Advances of Electrochemical and Electrochemiluminescent Sensors Based on Covalent Organic Frameworks
Corresponding Author: Jun‑Jie Zhu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 37
Abstract
Covalent organic frameworks (COFs), a rapidly developing category of crystalline conjugated organic polymers, possess highly ordered structures, large specific surface areas, stable chemical properties, and tunable pore microenvironments. Since the first report of boroxine/boronate ester-linked COFs in 2005, COFs have rapidly gained popularity, showing important application prospects in various fields, such as sensing, catalysis, separation, and energy storage. Among them, COFs-based electrochemical (EC) sensors with upgraded analytical performance are arousing extensive interest. In this review, therefore, we summarize the basic properties and the general synthesis methods of COFs used in the field of electroanalytical chemistry, with special emphasis on their usages in the fabrication of chemical sensors, ions sensors, immunosensors, and aptasensors. Notably, the emerged COFs in the electrochemiluminescence (ECL) realm are thoroughly covered along with their preliminary applications. Additionally, final conclusions on state-of-the-art COFs are provided in terms of EC and ECL sensors, as well as challenges and prospects for extending and improving the research and applications of COFs in electroanalytical chemistry.
Highlights:
1 Covalent organic frameworks (COFs) show enormous potential for building high-performance electrochemical sensors due to their high porosity, large specific surface areas, stable rigid topology, ordered structures, and tunable pore microenvironments.
2 The basic properties, monomers, and general synthesis methods of COFs in the electroanalytical chemistry field are introduced, with special emphasis on their usages in the fabrication of chemical sensors, ions sensors, immunosensors, and aptasensors.
3 The emerged COFs in the electrochemiluminescence realm are thoroughly covered along with their preliminary applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.P. Côté, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger et al., Porous, crystalline, covalent organic frameworks. Science 310(5751), 1166–1170 (2005). https://doi.org/10.1126/science.1120411
- K. Geng, T. He, R. Liu, S. Dalapati, K.T. Tan et al., Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120(16), 8814–8933 (2020). https://doi.org/10.1021/acs.chemrev.9b00550
- N. Huang, P. Wang, D. Jiang, Covalent organic frameworks: a materials platform for structural and functional designs. Nat. Rev. Mater. 1(10), 16068 (2016). https://doi.org/10.1038/natrevmats.2016.68
- H. Xu, J. Gao, D. Jiang, Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 7(11), 905–912 (2015). https://doi.org/10.1038/nchem.2352
- Y. Jin, Y. Hu, W. Zhang, Tessellated multiporous two-dimensional covalent organic frameworks. Nat. Rev. Chem. 1(7), 0056 (2017). https://doi.org/10.1038/s41570-017-0056
- P. Pachfule, A. Acharjya, J. Roeser, T. Langenhahn, M. Schwarze et al., Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J. Am. Chem. Soc. 140(4), 1423–1427 (2018). https://doi.org/10.1021/jacs.7b11255
- Y. Xiong, Q. Liao, Z. Huang, X. Huang, C. Ke et al., Ultrahigh responsivity photodetectors of 2D covalent organic frameworks integrated on graphene. Adv. Mater. 32(9), 1907242 (2020). https://doi.org/10.1002/adma.201907242
- E. Vitaku, C.N. Gannett, K.L. Carpenter, L. Shen, H.D. Abruña et al., Phenazine-based covalent organic framework cathode materials with high energy and power densities. J. Am. Chem. Soc. 142(1), 16–20 (2020). https://doi.org/10.1021/jacs.9b08147
- S. Karak, K. Dey, A. Torris, A. Halder, S. Bera et al., Inducing disorder in order: hierarchically porous covalent organic framework nanostructures for rapid removal of persistent organic pollutants. J. Am. Chem. Soc. 141(18), 7572–7581 (2019). https://doi.org/10.1021/jacs.9b02706
- Q.Q. Jiang, Y.J. Li, Q. Wu, R.P. Liang, X. Wang et al., Molecular insertion: a master key to unlock smart photoelectric responses of covalent organic frameworks. Small 19, e2302254 (2023). https://doi.org/10.1002/smll.202302254
- J. Chang, C. Li, X. Wang, D. Li, J. Zhang et al., Quasi-three-dimensional cyclotriphosphazene-based covalent organic framework nanosheet for efficient oxygen reduction. Nano-Micro Lett. 15(1), 159 (2023). https://doi.org/10.1007/s40820-023-01111-8
- E. Bakker, M. Telting-Diaz, Electrochemical sensors. Anal. Chem. 74(12), 2781–2800 (2002). https://doi.org/10.1021/ac0202278
- H. Liang, M. Xu, Y. Zhu, L. Wang, Y. Xie et al., H2O2 ratiometric electrochemical sensors based on nanospheres derived from ferrocence-modified covalent organic frameworks. ACS Appl. Nano Mater. 3(1), 555–562 (2019). https://doi.org/10.1021/acsanm.9b02117
- H. Liang, L. Wang, Y. Yang, Y. Song, L. Wang, A novel biosensor based on multienzyme microcapsules constructed from covalent-organic framework. Biosens. Bioelectron. 193, 113553 (2021). https://doi.org/10.1016/j.bios.2021.113553
- N. Karimian, P. Hashemi, A. Afkhami, H. Bagheri, The principles of bipolar electrochemistry and its electroanalysis applications. Curr. Opin. Electrochem. 17, 30–37 (2019). https://doi.org/10.1016/j.coelec.2019.04.015
- A. Khanmohammadi, A. Jalili Ghazizadeh, P. Hashemi, A. Afkhami, F. Arduini et al., An overview to electrochemical biosensors and sensors for the detection of environmental contaminants. J. Iran. Chem. Soc. 17(10), 2429–2447 (2020). https://doi.org/10.1007/s13738-020-01940-z
- Y. Cao, J.J. Zhu, Recent progress in electrochemiluminescence of halide perovskites. Front. Chem. 9, 629830 (2021). https://doi.org/10.3389/fchem.2021.629830
- Y. Cao, Y. Zhou, Y. Lin, J.J. Zhu, Hierarchical metal-organic framework-confined CsPbBr3 quantum dots and aminated carbon dots: a new self-sustaining suprastructure for electrochemiluminescence bioanalysis. Anal. Chem. 93(3), 1818–1825 (2021). https://doi.org/10.1021/acs.analchem.0c04717
- T. Han, C. Ma, L. Wang, Y. Cao, H.Y. Chen et al., A novel electrochemiluminescence Janus emitter for dual-mode biosensing. Adv. Funct. Mater. 32(24), 2200863 (2022). https://doi.org/10.1002/adfm.202200863
- Y. Cao, J.L. Zhou, Y. Ma, Y. Zhou, J.J. Zhu, Recent progress of metal nanoclusters in electrochemiluminescence. Dalton Trans. 51(23), 8927–8937 (2022). https://doi.org/10.1039/d2dt00810f
- C. Ma, Y. Cao, X. Gou, J.J. Zhu, Recent progress in electrochemiluminescence sensing and imaging. Anal. Chem. 92(1), 431–454 (2020). https://doi.org/10.1021/acs.analchem.9b04947
- C. Zhang, M. Cui, J. Ren, Y. Xing, N. Li et al., Facile synthesis of novel spherical covalent organic frameworks integrated with Pt nanops and multiwalled carbon nanotubes as electrochemical probe for tanshinol drug detection. Chem. Eng. J. 401, 126025 (2020). https://doi.org/10.1016/j.cej.2020.126025
- Y. Chen, Y. Xie, X. Sun, Y. Wang, Y. Wang, Tunable construction of crystalline and shape-tailored Co3O4@TAPB-DMTP-COF composites for the enhancement of tert-butylhydroquinone electrocatalysis. Sens. Actuators B Chem. 331, 129438 (2021). https://doi.org/10.1016/j.snb.2021.129438
- J. Han, J. Yu, Y. Guo, L. Wang, Y. Song, COFBTLP-1/three-dimensional macroporous carbon electrode for simultaneous electrochemical detection o f Cd2+, Pb2+, Cu2+ and Hg2+. Sens. Actuators B Chem. 321, 128498 (2020). https://doi.org/10.1016/j.snb.2020.128498
- X.Y. Ji, K. Sun, Z.K. Liu, X. Liu, W. Dong et al., Identification of dynamic active sites among Cu species derived from MOFs@CuPc for electrocatalytic nitrate reduction reaction to ammonia. Nano-Micro Lett. 15(1), 110 (2023). https://doi.org/10.1007/s40820-023-01091-9
- N. Karimian, P. Hashemi, A. Khanmohammadi, A. Afkhami, H. Bagheri, The principles and recent applications of bioelectrocatalysis. Anal. Bioanal. Chem. Res. 7(3), 281–301 (2020). https://doi.org/10.22036/ABCR.2020.206676.1423
- M.M. Bordbar, A. Sheini, P. Hashemi, A. Hajian, H. Bagheri, Disposable paper-based biosensors for the point-of-care detection of hazardous contaminations-a review. Biosensors 11(9), 316 (2021). https://doi.org/10.3390/bios11090316
- Y. Gao, J. Wang, Y. Yang, J. Wang, C. Zhang et al., Engineering spin states of isolated copper species in a metal–organic framework improves urea electrosynthesis. Nano-Micro Lett. 15(1), 158 (2023). https://doi.org/10.1007/s40820-023-01127-0
- H. Fakhri, H. Bagheri, Highly efficient Zr-MOF@WO3/graphene oxide photocatalyst: synthesis, characterization and photodegradation of tetracycline and malathion. Mat. Sci. Semicon. Proc. 107, 104815 (2020). https://doi.org/10.1016/j.mssp.2019.104815
- N. Karimian, H. Fakhri, S. Amidi, A. Hajian, F. Arduini et al., A novel sensing layer based on metal-organic framework UiO-66 modified with TiO2-graphene oxide: application to rapid, sensitive and simultaneous determination of paraoxon and chlorpyrifos. New J. Chem. 43(6), 2600–2609 (2019). https://doi.org/10.1039/c8nj06208k
- S.M. Khoshfetrat, H. Khoshsafar, A. Afkhami, M.A. Mehrgardi, H. Bagheri, Enhanced visual wireless electrochemiluminescence immunosensing of prostate-specific antigen based on the luminol loaded into MIL-53(Fe)-NH2 accelerator and hydrogen evolution reaction mediation. Anal. Chem. 91(9), 6383–6390 (2019). https://doi.org/10.1021/acs.analchem.9b01506
- H. Khoshsafar, N. Karimian, T.A. Nguyen, H. Fakhri, A. Khanmohammadi et al., Enzymeless voltammetric sensor for simultaneous determination of parathion and paraoxon based on Nd-based metal-organic framework. Chemosphere 292, 133440 (2022). https://doi.org/10.1016/j.chemosphere.2021.133440
- B. Cao, H. Liu, X. Zhang, P. Zhang, Q. Zhu et al., MOF-derived ZnS nanodots/Ti3C2Tx mxene hybrids boosting superior lithium storage performance. Nano-Micro Lett. 13(1), 202 (2021). https://doi.org/10.1007/s40820-021-00728-x
- Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of mof-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13(1), 203 (2021). https://doi.org/10.1007/s40820-021-00726-z
- X. Huang, J. Wei, Y. Zhang, B. Qian, Q. Jia et al., Ultralight magnetic and dielectric aerogels achieved by metal-organic framework initiated gelation of graphene oxide for enhanced microwave absorption. Nano-Micro Lett. 14(1), 107 (2022). https://doi.org/10.1007/s40820-022-00851-3
- G. Nagaraju, S.C. Sekhar, B. Ramulu, S.K. Hussain, D. Narsimulu et al., Ternary MOF-based redox active sites enabled 3D-on-2D nanoarchitectured battery-type electrodes for high-energy-density supercapatteries. Nano-Micro Lett. 13(1), 17 (2020). https://doi.org/10.1007/s40820-020-00528-9
- Z. Cao, R. Momen, S. Tao, D. Xiong, Z. Song et al., Metal-organic framework materials for electrochemical supercapacitors. Nano-Micro Lett. 14(1), 181 (2022). https://doi.org/10.1007/s40820-022-00910-9
- J. Chen, D. Sheng, T. Ying, H. Zhao, J. Zhang et al., MoFs-based nitric oxide therapy for tendon regeneration. Nano-Micro Lett. 13(1), 23 (2020). https://doi.org/10.1007/s40820-020-00542-x
- X. He, Fundamental perspectives on the electrochemical water applications of metal-organic frameworks. Nano-Micro Lett. 15(1), 148 (2023). https://doi.org/10.1007/s40820-023-01124-3
- Y. Hu, H. Huang, D. Yu, X. Wang, L. Li et al., All-climate Aluminum-ion batteries based on binder-free mof-derived FeS2@C/CNT cathode. Nano-Micro Lett. 13(1), 159 (2021). https://doi.org/10.1007/s40820-021-00682-8
- J. Huang, P. Wu, Controlled assembly of luminescent lanthanide-organic frameworks via post-treatment of 3D-printed objects. Nano-Micro Lett. 13(1), 15 (2020). https://doi.org/10.1007/s40820-020-00543-w
- Y. Lu, R. Zhou, N. Wang, Y. Yang, Z. Zheng et al., Engineer nanoscale defects into selective channels: MOF-enhanced Li+ separation by porous layered double hydroxide membrane. Nano-Micro Lett. 15(1), 147 (2023). https://doi.org/10.1007/s40820-023-01101-w
- C. Li, Y. Ji, Y. Wang, C. Liu, Z. Chen et al., Applications of metal–organic frameworks and their derivatives in electrochemical CO2 reduction. Nano-Micro Lett. 15(1), 113 (2023). https://doi.org/10.1007/s40820-023-01092-8
- Y. Zhu, K. Yue, C. Xia, S. Zaman, H. Yang et al., Recent advances on MOF derivatives for non-noble metal oxygen electrocatalysts in zinc–air batteries. Nano-Micro Lett. 13(1), 137 (2021). https://doi.org/10.1007/s40820-021-00669-5
- X. Chen, L. Kong, J.A. Mehrez, C. Fan, W. Quan et al., Outstanding humidity chemiresistors based on imine-linked covalent organic framework films for human respiration monitoring. Nano-Micro Lett. 15(1), 149 (2023). https://doi.org/10.1007/s40820-023-01107-4
- R. Yuan, H.K. Li, H. He, Recent advances in metal/covalent organic framework-based electrochemical aptasensors for biosensing applications. Dalton Trans. 50(40), 14091–14104 (2021). https://doi.org/10.1039/d1dt02360h
- X. Zhao, P. Pachfule, A. Thomas, Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev. 50(12), 6871–6913 (2021). https://doi.org/10.1039/d0cs01569e
- X. Zhang, G. Li, D. Wu, B. Zhang, N. Hu et al., Recent advances in the construction of functionalized covalent organic frameworks and their applications to sensing. Biosens. Bioelectron. 145, 111699 (2019). https://doi.org/10.1016/j.bios.2019.111699
- B. Mohan, R. Kumari, Virender, G. Singh, K. Singh et al., Covalent organic frameworks (COFs) and metal–organic frameworks (MOFs) as electrochemical sensors for the efficient detection of pharmaceutical residues. Environ. Int. 175, 107928 (2023). https://doi.org/10.1016/j.envint.2023.107928
- X. Xu, Z. Zhang, R. Xiong, G. Lu, J. Zhang et al., Bending resistance covalent organic framework superlattice: “nano-hourglass”-induced charge accumulation for flexible in-plane micro-supercapacitors. Nano-Micro Lett. 15(1), 25 (2022). https://doi.org/10.1007/s40820-022-00997-0
- G. Yan, X. Sun, Y. Zhang, H. Li, H. Huang et al., Metal-free 2D/2D van der waals heterojunction based on covalent organic frameworks for highly efficient solar energy catalysis. Nano-Micro Lett. 15(1), 132 (2023). https://doi.org/10.1007/s40820-023-01100-x
- T. Zhang, C. Gao, W. Huang, Y. Chen, Y. Wang et al., Covalent organic framework as a novel electrochemical platform for highly sensitive and stable detection of lead. Talanta 188, 578–583 (2018). https://doi.org/10.1016/j.talanta.2018.06.032
- F. Pan, C. Tong, Z. Wang, H. Han, P. Liu et al., Nanocomposite based on graphene and intercalated covalent organic frameworks with hydrosulphonyl groups for electrochemical determination of heavy metal ions. Microchim. Acta 188(9), 295 (2021). https://doi.org/10.1007/s00604-021-04956-1
- H. Wang, J. Zhao, Y. Li, Y. Cao, Z. Zhu et al., Aqueous two-phase interfacial assembly of COF membranes for water desalination. Nano-Micro Lett. 14(1), 216 (2022). https://doi.org/10.1007/s40820-022-00968-5
- O. Yildirim, B. Derkus, Triazine-based 2D covalent organic frameworks improve the electrochemical performance of enzymatic biosensors. J. Mater. Sci. 55(7), 3034–3044 (2019). https://doi.org/10.1007/s10853-019-04254-5
- X. Liu, M. Hu, M. Wang, Y. Song, N. Zhou et al., Novel nanoarchitecture of Co-MOF-on-TPN-COF hybrid: ultralowly sensitive bioplatform of electrochemical aptasensor toward ampicillin. Biosens. Bioelectron. 123, 59–68 (2019). https://doi.org/10.1016/j.bios.2018.09.089
- Y. Cao, R. Wu, Y. Zhou, D. Jiang, W. Zhu, A bioinspired photocatalysis and electrochemiluminescence scaffold for simultaneous degradation and in situ evaluation. Adv. Funct. Mater. 32(31), 2203005 (2022). https://doi.org/10.1002/adfm.202203005
- J.L. Zhang, L.Y. Yao, Y. Yang, W.B. Liang, R. Yuan et al., Conductive covalent organic frameworks with conductivity- and pre-reduction-enhanced electrochemiluminescence for ultrasensitive biosensor construction. Anal. Chem. 94(8), 3685–3692 (2022). https://doi.org/10.1021/acs.analchem.1c05436
- Y.J. Li, W.R. Cui, Q.Q. Jiang, Q. Wu, R.P. Liang et al., A general design approach toward covalent organic frameworks for highly efficient electrochemiluminescence. Nat. Commun. 12(1), 4735 (2021). https://doi.org/10.1038/s41467-021-25013-8
- Y. Sun, G.I.N. Waterhouse, L. Xu, X. Qiao, Z. Xu, Three-dimensional electrochemical sensor with covalent organic framework decorated carbon nanotubes signal amplification for the detection of furazolidone. Sens. Actuators B Chem. 321, 128501 (2020). https://doi.org/10.1016/j.snb.2020.128501
- L. Wang, Y. Song, Y. Luo, L. Wang, A novel covalent organic framework with multiple adsorption sites for removal of Hg2+ and sensitive detection of nitrofural. J. Ind. Eng. Chem. 106, 374–381 (2022). https://doi.org/10.1016/j.jiec.2021.11.014
- D. Li, H. Zhao, G. Wang, R. Liu, L. Bai, Room-temperature ultrasonic-assisted self-assembled synthesis of silkworm cocoon-like COFs@GCNTs composite for sensitive detection of diuron in food samples. Food Chem. 418, 135999 (2023). https://doi.org/10.1016/j.foodchem.2023.135999
- B. Liu, H. Guo, L. Sun, Z. Pan, L. Peng et al., Electrochemical sensor based on covalent organic frameworks/MWCNT for simultaneous detection of catechol and hydroquinone. Colloids Surf. A 639, 128335 (2022). https://doi.org/10.1016/j.colsurfa.2022.128335
- H. Guo, B. Liu, Z. Pan, L. Sun, L. Peng et al., Electrochemical determination of dopamine and uric acid with covalent organic frameworks and Ox-MWCNT co-modified glassy carbon electrode. Colloids Surf. A 648, 129316 (2022). https://doi.org/10.1016/j.colsurfa.2022.129316
- Z. Pan, Y. Wei, H. Guo, B. Liu, L. Sun et al., Sensitive detection of sulfamethoxazole by an electrochemical sensing platform with a covalent organic framework in situ grown on polyaniline. Microporous Mesoporous Mater. 348, 112409 (2023). https://doi.org/10.1016/j.micromeso.2022.112409
- S. Lu, S. Wang, P. Wu, D. Wang, J. Yi et al., A composite prepared from covalent organic framework and gold nanops for the electrochemical determination of enrofloxacin. Adv. Powder Technol. 32(6), 2106–2115 (2021). https://doi.org/10.1016/j.apt.2021.04.025
- T. Zhang, Y. Chen, W. Huang, Y. Wang, X. Hu, A novel AuNPs-doped COFs composite as electrochemical probe for chlorogenic acid detection with enhanced sensitivity and stability. Sens. Actuators B Chem. 276, 362–369 (2018). https://doi.org/10.1016/j.snb.2018.08.132
- Q. Guan, H. Guo, R. Xue, M. Wang, N. Wu et al., Electrochemical sensing platform based on covalent organic framework materials and gold nanops for high sensitivity determination of theophylline and caffeine. Microchim. Acta 188(3), 85 (2021). https://doi.org/10.1007/s00604-021-04744-x
- X. Zhang, J. Zhu, Z. Wu, W. Wen, X. Zhang et al., Electrochemical sensor based on confined synthesis of gold nanops@covalent organic frameworks for the detection of bisphenol A. Anal. Chim. Acta 1239, 340743 (2023). https://doi.org/10.1016/j.aca.2022.340743
- H. Zhao, K. Shi, C. Zhang, J. Ren, M. Cui et al., Spherical COFs decorated with gold nanops and multiwalled carbon nanotubes as signal amplifier for sensitive electrochemical detection of doxorubicin. Microchem. J. 182, 107865 (2022). https://doi.org/10.1016/j.microc.2022.107865
- R. Chen, X. Peng, Y. Song, Y. Du, A paper-based electrochemical sensor based on PtNP/COFTFPB-DHzDS@rGO for sensitive detection of furazolidone. Biosensors 12(10), 904 (2022). https://doi.org/10.3390/bios12100904
- Q. Guan, H. Guo, R. Xue, M. Wang, X. Zhao et al., Electrochemical sensor based on covalent organic frameworks-MWCNT-NH2/AuNPs for simultaneous detection of dopamine and uric acid. J. Electroanal. Chem. 880, 114932 (2021). https://doi.org/10.1016/j.jelechem.2020.114932
- Z. Pan, H. Guo, B. Liu, L. Sun, Y. Chen et al., A sensitive electrochemical sensing platform based on nitrogen-rich covalent organic framework for simultaneous detection of guanine and adenine. Microporous Mesoporous Mater. 340, 112030 (2022). https://doi.org/10.1016/j.micromeso.2022.112030
- W. Wei, S. Zhou, D.D. Ma, Q. Li, M. Ran et al., Ultrathin conductive bithiazole-based covalent organic framework nanosheets for highly efficient electrochemical biosensing. Adv. Funct. Mater. 33(36), 2302917 (2023). https://doi.org/10.1002/adfm.202302917
- X. Lin, Y. Deng, Y. He, J. Chen, S. Hu, Construction of hydrophilic N, O-rich carboxylated triazine-covalent organic frameworks for the application in selective simultaneous electrochemical detection. Appl. Surf. Sci. 545, 149047 (2021). https://doi.org/10.1016/j.apsusc.2021.149047
- X. Tan, Y. Fan, S. Wang, Y. Wu, W. Shi, Ultrasensitive and highly selective electrochemical sensing of sodium picrate by dihydroxylatopillar[6]arene-modified gold nanops and cationic pillar[6]arene functionalized covalent organic framework. Electrochim. Acta 335, 135706 (2020). https://doi.org/10.1016/j.electacta.2020.135706
- Y. Xiao, N. Wu, L. Wang, L. Chen, A novel paper-based electrochemical biosensor based on N, O-rich covalent organic frameworks for carbaryl detection. Biosensors 12(10), 899 (2022). https://doi.org/10.3390/bios12100899
- L. Wang, H. Liang, M. Xu, L. Wang, Y. Xie et al., Ratiometric electrochemical biosensing based on double-enzymes loaded on two-dimensional dual-pore COFETTA-TPAL. Sens. Actuators B Chem. 298, 126859 (2019). https://doi.org/10.1016/j.snb.2019.126859
- X. Zha, X. Sun, H. Chu, Y. Wang, Synthesis of bimetallic covalent organic framework nanocomposite for enhanced electrochemical detection of gallic acid. Colloids Surf. A 651, 129748 (2022). https://doi.org/10.1016/j.colsurfa.2022.129748
- H. Chu, X. Sun, X. Zha, Y. Zhang, Y. Wang, Synthesis of core-shell structured metal oxide@covalent organic framework composites as a novel electrochemical platform for dopamine sensing. Colloids Surf. A 648, 129238 (2022). https://doi.org/10.1016/j.colsurfa.2022.129238
- Y. Xie, M. Xu, L. Wang, H. Liang, L. Wang et al., Iron-porphyrin-based covalent-organic frameworks for electrochemical sensing H2O2 and pH. Mater. Sci. Eng. C 112, 110864 (2020). https://doi.org/10.1016/j.msec.2020.110864
- C. Zhang, L. Fan, J. Ren, M. Cui, N. Li et al., Facile synthesis of surface functionalized Pd2+@P-CDP/COFs for highly sensitive detection of norfloxacin drug based on the host-guest interaction. J. Pharm. Biomed. Anal. 219, 114956 (2022). https://doi.org/10.1016/j.jpba.2022.114956
- L. Wang, Y. Xie, Y. Yang, H. Liang, L. Wang et al., Electroactive covalent organic frameworks/carbon nanotubes composites for electrochemical sensing. ACS Appl. Nano Mater. 3(2), 1412–1419 (2020). https://doi.org/10.1021/acsanm.9b02257
- N. Wu, L. Wang, Y. Xie, Y. Du, Y. Song et al., Double signal ratiometric electrochemical riboflavin sensor based on macroporous carbon/electroactive thionine-contained covalent organic framework. J. Colloids Interface Sci. 608(1), 219–226 (2022). https://doi.org/10.1016/j.jcis.2021.09.162
- M. Xu, L. Wang, Y. Xie, Y. Song, L. Wang, Ratiometric electrochemical sensing and biosensing based on multiple redox-active state COFDHTA-TTA. Sens. Actuators B Chem. 281, 1009–1015 (2019). https://doi.org/10.1016/j.snb.2018.11.032
- Y.H. Pang, Y.Y. Wang, X.F. Shen, J.Y. Qiao, Covalent organic framework modified carbon cloth for ratiometric electrochemical sensing of bisphenol A and S. Microchim. Acta 189(5), 189 (2022). https://doi.org/10.1007/s00604-022-05297-3
- M.R. Jalali Sarvestani, T. Madrakian, A. Afkhami, Ultra-trace levels voltammetric determination of Pb2+ in the presence of Bi3+ at food samples by a Fe3O4@schiff base network1 modified glassy carbon electrode. Talanta 250, 123716 (2022). https://doi.org/10.1016/j.talanta.2022.123716
- L. Wang, Y. Yang, H. Liang, N. Wu, X. Peng et al., A novel N, S-rich COF and its derived hollow N, S-doped carbon@Pd nanorods for electrochemical detection of Hg2+ and paracetamol. J. Hazard. Mater. 409, 124528 (2021). https://doi.org/10.1016/j.jhazmat.2020.124528
- L. Pei, J. Su, H. Yang, Y. Wu, Y. Du et al., A novel covalent-organic framework for highly sensitive detection of Cd2+, Pb2+, Cu2+ and Hg2+. Microporous Mesoporous Mater. 333, 111742 (2022). https://doi.org/10.1016/j.micromeso.2022.111742
- J. Han, L. Pei, Y. Du, Y. Zhu, Tripolycyanamide-2,4,6-triformyl pyrogallol covalent organic frameworks with many coordination sites for detection and removal of heavy metal ions. J. Ind. Eng. Chem. 107, 53–60 (2022). https://doi.org/10.1016/j.jiec.2021.11.027
- L. Yu, L. Sun, Q. Zhang, J. Zhang, B. Yang et al., Highly efficient determination of Mn2+ in chinese liquor by using a novel electrochemical sensor based on TiO2-NH2@covalent organic framework nanocomposites. Anal. Methods 15(21), 2622–2630 (2023). https://doi.org/10.1039/d3ay00222e
- S. Feng, M. Yan, Y. Xue, J. Huang, X. Yang, Electrochemical immunosensor for cardiac troponin I detection based on covalent organic framework and enzyme-catalyzed signal amplification. Anal. Chem. 93(40), 13572–13579 (2021). https://doi.org/10.1021/acs.analchem.1c02636
- T. Zhang, N. Ma, A. Ali, Q. Wei, D. Wu et al., Electrochemical ultrasensitive detection of cardiac troponin I using covalent organic frameworks for signal amplification. Biosens. Bioelectron. 119, 176–181 (2018). https://doi.org/10.1016/j.bios.2018.08.020
- H. Liang, H. Xu, Y. Zhao, J. Zheng, H. Zhao et al., Ultrasensitive electrochemical sensor for prostate specific antigen detection with a phosphorene platform and magnetic covalent organic framework signal amplifier. Biosens. Bioelectron. 144, 111691 (2019). https://doi.org/10.1016/j.bios.2019.111691
- T.Z. Liu, R. Hu, X. Zhang, K.L. Zhang, Y. Liu et al., Metal-organic framework nanomaterials as novel signal probes for electron transfer mediated ultrasensitive electrochemical immunoassay. Anal. Chem. 88(24), 12516–12523 (2016). https://doi.org/10.1021/acs.analchem.6b04191
- H. Boyacıoğlu, B.B. Yola, C. Karaman, O. Karaman, N. Atar et al., A novel electrochemical kidney injury molecule-1 (KIM-1) immunosensor based covalent organic frameworks-gold nanops composite and porous NiCo2S4@CeO2 microspheres: the monitoring of acute kidney injury. Appl. Surf. Sci. 578, 152093 (2022). https://doi.org/10.1016/j.apsusc.2021.152093
- Y. Chen, S. Wang, J. Ren, H. Zhao, M. Cui et al., Electrocatalysis of copper sulfide nanop-engineered covalent organic frameworks for ratiometric electrochemical detection of amyloid-beta oligomer. Anal. Chem. 94(32), 11201–11208 (2022). https://doi.org/10.1021/acs.analchem.2c01602
- H. Liu, S. Ma, G. Ning, R. Zhang, H. Liang et al., A “peptide-target-aptamer” electrochemical biosensor for norovirus detection using a black phosphorous nanosheet@Ti3C2-Mxene nanohybrid and magnetic covalent organic framework. Talanta 258, 124433 (2023). https://doi.org/10.1016/j.talanta.2023.124433
- Z. Chen, M. Yang, Z. Li, W. Liao, B. Chen et al., Highly sensitive and convenient aptasensor based on Au NPs@Ce-TpBpy COF for quantitative determination of zearalenone. RSC Adv. 12(27), 17312–17320 (2022). https://doi.org/10.1039/d2ra02093a
- Z. Song, J. Song, F. Gao, X. Chen, Q. Wang et al., Novel electroactive ferrocene-based covalent organic frameworks towards electrochemical label-free aptasensors for the detection of cardiac troponin i. Sens. Actuators B Chem. 368, 132205 (2022). https://doi.org/10.1016/j.snb.2022.132205
- Q.Q. Zhu, W.W. Zhang, H.W. Zhang, R. Yuan, H. He, Elaborately manufacturing an electrochemical aptasensor based on gold nanop/COF composites for amplified detection performance. J. Mater. Chem. C 8(47), 16984–16991 (2020). https://doi.org/10.1039/d0tc04202a
- Q.Q. Zhu, H.K. Li, X.L. Sun, Z.Y. Han, J. Sun et al., Rational incorporation of covalent organic framework/carbon nanotube (COF/CNT) composites for electrochemical aptasensing of ultra-trace atrazine. J. Mater. Chem. C 9(25), 8043–8050 (2021). https://doi.org/10.1039/d1tc01506k
- M. Wang, M. Hu, J. Liu, C. Guo, D. Peng et al., Covalent organic framework-based electrochemical aptasensors for the ultrasensitive detection of antibiotics. Biosens. Bioelectron. 132, 8–16 (2019). https://doi.org/10.1016/j.bios.2019.02.040
- X. Yan, Y. Song, J. Liu, N. Zhou, C. Zhang et al., Two-dimensional porphyrin-based covalent organic framework: a novel platform for sensitive epidermal growth factor receptor and living cancer cell detection. Biosens. Bioelectron. 126, 734–742 (2019). https://doi.org/10.1016/j.bios.2018.11.047
- Z. He, J. Goulas, E. Parker, Y. Sun, X.D. Zhou et al., Review on covalent organic frameworks and derivatives for electrochemical and photocatalytic CO2 reduction. Catal. Today 409, 103–118 (2023). https://doi.org/10.1016/j.cattod.2022.04.021
- T. Zhang, Y. Song, Y. Xing, Y. Gu, X. Yan et al., The synergistic effect of Au-COF nanosheets and artificial peroxidase Au@ZIF-8(NiPd) rhombic dodecahedra for signal amplification for biomarker detection. Nanoscale 11(42), 20221–20227 (2019). https://doi.org/10.1039/c9nr07190c
- Y. Chen, W. Li, X.H. Wang, R.Z. Gao, A.N. Tang et al., Green synthesis of covalent organic frameworks based on reaction media. Mater. Chem. Front. 5(3), 1253–1267 (2021). https://doi.org/10.1039/d0qm00801j
- H. Wang, Z. Zeng, P. Xu, L. Li, G. Zeng et al., Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chem. Soc. Rev. 48(2), 488–516 (2019). https://doi.org/10.1039/c8cs00376a
- X. Huang, L. Li, S. Zhao, L. Tong, Z. Li et al., MOF-like 3D graphene-based catalytic membrane fabricated by one-step laser scribing for robust water purification and green energy production. Nano-Micro Lett. 14(1), 174 (2022). https://doi.org/10.1007/s40820-022-00923-4
- J. Qiao, X. Zhang, C. Liu, L. Lyu, Y. Yang et al., Non-magnetic bimetallic MOF-derived porous carbon-wrapped TiO2/ZrTiO4 composites for efficient electromagnetic wave absorption. Nano-Micro Lett. 13(1), 75 (2021). https://doi.org/10.1007/s40820-021-00606-6
- C. Qiu, K. Qian, J. Yu, M. Sun, S. Cao et al., MOF-transformed In2O3-x@C nanocorn electrocatalyst for efficient CO2 reduction to HCOOH. Nano-Micro Lett. 14(1), 167 (2022). https://doi.org/10.1007/s40820-022-00913-6
- V. Schroeder, S. Savagatrup, M. He, S. Lin, T.M. Swager, Carbon nanotube chemical sensors. Chem. Rev. 119(1), 599–663 (2019). https://doi.org/10.1021/acs.chemrev.8b00340
- Z. Wang, L. Dong, W. Huang, H. Jia, Q. Zhao et al., Simultaneously regulating uniform Zn2+ flux and electron conduction by mof/rgo interlayers for high-performance Zn anodes. Nano-Micro Lett. 13(1), 73 (2021). https://doi.org/10.1007/s40820-021-00594-7
- H. Chu, X. Sun, X. Zha, S.U. Khan, Y. Wang, Ultrasensitive electrochemical detection of butylated hydroxy anisole via metalloporphyrin covalent organic frameworks possessing variable catalytic active sites. Biosensors 12(11), 975 (2022). https://doi.org/10.3390/bios12110975
- T. Yang, R. Yu, Y. Yan, H. Zeng, S. Luo et al., A review of ratiometric electrochemical sensors: from design schemes to future prospects. Sens. Actuators B Chem. 274, 501–516 (2018). https://doi.org/10.1016/j.snb.2018.07.138
- Y. Cao, C. Ma, J.J. Zhu, DNA technology-assisted signal amplification strategies in electrochemiluminescence bioanalysis. J. Anal. Test. 5(2), 95–111 (2021). https://doi.org/10.1007/s41664-021-00175-y
- J. Cao, P. Ouyang, S. Yu, F. Shi, C. Ren et al., Hedgehog-like Bi2S3 nanostructures: a novel composite soft template route to the synthesis and sensitive electrochemical immunoassay of the liver cancer biomarker. Chem. Commun. 57(14), 1766–1769 (2021). https://doi.org/10.1039/d0cc07572h
- T. Han, Y. Cao, H.Y. Chen, J.J. Zhu, Versatile porous nanomaterials for electrochemiluminescence biosensing: recent advances and future perspective. J. Electroanal. Chem. 902, 115821 (2021). https://doi.org/10.1016/j.jelechem.2021.115821
- Y. Zhang, B.S. Lai, M. Juhas, Recent advances in aptamer discovery and applications. Molecules 24(5), 941 (2019). https://doi.org/10.3390/molecules24050941
- Y.W. Zhang, Y. Cao, C.J. Mao, D. Jiang, W. Zhu, An iron(III)-based metal-organic gel-catalyzed dual electrochemiluminescence system for cytosensing and in situ evaluation of the VEGF165 subtype. Anal. Chem. 94(9), 4095–4102 (2022). https://doi.org/10.1021/acs.analchem.2c00032
- S.M. Khoshfetrat, K. Fasihi, F. Moradnia, H. Kamil Zaidan, E. Sanchooli, A label-free multicolor colorimetric and fluorescence dual mode biosensing of HIV-1 DNA based on the bifunctional NiFe2O4@UiO-66 nanozyme. Anal. Chim. Acta 1252, 341073 (2023). https://doi.org/10.1016/j.aca.2023.341073
- S.M. Khoshfetrat, P.S. Dorraji, L. Fotouhi, M. Hosseini, F. Khatami et al., Enhanced electrochemiluminescence biosensing of gene-specific methylation in thyroid cancer patients’ plasma based integrated graphitic carbon nitride-encapsulated metal-organic framework nanozyme optimized by central composite design. Sens. Actuators B Chem. 364, 131895 (2022). https://doi.org/10.1016/j.snb.2022.131895
- S.M. Khoshfetrat, P. Seyed Dorraji, M. Shayan, F. Khatami, K. Omidfar, Smartphone-based electrochemiluminescence for visual simultaneous detection of RASSF1A and SLC5A8 tumor suppressor gene methylation in thyroid cancer patient plasma. Anal. Chem. 94(22), 8005–8013 (2022). https://doi.org/10.1021/acs.analchem.2c01132
- A. Ahmadi, S.M. Khoshfetrat, Z. Mirzaeizadeh, S. Kabiri, J. Rezaie et al., Electrochemical immunosensor for determination of cardiac troponin i using two-dimensional metal-organic framework/Fe3O4–COOH nanosheet composites loaded with thionine and pCTAB/DES modified electrode. Talanta 237, 122911 (2022). https://doi.org/10.1016/j.talanta.2021.122911
- S.M. Khoshfetrat, P. Hashemi, A. Afkhami, A. Hajian, H. Bagheri, Cascade electrochemiluminescence-based integrated graphitic carbon nitride-encapsulated metal-organic framework nanozyme for prostate-specific antigen biosensing. Sens. Actuators B Chem. 348, 130658 (2021). https://doi.org/10.1016/j.snb.2021.130658
- H. Zhao, F. Wang, L. Cui, X. Xu, X. Han et al., Composition optimization and microstructure design in mofs-derived magnetic carbon-based microwave absorbers: a review. Nano-Micro Lett. 13(1), 208 (2021). https://doi.org/10.1007/s40820-021-00734-z
- Z. Zhang, Z. Cai, Z. Wang, Y. Peng, L. Xia et al., A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 13(1), 56 (2021). https://doi.org/10.1007/s40820-020-00582-3
- X. Zhang, J. Qiao, Y. Jiang, F. Wang, X. Tian et al., Carbon-based MOF derivatives: emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett. 13(1), 135 (2021). https://doi.org/10.1007/s40820-021-00658-8
- R. Luo, H. Lv, Q. Liao, N. Wang, J. Yang et al., Intrareticular charge transfer regulated electrochemiluminescence of donor-acceptor covalent organic frameworks. Nat. Commun. 12(1), 6808 (2021). https://doi.org/10.1038/s41467-021-27127-5
- W.R. Cui, Y.J. Li, Q.Q. Jiang, Q. Wu, R.P. Liang et al., Tunable covalent organic framework electrochemiluminescence from non-electroluminescent monomers. Cell Rep. Phys. Sci. 3(2), 100630 (2022). https://doi.org/10.1016/j.xcrp.2021.100630
- W.J. Zeng, K. Wang, W.B. Liang, Y.Q. Chai, R. Yuan et al., Covalent organic frameworks as micro-reactors: confinement-enhanced electrochemiluminescence. Chem. Sci. 11(21), 5410–5414 (2020). https://doi.org/10.1039/d0sc01817a
- Y. Cao, W. Zhu, H. Wei, C. Ma, Y. Lin et al., Stable and monochromatic all-inorganic halide perovskite assisted by hollow carbon nitride nanosphere for ratiometric electrochemiluminescence bioanalysis. Anal. Chem. 92(5), 4123–4130 (2020). https://doi.org/10.1021/acs.analchem.0c00070
- Y.J. Li, W.R. Cui, Q.Q. Jiang, R.P. Liang, X.J. Li et al., Arousing electrochemiluminescence out of non-electroluminescent monomers within covalent organic frameworks. ACS Appl. Mater. Interfaces 13(40), 47921–47931 (2021). https://doi.org/10.1021/acsami.1c12958
- W.R. Cui, Y.J. Li, Q.Q. Jiang, Q. Wu, Q.X. Luo et al., Covalent organic frameworks as advanced uranyl electrochemiluminescence monitoring platforms. Anal. Chem. 93(48), 16149–16157 (2021). https://doi.org/10.1021/acs.analchem.1c03907
- S. Carrara, A. Aliprandi, C.F. Hogan, L. De Cola, Aggregation-induced electrochemiluminescence of platinum(II) complexes. J. Am. Chem. Soc. 139(41), 14605–14610 (2017). https://doi.org/10.1021/jacs.7b07710
- X. Wei, M.J. Zhu, Z. Cheng, M. Lee, H. Yan et al., Aggregation-induced electrochemiluminescence of carboranyl carbazoles in aqueous media. Angew. Chem. Int. Ed. 58(10), 3162–3166 (2019). https://doi.org/10.1002/anie.201900283
- T. Han, Y. Cao, J. Wang, J. Jiao, Y. Song et al., Crystallization-induced enhanced electrochemiluminescence from a new tris(bipyridine)ruthenium(II) derivative. Adv. Funct. Mater. 33(12), 2212394 (2023). https://doi.org/10.1002/adfm.202212394
- Q.X. Luo, W.R. Cui, Y.J. Li, Y.J. Cai, X.L. Mao et al., Construction of sp2 carbon-conjugated covalent organic frameworks for framework-induced electrochemiluminescence. ACS Appl. Electron. Mater. 3(10), 4490–4497 (2021). https://doi.org/10.1021/acsaelm.1c00636
- S. Li, X. Ma, C. Pang, M. Wang, G. Yin et al., Novel chloramphenicol sensor based on aggregation-induced electrochemiluminescence and nanozyme amplification. Biosens. Bioelectron. 176, 112944 (2021). https://doi.org/10.1016/j.bios.2020.112944
- S. Li, C. Pang, X. Ma, Y. Wu, M. Wang et al., Aggregation-induced electrochemiluminescence and molecularly imprinted polymer based sensor with Fe3O4@Pt nanop amplification for ultrasensitive ciprofloxacin detection. Microchem. J. 178, 107345 (2022). https://doi.org/10.1016/j.microc.2022.107345
- J.L. Zhang, Y. Yang, W.B. Liang, L.Y. Yao, R. Yuan et al., Highly stable covalent organic framework nanosheets as a new generation of electrochemiluminescence emitters for ultrasensitive microrna detection. Anal. Chem. 93(6), 3258–3265 (2021). https://doi.org/10.1021/acs.analchem.0c04931
- L. Cui, C.Y. Zhu, J. Hu, X.M. Meng, M. Jiang et al., Construction of a dual-mode biosensor for electrochemiluminescent and electrochemical sensing of alkaline phosphatase. Sens. Actuators B Chem. 374, 132779 (2023). https://doi.org/10.1016/j.snb.2022.132779
- Y. Yang, H. Jiang, J. Li, J. Zhang, S.Z. Gao et al., Highly stable Ru-complex-based metal-covalent organic frameworks as novel type of electrochemiluminescence emitters for ultrasensitive biosensing. Mater. Horiz. 10, 3005–3013 (2023). https://doi.org/10.1039/d3mh00260h
- L. Song, W. Gao, S. Wang, H. Bi, S. Deng et al., Construction of an aminal-linked covalent organic framework-based electrochemiluminescent sensor for enantioselective sensing phenylalanine. Sens. Actuators B Chem. 373, 132751 (2022). https://doi.org/10.1016/j.snb.2022.132751
- L. Song, W. Gao, Q. Han, Y. Huang, L. Cui et al., Construction of an aggregation-induced electrochemiluminescent sensor based on an aminal-linked covalent organic framework for sensitive detection of glutathione in human serum. Chem. Commun. 58(75), 10524–10527 (2022). https://doi.org/10.1039/d2cc03753j
- X.L. Mao, Q.X. Luo, Y.J. Cai, X. Liu, Q.Q. Jiang et al., Structural isomerism of covalent organic frameworks causing different electrochemiluminescence effects and its application for the detection of arsenic. Anal. Chem. 95(28), 10803–10811 (2023). https://doi.org/10.1021/acs.analchem.3c02082
- Q.Q. Jiang, Y.J. Li, Q. Wu, X. Wang, Q.X. Luo et al., Guest molecular assembly strategy in covalent organic frameworks for electrochemiluminescence sensing of uranyl. Anal. Chem. 95(22), 8696–8705 (2023). https://doi.org/10.1021/acs.analchem.3c01299
- Q.X. Luo, Y.J. Cai, X.L. Mao, Y.J. Li, C.R. Zhang et al., Tuned-potential covalent organic framework electrochemiluminescence platform for lutetium analysis. J. Electroanal. Chem. 923, 116831 (2022). https://doi.org/10.1016/j.jelechem.2022.116831
- X. Ma, C. Pang, S. Li, Y. Xiong, J. Li et al., Synthesis of Zr-coordinated amide porphyrin-based two-dimensional covalent organic framework at liquid–liquid interface for electrochemical sensing of tetracycline. Biosens. Bioelectron. 146, 111734 (2019). https://doi.org/10.1016/j.bios.2019.111734
- L. Li, W. Zhao, Y. Wang, X. Liu, P. Jiang et al., Gold nanocluster-confined covalent organic frameworks as bifunctional probes for electrochemiluminescence and colorimetric dual-response sensing of Pb2+. J. Hazard. Mater. 457, 131558 (2023). https://doi.org/10.1016/j.jhazmat.2023.131558
- R. Ma, J. Jiang, Y. Ya, Y. Lin, Y. Zhou et al., A carbon dot-based nanoscale covalent organic framework as a new emitter combined with a CRISPR/Cas12a-mediated electrochemiluminescence biosensor for ultrasensitive detection of bisphenol a. Analyst 148(6), 1362–1370 (2023). https://doi.org/10.1039/d3an00024a
- L. Shen, Y.W. Wang, H.Y. Shan, J. Chen, A.J. Wang et al., Covalent organic framework linked with amination luminol derivative as enhanced ECL luminophore for ultrasensitive analysis of cytochrome C. Anal. Methods 14(46), 4767–4774 (2022). https://doi.org/10.1039/d2ay01208a
References
A.P. Côté, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger et al., Porous, crystalline, covalent organic frameworks. Science 310(5751), 1166–1170 (2005). https://doi.org/10.1126/science.1120411
K. Geng, T. He, R. Liu, S. Dalapati, K.T. Tan et al., Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120(16), 8814–8933 (2020). https://doi.org/10.1021/acs.chemrev.9b00550
N. Huang, P. Wang, D. Jiang, Covalent organic frameworks: a materials platform for structural and functional designs. Nat. Rev. Mater. 1(10), 16068 (2016). https://doi.org/10.1038/natrevmats.2016.68
H. Xu, J. Gao, D. Jiang, Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 7(11), 905–912 (2015). https://doi.org/10.1038/nchem.2352
Y. Jin, Y. Hu, W. Zhang, Tessellated multiporous two-dimensional covalent organic frameworks. Nat. Rev. Chem. 1(7), 0056 (2017). https://doi.org/10.1038/s41570-017-0056
P. Pachfule, A. Acharjya, J. Roeser, T. Langenhahn, M. Schwarze et al., Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J. Am. Chem. Soc. 140(4), 1423–1427 (2018). https://doi.org/10.1021/jacs.7b11255
Y. Xiong, Q. Liao, Z. Huang, X. Huang, C. Ke et al., Ultrahigh responsivity photodetectors of 2D covalent organic frameworks integrated on graphene. Adv. Mater. 32(9), 1907242 (2020). https://doi.org/10.1002/adma.201907242
E. Vitaku, C.N. Gannett, K.L. Carpenter, L. Shen, H.D. Abruña et al., Phenazine-based covalent organic framework cathode materials with high energy and power densities. J. Am. Chem. Soc. 142(1), 16–20 (2020). https://doi.org/10.1021/jacs.9b08147
S. Karak, K. Dey, A. Torris, A. Halder, S. Bera et al., Inducing disorder in order: hierarchically porous covalent organic framework nanostructures for rapid removal of persistent organic pollutants. J. Am. Chem. Soc. 141(18), 7572–7581 (2019). https://doi.org/10.1021/jacs.9b02706
Q.Q. Jiang, Y.J. Li, Q. Wu, R.P. Liang, X. Wang et al., Molecular insertion: a master key to unlock smart photoelectric responses of covalent organic frameworks. Small 19, e2302254 (2023). https://doi.org/10.1002/smll.202302254
J. Chang, C. Li, X. Wang, D. Li, J. Zhang et al., Quasi-three-dimensional cyclotriphosphazene-based covalent organic framework nanosheet for efficient oxygen reduction. Nano-Micro Lett. 15(1), 159 (2023). https://doi.org/10.1007/s40820-023-01111-8
E. Bakker, M. Telting-Diaz, Electrochemical sensors. Anal. Chem. 74(12), 2781–2800 (2002). https://doi.org/10.1021/ac0202278
H. Liang, M. Xu, Y. Zhu, L. Wang, Y. Xie et al., H2O2 ratiometric electrochemical sensors based on nanospheres derived from ferrocence-modified covalent organic frameworks. ACS Appl. Nano Mater. 3(1), 555–562 (2019). https://doi.org/10.1021/acsanm.9b02117
H. Liang, L. Wang, Y. Yang, Y. Song, L. Wang, A novel biosensor based on multienzyme microcapsules constructed from covalent-organic framework. Biosens. Bioelectron. 193, 113553 (2021). https://doi.org/10.1016/j.bios.2021.113553
N. Karimian, P. Hashemi, A. Afkhami, H. Bagheri, The principles of bipolar electrochemistry and its electroanalysis applications. Curr. Opin. Electrochem. 17, 30–37 (2019). https://doi.org/10.1016/j.coelec.2019.04.015
A. Khanmohammadi, A. Jalili Ghazizadeh, P. Hashemi, A. Afkhami, F. Arduini et al., An overview to electrochemical biosensors and sensors for the detection of environmental contaminants. J. Iran. Chem. Soc. 17(10), 2429–2447 (2020). https://doi.org/10.1007/s13738-020-01940-z
Y. Cao, J.J. Zhu, Recent progress in electrochemiluminescence of halide perovskites. Front. Chem. 9, 629830 (2021). https://doi.org/10.3389/fchem.2021.629830
Y. Cao, Y. Zhou, Y. Lin, J.J. Zhu, Hierarchical metal-organic framework-confined CsPbBr3 quantum dots and aminated carbon dots: a new self-sustaining suprastructure for electrochemiluminescence bioanalysis. Anal. Chem. 93(3), 1818–1825 (2021). https://doi.org/10.1021/acs.analchem.0c04717
T. Han, C. Ma, L. Wang, Y. Cao, H.Y. Chen et al., A novel electrochemiluminescence Janus emitter for dual-mode biosensing. Adv. Funct. Mater. 32(24), 2200863 (2022). https://doi.org/10.1002/adfm.202200863
Y. Cao, J.L. Zhou, Y. Ma, Y. Zhou, J.J. Zhu, Recent progress of metal nanoclusters in electrochemiluminescence. Dalton Trans. 51(23), 8927–8937 (2022). https://doi.org/10.1039/d2dt00810f
C. Ma, Y. Cao, X. Gou, J.J. Zhu, Recent progress in electrochemiluminescence sensing and imaging. Anal. Chem. 92(1), 431–454 (2020). https://doi.org/10.1021/acs.analchem.9b04947
C. Zhang, M. Cui, J. Ren, Y. Xing, N. Li et al., Facile synthesis of novel spherical covalent organic frameworks integrated with Pt nanops and multiwalled carbon nanotubes as electrochemical probe for tanshinol drug detection. Chem. Eng. J. 401, 126025 (2020). https://doi.org/10.1016/j.cej.2020.126025
Y. Chen, Y. Xie, X. Sun, Y. Wang, Y. Wang, Tunable construction of crystalline and shape-tailored Co3O4@TAPB-DMTP-COF composites for the enhancement of tert-butylhydroquinone electrocatalysis. Sens. Actuators B Chem. 331, 129438 (2021). https://doi.org/10.1016/j.snb.2021.129438
J. Han, J. Yu, Y. Guo, L. Wang, Y. Song, COFBTLP-1/three-dimensional macroporous carbon electrode for simultaneous electrochemical detection o f Cd2+, Pb2+, Cu2+ and Hg2+. Sens. Actuators B Chem. 321, 128498 (2020). https://doi.org/10.1016/j.snb.2020.128498
X.Y. Ji, K. Sun, Z.K. Liu, X. Liu, W. Dong et al., Identification of dynamic active sites among Cu species derived from MOFs@CuPc for electrocatalytic nitrate reduction reaction to ammonia. Nano-Micro Lett. 15(1), 110 (2023). https://doi.org/10.1007/s40820-023-01091-9
N. Karimian, P. Hashemi, A. Khanmohammadi, A. Afkhami, H. Bagheri, The principles and recent applications of bioelectrocatalysis. Anal. Bioanal. Chem. Res. 7(3), 281–301 (2020). https://doi.org/10.22036/ABCR.2020.206676.1423
M.M. Bordbar, A. Sheini, P. Hashemi, A. Hajian, H. Bagheri, Disposable paper-based biosensors for the point-of-care detection of hazardous contaminations-a review. Biosensors 11(9), 316 (2021). https://doi.org/10.3390/bios11090316
Y. Gao, J. Wang, Y. Yang, J. Wang, C. Zhang et al., Engineering spin states of isolated copper species in a metal–organic framework improves urea electrosynthesis. Nano-Micro Lett. 15(1), 158 (2023). https://doi.org/10.1007/s40820-023-01127-0
H. Fakhri, H. Bagheri, Highly efficient Zr-MOF@WO3/graphene oxide photocatalyst: synthesis, characterization and photodegradation of tetracycline and malathion. Mat. Sci. Semicon. Proc. 107, 104815 (2020). https://doi.org/10.1016/j.mssp.2019.104815
N. Karimian, H. Fakhri, S. Amidi, A. Hajian, F. Arduini et al., A novel sensing layer based on metal-organic framework UiO-66 modified with TiO2-graphene oxide: application to rapid, sensitive and simultaneous determination of paraoxon and chlorpyrifos. New J. Chem. 43(6), 2600–2609 (2019). https://doi.org/10.1039/c8nj06208k
S.M. Khoshfetrat, H. Khoshsafar, A. Afkhami, M.A. Mehrgardi, H. Bagheri, Enhanced visual wireless electrochemiluminescence immunosensing of prostate-specific antigen based on the luminol loaded into MIL-53(Fe)-NH2 accelerator and hydrogen evolution reaction mediation. Anal. Chem. 91(9), 6383–6390 (2019). https://doi.org/10.1021/acs.analchem.9b01506
H. Khoshsafar, N. Karimian, T.A. Nguyen, H. Fakhri, A. Khanmohammadi et al., Enzymeless voltammetric sensor for simultaneous determination of parathion and paraoxon based on Nd-based metal-organic framework. Chemosphere 292, 133440 (2022). https://doi.org/10.1016/j.chemosphere.2021.133440
B. Cao, H. Liu, X. Zhang, P. Zhang, Q. Zhu et al., MOF-derived ZnS nanodots/Ti3C2Tx mxene hybrids boosting superior lithium storage performance. Nano-Micro Lett. 13(1), 202 (2021). https://doi.org/10.1007/s40820-021-00728-x
Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of mof-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13(1), 203 (2021). https://doi.org/10.1007/s40820-021-00726-z
X. Huang, J. Wei, Y. Zhang, B. Qian, Q. Jia et al., Ultralight magnetic and dielectric aerogels achieved by metal-organic framework initiated gelation of graphene oxide for enhanced microwave absorption. Nano-Micro Lett. 14(1), 107 (2022). https://doi.org/10.1007/s40820-022-00851-3
G. Nagaraju, S.C. Sekhar, B. Ramulu, S.K. Hussain, D. Narsimulu et al., Ternary MOF-based redox active sites enabled 3D-on-2D nanoarchitectured battery-type electrodes for high-energy-density supercapatteries. Nano-Micro Lett. 13(1), 17 (2020). https://doi.org/10.1007/s40820-020-00528-9
Z. Cao, R. Momen, S. Tao, D. Xiong, Z. Song et al., Metal-organic framework materials for electrochemical supercapacitors. Nano-Micro Lett. 14(1), 181 (2022). https://doi.org/10.1007/s40820-022-00910-9
J. Chen, D. Sheng, T. Ying, H. Zhao, J. Zhang et al., MoFs-based nitric oxide therapy for tendon regeneration. Nano-Micro Lett. 13(1), 23 (2020). https://doi.org/10.1007/s40820-020-00542-x
X. He, Fundamental perspectives on the electrochemical water applications of metal-organic frameworks. Nano-Micro Lett. 15(1), 148 (2023). https://doi.org/10.1007/s40820-023-01124-3
Y. Hu, H. Huang, D. Yu, X. Wang, L. Li et al., All-climate Aluminum-ion batteries based on binder-free mof-derived FeS2@C/CNT cathode. Nano-Micro Lett. 13(1), 159 (2021). https://doi.org/10.1007/s40820-021-00682-8
J. Huang, P. Wu, Controlled assembly of luminescent lanthanide-organic frameworks via post-treatment of 3D-printed objects. Nano-Micro Lett. 13(1), 15 (2020). https://doi.org/10.1007/s40820-020-00543-w
Y. Lu, R. Zhou, N. Wang, Y. Yang, Z. Zheng et al., Engineer nanoscale defects into selective channels: MOF-enhanced Li+ separation by porous layered double hydroxide membrane. Nano-Micro Lett. 15(1), 147 (2023). https://doi.org/10.1007/s40820-023-01101-w
C. Li, Y. Ji, Y. Wang, C. Liu, Z. Chen et al., Applications of metal–organic frameworks and their derivatives in electrochemical CO2 reduction. Nano-Micro Lett. 15(1), 113 (2023). https://doi.org/10.1007/s40820-023-01092-8
Y. Zhu, K. Yue, C. Xia, S. Zaman, H. Yang et al., Recent advances on MOF derivatives for non-noble metal oxygen electrocatalysts in zinc–air batteries. Nano-Micro Lett. 13(1), 137 (2021). https://doi.org/10.1007/s40820-021-00669-5
X. Chen, L. Kong, J.A. Mehrez, C. Fan, W. Quan et al., Outstanding humidity chemiresistors based on imine-linked covalent organic framework films for human respiration monitoring. Nano-Micro Lett. 15(1), 149 (2023). https://doi.org/10.1007/s40820-023-01107-4
R. Yuan, H.K. Li, H. He, Recent advances in metal/covalent organic framework-based electrochemical aptasensors for biosensing applications. Dalton Trans. 50(40), 14091–14104 (2021). https://doi.org/10.1039/d1dt02360h
X. Zhao, P. Pachfule, A. Thomas, Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev. 50(12), 6871–6913 (2021). https://doi.org/10.1039/d0cs01569e
X. Zhang, G. Li, D. Wu, B. Zhang, N. Hu et al., Recent advances in the construction of functionalized covalent organic frameworks and their applications to sensing. Biosens. Bioelectron. 145, 111699 (2019). https://doi.org/10.1016/j.bios.2019.111699
B. Mohan, R. Kumari, Virender, G. Singh, K. Singh et al., Covalent organic frameworks (COFs) and metal–organic frameworks (MOFs) as electrochemical sensors for the efficient detection of pharmaceutical residues. Environ. Int. 175, 107928 (2023). https://doi.org/10.1016/j.envint.2023.107928
X. Xu, Z. Zhang, R. Xiong, G. Lu, J. Zhang et al., Bending resistance covalent organic framework superlattice: “nano-hourglass”-induced charge accumulation for flexible in-plane micro-supercapacitors. Nano-Micro Lett. 15(1), 25 (2022). https://doi.org/10.1007/s40820-022-00997-0
G. Yan, X. Sun, Y. Zhang, H. Li, H. Huang et al., Metal-free 2D/2D van der waals heterojunction based on covalent organic frameworks for highly efficient solar energy catalysis. Nano-Micro Lett. 15(1), 132 (2023). https://doi.org/10.1007/s40820-023-01100-x
T. Zhang, C. Gao, W. Huang, Y. Chen, Y. Wang et al., Covalent organic framework as a novel electrochemical platform for highly sensitive and stable detection of lead. Talanta 188, 578–583 (2018). https://doi.org/10.1016/j.talanta.2018.06.032
F. Pan, C. Tong, Z. Wang, H. Han, P. Liu et al., Nanocomposite based on graphene and intercalated covalent organic frameworks with hydrosulphonyl groups for electrochemical determination of heavy metal ions. Microchim. Acta 188(9), 295 (2021). https://doi.org/10.1007/s00604-021-04956-1
H. Wang, J. Zhao, Y. Li, Y. Cao, Z. Zhu et al., Aqueous two-phase interfacial assembly of COF membranes for water desalination. Nano-Micro Lett. 14(1), 216 (2022). https://doi.org/10.1007/s40820-022-00968-5
O. Yildirim, B. Derkus, Triazine-based 2D covalent organic frameworks improve the electrochemical performance of enzymatic biosensors. J. Mater. Sci. 55(7), 3034–3044 (2019). https://doi.org/10.1007/s10853-019-04254-5
X. Liu, M. Hu, M. Wang, Y. Song, N. Zhou et al., Novel nanoarchitecture of Co-MOF-on-TPN-COF hybrid: ultralowly sensitive bioplatform of electrochemical aptasensor toward ampicillin. Biosens. Bioelectron. 123, 59–68 (2019). https://doi.org/10.1016/j.bios.2018.09.089
Y. Cao, R. Wu, Y. Zhou, D. Jiang, W. Zhu, A bioinspired photocatalysis and electrochemiluminescence scaffold for simultaneous degradation and in situ evaluation. Adv. Funct. Mater. 32(31), 2203005 (2022). https://doi.org/10.1002/adfm.202203005
J.L. Zhang, L.Y. Yao, Y. Yang, W.B. Liang, R. Yuan et al., Conductive covalent organic frameworks with conductivity- and pre-reduction-enhanced electrochemiluminescence for ultrasensitive biosensor construction. Anal. Chem. 94(8), 3685–3692 (2022). https://doi.org/10.1021/acs.analchem.1c05436
Y.J. Li, W.R. Cui, Q.Q. Jiang, Q. Wu, R.P. Liang et al., A general design approach toward covalent organic frameworks for highly efficient electrochemiluminescence. Nat. Commun. 12(1), 4735 (2021). https://doi.org/10.1038/s41467-021-25013-8
Y. Sun, G.I.N. Waterhouse, L. Xu, X. Qiao, Z. Xu, Three-dimensional electrochemical sensor with covalent organic framework decorated carbon nanotubes signal amplification for the detection of furazolidone. Sens. Actuators B Chem. 321, 128501 (2020). https://doi.org/10.1016/j.snb.2020.128501
L. Wang, Y. Song, Y. Luo, L. Wang, A novel covalent organic framework with multiple adsorption sites for removal of Hg2+ and sensitive detection of nitrofural. J. Ind. Eng. Chem. 106, 374–381 (2022). https://doi.org/10.1016/j.jiec.2021.11.014
D. Li, H. Zhao, G. Wang, R. Liu, L. Bai, Room-temperature ultrasonic-assisted self-assembled synthesis of silkworm cocoon-like COFs@GCNTs composite for sensitive detection of diuron in food samples. Food Chem. 418, 135999 (2023). https://doi.org/10.1016/j.foodchem.2023.135999
B. Liu, H. Guo, L. Sun, Z. Pan, L. Peng et al., Electrochemical sensor based on covalent organic frameworks/MWCNT for simultaneous detection of catechol and hydroquinone. Colloids Surf. A 639, 128335 (2022). https://doi.org/10.1016/j.colsurfa.2022.128335
H. Guo, B. Liu, Z. Pan, L. Sun, L. Peng et al., Electrochemical determination of dopamine and uric acid with covalent organic frameworks and Ox-MWCNT co-modified glassy carbon electrode. Colloids Surf. A 648, 129316 (2022). https://doi.org/10.1016/j.colsurfa.2022.129316
Z. Pan, Y. Wei, H. Guo, B. Liu, L. Sun et al., Sensitive detection of sulfamethoxazole by an electrochemical sensing platform with a covalent organic framework in situ grown on polyaniline. Microporous Mesoporous Mater. 348, 112409 (2023). https://doi.org/10.1016/j.micromeso.2022.112409
S. Lu, S. Wang, P. Wu, D. Wang, J. Yi et al., A composite prepared from covalent organic framework and gold nanops for the electrochemical determination of enrofloxacin. Adv. Powder Technol. 32(6), 2106–2115 (2021). https://doi.org/10.1016/j.apt.2021.04.025
T. Zhang, Y. Chen, W. Huang, Y. Wang, X. Hu, A novel AuNPs-doped COFs composite as electrochemical probe for chlorogenic acid detection with enhanced sensitivity and stability. Sens. Actuators B Chem. 276, 362–369 (2018). https://doi.org/10.1016/j.snb.2018.08.132
Q. Guan, H. Guo, R. Xue, M. Wang, N. Wu et al., Electrochemical sensing platform based on covalent organic framework materials and gold nanops for high sensitivity determination of theophylline and caffeine. Microchim. Acta 188(3), 85 (2021). https://doi.org/10.1007/s00604-021-04744-x
X. Zhang, J. Zhu, Z. Wu, W. Wen, X. Zhang et al., Electrochemical sensor based on confined synthesis of gold nanops@covalent organic frameworks for the detection of bisphenol A. Anal. Chim. Acta 1239, 340743 (2023). https://doi.org/10.1016/j.aca.2022.340743
H. Zhao, K. Shi, C. Zhang, J. Ren, M. Cui et al., Spherical COFs decorated with gold nanops and multiwalled carbon nanotubes as signal amplifier for sensitive electrochemical detection of doxorubicin. Microchem. J. 182, 107865 (2022). https://doi.org/10.1016/j.microc.2022.107865
R. Chen, X. Peng, Y. Song, Y. Du, A paper-based electrochemical sensor based on PtNP/COFTFPB-DHzDS@rGO for sensitive detection of furazolidone. Biosensors 12(10), 904 (2022). https://doi.org/10.3390/bios12100904
Q. Guan, H. Guo, R. Xue, M. Wang, X. Zhao et al., Electrochemical sensor based on covalent organic frameworks-MWCNT-NH2/AuNPs for simultaneous detection of dopamine and uric acid. J. Electroanal. Chem. 880, 114932 (2021). https://doi.org/10.1016/j.jelechem.2020.114932
Z. Pan, H. Guo, B. Liu, L. Sun, Y. Chen et al., A sensitive electrochemical sensing platform based on nitrogen-rich covalent organic framework for simultaneous detection of guanine and adenine. Microporous Mesoporous Mater. 340, 112030 (2022). https://doi.org/10.1016/j.micromeso.2022.112030
W. Wei, S. Zhou, D.D. Ma, Q. Li, M. Ran et al., Ultrathin conductive bithiazole-based covalent organic framework nanosheets for highly efficient electrochemical biosensing. Adv. Funct. Mater. 33(36), 2302917 (2023). https://doi.org/10.1002/adfm.202302917
X. Lin, Y. Deng, Y. He, J. Chen, S. Hu, Construction of hydrophilic N, O-rich carboxylated triazine-covalent organic frameworks for the application in selective simultaneous electrochemical detection. Appl. Surf. Sci. 545, 149047 (2021). https://doi.org/10.1016/j.apsusc.2021.149047
X. Tan, Y. Fan, S. Wang, Y. Wu, W. Shi, Ultrasensitive and highly selective electrochemical sensing of sodium picrate by dihydroxylatopillar[6]arene-modified gold nanops and cationic pillar[6]arene functionalized covalent organic framework. Electrochim. Acta 335, 135706 (2020). https://doi.org/10.1016/j.electacta.2020.135706
Y. Xiao, N. Wu, L. Wang, L. Chen, A novel paper-based electrochemical biosensor based on N, O-rich covalent organic frameworks for carbaryl detection. Biosensors 12(10), 899 (2022). https://doi.org/10.3390/bios12100899
L. Wang, H. Liang, M. Xu, L. Wang, Y. Xie et al., Ratiometric electrochemical biosensing based on double-enzymes loaded on two-dimensional dual-pore COFETTA-TPAL. Sens. Actuators B Chem. 298, 126859 (2019). https://doi.org/10.1016/j.snb.2019.126859
X. Zha, X. Sun, H. Chu, Y. Wang, Synthesis of bimetallic covalent organic framework nanocomposite for enhanced electrochemical detection of gallic acid. Colloids Surf. A 651, 129748 (2022). https://doi.org/10.1016/j.colsurfa.2022.129748
H. Chu, X. Sun, X. Zha, Y. Zhang, Y. Wang, Synthesis of core-shell structured metal oxide@covalent organic framework composites as a novel electrochemical platform for dopamine sensing. Colloids Surf. A 648, 129238 (2022). https://doi.org/10.1016/j.colsurfa.2022.129238
Y. Xie, M. Xu, L. Wang, H. Liang, L. Wang et al., Iron-porphyrin-based covalent-organic frameworks for electrochemical sensing H2O2 and pH. Mater. Sci. Eng. C 112, 110864 (2020). https://doi.org/10.1016/j.msec.2020.110864
C. Zhang, L. Fan, J. Ren, M. Cui, N. Li et al., Facile synthesis of surface functionalized Pd2+@P-CDP/COFs for highly sensitive detection of norfloxacin drug based on the host-guest interaction. J. Pharm. Biomed. Anal. 219, 114956 (2022). https://doi.org/10.1016/j.jpba.2022.114956
L. Wang, Y. Xie, Y. Yang, H. Liang, L. Wang et al., Electroactive covalent organic frameworks/carbon nanotubes composites for electrochemical sensing. ACS Appl. Nano Mater. 3(2), 1412–1419 (2020). https://doi.org/10.1021/acsanm.9b02257
N. Wu, L. Wang, Y. Xie, Y. Du, Y. Song et al., Double signal ratiometric electrochemical riboflavin sensor based on macroporous carbon/electroactive thionine-contained covalent organic framework. J. Colloids Interface Sci. 608(1), 219–226 (2022). https://doi.org/10.1016/j.jcis.2021.09.162
M. Xu, L. Wang, Y. Xie, Y. Song, L. Wang, Ratiometric electrochemical sensing and biosensing based on multiple redox-active state COFDHTA-TTA. Sens. Actuators B Chem. 281, 1009–1015 (2019). https://doi.org/10.1016/j.snb.2018.11.032
Y.H. Pang, Y.Y. Wang, X.F. Shen, J.Y. Qiao, Covalent organic framework modified carbon cloth for ratiometric electrochemical sensing of bisphenol A and S. Microchim. Acta 189(5), 189 (2022). https://doi.org/10.1007/s00604-022-05297-3
M.R. Jalali Sarvestani, T. Madrakian, A. Afkhami, Ultra-trace levels voltammetric determination of Pb2+ in the presence of Bi3+ at food samples by a Fe3O4@schiff base network1 modified glassy carbon electrode. Talanta 250, 123716 (2022). https://doi.org/10.1016/j.talanta.2022.123716
L. Wang, Y. Yang, H. Liang, N. Wu, X. Peng et al., A novel N, S-rich COF and its derived hollow N, S-doped carbon@Pd nanorods for electrochemical detection of Hg2+ and paracetamol. J. Hazard. Mater. 409, 124528 (2021). https://doi.org/10.1016/j.jhazmat.2020.124528
L. Pei, J. Su, H. Yang, Y. Wu, Y. Du et al., A novel covalent-organic framework for highly sensitive detection of Cd2+, Pb2+, Cu2+ and Hg2+. Microporous Mesoporous Mater. 333, 111742 (2022). https://doi.org/10.1016/j.micromeso.2022.111742
J. Han, L. Pei, Y. Du, Y. Zhu, Tripolycyanamide-2,4,6-triformyl pyrogallol covalent organic frameworks with many coordination sites for detection and removal of heavy metal ions. J. Ind. Eng. Chem. 107, 53–60 (2022). https://doi.org/10.1016/j.jiec.2021.11.027
L. Yu, L. Sun, Q. Zhang, J. Zhang, B. Yang et al., Highly efficient determination of Mn2+ in chinese liquor by using a novel electrochemical sensor based on TiO2-NH2@covalent organic framework nanocomposites. Anal. Methods 15(21), 2622–2630 (2023). https://doi.org/10.1039/d3ay00222e
S. Feng, M. Yan, Y. Xue, J. Huang, X. Yang, Electrochemical immunosensor for cardiac troponin I detection based on covalent organic framework and enzyme-catalyzed signal amplification. Anal. Chem. 93(40), 13572–13579 (2021). https://doi.org/10.1021/acs.analchem.1c02636
T. Zhang, N. Ma, A. Ali, Q. Wei, D. Wu et al., Electrochemical ultrasensitive detection of cardiac troponin I using covalent organic frameworks for signal amplification. Biosens. Bioelectron. 119, 176–181 (2018). https://doi.org/10.1016/j.bios.2018.08.020
H. Liang, H. Xu, Y. Zhao, J. Zheng, H. Zhao et al., Ultrasensitive electrochemical sensor for prostate specific antigen detection with a phosphorene platform and magnetic covalent organic framework signal amplifier. Biosens. Bioelectron. 144, 111691 (2019). https://doi.org/10.1016/j.bios.2019.111691
T.Z. Liu, R. Hu, X. Zhang, K.L. Zhang, Y. Liu et al., Metal-organic framework nanomaterials as novel signal probes for electron transfer mediated ultrasensitive electrochemical immunoassay. Anal. Chem. 88(24), 12516–12523 (2016). https://doi.org/10.1021/acs.analchem.6b04191
H. Boyacıoğlu, B.B. Yola, C. Karaman, O. Karaman, N. Atar et al., A novel electrochemical kidney injury molecule-1 (KIM-1) immunosensor based covalent organic frameworks-gold nanops composite and porous NiCo2S4@CeO2 microspheres: the monitoring of acute kidney injury. Appl. Surf. Sci. 578, 152093 (2022). https://doi.org/10.1016/j.apsusc.2021.152093
Y. Chen, S. Wang, J. Ren, H. Zhao, M. Cui et al., Electrocatalysis of copper sulfide nanop-engineered covalent organic frameworks for ratiometric electrochemical detection of amyloid-beta oligomer. Anal. Chem. 94(32), 11201–11208 (2022). https://doi.org/10.1021/acs.analchem.2c01602
H. Liu, S. Ma, G. Ning, R. Zhang, H. Liang et al., A “peptide-target-aptamer” electrochemical biosensor for norovirus detection using a black phosphorous nanosheet@Ti3C2-Mxene nanohybrid and magnetic covalent organic framework. Talanta 258, 124433 (2023). https://doi.org/10.1016/j.talanta.2023.124433
Z. Chen, M. Yang, Z. Li, W. Liao, B. Chen et al., Highly sensitive and convenient aptasensor based on Au NPs@Ce-TpBpy COF for quantitative determination of zearalenone. RSC Adv. 12(27), 17312–17320 (2022). https://doi.org/10.1039/d2ra02093a
Z. Song, J. Song, F. Gao, X. Chen, Q. Wang et al., Novel electroactive ferrocene-based covalent organic frameworks towards electrochemical label-free aptasensors for the detection of cardiac troponin i. Sens. Actuators B Chem. 368, 132205 (2022). https://doi.org/10.1016/j.snb.2022.132205
Q.Q. Zhu, W.W. Zhang, H.W. Zhang, R. Yuan, H. He, Elaborately manufacturing an electrochemical aptasensor based on gold nanop/COF composites for amplified detection performance. J. Mater. Chem. C 8(47), 16984–16991 (2020). https://doi.org/10.1039/d0tc04202a
Q.Q. Zhu, H.K. Li, X.L. Sun, Z.Y. Han, J. Sun et al., Rational incorporation of covalent organic framework/carbon nanotube (COF/CNT) composites for electrochemical aptasensing of ultra-trace atrazine. J. Mater. Chem. C 9(25), 8043–8050 (2021). https://doi.org/10.1039/d1tc01506k
M. Wang, M. Hu, J. Liu, C. Guo, D. Peng et al., Covalent organic framework-based electrochemical aptasensors for the ultrasensitive detection of antibiotics. Biosens. Bioelectron. 132, 8–16 (2019). https://doi.org/10.1016/j.bios.2019.02.040
X. Yan, Y. Song, J. Liu, N. Zhou, C. Zhang et al., Two-dimensional porphyrin-based covalent organic framework: a novel platform for sensitive epidermal growth factor receptor and living cancer cell detection. Biosens. Bioelectron. 126, 734–742 (2019). https://doi.org/10.1016/j.bios.2018.11.047
Z. He, J. Goulas, E. Parker, Y. Sun, X.D. Zhou et al., Review on covalent organic frameworks and derivatives for electrochemical and photocatalytic CO2 reduction. Catal. Today 409, 103–118 (2023). https://doi.org/10.1016/j.cattod.2022.04.021
T. Zhang, Y. Song, Y. Xing, Y. Gu, X. Yan et al., The synergistic effect of Au-COF nanosheets and artificial peroxidase Au@ZIF-8(NiPd) rhombic dodecahedra for signal amplification for biomarker detection. Nanoscale 11(42), 20221–20227 (2019). https://doi.org/10.1039/c9nr07190c
Y. Chen, W. Li, X.H. Wang, R.Z. Gao, A.N. Tang et al., Green synthesis of covalent organic frameworks based on reaction media. Mater. Chem. Front. 5(3), 1253–1267 (2021). https://doi.org/10.1039/d0qm00801j
H. Wang, Z. Zeng, P. Xu, L. Li, G. Zeng et al., Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chem. Soc. Rev. 48(2), 488–516 (2019). https://doi.org/10.1039/c8cs00376a
X. Huang, L. Li, S. Zhao, L. Tong, Z. Li et al., MOF-like 3D graphene-based catalytic membrane fabricated by one-step laser scribing for robust water purification and green energy production. Nano-Micro Lett. 14(1), 174 (2022). https://doi.org/10.1007/s40820-022-00923-4
J. Qiao, X. Zhang, C. Liu, L. Lyu, Y. Yang et al., Non-magnetic bimetallic MOF-derived porous carbon-wrapped TiO2/ZrTiO4 composites for efficient electromagnetic wave absorption. Nano-Micro Lett. 13(1), 75 (2021). https://doi.org/10.1007/s40820-021-00606-6
C. Qiu, K. Qian, J. Yu, M. Sun, S. Cao et al., MOF-transformed In2O3-x@C nanocorn electrocatalyst for efficient CO2 reduction to HCOOH. Nano-Micro Lett. 14(1), 167 (2022). https://doi.org/10.1007/s40820-022-00913-6
V. Schroeder, S. Savagatrup, M. He, S. Lin, T.M. Swager, Carbon nanotube chemical sensors. Chem. Rev. 119(1), 599–663 (2019). https://doi.org/10.1021/acs.chemrev.8b00340
Z. Wang, L. Dong, W. Huang, H. Jia, Q. Zhao et al., Simultaneously regulating uniform Zn2+ flux and electron conduction by mof/rgo interlayers for high-performance Zn anodes. Nano-Micro Lett. 13(1), 73 (2021). https://doi.org/10.1007/s40820-021-00594-7
H. Chu, X. Sun, X. Zha, S.U. Khan, Y. Wang, Ultrasensitive electrochemical detection of butylated hydroxy anisole via metalloporphyrin covalent organic frameworks possessing variable catalytic active sites. Biosensors 12(11), 975 (2022). https://doi.org/10.3390/bios12110975
T. Yang, R. Yu, Y. Yan, H. Zeng, S. Luo et al., A review of ratiometric electrochemical sensors: from design schemes to future prospects. Sens. Actuators B Chem. 274, 501–516 (2018). https://doi.org/10.1016/j.snb.2018.07.138
Y. Cao, C. Ma, J.J. Zhu, DNA technology-assisted signal amplification strategies in electrochemiluminescence bioanalysis. J. Anal. Test. 5(2), 95–111 (2021). https://doi.org/10.1007/s41664-021-00175-y
J. Cao, P. Ouyang, S. Yu, F. Shi, C. Ren et al., Hedgehog-like Bi2S3 nanostructures: a novel composite soft template route to the synthesis and sensitive electrochemical immunoassay of the liver cancer biomarker. Chem. Commun. 57(14), 1766–1769 (2021). https://doi.org/10.1039/d0cc07572h
T. Han, Y. Cao, H.Y. Chen, J.J. Zhu, Versatile porous nanomaterials for electrochemiluminescence biosensing: recent advances and future perspective. J. Electroanal. Chem. 902, 115821 (2021). https://doi.org/10.1016/j.jelechem.2021.115821
Y. Zhang, B.S. Lai, M. Juhas, Recent advances in aptamer discovery and applications. Molecules 24(5), 941 (2019). https://doi.org/10.3390/molecules24050941
Y.W. Zhang, Y. Cao, C.J. Mao, D. Jiang, W. Zhu, An iron(III)-based metal-organic gel-catalyzed dual electrochemiluminescence system for cytosensing and in situ evaluation of the VEGF165 subtype. Anal. Chem. 94(9), 4095–4102 (2022). https://doi.org/10.1021/acs.analchem.2c00032
S.M. Khoshfetrat, K. Fasihi, F. Moradnia, H. Kamil Zaidan, E. Sanchooli, A label-free multicolor colorimetric and fluorescence dual mode biosensing of HIV-1 DNA based on the bifunctional NiFe2O4@UiO-66 nanozyme. Anal. Chim. Acta 1252, 341073 (2023). https://doi.org/10.1016/j.aca.2023.341073
S.M. Khoshfetrat, P.S. Dorraji, L. Fotouhi, M. Hosseini, F. Khatami et al., Enhanced electrochemiluminescence biosensing of gene-specific methylation in thyroid cancer patients’ plasma based integrated graphitic carbon nitride-encapsulated metal-organic framework nanozyme optimized by central composite design. Sens. Actuators B Chem. 364, 131895 (2022). https://doi.org/10.1016/j.snb.2022.131895
S.M. Khoshfetrat, P. Seyed Dorraji, M. Shayan, F. Khatami, K. Omidfar, Smartphone-based electrochemiluminescence for visual simultaneous detection of RASSF1A and SLC5A8 tumor suppressor gene methylation in thyroid cancer patient plasma. Anal. Chem. 94(22), 8005–8013 (2022). https://doi.org/10.1021/acs.analchem.2c01132
A. Ahmadi, S.M. Khoshfetrat, Z. Mirzaeizadeh, S. Kabiri, J. Rezaie et al., Electrochemical immunosensor for determination of cardiac troponin i using two-dimensional metal-organic framework/Fe3O4–COOH nanosheet composites loaded with thionine and pCTAB/DES modified electrode. Talanta 237, 122911 (2022). https://doi.org/10.1016/j.talanta.2021.122911
S.M. Khoshfetrat, P. Hashemi, A. Afkhami, A. Hajian, H. Bagheri, Cascade electrochemiluminescence-based integrated graphitic carbon nitride-encapsulated metal-organic framework nanozyme for prostate-specific antigen biosensing. Sens. Actuators B Chem. 348, 130658 (2021). https://doi.org/10.1016/j.snb.2021.130658
H. Zhao, F. Wang, L. Cui, X. Xu, X. Han et al., Composition optimization and microstructure design in mofs-derived magnetic carbon-based microwave absorbers: a review. Nano-Micro Lett. 13(1), 208 (2021). https://doi.org/10.1007/s40820-021-00734-z
Z. Zhang, Z. Cai, Z. Wang, Y. Peng, L. Xia et al., A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 13(1), 56 (2021). https://doi.org/10.1007/s40820-020-00582-3
X. Zhang, J. Qiao, Y. Jiang, F. Wang, X. Tian et al., Carbon-based MOF derivatives: emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett. 13(1), 135 (2021). https://doi.org/10.1007/s40820-021-00658-8
R. Luo, H. Lv, Q. Liao, N. Wang, J. Yang et al., Intrareticular charge transfer regulated electrochemiluminescence of donor-acceptor covalent organic frameworks. Nat. Commun. 12(1), 6808 (2021). https://doi.org/10.1038/s41467-021-27127-5
W.R. Cui, Y.J. Li, Q.Q. Jiang, Q. Wu, R.P. Liang et al., Tunable covalent organic framework electrochemiluminescence from non-electroluminescent monomers. Cell Rep. Phys. Sci. 3(2), 100630 (2022). https://doi.org/10.1016/j.xcrp.2021.100630
W.J. Zeng, K. Wang, W.B. Liang, Y.Q. Chai, R. Yuan et al., Covalent organic frameworks as micro-reactors: confinement-enhanced electrochemiluminescence. Chem. Sci. 11(21), 5410–5414 (2020). https://doi.org/10.1039/d0sc01817a
Y. Cao, W. Zhu, H. Wei, C. Ma, Y. Lin et al., Stable and monochromatic all-inorganic halide perovskite assisted by hollow carbon nitride nanosphere for ratiometric electrochemiluminescence bioanalysis. Anal. Chem. 92(5), 4123–4130 (2020). https://doi.org/10.1021/acs.analchem.0c00070
Y.J. Li, W.R. Cui, Q.Q. Jiang, R.P. Liang, X.J. Li et al., Arousing electrochemiluminescence out of non-electroluminescent monomers within covalent organic frameworks. ACS Appl. Mater. Interfaces 13(40), 47921–47931 (2021). https://doi.org/10.1021/acsami.1c12958
W.R. Cui, Y.J. Li, Q.Q. Jiang, Q. Wu, Q.X. Luo et al., Covalent organic frameworks as advanced uranyl electrochemiluminescence monitoring platforms. Anal. Chem. 93(48), 16149–16157 (2021). https://doi.org/10.1021/acs.analchem.1c03907
S. Carrara, A. Aliprandi, C.F. Hogan, L. De Cola, Aggregation-induced electrochemiluminescence of platinum(II) complexes. J. Am. Chem. Soc. 139(41), 14605–14610 (2017). https://doi.org/10.1021/jacs.7b07710
X. Wei, M.J. Zhu, Z. Cheng, M. Lee, H. Yan et al., Aggregation-induced electrochemiluminescence of carboranyl carbazoles in aqueous media. Angew. Chem. Int. Ed. 58(10), 3162–3166 (2019). https://doi.org/10.1002/anie.201900283
T. Han, Y. Cao, J. Wang, J. Jiao, Y. Song et al., Crystallization-induced enhanced electrochemiluminescence from a new tris(bipyridine)ruthenium(II) derivative. Adv. Funct. Mater. 33(12), 2212394 (2023). https://doi.org/10.1002/adfm.202212394
Q.X. Luo, W.R. Cui, Y.J. Li, Y.J. Cai, X.L. Mao et al., Construction of sp2 carbon-conjugated covalent organic frameworks for framework-induced electrochemiluminescence. ACS Appl. Electron. Mater. 3(10), 4490–4497 (2021). https://doi.org/10.1021/acsaelm.1c00636
S. Li, X. Ma, C. Pang, M. Wang, G. Yin et al., Novel chloramphenicol sensor based on aggregation-induced electrochemiluminescence and nanozyme amplification. Biosens. Bioelectron. 176, 112944 (2021). https://doi.org/10.1016/j.bios.2020.112944
S. Li, C. Pang, X. Ma, Y. Wu, M. Wang et al., Aggregation-induced electrochemiluminescence and molecularly imprinted polymer based sensor with Fe3O4@Pt nanop amplification for ultrasensitive ciprofloxacin detection. Microchem. J. 178, 107345 (2022). https://doi.org/10.1016/j.microc.2022.107345
J.L. Zhang, Y. Yang, W.B. Liang, L.Y. Yao, R. Yuan et al., Highly stable covalent organic framework nanosheets as a new generation of electrochemiluminescence emitters for ultrasensitive microrna detection. Anal. Chem. 93(6), 3258–3265 (2021). https://doi.org/10.1021/acs.analchem.0c04931
L. Cui, C.Y. Zhu, J. Hu, X.M. Meng, M. Jiang et al., Construction of a dual-mode biosensor for electrochemiluminescent and electrochemical sensing of alkaline phosphatase. Sens. Actuators B Chem. 374, 132779 (2023). https://doi.org/10.1016/j.snb.2022.132779
Y. Yang, H. Jiang, J. Li, J. Zhang, S.Z. Gao et al., Highly stable Ru-complex-based metal-covalent organic frameworks as novel type of electrochemiluminescence emitters for ultrasensitive biosensing. Mater. Horiz. 10, 3005–3013 (2023). https://doi.org/10.1039/d3mh00260h
L. Song, W. Gao, S. Wang, H. Bi, S. Deng et al., Construction of an aminal-linked covalent organic framework-based electrochemiluminescent sensor for enantioselective sensing phenylalanine. Sens. Actuators B Chem. 373, 132751 (2022). https://doi.org/10.1016/j.snb.2022.132751
L. Song, W. Gao, Q. Han, Y. Huang, L. Cui et al., Construction of an aggregation-induced electrochemiluminescent sensor based on an aminal-linked covalent organic framework for sensitive detection of glutathione in human serum. Chem. Commun. 58(75), 10524–10527 (2022). https://doi.org/10.1039/d2cc03753j
X.L. Mao, Q.X. Luo, Y.J. Cai, X. Liu, Q.Q. Jiang et al., Structural isomerism of covalent organic frameworks causing different electrochemiluminescence effects and its application for the detection of arsenic. Anal. Chem. 95(28), 10803–10811 (2023). https://doi.org/10.1021/acs.analchem.3c02082
Q.Q. Jiang, Y.J. Li, Q. Wu, X. Wang, Q.X. Luo et al., Guest molecular assembly strategy in covalent organic frameworks for electrochemiluminescence sensing of uranyl. Anal. Chem. 95(22), 8696–8705 (2023). https://doi.org/10.1021/acs.analchem.3c01299
Q.X. Luo, Y.J. Cai, X.L. Mao, Y.J. Li, C.R. Zhang et al., Tuned-potential covalent organic framework electrochemiluminescence platform for lutetium analysis. J. Electroanal. Chem. 923, 116831 (2022). https://doi.org/10.1016/j.jelechem.2022.116831
X. Ma, C. Pang, S. Li, Y. Xiong, J. Li et al., Synthesis of Zr-coordinated amide porphyrin-based two-dimensional covalent organic framework at liquid–liquid interface for electrochemical sensing of tetracycline. Biosens. Bioelectron. 146, 111734 (2019). https://doi.org/10.1016/j.bios.2019.111734
L. Li, W. Zhao, Y. Wang, X. Liu, P. Jiang et al., Gold nanocluster-confined covalent organic frameworks as bifunctional probes for electrochemiluminescence and colorimetric dual-response sensing of Pb2+. J. Hazard. Mater. 457, 131558 (2023). https://doi.org/10.1016/j.jhazmat.2023.131558
R. Ma, J. Jiang, Y. Ya, Y. Lin, Y. Zhou et al., A carbon dot-based nanoscale covalent organic framework as a new emitter combined with a CRISPR/Cas12a-mediated electrochemiluminescence biosensor for ultrasensitive detection of bisphenol a. Analyst 148(6), 1362–1370 (2023). https://doi.org/10.1039/d3an00024a
L. Shen, Y.W. Wang, H.Y. Shan, J. Chen, A.J. Wang et al., Covalent organic framework linked with amination luminol derivative as enhanced ECL luminophore for ultrasensitive analysis of cytochrome C. Anal. Methods 14(46), 4767–4774 (2022). https://doi.org/10.1039/d2ay01208a