsathit, J. Orozco, K. Kaufmann et al., Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. ACS Nano 8(11), 11118–11125 (2014). https://doi.org/10.1021/nn505029k
- W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K.St. Angelo et al., Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126(41), 13424–13431 (2004). https://doi.org/10.1021/ja047697z
- G. Zhao, M. Viehrig, M. Pumera, Challenges of the movement of catalytic micromotors in blood. Lab Chip 13(10), 1930–1936 (2013). https://doi.org/10.1039/C3LC41423J
- M. Safdar, S.U. Khan, J. Jänis, Progress toward catalytic micro-and nanomotors for biomedical and environmental applications. Adv. Mater. 30(24), 1703660 (2018). https://doi.org/10.1002/adma.201703660
- K.K. Dey, A. Sen, Chemically propelled molecules and machines. J. Am. Chem. Soc. 139(23), 7666–7676 (2017). https://doi.org/10.1021/jacs.7b02347
- S. Wang, N. Wu, Selecting the swimming mechanisms of colloidal ps: bubble propulsion versus self-diffusiophoresis. Langmuir 30(12), 3477–3486 (2014). https://doi.org/10.1021/la500182f
- W. Gao, S. Sattayasamitsathit, A. Uygun, A. Pei, A. Ponedal et al., Polymer-based tubular microbots: role of composition and preparation. Nanoscale 4(7), 2447–2453 (2012). https://doi.org/10.1039/C2NR30138E
- A. Martín, B. Jurado-Sánchez, A. Escarpa, J. Wang, Template electrosynthesis of high-performance graphene microengines. Small 11(29), 3568–3574 (2015). https://doi.org/10.1002/smll.201500008
- D. Vilela, A.C. Hortelão, R. Balderas-Xicohténcatl, M. Hirscher, K. Hahn et al., Facile fabrication of mesoporous silica micro-jets with multi-functionalities. Nanoscale 9(37), 13990–13997 (2017). https://doi.org/10.1039/C7NR04527A
- A. Paryab, H.R.M. Hosseini, F. Abedini, A. Dabbagh, Synthesis of magnesium-based Janus micromotors capable of magnetic navigation and antibiotic drug incorporation. New J. Chem. 44(17), 6947–6957 (2020). https://doi.org/10.1039/D0NJ00537A
- W. Gao, S. Sattayasamitsathit, J. Orozco, J. Wang, Highly efficient catalytic microengines: template electrosynthesis of polyaniline/platinum microtubes. J. Am. Chem. Soc. 133(31), 11862–11864 (2011). https://doi.org/10.1021/ja203773g
- W. Gao, A. Pei, R. Dong, J. Wang, Catalytic iridium-based Janus micromotors powered by ultralow levels of chemical fuels. J. Am. Chem. Soc. 136(6), 2276–2279 (2014). https://doi.org/10.1021/ja413002e
- S.K. Srivastava, M. Guix, O.G. Schmidt, Wastewater mediated activation of micromotors for efficient water cleaning. Nano Lett. 16(1), 817–821 (2016). https://doi.org/10.1021/acs.nanolett.5b05032
- S.-J. Song, C.C. Mayorga-Martinez, D. Huska, M. Pumera, Engineered magnetic plant biobots for nerve agent removal. NPG Asia Mater. 14(1), 79 (2022). https://doi.org/10.1038/s41427-022-00425-0
- K. Han, C.W. Shields IV., O.D. Velev, Engineering of self-propelling microbots and microdevices powered by magnetic and electric fields. Adv. Funct. Mater. 28(25), 1705953 (2018). https://doi.org/10.1002/adfm.201705953
- M.Z. Bazant, T.M. Squires, Induced-charge electrokinetic phenomena: theory and microfluidic applications. Phys. Rev. Lett. 92(6), 066101 (2004). https://doi.org/10.1103/PhysRevLett.92.066101
- L. Huang, Y. Pan, M. Wang, L. Ren, Driving modes and characteristics of biomedical micro-robots. Eng. Regen. 4(4), 411–426 (2023). https://doi.org/10.1016/j.engreg.2023.08.001
- W. Gao, K.M. Manesh, J. Hua, S. Sattayasamitsathit, J. Wang, Hybrid nanomotor: a catalytically/magnetically powered adaptive nanowire swimmer. Small 7(14), 2047–2051 (2011). https://doi.org/10.1002/smll.201100213
- C. Chen, S. Tang, H. Teymourian, E. Karshalev, F. Zhang et al., Chemical/light-powered hybrid micromotors with “on-the-fly” optical brakes. Angew. Chem. 130(27), 8242–8246 (2018). https://doi.org/10.1002/anie.201803457
- J. Li, T. Li, T. Xu, M. Kiristi, W. Liu et al., Magneto-acoustic hybrid nanomotor. Nano Lett. 15(7), 4814–4821 (2015). https://doi.org/10.1021/acs.nanolett.5b01945
- Y. Alapan, O. Yasa, B. Yigit, I.C. Yasa, P. Erkoc et al., Microrobotics and microorganisms: biohybrid autonomous cellular robots. Annu. Rev. Control Robot. Auton. Syst. 2, 205–230 (2019). https://doi.org/10.1146/annurev-control-053018-023803
- X. Yan, Q. Zhou, M. Vincent, Y. Deng, J. Yu et al., Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2(12), eaaq1155 (2017). https://doi.org/10.1126/scirobotics.aaq1155
- J. Xing, T. Yin, S. Li, T. Xu, A. Ma et al., Sequential magneto-actuated and optics-triggered biomicrorobots for targeted cancer therapy. Adv. Funct. Mater. 31(11), 2008262 (2021). https://doi.org/10.1002/adfm.202008262
- X. Yan, Q. Zhou, J. Yu, T. Xu, Y. Deng et al., Magnetite nanostructured porous hollow helical microswimmers for targeted delivery. Adv. Funct. Mater. 25(33), 5333–5342 (2015). https://doi.org/10.1002/adfm.201502248
- X. Yan, J. Xu, Q. Zhou, D. Jin, C.I. Vong et al., Molecular cargo delivery using multicellular magnetic microswimmers. A. Mater. Today 15, 242–251 (2019). https://doi.org/10.1016/j.apmt.2019.02.006
- B.-W. Park, J. Zhuang, O. Yasa, M. Sitti, Multifunctional bacteria-driven microswimmers for targeted active drug delivery. ACS Nano 11(9), 8910–8923 (2017). https://doi.org/10.1021/acsnano.7b03207
- Y. Alapan, O. Yasa, O. Schauer, J. Giltinan, A.F. Tabak et al., Soft erythrocyte-based bacterial microswimmers for cargo delivery. Sci. Robot. 3(17), eaar4423 (2018). https://doi.org/10.1126/scirobotics.aar4423
- K. Hou, Y. Zhang, M. Bao, C. Xin, Z. Wei et al., A multifunctional magnetic red blood cell-mimetic micromotor for drug delivery and image-guided therapy. ACS A. Mater. Interfaces 14(3), 3825–3837 (2022). https://doi.org/10.1021/acsami.1c21331
- X. He, H. Nie, K. Wang, W. Tan, X. Wu et al., In vivo study of biodistribution and urinary excretion of surface-modified silica nanops. Anal. Chem. 80(24), 9597–9603 (2008). https://doi.org/10.1021/ac801882g
- V. Gómez-Vallejo, M. Puigivila, S. Plaza-García, B. Szczupak, R. Piñol et al., PEG-copolymer-coated iron oxide nanops that avoid the reticuloendothelial system and act as kidney MRI contrast agents. Nanoscale 10(29), 14153–14164 (2018). https://doi.org/10.1039/C8NR03084G
- R. Weissleder, D.D. Stark, B.L. Engelstad, B.R. Bacon, C.C. Compton et al., Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am. J. Roentgenol. 152(1), 167–173 (1989). https://doi.org/10.2214/ajr.152.1.167
- J.W. Bulte, T. Douglas, B. Witwer, S.-C. Zhang, E. Strable et al., Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol. 19(12), 1141–1147 (2001). https://doi.org/10.1038/nbt1201-1141
- M. Mahmoudi, H. Hofmann, B. Rothen-Rutishauser, A. Petri-Fink, Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanops. Chem. Rev. 112(4), 2323–2338 (2012). https://doi.org/10.1021/cr2002596
- J.M. Veranth, E.G. Kaser, M.M. Veranth, M. Koch, G.S. Yost, Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanops of metal oxides compared to soil dusts. Part. Fibre Toxicol. 4(2), 1–18 (2007). https://doi.org/10.1186/1743-8977-4-2
- H. Ceylan, I.C. Yasa, O. Yasa, A.F. Tabak, J. Giltinan et al., 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano 13(3), 3353–3362 (2019). https://doi.org/10.1021/acsnano.8b09233
- B.D. Ulery, L.S. Nair, C.T. Laurencin, Biomedical applications of biodegradable polymers. J. Polym. Sci. Part B: Polym. Phys. 49(12), 832–864 (2011). https://doi.org/10.1002/polb.22259
- T.S. Santra, Microfluidics and Bio-mems: Devices and applications (CRC Press, 2020), pp. 95–148
- S.-L. Ding, X. Liu, X.-Y. Zhao, K.-T. Wang, W. Xiong et al., Microcarriers in aication for cartilage tissue engineering: recent progress and challenges. Bioact. Mater. 17, 81–108 (2022). https://doi.org/10.1016/j.bioactmat.2022.01.033
- B.S. Zolnik, D.J. Burgess, Effect of acidic pH on PLGA microsphere degradation and release. J. Controll. Release 122(3), 338–344 (2007). https://doi.org/10.1016/j.jconrel.2007.05.034
- Y. Li, J. Wu, H. Oku, G. Ma, Polymer-modified micromotors with biomedical applications: promotion of functionalization. Adv. Nanobiomed. Res. 2(10), 2200074 (2022). https://doi.org/10.1002/anbr.202200074
- G. Go, A. Yoo, H.-W. Song, H.-K. Min, S. Zheng et al., Multifunctional biodegradable microrobot with programmable morphology for biomedical applications. ACS Nano 15(1), 1059–1076 (2020). https://doi.org/10.1021/acsnano.0c07954
- Z. Li, M. Leung, R. Hopper, R. Ellenbogen, M. Zhang, Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials 31(3), 404–412 (2010). https://doi.org/10.1016/j.biomaterials.2009.09.070
- H. Ge, X. Chen, W. Liu, X. Lu, Z. Gu, Metal-based transient micromotors: from principle to environmental and biomedical applications. Chem. Asian J. 14(14), 2348–2356 (2019). https://doi.org/10.1002/asia.201900278
- A. Nourhani, E. Karshalev, F. Soto, J. Wang, Multigear bubble propulsion of transient micromotors. Research 2020, 7823615 (2020). https://doi.org/10.34133/2020/7823615
- C. Chen, E. Karshalev, J. Li, F. Soto, R. Castillo et al., Transient micromotors that disappear when no longer needed. ACS Nano 10(11), 10389–10396 (2016). https://doi.org/10.1021/acsnano.6b06256
- C.C. Alcântara, S. Kim, S. Lee, B. Jang, P. Thakolkaran et al., 3D fabrication of fully iron magnetic microrobots. Small 15(16), 1805006 (2019). https://doi.org/10.1002/smll.201805006
- E. Karshalev, B. Esteban-Fernández de Ávila, M. Beltran-Gastelum, P. Angsantikul, S. Tang et al., Micromotor pills as a dynamic oral delivery platform. ACS Nano 12(8), 8397–8405 (2018). https://doi.org/10.1021/acsnano.8b03760
- Z. Wu, L. Li, Y. Yang, P. Hu, Y. Li et al., A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 4(32), eaax0613 (2019). https://doi.org/10.1126/scirobotics.aax0613
- B.E.-F. de Ávila, P. Angsantikul, J. Li, M. Angel Lopez-Ramirez, D.E. Ramírez-Herrera et al., Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 8(1), 272 (2017). https://doi.org/10.1038/s41467-017-00309-w
- F. Mou, C. Chen, Q. Zhong, Y. Yin, H. Ma et al., Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly (n-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma. ACS A. Mater. Interfaces 6(12), 9897–9903 (2014). https://doi.org/10.1021/am502729y
- T. Maric, S. Atladóttir, L.H.E. Thamdrup, O. Ilchenko, M. Ghavami et al., Self-propelled Janus micromotors for pH-responsive release of small molecule drug. A. Mater. Today 27, 101418 (2022). https://doi.org/10.1016/j.apmt.2022.101418
- K. Liu, J. Ou, S. Wang, J. Gao, L. Liu et al., Magnesium-based micromotors for enhanced active and synergistic hydrogen chemotherapy. A. Mater. Today 20, 100694 (2020). https://doi.org/10.1016/j.apmt.2020.100694
- Y. Zheng, H. Zhao, Y. Cai, B. Jurado-Sánchez, R. Dong, Recent advances in one-dimensional micro/nanomotors: fabrication, propulsion and aication. Nano-micro Lett. 15(1), 20 (2023). https://doi.org/10.1007/s40820-022-00988-1
- A. Serrà, J. García-Torres, Electrochemistry: a basic and powerful tool for micro-and nanomotor fabrication and characterization. A. Mater. Today 22, 100939 (2021). https://doi.org/10.1016/j.apmt.2021.100939
- D. Vilela, M.M. Stanton, J. Parmar, S. Sánchez, Microbots decorated with silver nanops kill bacteria in aqueous media. ACS A. Mater. Interfaces 9(27), 22093–22100 (2017). https://doi.org/10.1021/acsami.7b03006
- G. Song, A. Atrens, Understanding magnesium corrosion-a framework for improved alloy performance. Adv. Eng. Mater. 5(12), 837–858 (2003). https://doi.org/10.1002/adem.200310405
- F. Mou, C. Chen, H. Ma, Y. Yin, Q. Wu et al., Self-propelled micromotors driven by the magnesium-water reaction and their hemolytic properties. Angew. Chem. Int. Ed. 52(28), 7208–7212 (2013). https://doi.org/10.1002/anie.201300913
- L. Kong, N. Rohaizad, M.Z.M. Nasir, J. Guan, M. Pumera, Micromotor-assisted human serum glucose biosensing. Anal. Chem. 91(9), 5660–5666 (2019). https://doi.org/10.1021/acs.analchem.8b05464
- S. Dutta, K.B. Devi, M. Roy, Processing and degradation behavior of porous magnesium scaffold for biomedical applications. Adv. Powder Technol. 28(12), 3204–3212 (2017). https://doi.org/10.1016/j.apt.2017.09.024
- J.M. Seitz, R. Eifler, F.W. Bach, H. Maier, Magnesium degradation products: effects on tissue and human metabolism. J. Biomed. Mater. Res. A 102(10), 3744–3753 (2014). https://doi.org/10.1002/jbm.a.35023
- Y. Xin, K. Huo, H. Tao, G. Tang, P.K. Chu, Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomater. 4(6), 2008 (2008). https://doi.org/10.1016/j.actbio.2008.05.014
- S. Kovacevic, W. Ali, E. Martínez-Pañeda, J. Llorca, Phase-field modeling of pitting and mechanically-assisted corrosion of Mg alloys for biomedical applications. Acta Biomater. 164, 641–658 (2023). https://doi.org/10.1016/j.actbio.2023.04.011
- M. Wątroba, K. Mech, W. Bednarczyk, J. Kawałko, M. Marciszko-Wiąckowska et al., Long-term in vitro corrosion behavior of Zn–3Ag and Zn–3Ag–0.5 Mg alloys considered for biodegradable implant applications. Mater. Des. 213, 110289 (2022). https://doi.org/10.1016/j.matdes.2021.110289
- X. Liu, H. Yang, Y. Liu, P. Xiong, H. Guo et al., Comparative studies on degradation behavior of pure zinc in various simulated body fluids. JOM 71, 1414–1425 (2019). https://doi.org/10.1007/s11837-019-03357-3
- V.M. Rabeeh, S.A. Rahim, S. Kinattingara Parambath, G. Rajanikant, T. Hanas, Iron-gold composites for biodegradable implants: In vitro investigation on biodegradation and biomineralization. ACS Biomater. Sci. Eng. 9(7), 4255–4268 (2023). https://doi.org/10.1021/acsbiomaterials.3c00513
- H. Hermawan, A. Purnama, D. Dube, J. Couet, D. Mantovani, Fe-Mn alloys for metallic biodegradable stents: degradation and cell viability studies. Acta Biomater. 6(5), 1852–1860 (2010). https://doi.org/10.1016/j.actbio.2009.11.025
- M. Schinhammer, P. Steiger, F. Moszner, J.F. Löffler, P.J. Uggowitzer, Degradation performance of biodegradable FeMnC (Pd) alloys. Mater. Sci. Eng. C 33(4), 1882–1893 (2013). https://doi.org/10.1016/j.msec.2012.10.013
- S.S. Prasad, S. Prasad, K. Verma, R.K. Mishra, V. Kumar et al., The role and significance of magnesium in modern day research-a review. J. Magnes. Alloy 10(1), 1–61 (2022). https://doi.org/10.1016/j.jma.2021.05.012
- Y. Li, Y. Wang, Z. Shen, F. Miao, J. Wang et al., A biodegradable magnesium alloy vascular stent structure: design, optimisation and evaluation. Acta Biomater. 142, 402–412 (2022). https://doi.org/10.1016/j.actbio.2022.01.045
- D.E. Erişen, Y. Zhang, B. Zhang, K. Yang, S. Chen et al., Biosafety and biodegradation studies of AZ31B magnesium alloy carotid artery stent in vitro and in vivo. J. Biomed. Mater. Res. B A. Biomater. 110(1), 239–248 (2022). https://doi.org/10.1002/jbm.b.34907
- Z.-Q. Zhang, Y.-X. Yang, J.-A. Li, R.-C. Zeng, S.-K. Guan, Advances in coatings on magnesium alloys for cardiovascular stents—a review. Bioact. Mater. 6(12), 4729–4757 (2021). https://doi.org/10.1016/j.bioactmat.2021.04.044
- Y. Chen, Z. Xu, C. Smith, J. Sankar, Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 10(11), 4561–4573 (2014). https://doi.org/10.1016/j.actbio.2014.07.005
- N. Hort, Y.-D. Huang, D. Fechner, M. Störmer, C. Blawert et al., Magnesium alloys as implant materials-principles of property design for Mg–RE alloys. Acta Biomater. 6(5), 1714–1725 (2010). https://doi.org/10.1016/j.actbio.2009.09.010
- G. Wu, J.M. Ibrahim, P.K. Chu, Surface design of biodegradable magnesium alloys-a review. Surf. Coat. Technol. 233, 2–12 (2013). https://doi.org/10.1016/j.surfcoat.2012.10.009
- M. Nasr Azadani, A. Zahedi, O.K. Bowoto, B.I. Oladapo, A review of current challenges and prospects of magnesium and its alloy for bone implant applications. Prog. Biomater. 11(1), 1–26 (2022). https://doi.org/10.1007/s40204-022-00182-x
- M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9), 1728–1734 (2006). https://doi.org/10.1016/j.biomaterials.2005.10.003
- G. Uppal, A. Thakur, A. Chauhan, S. Bala, Magnesium based implants for functional bone tissue regeneration-a review. J. Magnes. Alloy 10(2), 356–386 (2022). https://doi.org/10.1016/j.jma.2021.08.017
- S. Siefen, M. Höck, Development of magnesium implants by aication of conjoint-based quality function deployment. J. Biomed. Mater. Res. A 107(12), 2814–2834 (2019). https://doi.org/10.1002/jbm.a.36784
- D. Bairagi, S. Mandal, A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants: Current status, challenges, and future prospects. J. Magnes. Alloy 10(3), 627–669 (2022). https://doi.org/10.1016/j.jma.2021.09.005
- M.E. Maguire, J.A. Cowan, Magnesium chemistry and biochemistry. Biometals 15, 203–210 (2002). https://doi.org/10.1023/A:1016058229972
- A. Hartwig, Role of magnesium in genomic stability. Mutat. Res. Fundam. Mol. Mech. Mutag. 475(1–2), 113–121 (2001). https://doi.org/10.1016/S0027-5107(01)00074-4
- C. Theisen, K. Wodschow, B. Hansen, J. Schullehner, G. Gislason et al., Drinking water magnesium and cardiovascular mortality: a cohort study in denmark, 2005–2016. Environ. Int. 164, 107277 (2022). https://doi.org/10.1016/j.envint.2022.107277
- K.P. Schlingmann, M. Konrad, Magnesium Homeostasis (Elsevier, Amsteram, 2020), pp. 509–525
- I. Groenendijk, M. van Delft, P. Versloot, L.J. van Loon, L.C. de Groot, Impact of magnesium on bone health in older adults: a systematic review and meta-analysis. Bone 154, 116233 (2022). https://doi.org/10.1016/j.bone.2021.116233
- X. Fang, K. Wang, D. Han, X. He, J. Wei et al., Dietary magnesium intake and the risk of cardiovascular disease, type 2 diabetes, and all-cause mortality: a dose–response meta-analysis of prospective cohort studies. BMC Med. 14(1), 1–13 (2016). https://doi.org/10.1186/s12916-016-0742-z
- D. Rosenblum, N. Joshi, W. Tao, J.M. Karp, D. Peer, Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 9(1), 1410 (2018). https://doi.org/10.1038/s41467-018-03705-y
- K.S. Soppimath, A.R. Kulkarni, W.E. Rudzinski, T.M. Aminabhavi, Microspheres as floating drug-delivery systems to increase gastric retention of drugs. Drug Metab. Rev. 33(2), 149–160 (2001). https://doi.org/10.1081/dmr-100104401
- Z. Luo, N. Paunović, J.-C. Leroux, Physical methods for enhancing drug absorption from the gastrointestinal tract. Adv. Drug Deliv. Rev. 175, 113814 (2021). https://doi.org/10.1016/j.addr.2021.05.024
- J.-Y. Runser, M. Criado-Gonzalez, F. Fneich, M. Rabineau, B. Senger et al., Non-monotonous enzyme-assisted self-assembly profiles resulting from reaction-diffusion processes in host gels. J. Colloid Interface Sci. 620, 234–241 (2022). https://doi.org/10.1016/j.jcis.2022.03.150
- P.J. Schouten, D. Soto-Aguilar, A. Aldalbahi, T. Ahamad, S. Alzahly et al., Design of sporopollenin-based functional ingredients for gastrointestinal tract targeted delivery. Curr. Opin. Food Sci. 44, 100809 (2022). https://doi.org/10.1016/j.cofs.2022.100809
- Y. Ge, M. Liu, L. Liu, Y. Sun, H. Zhang et al., Dual-fuel-driven bactericidal micromotor. Nano-micro Lett. 8(2), 157–164 (2016). https://doi.org/10.1007/s40820-015-0071-3
- N.R. Salama, M.L. Hartung, A. Müller, Life in the human stomach: persistence strategies of the bacterial pathogen helicobacter pylori. Nat. Rev. Microbiol. 11(6), 385–399 (2013). https://doi.org/10.1038/nrmicro3016
- D. Bravo, A. Hoare, C. Soto, M.A. Valenzuela, A.F. Quest, Helicobacter pylori in human health and disease: mechanisms for local gastric and systemic effects. World J. Gastroenterol. 24(28), 3071 (2018). https://doi.org/10.3748/wjg.v24.i28.3071
- G. Holtmann, C. Cain, P. Malfertheiner, Gastric helicobacter pylori infection accelerates healing of reflux esophagitis during treatment with the proton pump inhibitor pantoprazole. Gastroenterology 117(1), 11–16 (1999). https://doi.org/10.1016/s0016-5085(99)70544-5
- S. Kuang, J. Xu, M. Chen, Y. Zhang, F. Shi et al., The influence of pretreatment with PPI on helicobacter pylori eradication: a systematic review and meta-analysis. Medicine 100(47), e27944 (2021). https://doi.org/10.1097/MD.0000000000027944
- P. Moayyedi, G.I. Leontiadis, The risks of PPI therapy. Nat. Rev. Gastroenterol. Hepatol. 9(3), 132–139 (2012). https://doi.org/10.1038/nrgastro.2011.272
- P.M. Ho, T.M. Maddox, L. Wang, S.D. Fihn, R.L. Jesse et al., Risk of adverse outcomes associated with concomitant use of clopidogrel and proton pump inhibitors following acute coronary syndrome. JAMA 301(9), 937–944 (2009). https://doi.org/10.1001/jama.2009.261
- A. Koyyada, Long-term use of proton pump inhibitors as a risk factor for various adverse manifestations. Therapies 76(1), 13–21 (2021). https://doi.org/10.1016/j.therap.2020.06.019
- E. Sheen, G. Triadafilopoulos, Adverse effects of long-term proton pump inhibitor therapy. Dig. Dis. Sci. 56, 931–950 (2011). https://doi.org/10.1007/s10620-010-1560-3
- J. Li, S. Thamphiwatana, W. Liu, B. Esteban-Fernández de Ávila, P. Angsantikul et al., Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract. ACS Nano 10(10), 9536–9542 (2016). https://doi.org/10.1021/acsnano.6b04795
- X. Wei, M. Beltrán-Gastélum, E. Karshalev, B. Esteban-Fernández de Ávila, J. Zhou et al., Biomimetic micromotor enables active delivery of antigens for oral vaccination. Nano Lett. 19(3), 1914–1921 (2019). https://doi.org/10.1021/acs.nanolett.8b05051
- V. Dias, E. Junn, M.M. Mouradian, The role of oxidative stress in parkinson’s disease. J. Parkinsons Dis. 3(4), 461–491 (2013). https://doi.org/10.3233/JPD-130230
- S. Bhatt, L. Puli, C.R. Patil, Role of reactive oxygen species in the progression of alzheimer’s disease. Drug Discov. Today 26(3), 794–803 (2021). https://doi.org/10.1016/j.drudis.2020.12.004
- C.S. Carter, S.C. Huang, C.C. Searby, B. Cassaidy, M.J. Miller et al., Exposure to static magnetic and electric fields treats type 2 diabetes. Cell Metab. 32(4), 561–574.e567 (2020). https://doi.org/10.1016/j.cmet.2020.09.012
- B. Perillo, M. Di Donato, A. Pezone, E. Di Zazzo, P. Giovannelli et al., ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med. 52(2), 192–203 (2020). https://doi.org/10.1038/s12276-020-0384-2
- X. Lou, Z. Chen, Z. He, M. Sun, J. Sun, Bacteria-mediated synergistic cancer therapy: small microbiome has a big hope. Nano-micro Lett. 13(1), 37 (2021). https://doi.org/10.1007/s40820-020-00560-9
- G. Zhou, E. Goshi, Q. He, Micro/nanomaterials-augmented hydrogen therapy. Adv. Healthc. Mater. 8(16), 1900463 (2019). https://doi.org/10.1002/adhm.201900463
- Y. Wu, M. Yuan, J. Song, X. Chen, H. Yang, Hydrogen gas from inflammation treatment to cancer therapy. ACS Nano 13(8), 8505–8511 (2019). https://doi.org/10.1021/acsnano.9b05124
- C.-L. Liu, K. Zhang, G. Chen, Hydrogen therapy: from mechanism to cerebral diseases. Med. Gas Res. 6(1), 48 (2016). https://doi.org/10.4103/2045-9912.179346
- M. Fan, Y. Wen, D. Ye, Z. Jin, P. Zhao et al., Acid-responsive H2-releasing 2D MgB2 nanosheet for therapeutic synergy and side effect attenuation of gastric cancer chemotherapy. Adv. Healthc. Mater. 8(13), 1900157 (2019). https://doi.org/10.1002/adhm.201900157
- P. Zhao, Z. Jin, Q. Chen, T. Yang, D. Chen et al., Local generation of hydrogen for enhanced photothermal therapy. Nat. Commun. 9(1), 4241 (2018). https://doi.org/10.1038/s41467-018-06630-2
- X. Li, B. Dai, J. Guo, L. Zheng, Q. Guo et al., Nanop-cartilage interaction: pathology-based intra-articular drug delivery for osteoarthritis therapy. Nano-micro Lett. 13(1), 149 (2021). https://doi.org/10.1007/s40820-021-00670-y
- C. Xu, S. Wang, H. Wang, K. Liu, S. Zhang et al., Magnesium-based micromotors as hydrogen generators for precise rheumatoid arthritis therapy. Nano Lett. 21(5), 1982–1991 (2021). https://doi.org/10.1021/acs.nanolett.0c04438
- L. Kong, C. Chen, F. Mou, Y. Feng, M. You et al., Magnesium ps coated with mesoporous nanoshells as sustainable therapeutic-hydrogen suiers to scavenge continuously generated hydroxyl radicals in long term. Part. Part. Syst. Charact. 36(2), 1800424 (2019). https://doi.org/10.1002/ppsc.201800424
- I. De Cock, E. Zagato, K. Braeckmans, Y. Luan, N. de Jong et al., Ultrasound and microbubble mediated drug delivery: acoustic pressure as determinant for uptake via membrane pores or endocytosis. J. Controll. Release 197, 20–28 (2015). https://doi.org/10.1016/j.jconrel.2014.10.031
- H. Lee, H. Kim, H. Han, M. Lee, S. Lee et al., Microbubbles used for contrast enhanced ultrasound and theragnosis: a review of principles to applications. Biomed. Eng. Lett. 7, 59–69 (2017). https://doi.org/10.1007/s13534-017-0016-5
- Y. Feng, X. Chang, H. Liu, Y. Hu, T. Li et al., Multi-response biocompatible Janus micromotor for ultrasonic imaging contrast enhancement. A. Mater. Today 23, 101026 (2021). https://doi.org/10.1016/j.apmt.2021.101026
- W. Zhou, Y. Zhang, S. Meng, C. Xing, M. Ma et al., Micro/nano-structures on biodegradable magnesium@ PLGA and their cytotoxicity, photothermal, and anti-tumor effects. Small Methods 5(2), 2000920 (2021). https://doi.org/10.1002/smtd.202000920
- Z. Wu, J. Li, B.E.F. de Ávila, T. Li, W. Gao et al., Water powered cell mimicking Janus micromotor. Adv. Funct. Mater. 25(48), 7497–7501 (2015). https://doi.org/10.1002/adfm.201503441
- F. Zhang, R. Mundaca-Uribe, H. Gong, B. Esteban-Fernández de Ávila, M. Beltrán-Gastélum et al., A macrophage-magnesium hybrid biomotor: fabrication and characterization. Adv. Mater. 31(27), 1901828 (2019). https://doi.org/10.1002/adma.201901828
- K. Xiong, L. Xu, J. Lin, F. Mou, J. Guan, Mg-based micromotors with motion responsive to dual stimuli. Research 2020, 213981 (2020). https://doi.org/10.34133/2020/6213981
- M. Kong, X.G. Chen, K. Xing, H.J. Park, Antimicrobial properties of chitosan and mode of action: a state of the art review. Int. J. Food Microbiol. 144(1), 51–63 (2010). https://doi.org/10.1016/j.ijfoodmicro.2010.09.012
- Z. Limam, S. Selmi, S. Sadok, A. El Abed, Extraction and characterization of chitin and chitosan from crustacean by-products: biological and physicochemical properties. Afr. J. Biotechnol. 10(4), 640–647 (2011). https://doi.org/10.4314/ajb.v10i4
- L. Qi, Z. Xu, X. Jiang, C. Hu, X. Zou, Preparation and antibacterial activity of chitosan nanops. Carbohydr. Res. 339(16), 2693–2700 (2004). https://doi.org/10.1016/j.carres.2004.09.007
- J.A. Delezuk, D.E. Ramírez-Herrera, B.E.-F. de Ávila, J. Wang, Chitosan-based water-propelled micromotors with strong antibacterial activity. Nanoscale 9(6), 2195–2200 (2017). https://doi.org/10.1039/C6NR09799E
- D. Rojas, B. Jurado-Sánchez, A. Escarpa, “Shoot and sense” Janus micromotors-based strategy for the simultaneous degradation and detection of persistent organic pollutants in food and biological samples. Anal. Chem. 88(7), 4153–4160 (2016). https://doi.org/10.1021/acs.analchem.6b00574
- S. Cinti, G. Valdés-Ramírez, W. Gao, J. Li, G. Palleschi et al., Microengine-assisted electrochemical measurements at printable sensor strips. Chem. Commun. 51(41), 8668–8671 (2015). https://doi.org/10.1039/C5CC02222C
- Z. Lin, C. Gao, D. Wang, Q. He, Bubble-propelled Janus gallium/zinc micromotors for the active treatment of bacterial infections. Angew. Chem. Int. Ed. 60(16), 8750–8754 (2021). https://doi.org/10.1002/anie.202016260
- M. Zhou, T. Hou, J. Li, S. Yu, Z. Xu et al., Self-propelled and targeted drug delivery of poly (aspartic acid)/iron-zinc microrocket in the stomach. ACS Nano 13(2), 1324–1332 (2019). https://doi.org/10.1021/acsnano.8b06773
- W. Gao, R. Dong, S. Thamphiwatana, J. Li, W. Gao et al., Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 9(1), 117–123 (2015). https://doi.org/10.1021/nn507097k
- Q. Cui, T.-H. Le, Y.-J. Lin, Y.-B. Miao, I.-T. Sung et al., A self-powered battery-driven drug delivery device that can function as a micromotor and galvanically actuate localized payload release. Nano Energy 66, 104120 (2019). https://doi.org/10.1016/j.nanoen.2019.104120
- M. Moravej, A. Purnama, M. Fiset, J. Couet, D. Mantovani, Electroformed pure iron as a new biomaterial for degradable stents: in vitro degradation and preliminary cell viability studies. Acta Biomater. 6(5), 1843–1851 (2010). https://doi.org/10.1016/j.actbio.2010.01.008
- H. Zhang, W. Zhang, H. Qiu, G. Zhang, X. Li et al., A biodegradable metal polymer composite stent safe and effective on physiological and serum containing biomimetic conditions. Adv. Healthc. Mater. 11(22), 2201740 (2022). https://doi.org/10.1002/adhm.202201740
- B. Paul, A. Lode, A.-M. Placht, A. Voß, S. Pilz et al., Cell-material interactions in direct contact culture of endothelial cells on biodegradable iron-based stents fabricated by laser powder bed fusion and impact of ion release. ACS A. Mater. Interfaces 14(1), 439–451 (2021). https://doi.org/10.1021/acsami.1c21901
- Y. Su, I. Cockerill, Y. Wang, Y.-X. Qin, L. Chang et al., Zinc-based biomaterials for regeneration and therapy. Trends Biotechnol. 37(4), 428–441 (2019). https://doi.org/10.1016/j.tibtech.2018.10.009
- E. Piskin, D. Cianciosi, S. Gulec, M. Tomas, E. Capanoglu, Iron absorption: factors, limitations, and improvement methods. ACS Omega 7(24), 20441–20456 (2022). https://doi.org/10.1021/acsomega.2c01833
References
S. Jeon, S.H. Park, E. Kim, J. Kim, S.W. Kim et al., A magnetically powered stem cell based microrobot for minimally invasive stem cell delivery via the intranasal pathway in a mouse brain. Adv. Healthc. Mater. 10(19), 2100801 (2021). https://doi.org/10.1002/adhm.202100801
J. Giltinan, V. Sridhar, U. Bozuyuk, D. Sheehan, M. Sitti, 3D microprinting of iron platinum nanop-based magnetic mobile microrobots. Adv. Intell. Syst. 3(1), 2000204 (2021). https://doi.org/10.1002/aisy.202000204
J. Vyskocil, C.C. Mayorga-Martinez, E. Jablonska, F. Novotny, T. Ruml et al., Cancer cells microsurgery via asymmetric bent surface Au/Ag/Ni microrobotic scalpels through a transversal rotating magnetic field. ACS Nano 14(7), 8247–8256 (2020). https://doi.org/10.1021/acsnano.0c01705
S. Fusco, H.-W. Huang, K.E. Peyer, C. Peters, M. Häberli et al., Shape-switching microrobots for medical applications: the influence of shape in drug delivery and locomotion. ACS Appl. Mater. Interfaces 7(12), 6803–6811 (2015). https://doi.org/10.1021/acsami.5b00181
C.K. Schmidt, M. Medina-Sánchez, R.J. Edmondson, O.G. Schmidt, Engineering microrobots for targeted cancer therapies from a medical perspective. Nat. Commun. 11(1), 5618 (2020). https://doi.org/10.1038/s41467-020-19322-7
J. Li, H. Shen, H. Zhou, R. Shi, C. Wu et al., Antimicrobial micro/nanorobotic materials design: from passive combat to active therapy. Mater. Sci. Eng. R Rep. 152, 100712 (2023). https://doi.org/10.1016/j.mser.2022.100712
M. Ussia, M. Urso, M. Kratochvilova, J. Navratil, J. Balvan et al., Magnetically driven self degrading zinc containing cystine microrobots for treatment of prostate cancer. Small 19(17), 2208259 (2023). https://doi.org/10.1002/smll.202208259
X. Hu, N. Wang, X. Guo, Z. Liang, H. Sun et al., A sub-nanostructural transformable nanozyme for tumor photocatalytic therapy. Nano-micro Lett. 14, 101 (2022). https://doi.org/10.1007/s40820-022-00848-y
J. Wang, R. Dong, H. Wu, Y. Cai, B. Ren, A review on artificial micro/nanomotors for cancer targeted delivery, diagnosis, and therapy. Nano-micro Lett. 12, 11 (2020). https://doi.org/10.1007/s40820-019-0350-5
L. Li, Z. Yu, J. Liu, M. Yang, G. Shi et al., Swarming responsive photonic nanorobots for motile-targeting microenvironmental mapping and mapping-guided photothermal treatment. Nano-micro Lett. 15, 141 (2023). https://doi.org/10.1007/s40820-023-01095-5
X. Wang, X.H. Qin, C. Hu, A. Terzopoulou, X.Z. Chen et al., 3D printed enzymatically biodegradable soft helical microswimmers. Adv. Funct. Mater. 28(45), 1804107 (2018). https://doi.org/10.1002/adfm.201804107
S. Noh, S. Jeon, E. Kim, U. Oh, D. Park et al., A biodegradable magnetic microrobot based on gelatin methacrylate for precise delivery of stem cells with mass production capability. Small 18(25), 2107888 (2022). https://doi.org/10.1002/smll.202107888
A. Terzopoulou, X. Wang, X.Z. Chen, M. Palacios Corella, C. Pujante et al., Biodegradable metal organic framework based microrobots (MOFBOTS). Adv. Healthc. Mater. 9(20), 2001031 (2020). https://doi.org/10.1002/adhm.202001031
T. Wei, J. Liu, D. Li, S. Chen, Y. Zhang et al., Development of magnet driven and image guided degradable microrobots for the precise delivery of engineered stem cells for cancer therapy. Small 16(41), 1906908 (2020). https://doi.org/10.1002/smll.201906908
P. TirgarBahnamiri, S. Bagheri-Khoulenjani, Biodegradable microrobots for targeting cell delivery. Med. Hypothses 102, 56–60 (2017). https://doi.org/10.1016/j.mehy.2017.02.015
S. Fusco, F. Ullrich, J. Pokki, G. Chatzipirpiridis, B. Özkale et al., Microrobots: a new era in ocular drug delivery. Expert Opin. Drug Deliv. 11(11), 1815–1826 (2014). https://doi.org/10.1517/17425247.2014.938633
S. Kim, S. Lee, J. Lee, B.J. Nelson, L. Zhang et al., Fabrication and manipulation of ciliary microrobots with non-reciprocal magnetic actuation. Sci. Rep. 6(1), 30713 (2016). https://doi.org/10.1038/srep30713
J.-Y. Kim, S. Jeon, J. Lee, S. Lee, J. Lee et al., A simple and rapid fabrication method for biodegradable drug-encapsulating microrobots using laser micromachining, and characterization thereof. Sens. Actuators B Chem. 266, 276–287 (2018). https://doi.org/10.1016/j.snb.2018.03.033
S.R. Dabbagh, M.R. Sarabi, M.T. Birtek, S. Seyfi, M. Sitti et al., 3D-printed microrobots from design to translation. Nat. Commun. 13(1), 5875 (2022). https://doi.org/10.1038/s41467-022-33409-3
Q. Chen, N. Wang, M. Zhu, J. Lu, H. Zhong et al., TiO2 nanops cause mitochondrial dysfunction, activate inflammatory responses, and attenuate phagocytosis in macrophages: a proteomic and metabolomic insight. Redox Biol. 15, 266–276 (2018). https://doi.org/10.1016/j.redox.2017.12.011
E.M. Higbee-Dempsey, A. Amirshaghaghi, M.J. Case, M. Bouché, J. Kim et al., Biodegradable gold nanoclusters with improved excretion due to pH-triggered hydrophobic to hydrophilic transition. J. Am. Chem. Soc. 142(17), 7783–7794 (2020). https://doi.org/10.1021/jacs.9b13813
H.-J. Liu, M. Wang, S. Shi, X. Hu, P. Xu, A therapeutic sheep in metastatic wolf’s clothing: Trojan horse approach for cancer brain metastases treatment. Nano-micro Lett. 14(1), 114 (2022). https://doi.org/10.1007/s40820-022-00861-1
J. Park, C. Jin, S. Lee, J.Y. Kim, H. Choi, Magnetically actuated degradable microrobots for actively controlled drug release and hyperthermia therapy. Adv. Healthc. Mater. 8(16), 1900213 (2019). https://doi.org/10.1002/adhm.201900213
T. Wei, J. Li, L. Zheng, C. Wang, F. Li et al., Development of a cell loading microrobot with simultaneously improved degradability and mechanical strength for performing in vivo delivery tasks. Adv. Intell. Syst. 3(11), 2100052 (2021). https://doi.org/10.1002/aisy.202100052
J.-M. Lü, X. Wang, C. Marin-Muller, H. Wang, P.H. Lin et al., Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev. Mol. Diagn. 9(4), 325–341 (2009). https://doi.org/10.1586/erm.09.15
Y. Liu, J. Luo, X. Chen, W. Liu, T. Chen, Cell membrane coating technology: a promising strategy for biomedical applications. Nano-micro Lett. 11, 46 (2019). https://doi.org/10.1007/s40820-019-0330-9
S. Jin, X. Xia, J. Huang, C. Yuan, Y. Zuo et al., Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater. 127, 56–79 (2021). https://doi.org/10.1016/j.actbio.2021.03.067
E.J. Go, E.Y. Kang, S.K. Lee, S. Park, J.H. Kim et al., An osteoconductive PLGA scaffold with bioactive β-TCP and anti-inflammatory Mg (OH)2 to improve in vivo bone regeneration. Biomater. Sci. 8(3), 937–948 (2020). https://doi.org/10.1039/c9bm01864f
S.Y. Choi, W. Hur, B.K. Kim, C. Shasteen, M.H. Kim et al., Bioabsorbable bone fixation plates for X-ray imaging diagnosis by a radiopaque layer of barium sulfate and poly (lactic-co-glycolic acid). J. Biomed. Mater. Res. B Appl. Biomater. 103(3), 596–607 (2015). https://doi.org/10.1002/jbm.b.33235
A. Srivastava, N. Bhatnagar, Production and characterisation of new bioresorbable radiopaque Mg–Zn–Y alloy to improve X-ray visibility of polymeric scaffolds. J. Magnes. Alloy 10(6), 1694–1703 (2022). https://doi.org/10.1016/j.jma.2020.11.010
C. Chen, E. Karshalev, J. Guan, J. Wang, Magnesium based micromotors: water powered propulsion, multifunctionality, and biomedical and environmental applications. Small 14(23), 1704252 (2018). https://doi.org/10.1002/smll.201704252
W. Gao, A. Pei, J. Wang, Water-driven micromotors. ACS Nano 6(9), 8432–8438 (2012). https://doi.org/10.1021/nn303309z
M. You, C. Chen, L. Xu, F. Mou, J. Guan, Intelligent micro/nanomotors with taxis. Acc. Chem. Res. 51(12), 3006–3014 (2018). https://doi.org/10.1021/acs.accounts.8b00291
X.Z. Chen, B. Jang, D. Ahmed, C. Hu, C. De Marco et al., Small scale machines driven by external power sources. Adv. Mater. 30(15), 1705061 (2018). https://doi.org/10.1002/adma.201705061
V. Agrahari, V. Agrahari, M.-L. Chou, C.H. Chew, J. Noll et al., Intelligent micro-/nanorobots as drug and cell carrier devices for biomedical therapeutic advancement: promising development opportunities and translational challenges. Biomaterials 260, 120163 (2020). https://doi.org/10.1016/j.biomaterials.2020.120163
S. Campuzano, J. Orozco, D. Kagan, M. Guix, W. Gao et al., Bacterial isolation by lectin-modified microengines. Nano Lett. 12(1), 396–401 (2012). https://doi.org/10.1021/nl203717q
S. Shivalkar, P.K. Gautam, A. Verma, K. Maurya, M.P. Sk et al., Autonomous magnetic microbots for environmental remediation developed by organic waste derived carbon dots. J. Environ. Manag. 297, 113322 (2021). https://doi.org/10.1016/j.jenvman.2021.113322
T. Maric, M.Z.M. Nasir, N.F. Rosli, M. Budanović, R.D. Webster et al., Microrobots derived from variety plant pollen grains for efficient environmental clean up and as an anti-cancer drug carrier. Adv. Funct. Mater. 30(19), 2000112 (2020). https://doi.org/10.1002/adfm.202000112
Y. Zhang, K. Yan, F. Ji, L. Zhang, Enhanced removal of toxic heavy metals using swarming biohybrid adsorbents. Adv. Funct. Mater. 28(52), 1806340 (2018). https://doi.org/10.1002/adfm.201806340
R. Maria-Hormigos, C.C. Mayorga-Martinez, M. Pumera, Soft magnetic microrobots for photoactive pollutant removal. Small Methods 7(1), 2201014 (2023). https://doi.org/10.1002/smtd.202201014
B. Jurado-Sánchez, J. Wang, Micromotors for environmental applications: a review. Environ. Sci. Nano 5(7), 1530–1544 (2018). https://doi.org/10.1039/C8EN00299A
J.G.S. Moo, M. Pumera, Chemical energy powered nano/micro/macromotors and the environment. Chem. Eur. J. 21(1), 58–72 (2015). https://doi.org/10.1002/chem.201405011
M. Guix, J. Orozco, M. Garcia, W. Gao, S. Sattayasamitsathit et al., Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil. ACS Nano 6(5), 4445–4451 (2012). https://doi.org/10.1021/nn301175b
F. Mou, D. Pan, C. Chen, Y. Gao, L. Xu et al., Magnetically modulated pot-like MnFe2O4 micromotors: nanop assembly fabrication and their capability for direct oil removal. Adv. Funct. Mater. 25(39), 6173–6181 (2015). https://doi.org/10.1002/adfm.201502835
J. Orozco, G. Pan, S. Sattayasamitsathit, M. Galarnyk, J. Wang, Micromotors to capture and destroy anthrax simulant spores. Analyst 140(5), 1421–1427 (2015). https://doi.org/10.1039/C4AN02169J
L. Soler, V. Magdanz, V.M. Fomin, S. Sanchez, O.G. Schmidt, Self-propelled micromotors for cleaning polluted water. ACS Nano 7(11), 9611–9620 (2013). https://doi.org/10.1021/nn405075d
J. Parmar, D. Vilela, E. Pellicer, D. Esqué-de los Ojos, J. Sort et al., Reusable and long-lasting active microcleaners for heterogeneous water remediation. Adv. Funct. Mater. 26(23), 4152–4161 (2016). https://doi.org/10.1002/adfm.201600381
B. Jurado-Sánchez, S. Sattayasamitsathit, W. Gao, L. Santos, Y. Fedorak et al., Self-propelled activated carbon Janus micromotors for efficient water purification. Small 11(4), 499–506 (2015). https://doi.org/10.1002/smll.201402215
L. Dąbek, A. Picheta-Oleś, B. Szeląg, J. Szulżyk-Cieplak, G. Łagód, Modeling and optimization of pollutants removal during simultaneous adsorption onto activated carbon with advanced oxidation in aqueous environment. Materials 13(19), 4220 (2020). https://doi.org/10.3390/ma13194220
W. Gao, X. Feng, A. Pei, Y. Gu, J. Li et al., Seawater-driven magnesium based Janus micromotors for environmental remediation. Nanoscale 5(11), 4696–4700 (2013). https://doi.org/10.1039/C3NR01458D
D. Liu, T. Wang, Y. Lu, Untethered microrobots for active drug delivery: from rational design to clinical settings. Adv. Healthc. Mater. 11(3), 2102253 (2022). https://doi.org/10.1002/adhm.202102253
X. Xu, J. Chen, S. Cai, Z. Long, Y. Zhang et al., A real-time wearable UV-radiation monitor based on a high-performance p-CuZns/n-TiO2 photodetector. Adv. Mater. 30(43), 1803165 (2018). https://doi.org/10.1002/adma.201803165
A.M. Vargason, A.C. Anselmo, S. Mitragotri, The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 5(9), 951–967 (2021). https://doi.org/10.1038/s41551-021-00698-w
M. Sitti, H. Ceylan, W. Hu, J. Giltinan, M. Turan et al., Biomedical applications of untethered mobile milli/microrobots. Proc. IEEE Inst. Electr. Electron Eng. 103(2), 205–224 (2015). https://doi.org/10.1109/JPROC.2014.2385105
S. Gervasoni, J. Lussi, S. Viviani, Q. Boehler, N. Ochsenbein et al., Magnetically assisted robotic fetal surgery for the treatment of spina bifida. IEEE Trans. Med. Robot. Bionics 4(1), 85–93 (2022). https://doi.org/10.1109/TMRB.2022.3146351
F. Soto, E. Karshalev, F. Zhang, B. Esteban Fernandez de Avila, A. Nourhani et al., Smart materials for microrobots. Chem. Rev. 122(5), 5365–5403 (2021). https://doi.org/10.1021/acs.chemrev.0c00999
G. Katsikis, J.F. Collis, S.M. Knudsen, V. Agache, J.E. Sader et al., Inertial and viscous flywheel sensing of nanops. Nat. Commun. 12(1), 5099 (2021). https://doi.org/10.1038/s41467-021-25266-3
M. Xie, W. Zhang, C. Fan, C. Wu, Q. Feng et al., Bioinspired soft microrobots with precise magneto-collective control for microvascular thrombolysis. Adv. Mater. 32(26), 2000366 (2020). https://doi.org/10.1002/adma.202000366
M.A. López, J. Prieto, J.E. Traver, I. Tejado, B.M. Vinagre et al., Testing non reciprocal motion of a swimming flexible small robot with single actuation, in 2018 19th International Carpathian Control Conference (ICCC) (2018), pp. 312–317. https://doi.org/10.1109/CarpathianCC.2018.8399647
S.R. Goudu, I.C. Yasa, X. Hu, H. Ceylan, W. Hu et al., Biodegradable untethered magnetic hydrogel milli-grippers. Adv. Funct. Mater. 30(50), 2004975 (2020). https://doi.org/10.1002/adfm.202004975
K.E. Peyer, L. Zhang, B.J. Nelson, Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5(4), 1259–1272 (2013). https://doi.org/10.1039/C2NR32554C
S. Fusco, M.S. Sakar, S. Kennedy, C. Peters, S. Pane et al., Self-folding mobile microrobots for biomedical applications, in 2014 IEEE International Conference on Robotics and Automation (ICRA) (2014), pp. 3777–3782. https://doi.org/10.1109/ICRA.2014.6907406
H. Kim, J. Ali, U.K. Cheang, J. Jeong, J.S. Kim et al., Micro manipulation using magnetic microrobots. J. Bionic Eng. 13(4), 515–524 (2016). https://doi.org/10.1016/S1672-6529(16)60324-4
S. Jeon, S. Kim, S. Ha, S. Lee, E. Kim et al., Magnetically actuated microrobots as a platform for stem cell transplantation. Sci. Robot. 4(30), eaav4317 (2019). https://doi.org/10.1126/scirobotics.aav4317
M. Dong, X. Wang, X.Z. Chen, F. Mushtaq, S. Deng et al., 3D-printed soft magnetoelectric microswimmers for delivery and differentiation of neuron-like cells. Adv. Funct. Mater. 30(17), 1910323 (2020). https://doi.org/10.1002/adfm.201910323
F. Qiu, B.J. Nelson, Magnetic helical micro-and nanorobots: toward their biomedical applications. Engineering 1(1), 21–26 (2015). https://doi.org/10.15302/J-ENG-2015005
M.A. Zeeshan, R. Grisch, E. Pellicer, K.M. Sivaraman, K.E. Peyer et al., Hybrid helical magnetic microrobots obtained by 3D template-assisted electrodeposition. Small 10(7), 1284–1288 (2014). https://doi.org/10.1002/smll.201302856
R. Venezian, I.S. Khalil, Understanding robustness of magnetically driven helical propulsion in viscous fluids using sensitivity analysis. Adv. Theory Simul. 5(4), 2100519 (2022). https://doi.org/10.1002/adts.202100519
Y. Liu, Y. Yang, X. Yang, L. Yang, Y. Shen et al., Multi-functionalized micro-helical capsule robots with superior loading and releasing capabilities. J. Mater. Chem. B 9(5), 1441–1451 (2021). https://doi.org/10.1039/D0TB02329A
K.E. Peyer, S. Tottori, F. Qiu, L. Zhang, B.J. Nelson, Magnetic helical micromachines. Chem. Eur. J. 19(1), 28–38 (2013). https://doi.org/10.1002/chem.201203364
S. Kim, F. Qiu, S. Kim, A. Ghanbari, C. Moon et al., Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv. Mater. 25(41), 5863–5868 (2013). https://doi.org/10.1002/adma.201301484
Y. Jia, P. Liao, Y. Wang, D. Sun, Magnet-driven microwalker in surface motion based on frictional anisotropy. Adv. Intell. Syst. 4(11), 2200118 (2022). https://doi.org/10.1002/aisy.202200118
K. Villa, M. Pumera, Fuel-free light-driven micro/nanomachines: artificial active matter mimicking nature. Chem. Soc. Rev. 48(19), 4966–4978 (2019). https://doi.org/10.1039/C9CS00090A
L. Wang, A. Kaeer, D. Fischer, J. Simmchen, Photocatalytic TiO2 micromotors for removal of microplastics and suspended matter. ACS A. Mater. Interfaces 11(36), 32937–32944 (2019). https://doi.org/10.1021/acsami.9b06128
L. Kong, C.C. Mayorga-Martinez, J. Guan, M. Pumera, Photocatalytic micromotors activated by UV to visible light for environmental remediation, micropumps, reversible assembly, transportation, and biomimicry. Small 16(27), 1903179 (2020). https://doi.org/10.1002/smll.201903179
J. Kim, S. Jo, W.-J. Lee, J. Lim, T.S. Lee, Moving photocatalyst of a titanium dioxide-based micromotor asymmetrically decorated with conjugated polymer dots. Mater. Des. 219, 110743 (2022). https://doi.org/10.1016/j.matdes.2022.110743
R. Dong, Q. Zhang, W. Gao, A. Pei, B. Ren, Highly efficient light-driven TiO2-Au Janus micromotors. ACS Nano 10(1), 839–844 (2016). https://doi.org/10.1021/acsnano.5b05940
R. Dong, Y. Hu, Y. Wu, W. Gao, B. Ren et al., Visible-light-driven BiOI-based Janus micromotor in pure water. J. Am. Chem. Soc. 139(5), 1722–1725 (2017). https://doi.org/10.1021/jacs.6b09863
É. O’Neel-Judy, D. Nicholls, J. Castañeda, J.G. Gibbs, Light-activated, multi-semiconductor hybrid microswimmers. Small 14(32), 1801860 (2018). https://doi.org/10.1002/smll.201801860
B. Jang, A. Hong, H.E. Kang, C. Alcantara, S. Charreyron et al., Multiwavelength light-responsive Au/B-TiO2 Janus micromotors. ACS Nano 11(6), 6146–6154 (2017). https://doi.org/10.1021/acsnano.7b02177
Y. Wu, R. Dong, Q. Zhang, B. Ren, Dye-enhanced self-electrophoretic propulsion of light-driven TiO2-Au Janus micromotors. Nano-micro Lett. 9, 12 (2017). https://doi.org/10.1007/s40820-017-0133-9
J. Vrba, C. Maslen, J. Maxova, J. Duras, I. Rehor et al., An automated platform for assembling light-powered hydrogel microrobots and their subsequent chemical binding. J. Comput. Sci. 55, 101446 (2021). https://doi.org/10.1016/j.jocs.2021.101446
E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, The golden age: gold nanops for biomedicine. Chem. Soc. Rev. 41(7), 2740–2779 (2012). https://doi.org/10.1039/C1CS15237H
Y.V. Kaneti, C. Chen, M. Liu, X. Wang, J.L. Yang et al., Carbon-coated gold nanorods: a facile route to biocompatible materials for photothermal applications. ACS A. Mater. Interfaces 7(46), 25658–25668 (2015). https://doi.org/10.1021/acsami.5b07975
J. Nam, N. Won, H. Jin, H. Chung, S. Kim, pH-induced aggregation of gold nanops for photothermal cancer therapy. J. Am. Chem. Soc. 131(38), 13639–13645 (2009). https://doi.org/10.1021/ja902062j
W. Wang, L.A. Castro, M. Hoyos, T.E. Mallouk, Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6(7), 6122–6132 (2012). https://doi.org/10.1021/nn301312z
D. Kagan, M.J. Benchimol, J.C. Claussen, E. Chuluun-Erdene, S. Esener et al., Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. Angew. Chem. Int. Ed. 51(30), 7519–7522 (2012). https://doi.org/10.1002/anie.201201902
R. Myers, C. Coviello, P. Erbs, J. Foloppe, C. Rowe et al., Polymeric cups for cavitation-mediated delivery of oncolytic vaccinia virus. Mol. Ther. 24(9), 1627–1633 (2016). https://doi.org/10.1038/mt.2016.139
J.J. Kwan, R. Myers, C.M. Coviello, S.M. Graham, A.R. Shah et al., Ultrasound-propelled nanocups for drug delivery. Small 11(39), 5305–5314 (2015). https://doi.org/10.1002/smll.201501322
Y. Zhang, S. Li, The secondary bjerknes force between two gas bubbles under dual-frequency acoustic excitation. Ultrason. Sonochem. 29, 129–145 (2016). https://doi.org/10.1016/j.ultsonch.2015.08.022
N.F. Laubli, M.S. Gerlt, A. Wuthrich, R.T. Lewis, N. Shamsudhin et al., Embedded microbubbles for acoustic manipulation of single cells and microfluidic applications. Anal. Chem. 93(28), 9760–9770 (2021). https://doi.org/10.1021/acs.analchem.1c01209
A. Aghakhani, A. Pena-Francesch, U. Bozuyuk, H. Cetin, P. Wrede et al., High shear rate propulsion of acoustic microrobots in complex biological fluids. Sci. Adv. 8(10), eabm5126 (2022). https://doi.org/10.1126/sciadv.abm5126
J. Li, I. Rozen, J. Wang, Rocket science at the nanoscale. ACS Nano 10(6), 5619–5634 (2016). https://doi.org/10.1021/acsnano.6b02518
W.Z. Teo, H. Wang, M. Pumera, Beyond platinum: silver-catalyst based bubble-propelled tubular micromotors. Chem. Commun. 52(23), 4333–4336 (2016). https://doi.org/10.1039/C6CC00115G
J.R. Baylis, A.E.S. John, X. Wang, E.B. Lim, M.L. Statz et al., Self-propelled dressings containing thrombin and tranexamic acid improve short-term survival in a swine model of lethal junctional hemorrhage. Shock 46(3), 123–128 (2016). https://doi.org/10.1097/SHK.0000000000000646
J. Li, V.V. Singh, S. Sattayasamitsathit, J. Orozco, K. Kaufmann et al., Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. ACS Nano 8(11), 11118–11125 (2014). https://doi.org/10.1021/nn505029k
W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K.St. Angelo et al., Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126(41), 13424–13431 (2004). https://doi.org/10.1021/ja047697z
G. Zhao, M. Viehrig, M. Pumera, Challenges of the movement of catalytic micromotors in blood. Lab Chip 13(10), 1930–1936 (2013). https://doi.org/10.1039/C3LC41423J
M. Safdar, S.U. Khan, J. Jänis, Progress toward catalytic micro-and nanomotors for biomedical and environmental applications. Adv. Mater. 30(24), 1703660 (2018). https://doi.org/10.1002/adma.201703660
K.K. Dey, A. Sen, Chemically propelled molecules and machines. J. Am. Chem. Soc. 139(23), 7666–7676 (2017). https://doi.org/10.1021/jacs.7b02347
S. Wang, N. Wu, Selecting the swimming mechanisms of colloidal ps: bubble propulsion versus self-diffusiophoresis. Langmuir 30(12), 3477–3486 (2014). https://doi.org/10.1021/la500182f
W. Gao, S. Sattayasamitsathit, A. Uygun, A. Pei, A. Ponedal et al., Polymer-based tubular microbots: role of composition and preparation. Nanoscale 4(7), 2447–2453 (2012). https://doi.org/10.1039/C2NR30138E
A. Martín, B. Jurado-Sánchez, A. Escarpa, J. Wang, Template electrosynthesis of high-performance graphene microengines. Small 11(29), 3568–3574 (2015). https://doi.org/10.1002/smll.201500008
D. Vilela, A.C. Hortelão, R. Balderas-Xicohténcatl, M. Hirscher, K. Hahn et al., Facile fabrication of mesoporous silica micro-jets with multi-functionalities. Nanoscale 9(37), 13990–13997 (2017). https://doi.org/10.1039/C7NR04527A
A. Paryab, H.R.M. Hosseini, F. Abedini, A. Dabbagh, Synthesis of magnesium-based Janus micromotors capable of magnetic navigation and antibiotic drug incorporation. New J. Chem. 44(17), 6947–6957 (2020). https://doi.org/10.1039/D0NJ00537A
W. Gao, S. Sattayasamitsathit, J. Orozco, J. Wang, Highly efficient catalytic microengines: template electrosynthesis of polyaniline/platinum microtubes. J. Am. Chem. Soc. 133(31), 11862–11864 (2011). https://doi.org/10.1021/ja203773g
W. Gao, A. Pei, R. Dong, J. Wang, Catalytic iridium-based Janus micromotors powered by ultralow levels of chemical fuels. J. Am. Chem. Soc. 136(6), 2276–2279 (2014). https://doi.org/10.1021/ja413002e
S.K. Srivastava, M. Guix, O.G. Schmidt, Wastewater mediated activation of micromotors for efficient water cleaning. Nano Lett. 16(1), 817–821 (2016). https://doi.org/10.1021/acs.nanolett.5b05032
S.-J. Song, C.C. Mayorga-Martinez, D. Huska, M. Pumera, Engineered magnetic plant biobots for nerve agent removal. NPG Asia Mater. 14(1), 79 (2022). https://doi.org/10.1038/s41427-022-00425-0
K. Han, C.W. Shields IV., O.D. Velev, Engineering of self-propelling microbots and microdevices powered by magnetic and electric fields. Adv. Funct. Mater. 28(25), 1705953 (2018). https://doi.org/10.1002/adfm.201705953
M.Z. Bazant, T.M. Squires, Induced-charge electrokinetic phenomena: theory and microfluidic applications. Phys. Rev. Lett. 92(6), 066101 (2004). https://doi.org/10.1103/PhysRevLett.92.066101
L. Huang, Y. Pan, M. Wang, L. Ren, Driving modes and characteristics of biomedical micro-robots. Eng. Regen. 4(4), 411–426 (2023). https://doi.org/10.1016/j.engreg.2023.08.001
W. Gao, K.M. Manesh, J. Hua, S. Sattayasamitsathit, J. Wang, Hybrid nanomotor: a catalytically/magnetically powered adaptive nanowire swimmer. Small 7(14), 2047–2051 (2011). https://doi.org/10.1002/smll.201100213
C. Chen, S. Tang, H. Teymourian, E. Karshalev, F. Zhang et al., Chemical/light-powered hybrid micromotors with “on-the-fly” optical brakes. Angew. Chem. 130(27), 8242–8246 (2018). https://doi.org/10.1002/anie.201803457
J. Li, T. Li, T. Xu, M. Kiristi, W. Liu et al., Magneto-acoustic hybrid nanomotor. Nano Lett. 15(7), 4814–4821 (2015). https://doi.org/10.1021/acs.nanolett.5b01945
Y. Alapan, O. Yasa, B. Yigit, I.C. Yasa, P. Erkoc et al., Microrobotics and microorganisms: biohybrid autonomous cellular robots. Annu. Rev. Control Robot. Auton. Syst. 2, 205–230 (2019). https://doi.org/10.1146/annurev-control-053018-023803
X. Yan, Q. Zhou, M. Vincent, Y. Deng, J. Yu et al., Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2(12), eaaq1155 (2017). https://doi.org/10.1126/scirobotics.aaq1155
J. Xing, T. Yin, S. Li, T. Xu, A. Ma et al., Sequential magneto-actuated and optics-triggered biomicrorobots for targeted cancer therapy. Adv. Funct. Mater. 31(11), 2008262 (2021). https://doi.org/10.1002/adfm.202008262
X. Yan, Q. Zhou, J. Yu, T. Xu, Y. Deng et al., Magnetite nanostructured porous hollow helical microswimmers for targeted delivery. Adv. Funct. Mater. 25(33), 5333–5342 (2015). https://doi.org/10.1002/adfm.201502248
X. Yan, J. Xu, Q. Zhou, D. Jin, C.I. Vong et al., Molecular cargo delivery using multicellular magnetic microswimmers. A. Mater. Today 15, 242–251 (2019). https://doi.org/10.1016/j.apmt.2019.02.006
B.-W. Park, J. Zhuang, O. Yasa, M. Sitti, Multifunctional bacteria-driven microswimmers for targeted active drug delivery. ACS Nano 11(9), 8910–8923 (2017). https://doi.org/10.1021/acsnano.7b03207
Y. Alapan, O. Yasa, O. Schauer, J. Giltinan, A.F. Tabak et al., Soft erythrocyte-based bacterial microswimmers for cargo delivery. Sci. Robot. 3(17), eaar4423 (2018). https://doi.org/10.1126/scirobotics.aar4423
K. Hou, Y. Zhang, M. Bao, C. Xin, Z. Wei et al., A multifunctional magnetic red blood cell-mimetic micromotor for drug delivery and image-guided therapy. ACS A. Mater. Interfaces 14(3), 3825–3837 (2022). https://doi.org/10.1021/acsami.1c21331
X. He, H. Nie, K. Wang, W. Tan, X. Wu et al., In vivo study of biodistribution and urinary excretion of surface-modified silica nanops. Anal. Chem. 80(24), 9597–9603 (2008). https://doi.org/10.1021/ac801882g
V. Gómez-Vallejo, M. Puigivila, S. Plaza-García, B. Szczupak, R. Piñol et al., PEG-copolymer-coated iron oxide nanops that avoid the reticuloendothelial system and act as kidney MRI contrast agents. Nanoscale 10(29), 14153–14164 (2018). https://doi.org/10.1039/C8NR03084G
R. Weissleder, D.D. Stark, B.L. Engelstad, B.R. Bacon, C.C. Compton et al., Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am. J. Roentgenol. 152(1), 167–173 (1989). https://doi.org/10.2214/ajr.152.1.167
J.W. Bulte, T. Douglas, B. Witwer, S.-C. Zhang, E. Strable et al., Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol. 19(12), 1141–1147 (2001). https://doi.org/10.1038/nbt1201-1141
M. Mahmoudi, H. Hofmann, B. Rothen-Rutishauser, A. Petri-Fink, Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanops. Chem. Rev. 112(4), 2323–2338 (2012). https://doi.org/10.1021/cr2002596
J.M. Veranth, E.G. Kaser, M.M. Veranth, M. Koch, G.S. Yost, Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanops of metal oxides compared to soil dusts. Part. Fibre Toxicol. 4(2), 1–18 (2007). https://doi.org/10.1186/1743-8977-4-2
H. Ceylan, I.C. Yasa, O. Yasa, A.F. Tabak, J. Giltinan et al., 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano 13(3), 3353–3362 (2019). https://doi.org/10.1021/acsnano.8b09233
B.D. Ulery, L.S. Nair, C.T. Laurencin, Biomedical applications of biodegradable polymers. J. Polym. Sci. Part B: Polym. Phys. 49(12), 832–864 (2011). https://doi.org/10.1002/polb.22259
T.S. Santra, Microfluidics and Bio-mems: Devices and applications (CRC Press, 2020), pp. 95–148
S.-L. Ding, X. Liu, X.-Y. Zhao, K.-T. Wang, W. Xiong et al., Microcarriers in aication for cartilage tissue engineering: recent progress and challenges. Bioact. Mater. 17, 81–108 (2022). https://doi.org/10.1016/j.bioactmat.2022.01.033
B.S. Zolnik, D.J. Burgess, Effect of acidic pH on PLGA microsphere degradation and release. J. Controll. Release 122(3), 338–344 (2007). https://doi.org/10.1016/j.jconrel.2007.05.034
Y. Li, J. Wu, H. Oku, G. Ma, Polymer-modified micromotors with biomedical applications: promotion of functionalization. Adv. Nanobiomed. Res. 2(10), 2200074 (2022). https://doi.org/10.1002/anbr.202200074
G. Go, A. Yoo, H.-W. Song, H.-K. Min, S. Zheng et al., Multifunctional biodegradable microrobot with programmable morphology for biomedical applications. ACS Nano 15(1), 1059–1076 (2020). https://doi.org/10.1021/acsnano.0c07954
Z. Li, M. Leung, R. Hopper, R. Ellenbogen, M. Zhang, Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials 31(3), 404–412 (2010). https://doi.org/10.1016/j.biomaterials.2009.09.070
H. Ge, X. Chen, W. Liu, X. Lu, Z. Gu, Metal-based transient micromotors: from principle to environmental and biomedical applications. Chem. Asian J. 14(14), 2348–2356 (2019). https://doi.org/10.1002/asia.201900278
A. Nourhani, E. Karshalev, F. Soto, J. Wang, Multigear bubble propulsion of transient micromotors. Research 2020, 7823615 (2020). https://doi.org/10.34133/2020/7823615
C. Chen, E. Karshalev, J. Li, F. Soto, R. Castillo et al., Transient micromotors that disappear when no longer needed. ACS Nano 10(11), 10389–10396 (2016). https://doi.org/10.1021/acsnano.6b06256
C.C. Alcântara, S. Kim, S. Lee, B. Jang, P. Thakolkaran et al., 3D fabrication of fully iron magnetic microrobots. Small 15(16), 1805006 (2019). https://doi.org/10.1002/smll.201805006
E. Karshalev, B. Esteban-Fernández de Ávila, M. Beltran-Gastelum, P. Angsantikul, S. Tang et al., Micromotor pills as a dynamic oral delivery platform. ACS Nano 12(8), 8397–8405 (2018). https://doi.org/10.1021/acsnano.8b03760
Z. Wu, L. Li, Y. Yang, P. Hu, Y. Li et al., A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 4(32), eaax0613 (2019). https://doi.org/10.1126/scirobotics.aax0613
B.E.-F. de Ávila, P. Angsantikul, J. Li, M. Angel Lopez-Ramirez, D.E. Ramírez-Herrera et al., Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 8(1), 272 (2017). https://doi.org/10.1038/s41467-017-00309-w
F. Mou, C. Chen, Q. Zhong, Y. Yin, H. Ma et al., Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly (n-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma. ACS A. Mater. Interfaces 6(12), 9897–9903 (2014). https://doi.org/10.1021/am502729y
T. Maric, S. Atladóttir, L.H.E. Thamdrup, O. Ilchenko, M. Ghavami et al., Self-propelled Janus micromotors for pH-responsive release of small molecule drug. A. Mater. Today 27, 101418 (2022). https://doi.org/10.1016/j.apmt.2022.101418
K. Liu, J. Ou, S. Wang, J. Gao, L. Liu et al., Magnesium-based micromotors for enhanced active and synergistic hydrogen chemotherapy. A. Mater. Today 20, 100694 (2020). https://doi.org/10.1016/j.apmt.2020.100694
Y. Zheng, H. Zhao, Y. Cai, B. Jurado-Sánchez, R. Dong, Recent advances in one-dimensional micro/nanomotors: fabrication, propulsion and aication. Nano-micro Lett. 15(1), 20 (2023). https://doi.org/10.1007/s40820-022-00988-1
A. Serrà, J. García-Torres, Electrochemistry: a basic and powerful tool for micro-and nanomotor fabrication and characterization. A. Mater. Today 22, 100939 (2021). https://doi.org/10.1016/j.apmt.2021.100939
D. Vilela, M.M. Stanton, J. Parmar, S. Sánchez, Microbots decorated with silver nanops kill bacteria in aqueous media. ACS A. Mater. Interfaces 9(27), 22093–22100 (2017). https://doi.org/10.1021/acsami.7b03006
G. Song, A. Atrens, Understanding magnesium corrosion-a framework for improved alloy performance. Adv. Eng. Mater. 5(12), 837–858 (2003). https://doi.org/10.1002/adem.200310405
F. Mou, C. Chen, H. Ma, Y. Yin, Q. Wu et al., Self-propelled micromotors driven by the magnesium-water reaction and their hemolytic properties. Angew. Chem. Int. Ed. 52(28), 7208–7212 (2013). https://doi.org/10.1002/anie.201300913
L. Kong, N. Rohaizad, M.Z.M. Nasir, J. Guan, M. Pumera, Micromotor-assisted human serum glucose biosensing. Anal. Chem. 91(9), 5660–5666 (2019). https://doi.org/10.1021/acs.analchem.8b05464
S. Dutta, K.B. Devi, M. Roy, Processing and degradation behavior of porous magnesium scaffold for biomedical applications. Adv. Powder Technol. 28(12), 3204–3212 (2017). https://doi.org/10.1016/j.apt.2017.09.024
J.M. Seitz, R. Eifler, F.W. Bach, H. Maier, Magnesium degradation products: effects on tissue and human metabolism. J. Biomed. Mater. Res. A 102(10), 3744–3753 (2014). https://doi.org/10.1002/jbm.a.35023
Y. Xin, K. Huo, H. Tao, G. Tang, P.K. Chu, Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomater. 4(6), 2008 (2008). https://doi.org/10.1016/j.actbio.2008.05.014
S. Kovacevic, W. Ali, E. Martínez-Pañeda, J. Llorca, Phase-field modeling of pitting and mechanically-assisted corrosion of Mg alloys for biomedical applications. Acta Biomater. 164, 641–658 (2023). https://doi.org/10.1016/j.actbio.2023.04.011
M. Wątroba, K. Mech, W. Bednarczyk, J. Kawałko, M. Marciszko-Wiąckowska et al., Long-term in vitro corrosion behavior of Zn–3Ag and Zn–3Ag–0.5 Mg alloys considered for biodegradable implant applications. Mater. Des. 213, 110289 (2022). https://doi.org/10.1016/j.matdes.2021.110289
X. Liu, H. Yang, Y. Liu, P. Xiong, H. Guo et al., Comparative studies on degradation behavior of pure zinc in various simulated body fluids. JOM 71, 1414–1425 (2019). https://doi.org/10.1007/s11837-019-03357-3
V.M. Rabeeh, S.A. Rahim, S. Kinattingara Parambath, G. Rajanikant, T. Hanas, Iron-gold composites for biodegradable implants: In vitro investigation on biodegradation and biomineralization. ACS Biomater. Sci. Eng. 9(7), 4255–4268 (2023). https://doi.org/10.1021/acsbiomaterials.3c00513
H. Hermawan, A. Purnama, D. Dube, J. Couet, D. Mantovani, Fe-Mn alloys for metallic biodegradable stents: degradation and cell viability studies. Acta Biomater. 6(5), 1852–1860 (2010). https://doi.org/10.1016/j.actbio.2009.11.025
M. Schinhammer, P. Steiger, F. Moszner, J.F. Löffler, P.J. Uggowitzer, Degradation performance of biodegradable FeMnC (Pd) alloys. Mater. Sci. Eng. C 33(4), 1882–1893 (2013). https://doi.org/10.1016/j.msec.2012.10.013
S.S. Prasad, S. Prasad, K. Verma, R.K. Mishra, V. Kumar et al., The role and significance of magnesium in modern day research-a review. J. Magnes. Alloy 10(1), 1–61 (2022). https://doi.org/10.1016/j.jma.2021.05.012
Y. Li, Y. Wang, Z. Shen, F. Miao, J. Wang et al., A biodegradable magnesium alloy vascular stent structure: design, optimisation and evaluation. Acta Biomater. 142, 402–412 (2022). https://doi.org/10.1016/j.actbio.2022.01.045
D.E. Erişen, Y. Zhang, B. Zhang, K. Yang, S. Chen et al., Biosafety and biodegradation studies of AZ31B magnesium alloy carotid artery stent in vitro and in vivo. J. Biomed. Mater. Res. B A. Biomater. 110(1), 239–248 (2022). https://doi.org/10.1002/jbm.b.34907
Z.-Q. Zhang, Y.-X. Yang, J.-A. Li, R.-C. Zeng, S.-K. Guan, Advances in coatings on magnesium alloys for cardiovascular stents—a review. Bioact. Mater. 6(12), 4729–4757 (2021). https://doi.org/10.1016/j.bioactmat.2021.04.044
Y. Chen, Z. Xu, C. Smith, J. Sankar, Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 10(11), 4561–4573 (2014). https://doi.org/10.1016/j.actbio.2014.07.005
N. Hort, Y.-D. Huang, D. Fechner, M. Störmer, C. Blawert et al., Magnesium alloys as implant materials-principles of property design for Mg–RE alloys. Acta Biomater. 6(5), 1714–1725 (2010). https://doi.org/10.1016/j.actbio.2009.09.010
G. Wu, J.M. Ibrahim, P.K. Chu, Surface design of biodegradable magnesium alloys-a review. Surf. Coat. Technol. 233, 2–12 (2013). https://doi.org/10.1016/j.surfcoat.2012.10.009
M. Nasr Azadani, A. Zahedi, O.K. Bowoto, B.I. Oladapo, A review of current challenges and prospects of magnesium and its alloy for bone implant applications. Prog. Biomater. 11(1), 1–26 (2022). https://doi.org/10.1007/s40204-022-00182-x
M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9), 1728–1734 (2006). https://doi.org/10.1016/j.biomaterials.2005.10.003
G. Uppal, A. Thakur, A. Chauhan, S. Bala, Magnesium based implants for functional bone tissue regeneration-a review. J. Magnes. Alloy 10(2), 356–386 (2022). https://doi.org/10.1016/j.jma.2021.08.017
S. Siefen, M. Höck, Development of magnesium implants by aication of conjoint-based quality function deployment. J. Biomed. Mater. Res. A 107(12), 2814–2834 (2019). https://doi.org/10.1002/jbm.a.36784
D. Bairagi, S. Mandal, A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants: Current status, challenges, and future prospects. J. Magnes. Alloy 10(3), 627–669 (2022). https://doi.org/10.1016/j.jma.2021.09.005
M.E. Maguire, J.A. Cowan, Magnesium chemistry and biochemistry. Biometals 15, 203–210 (2002). https://doi.org/10.1023/A:1016058229972
A. Hartwig, Role of magnesium in genomic stability. Mutat. Res. Fundam. Mol. Mech. Mutag. 475(1–2), 113–121 (2001). https://doi.org/10.1016/S0027-5107(01)00074-4
C. Theisen, K. Wodschow, B. Hansen, J. Schullehner, G. Gislason et al., Drinking water magnesium and cardiovascular mortality: a cohort study in denmark, 2005–2016. Environ. Int. 164, 107277 (2022). https://doi.org/10.1016/j.envint.2022.107277
K.P. Schlingmann, M. Konrad, Magnesium Homeostasis (Elsevier, Amsteram, 2020), pp. 509–525
I. Groenendijk, M. van Delft, P. Versloot, L.J. van Loon, L.C. de Groot, Impact of magnesium on bone health in older adults: a systematic review and meta-analysis. Bone 154, 116233 (2022). https://doi.org/10.1016/j.bone.2021.116233
X. Fang, K. Wang, D. Han, X. He, J. Wei et al., Dietary magnesium intake and the risk of cardiovascular disease, type 2 diabetes, and all-cause mortality: a dose–response meta-analysis of prospective cohort studies. BMC Med. 14(1), 1–13 (2016). https://doi.org/10.1186/s12916-016-0742-z
D. Rosenblum, N. Joshi, W. Tao, J.M. Karp, D. Peer, Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 9(1), 1410 (2018). https://doi.org/10.1038/s41467-018-03705-y
K.S. Soppimath, A.R. Kulkarni, W.E. Rudzinski, T.M. Aminabhavi, Microspheres as floating drug-delivery systems to increase gastric retention of drugs. Drug Metab. Rev. 33(2), 149–160 (2001). https://doi.org/10.1081/dmr-100104401
Z. Luo, N. Paunović, J.-C. Leroux, Physical methods for enhancing drug absorption from the gastrointestinal tract. Adv. Drug Deliv. Rev. 175, 113814 (2021). https://doi.org/10.1016/j.addr.2021.05.024
J.-Y. Runser, M. Criado-Gonzalez, F. Fneich, M. Rabineau, B. Senger et al., Non-monotonous enzyme-assisted self-assembly profiles resulting from reaction-diffusion processes in host gels. J. Colloid Interface Sci. 620, 234–241 (2022). https://doi.org/10.1016/j.jcis.2022.03.150
P.J. Schouten, D. Soto-Aguilar, A. Aldalbahi, T. Ahamad, S. Alzahly et al., Design of sporopollenin-based functional ingredients for gastrointestinal tract targeted delivery. Curr. Opin. Food Sci. 44, 100809 (2022). https://doi.org/10.1016/j.cofs.2022.100809
Y. Ge, M. Liu, L. Liu, Y. Sun, H. Zhang et al., Dual-fuel-driven bactericidal micromotor. Nano-micro Lett. 8(2), 157–164 (2016). https://doi.org/10.1007/s40820-015-0071-3
N.R. Salama, M.L. Hartung, A. Müller, Life in the human stomach: persistence strategies of the bacterial pathogen helicobacter pylori. Nat. Rev. Microbiol. 11(6), 385–399 (2013). https://doi.org/10.1038/nrmicro3016
D. Bravo, A. Hoare, C. Soto, M.A. Valenzuela, A.F. Quest, Helicobacter pylori in human health and disease: mechanisms for local gastric and systemic effects. World J. Gastroenterol. 24(28), 3071 (2018). https://doi.org/10.3748/wjg.v24.i28.3071
G. Holtmann, C. Cain, P. Malfertheiner, Gastric helicobacter pylori infection accelerates healing of reflux esophagitis during treatment with the proton pump inhibitor pantoprazole. Gastroenterology 117(1), 11–16 (1999). https://doi.org/10.1016/s0016-5085(99)70544-5
S. Kuang, J. Xu, M. Chen, Y. Zhang, F. Shi et al., The influence of pretreatment with PPI on helicobacter pylori eradication: a systematic review and meta-analysis. Medicine 100(47), e27944 (2021). https://doi.org/10.1097/MD.0000000000027944
P. Moayyedi, G.I. Leontiadis, The risks of PPI therapy. Nat. Rev. Gastroenterol. Hepatol. 9(3), 132–139 (2012). https://doi.org/10.1038/nrgastro.2011.272
P.M. Ho, T.M. Maddox, L. Wang, S.D. Fihn, R.L. Jesse et al., Risk of adverse outcomes associated with concomitant use of clopidogrel and proton pump inhibitors following acute coronary syndrome. JAMA 301(9), 937–944 (2009). https://doi.org/10.1001/jama.2009.261
A. Koyyada, Long-term use of proton pump inhibitors as a risk factor for various adverse manifestations. Therapies 76(1), 13–21 (2021). https://doi.org/10.1016/j.therap.2020.06.019
E. Sheen, G. Triadafilopoulos, Adverse effects of long-term proton pump inhibitor therapy. Dig. Dis. Sci. 56, 931–950 (2011). https://doi.org/10.1007/s10620-010-1560-3
J. Li, S. Thamphiwatana, W. Liu, B. Esteban-Fernández de Ávila, P. Angsantikul et al., Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract. ACS Nano 10(10), 9536–9542 (2016). https://doi.org/10.1021/acsnano.6b04795
X. Wei, M. Beltrán-Gastélum, E. Karshalev, B. Esteban-Fernández de Ávila, J. Zhou et al., Biomimetic micromotor enables active delivery of antigens for oral vaccination. Nano Lett. 19(3), 1914–1921 (2019). https://doi.org/10.1021/acs.nanolett.8b05051
V. Dias, E. Junn, M.M. Mouradian, The role of oxidative stress in parkinson’s disease. J. Parkinsons Dis. 3(4), 461–491 (2013). https://doi.org/10.3233/JPD-130230
S. Bhatt, L. Puli, C.R. Patil, Role of reactive oxygen species in the progression of alzheimer’s disease. Drug Discov. Today 26(3), 794–803 (2021). https://doi.org/10.1016/j.drudis.2020.12.004
C.S. Carter, S.C. Huang, C.C. Searby, B. Cassaidy, M.J. Miller et al., Exposure to static magnetic and electric fields treats type 2 diabetes. Cell Metab. 32(4), 561–574.e567 (2020). https://doi.org/10.1016/j.cmet.2020.09.012
B. Perillo, M. Di Donato, A. Pezone, E. Di Zazzo, P. Giovannelli et al., ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med. 52(2), 192–203 (2020). https://doi.org/10.1038/s12276-020-0384-2
X. Lou, Z. Chen, Z. He, M. Sun, J. Sun, Bacteria-mediated synergistic cancer therapy: small microbiome has a big hope. Nano-micro Lett. 13(1), 37 (2021). https://doi.org/10.1007/s40820-020-00560-9
G. Zhou, E. Goshi, Q. He, Micro/nanomaterials-augmented hydrogen therapy. Adv. Healthc. Mater. 8(16), 1900463 (2019). https://doi.org/10.1002/adhm.201900463
Y. Wu, M. Yuan, J. Song, X. Chen, H. Yang, Hydrogen gas from inflammation treatment to cancer therapy. ACS Nano 13(8), 8505–8511 (2019). https://doi.org/10.1021/acsnano.9b05124
C.-L. Liu, K. Zhang, G. Chen, Hydrogen therapy: from mechanism to cerebral diseases. Med. Gas Res. 6(1), 48 (2016). https://doi.org/10.4103/2045-9912.179346
M. Fan, Y. Wen, D. Ye, Z. Jin, P. Zhao et al., Acid-responsive H2-releasing 2D MgB2 nanosheet for therapeutic synergy and side effect attenuation of gastric cancer chemotherapy. Adv. Healthc. Mater. 8(13), 1900157 (2019). https://doi.org/10.1002/adhm.201900157
P. Zhao, Z. Jin, Q. Chen, T. Yang, D. Chen et al., Local generation of hydrogen for enhanced photothermal therapy. Nat. Commun. 9(1), 4241 (2018). https://doi.org/10.1038/s41467-018-06630-2
X. Li, B. Dai, J. Guo, L. Zheng, Q. Guo et al., Nanop-cartilage interaction: pathology-based intra-articular drug delivery for osteoarthritis therapy. Nano-micro Lett. 13(1), 149 (2021). https://doi.org/10.1007/s40820-021-00670-y
C. Xu, S. Wang, H. Wang, K. Liu, S. Zhang et al., Magnesium-based micromotors as hydrogen generators for precise rheumatoid arthritis therapy. Nano Lett. 21(5), 1982–1991 (2021). https://doi.org/10.1021/acs.nanolett.0c04438
L. Kong, C. Chen, F. Mou, Y. Feng, M. You et al., Magnesium ps coated with mesoporous nanoshells as sustainable therapeutic-hydrogen suiers to scavenge continuously generated hydroxyl radicals in long term. Part. Part. Syst. Charact. 36(2), 1800424 (2019). https://doi.org/10.1002/ppsc.201800424
I. De Cock, E. Zagato, K. Braeckmans, Y. Luan, N. de Jong et al., Ultrasound and microbubble mediated drug delivery: acoustic pressure as determinant for uptake via membrane pores or endocytosis. J. Controll. Release 197, 20–28 (2015). https://doi.org/10.1016/j.jconrel.2014.10.031
H. Lee, H. Kim, H. Han, M. Lee, S. Lee et al., Microbubbles used for contrast enhanced ultrasound and theragnosis: a review of principles to applications. Biomed. Eng. Lett. 7, 59–69 (2017). https://doi.org/10.1007/s13534-017-0016-5
Y. Feng, X. Chang, H. Liu, Y. Hu, T. Li et al., Multi-response biocompatible Janus micromotor for ultrasonic imaging contrast enhancement. A. Mater. Today 23, 101026 (2021). https://doi.org/10.1016/j.apmt.2021.101026
W. Zhou, Y. Zhang, S. Meng, C. Xing, M. Ma et al., Micro/nano-structures on biodegradable magnesium@ PLGA and their cytotoxicity, photothermal, and anti-tumor effects. Small Methods 5(2), 2000920 (2021). https://doi.org/10.1002/smtd.202000920
Z. Wu, J. Li, B.E.F. de Ávila, T. Li, W. Gao et al., Water powered cell mimicking Janus micromotor. Adv. Funct. Mater. 25(48), 7497–7501 (2015). https://doi.org/10.1002/adfm.201503441
F. Zhang, R. Mundaca-Uribe, H. Gong, B. Esteban-Fernández de Ávila, M. Beltrán-Gastélum et al., A macrophage-magnesium hybrid biomotor: fabrication and characterization. Adv. Mater. 31(27), 1901828 (2019). https://doi.org/10.1002/adma.201901828
K. Xiong, L. Xu, J. Lin, F. Mou, J. Guan, Mg-based micromotors with motion responsive to dual stimuli. Research 2020, 213981 (2020). https://doi.org/10.34133/2020/6213981
M. Kong, X.G. Chen, K. Xing, H.J. Park, Antimicrobial properties of chitosan and mode of action: a state of the art review. Int. J. Food Microbiol. 144(1), 51–63 (2010). https://doi.org/10.1016/j.ijfoodmicro.2010.09.012
Z. Limam, S. Selmi, S. Sadok, A. El Abed, Extraction and characterization of chitin and chitosan from crustacean by-products: biological and physicochemical properties. Afr. J. Biotechnol. 10(4), 640–647 (2011). https://doi.org/10.4314/ajb.v10i4
L. Qi, Z. Xu, X. Jiang, C. Hu, X. Zou, Preparation and antibacterial activity of chitosan nanops. Carbohydr. Res. 339(16), 2693–2700 (2004). https://doi.org/10.1016/j.carres.2004.09.007
J.A. Delezuk, D.E. Ramírez-Herrera, B.E.-F. de Ávila, J. Wang, Chitosan-based water-propelled micromotors with strong antibacterial activity. Nanoscale 9(6), 2195–2200 (2017). https://doi.org/10.1039/C6NR09799E
D. Rojas, B. Jurado-Sánchez, A. Escarpa, “Shoot and sense” Janus micromotors-based strategy for the simultaneous degradation and detection of persistent organic pollutants in food and biological samples. Anal. Chem. 88(7), 4153–4160 (2016). https://doi.org/10.1021/acs.analchem.6b00574
S. Cinti, G. Valdés-Ramírez, W. Gao, J. Li, G. Palleschi et al., Microengine-assisted electrochemical measurements at printable sensor strips. Chem. Commun. 51(41), 8668–8671 (2015). https://doi.org/10.1039/C5CC02222C
Z. Lin, C. Gao, D. Wang, Q. He, Bubble-propelled Janus gallium/zinc micromotors for the active treatment of bacterial infections. Angew. Chem. Int. Ed. 60(16), 8750–8754 (2021). https://doi.org/10.1002/anie.202016260
M. Zhou, T. Hou, J. Li, S. Yu, Z. Xu et al., Self-propelled and targeted drug delivery of poly (aspartic acid)/iron-zinc microrocket in the stomach. ACS Nano 13(2), 1324–1332 (2019). https://doi.org/10.1021/acsnano.8b06773
W. Gao, R. Dong, S. Thamphiwatana, J. Li, W. Gao et al., Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 9(1), 117–123 (2015). https://doi.org/10.1021/nn507097k
Q. Cui, T.-H. Le, Y.-J. Lin, Y.-B. Miao, I.-T. Sung et al., A self-powered battery-driven drug delivery device that can function as a micromotor and galvanically actuate localized payload release. Nano Energy 66, 104120 (2019). https://doi.org/10.1016/j.nanoen.2019.104120
M. Moravej, A. Purnama, M. Fiset, J. Couet, D. Mantovani, Electroformed pure iron as a new biomaterial for degradable stents: in vitro degradation and preliminary cell viability studies. Acta Biomater. 6(5), 1843–1851 (2010). https://doi.org/10.1016/j.actbio.2010.01.008
H. Zhang, W. Zhang, H. Qiu, G. Zhang, X. Li et al., A biodegradable metal polymer composite stent safe and effective on physiological and serum containing biomimetic conditions. Adv. Healthc. Mater. 11(22), 2201740 (2022). https://doi.org/10.1002/adhm.202201740
B. Paul, A. Lode, A.-M. Placht, A. Voß, S. Pilz et al., Cell-material interactions in direct contact culture of endothelial cells on biodegradable iron-based stents fabricated by laser powder bed fusion and impact of ion release. ACS A. Mater. Interfaces 14(1), 439–451 (2021). https://doi.org/10.1021/acsami.1c21901
Y. Su, I. Cockerill, Y. Wang, Y.-X. Qin, L. Chang et al., Zinc-based biomaterials for regeneration and therapy. Trends Biotechnol. 37(4), 428–441 (2019). https://doi.org/10.1016/j.tibtech.2018.10.009
E. Piskin, D. Cianciosi, S. Gulec, M. Tomas, E. Capanoglu, Iron absorption: factors, limitations, and improvement methods. ACS Omega 7(24), 20441–20456 (2022). https://doi.org/10.1021/acsomega.2c01833