Nanoparticle Exsolution on Perovskite Oxides: Insights into Mechanism, Characteristics and Novel Strategies
Corresponding Author: Jae‑ha Myung
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 33
Abstract
Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications, including fuel cells, chemical conversion, and batteries. Nanocatalysts demonstrate high activity by expanding the number of active sites, but they also intensify deactivation issues, such as agglomeration and poisoning, simultaneously. Exsolution for bottom-up synthesis of supported nanoparticles has emerged as a breakthrough technique to overcome limitations associated with conventional nanomaterials. Nanoparticles are uniformly exsolved from perovskite oxide supports and socketed into the oxide support by a one-step reduction process. Their uniformity and stability, resulting from the socketed structure, play a crucial role in the development of novel nanocatalysts. Recently, tremendous research efforts have been dedicated to further controlling exsolution particles. To effectively address exsolution at a more precise level, understanding the underlying mechanism is essential. This review presents a comprehensive overview of the exsolution mechanism, with a focus on its driving force, processes, properties, and synergetic strategies, as well as new pathways for optimizing nanocatalysts in diverse applications.
Highlights:
1 Fundamental mechanisms in terms of driving force, material design, and exsolution processes are outlined, and novel behaviors of socketing and shape-shifting throughout the interaction with the oxide support are discussed.
2 This review examines the key control factors, encompassing external conditions and intrinsic properties that affect the surface exsolution of metallic nanoparticles.
3 The extraordinary nature of exsolution particles and their effect on various applications are discussed, along with the latest strategies for improving exsolution behavior.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.H. Myung, D. Neagu, D.N. Miller, J.T.S. Irvine, Switching on electrocatalytic activity in solid oxide cells. Nature 537, 528–531 (2016). https://doi.org/10.1038/nature19090
- P. Zhou, I.A. Navid, Y. Ma, Y. Xiao, P. Wang et al., Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 613, 66–70 (2023). https://doi.org/10.1038/s41586-022-05399-1
- X. Li, L. Dai, Z. He, W. Meng, Y. Li et al., In situ exsolution of PdO nanops from non-stoichiometric LaFePd0.05O3+δ electrode for impedancemetric NO2 sensor. Sens. Actuators B Chem. 298, 126827 (2019). https://doi.org/10.1016/j.snb.2019.126827
- S.H. Kim, H. Jeong, B. Sharma, J.H. Myung, In situ exsolution catalyst: An innovative approach to develop highly selective and sensitive gas sensors. ACS Appl. Mater. Interfaces 14, 18275–18282 (2022). https://doi.org/10.1021/acsami.1c22701
- M. Akri, S. Zhao, X. Li, K. Zang, A.F. Lee et al., Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Nat. Commun. 10, 5181 (2019). https://doi.org/10.1038/s41467-019-12843-w
- Y.H. Hu, E. Ruckenstein, Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO. Science 368, 777–781 (2020). https://doi.org/10.1126/science.abb5459
- S. Chandrasekaran, R. Hu, L. Yao, L. Sui, Y. Liu et al., Mutual self-regulation of d-electrons of single atoms and adjacent nanops for bifunctional oxygen electrocatalysis and rechargeable zinc-air batteries. Nano-Micro Lett. 15, 48 (2023). https://doi.org/10.1007/s40820-023-01022-8
- J.T.S. Irvine, D. Neagu, M.C. Verbraeken, C. Chatzichristodoulou, C. Graves et al., Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat. Energy 1, 15014 (2016). https://doi.org/10.1038/nenergy.2015.14
- C. Xu, L. Wang, X. Li, X. Qian, Z. Wu et al., Hierarchical magnetic network constructed by CoFe nanops suspended within “tubes on rods” matrix toward enhanced microwave absorption. Nano-Micro Lett. 13, 47 (2021). https://doi.org/10.1007/s40820-020-00572-5
- X. Shi, Z. Xu, C. Han, R. Shi, X. Wu et al., Highly dispersed cobalt nanops embedded in nitrogen-doped graphitized carbon for fast and durable potassium storage. Nano-Micro Lett. 13, 21 (2021). https://doi.org/10.1007/s40820-020-00534-x
- M. Wang, E.I. Papaioannou, I.S. Metcalfe, A. Naden, C.D. Savaniu et al., The exsolution of Cu ps from doped barium cerate zirconate via barium cuprate intermediate phases. Adv. Funct. Mater. 33, 2302102 (2023). https://doi.org/10.1002/adfm.202302102
- X. Kang, V.M. Reinertsen, K.G. Both, A. Galeckas, T. Aarholt et al., Galvanic restructuring of exsolved nanops for plasmonic and electrocatalytic energy conversion. Small 18, 2201106 (2022). https://doi.org/10.1002/smll.202201106
- J. Wang, J. Zhou, J. Yang, D. Neagu, L. Fu et al., Tailoring the surface of perovskite through in situ growth of Ru/RuO2 nanops as robust symmetrical electrodes for reversible solid oxide cells. Adv. Mater. Interfaces 7, 2000828 (2020). https://doi.org/10.1002/admi.202000828
- D. Neagu, E.I. Papaioannou, W.K.W. Ramli, D.N. Miller, B.J. Murdoch et al., Demonstration of chemistry at a point through restructuring and catalytic activation at anchored nanops. Nat. Commun. 8, 1855 (2017). https://doi.org/10.1038/s41467-017-01880-y
- J.G. Lee, J.H. Myung, A.B. Naden, O.S. Jeon, Y.G. Shul et al., Replacement of Ca by Ni in a perovskite titanate to yield a novel perovskite exsolution architecture for oxygen-evolution reactions. Adv. Energy Mater. 10, 1903693 (2020). https://doi.org/10.1002/aenm.201903693
- Y. Jiang, Z. Geng, Y. Sun, X. Wang, K. Huang et al., Highly efficient B-Site exsolution assisted by Co doping in lanthanum ferrite toward high-performance electrocatalysts for oxygen evolution and oxygen reduction. ACS Sustain. Chem. Eng. 8, 302–310 (2020). https://doi.org/10.1021/acssuschemeng.9b05344
- S. Yu, D. Yoon, Y. Lee, H. Yoon, H. Han et al., Metal nanop exsolution on a perovskite stannate support with high electrical conductivity. Nano Lett. 20, 3538–3544 (2020). https://doi.org/10.1021/acs.nanolett.0c00488
- R. Lv, Z. Guo, X. Hou, X. Wu, K. Huang et al., Exsolution: a promising strategy for constructing advanced composite solids. Mater. Today Sustain. 19, 100172 (2022). https://doi.org/10.1016/j.mtsust.2022.100172
- B. Hua, M. Li, Y.F. Sun, J.H. Li, J.L. Luo, Enhancing perovskite electrocatalysis of solid oxide cells through controlled exsolution of nanops. ChemSusChem 10, 3333–3341 (2017). https://doi.org/10.1002/cssc.201700936
- S.P. Padi, L. Shelly, E.P. Komarala, D. Schweke, S. Hayun et al., Coke-free methane dry reforming over nano-sized NiO–CeO2 solid solution after exsolution. Catal. Commun. 138, 105951 (2020). https://doi.org/10.1016/j.catcom.2020.105951
- S. Jo, H.G. Jeong, Y.H. Kim, D. Neagu, J. Myung, Stability and activity controls of Cu nanops for high-performance solid oxide fuel cells. Appl. Catal. B 285, 119828 (2020). https://doi.org/10.1016/j.apcatb.2020.119828
- D. Zubenko, S. Singh, B.A. Rosen, Exsolution of Re-alloy catalysts with enhanced stability for methane dry reforming. Appl. Catal. B 209, 711–719 (2017). https://doi.org/10.1016/j.apcatb.2017.03.047
- E. Cho, Y.H. Lee, H. Kim, E.J. Jang, J.H. Kwak et al., Ni catalysts for dry methane reforming prepared by A-site exsolution on mesoporous defect spinel magnesium aluminate. Appl. Catal. A Gen. 602, 117694 (2020). https://doi.org/10.1016/j.apcata.2020.117694
- M.A. Naeem, P.M. Abdala, A. Armutlulu, S.M. Kim, A. Fedorov et al., Exsolution of metallic Ru nanops from defective, fluorite-type solid solutions Sm2RuxCe2−xO7 to impart stability on dry reforming catalysts. ACS Catal. 10, 1923–1937 (2020). https://doi.org/10.1021/acscatal.9b04555
- S. Joo, O. Kwon, S. Kim, H.Y. Jeong, G. Kim, Ni–Fe bimetallic nanocatalysts produced by topotactic exsolution in Fe deposited PrBaMn1.7Ni0.3O5+δ for dry reforming of methane. J. Electrochem. Soc. 167, 064518 (2020). https://doi.org/10.1149/1945-7111/ab8390
- J.H. Oh, B.W. Kwon, J. Cho, C.H. Lee, M.K. Kim et al., Importance of exsolution in transition-metal (Co, Rh, and Ir)-doped LaCrO3 perovskite catalysts for boosting dry reforming of CH4 Using CO2 for hydrogen production. Ind. Eng. Chem. Res. 58, 6385–6393 (2019). https://doi.org/10.1021/acs.iecr.8b05337
- C. Arrivé, T. Delahaye, O. Joubert, G.H. Gauthier, Study of (La, Sr)(Ti, Ni)O3−δ materials for symmetrical solid oxide cell electrode—part B: conditions of Ni exsolution. Ceram. Int. 46, 5841–5849 (2020). https://doi.org/10.1016/j.ceramint.2019.11.034
- X. Yang, W. Sun, M. Ma, C. Xu, R. Ren et al., Enhancing stability and catalytic activity by in situ exsolution for high-performance direct hydrocarbon solid oxide fuel cell anodes. Ind. Eng. Chem. Res. 60, 7826–7834 (2021). https://doi.org/10.1021/acs.iecr.1c00806
- Y. Yang, Y. Wang, Z. Yang, Z. Lei, C. Jin et al., Co-substituted Sr2Fe1.5Mo0.5O6−δ as anode materials for solid oxide fuel cells: achieving high performance via nanop exsolution. J. Power Sources 438, 226989 (2019). https://doi.org/10.1016/j.jpowsour.2019.226989
- J. Qiao, H. Chen, Z. Wang, W. Sun, H. Li et al., Enhancing the catalytic activity of Y0.08Sr0.92TiO3−δ anodes through in situ Cu exsolution for direct carbon solid oxide fuel cells. Ind. Eng. Chem. Res. 59, 13105–13112 (2020). https://doi.org/10.1021/acs.iecr.0c02203
- K. Kousi, D. Neagu, L. Bekris, E.I. Papaioannou, I.S. Metcalfe, Endogenous nanops strain perovskite host lattice providing oxygen capacity and driving oxygen exchange and CH4 conversion to syngas. Angew. Chem. Int. Ed. 59, 2510–2519 (2020). https://doi.org/10.1002/anie.201915140
- K. Kousi, D. Neagu, L. Bekris, E. Calì, G. Kerherve et al., Low temperature methane conversion with perovskite-supported: exo/endo-ps. J. Mater. Chem. A 8, 12406–12417 (2020). https://doi.org/10.1039/d0ta05122e
- K.J. Kim, M.K. Rath, H.H. Kwak, H.J. Kim, J.W. Han et al., A highly active and redox-stable SrGdNi0.2Mn0.8O4±δ anode with in situ exsolution of nanocatalysts. ACS Catal. 9, 1172–1182 (2019). https://doi.org/10.1021/acscatal.8b03669
- S.K. Otto, K. Kousi, D. Neagu, L. Bekris, J. Janek et al., Exsolved nickel nanops acting as oxygen storage reservoirs and active sites for redox CH4 conversion. ACS Appl. Energy Mater. 2, 7288–7298 (2019). https://doi.org/10.1021/acsaem.9b01267
- L. Xu, Y.M. Yin, N. Zhou, Z. Wang, Z.F. Ma, Sulfur tolerant redox stable layered perovskite SrLaFeO4−δ as anode for solid oxide fuel cells. Electrochem. Commun. 76, 51–54 (2017). https://doi.org/10.1016/j.elecom.2017.01.017
- D. Neagu, J.T.S. Irvine, Enhancing electronic conductivity in strontium titanates through correlated A and B-site doping. Chem. Mater. 23, 1607–1617 (2011). https://doi.org/10.1021/cm103489r
- D. Neagu, J.T.S. Irvine, Structure and properties of La0.4Sr0.4TiO3 ceramics for use as anode materials in solid oxide fuel cells. Chem. Mater. 22, 5042–5053 (2010). https://doi.org/10.1021/cm101508w
- D. Neagu, G. Tsekouras, D.N. Miller, H. Ménard, J.T.S. Irvine, In situ growth of nanops through control of non-stoichiometry. Nat. Chem. 5, 916–923 (2013). https://doi.org/10.1038/nchem.1773
- T. Ishigaki, S. Yamauchi, K. Kishio, J. Mizusaki, K. Fueki, Diffusion of oxide ion vacancies in perovskite-type oxides. J. Solid State Chem. 73, 179–187 (1988). https://doi.org/10.1016/0022-4596(88)90067-9
- J. Kim, M. Ferree, S. Gunduz, J.M.M. Millet, M. Aouine et al., Exsolution of nanops on A-site-deficient lanthanum ferrite perovskites: Its effect on co-electrolysis of CO2 and H2O. J. Mater. Chem. A Mater. 10, 2483–2495 (2022). https://doi.org/10.1039/d1ta07389c
- W. Zhou, Z. Shao, F. Liang, Z.G. Chen, Z. Zhu et al., A new cathode for solid oxide fuel cells capable of in situ electrochemical regeneration. J. Mater. Chem. 21, 15343–15351 (2011). https://doi.org/10.1039/c1jm12660a
- J.H. Kim, J.K. Kim, J. Liu, A. Curcio, J.S. Jang et al., Nanop ex-solution for supported catalysts: materials design, mechanism and future perspectives. ACS Nano 15, 81–110 (2021). https://doi.org/10.1021/acsnano.0c07105
- C. Tang, K. Kousi, D. Neagu, J. Portolés, E.I. Papaioannou et al., Towards efficient use of noble metals: via exsolution exemplified for CO oxidation. Nanoscale 11, 16935–16944 (2019). https://doi.org/10.1039/c9nr05617c
- T. Zhu, H.E. Troiani, L.V. Mogni, M. Han, S.A. Barnett, Ni-substituted Sr(Ti, Fe)O3 SOFC anodes: achieving high performance via metal alloy nanop exsolution. Joule 2, 478–496 (2018). https://doi.org/10.1016/j.joule.2018.02.006
- K. Kousi, C. Tang, I.S. Metcalfe, D. Neagu, Emergence and future of exsolved materials. Small 17, 2006479 (2021). https://doi.org/10.1002/smll.202006479
- T. Zhang, Y. Zhao, X. Zhang, H. Zhang, N. Yu et al., Thermal stability of an in situ exsolved metallic nanop structured perovskite type hydrogen electrode for solid oxide cells. ACS Sustain. Chem. Eng. 7, 17834–17844 (2019). https://doi.org/10.1021/acssuschemeng.9b04350
- S. Park, Y. Kim, H. Han, Y.S. Chung, W. Yoon et al., In situ exsolved Co nanops on Ruddlesden–Popper material as highly active catalyst for CO2 electrolysis to CO. Appl. Catal. B 248, 147–156 (2019). https://doi.org/10.1016/j.apcatb.2019.02.013
- J. Oh, S. Joo, C. Lim, H.J. Kim, F. Ciucci et al., Precise modulation of triple-phase boundaries towards a highly functional exsolved catalyst for dry reforming of methane under a dilution-free system. Angew. Chem. 134, e202204990 (2022). https://doi.org/10.1002/ange.202204990
- M. Qin, T. Tan, K. Li, Z. Wang, H. Yang et al., In-situ exsolved FeRu alloy nanops on Ruddlesden–Popper oxides for direct hydrocarbon fuel solid oxide fuel cells. Int. J. Hydrog. Energy 45, 21464–21472 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.242
- Y. Wang, T. Liu, M. Li, C. Xia, B. Zhou et al., Exsolved Fe–Ni nano-ps from Sr2Fe1.3Ni0.2Mo0.5O6 perovskite oxide as a cathode for solid oxide steam electrolysis cells. J. Mater. Chem. A 4, 14163–14169 (2016). https://doi.org/10.1039/c6ta06078a
- O. Kwon, S. Joo, S. Choi, S. Sengodan, G. Kim, Review on exsolution and its driving forces in perovskites. J. Phys. Energy 2, 032001 (2020). https://doi.org/10.1088/2515-7655/ab8c1f
- Y. Li, W. Zhang, Y. Zheng, J. Chen, B. Yu et al., Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability. Chem. Soc. Rev. 46, 6345–6378 (2017). https://doi.org/10.1039/c7cs00120g
- T. Cao, O. Kwon, R.J. Gorte, J.M. Vohs, Metal exsolution to enhance the catalytic activity of electrodes in solid oxide fuel cells. Nanomaterials 10(2445), 1–23 (2020). https://doi.org/10.3390/nano10122445
- H. Jeong, Y.H. Kim, B.R. Won, H. Jeon, C.H. Park et al., Emerging exsolution materials for diverse energy applications: design, mechanism, and future prospects. Chem. Mater. 35, 3745–3764 (2023). https://doi.org/10.1021/acs.chemmater.3c00004
- J. Zhang, M.R. Gao, J.L. Luo, In situ exsolved metal nanops: a smart approach for optimization of catalysts. Chem. Mater. 32, 5424–5441 (2020). https://doi.org/10.1021/acs.chemmater.0c00721
- Q.A. Islam, S. Paydar, N. Akbar, B. Zhu, Y. Wu, Nanop exsolution in perovskite oxide and its sustainable electrochemical energy systems. J. Power. Sources 492, 229626 (2021). https://doi.org/10.1016/j.jpowsour.2021.229626
- Y. Yang, J. Li, Y. Sun, The metal/oxide heterointerface delivered by solid-based exsolution strategy: a review. Chem. Engin. J. 440, 135868 (2022). https://doi.org/10.1016/j.cej.2022.135868
- J.H. Kim, J. Hong, D.K. Lim, S. Ahn, J. Kim et al., Water as a hole-predatory instrument to create metal nanops on triple-conducting oxides. Energy Environ. Sci. 15, 1097–1105 (2021). https://doi.org/10.1039/d1ee03046a
- D. Neagu, V. Kyriakou, I.L. Roiban, M. Aouine, C. Tang et al., In situ observation of nanop exsolution from perovskite oxides: from atomic scale mechanistic insight to nanostructure tailoring. ACS Nano 13, 12996–13005 (2019). https://doi.org/10.1021/acsnano.9b05652
- J. Wang, D. Kalaev, J. Yang, I. Waluyo, A. Hunt et al., Fast surface oxygen release kinetics accelerate nanop exsolution in perovskite oxides. J. Am. Chem. Soc. 145, 1714–1727 (2023). https://doi.org/10.1021/jacs.2c10256
- D. Neagu, T.S. Oh, D.N. Miller, H. Ménard, S.M. Bukhari et al., Nano-socketed nickel ps with enhanced coking resistance grown in situ by redox exsolution. Nat. Commun. 6, 8120 (2015). https://doi.org/10.1038/ncomms9120
- X. Li, L. Dai, Z. He, W. Meng, Y. Li et al., Enhancing NH3 sensing performance of mixed potential type sensors by chemical exsolution of Ag nanop on AgNbO3 sensing electrode. Sens. Actuators B Chem. 298, 126854 (2019). https://doi.org/10.1016/j.snb.2019.126854
- J. Yu, L. Zhang, J. Qian, Z. Zhu, S. Ni et al., In situ exsolution of silver nanops on AgTaO3–SrTiO3 solid solutions as efficient plasmonic photocatalysts for water splitting. Appl. Catal. B 256, 117818 (2019). https://doi.org/10.1016/j.apcatb.2019.117818
- S. Jo, Y. Han Kim, H. Jeong, C. Park, B.R. Won et al., Exsolution of phase-separated nanops via trigger effect toward reversible solid oxide cell. Appl. Energy 323, 119615 (2022). https://doi.org/10.1016/j.apenergy.2022.119615
- M. Kothari, Y. Jeon, D.N. Miller, A.E. Pascui, J. Kilmartin et al., Platinum incorporation into titanate perovskites to deliver emergent active and stable platinum nanops. Nat. Chem. 13, 677–682 (2021). https://doi.org/10.1038/s41557-021-00696-0
- Y. Song, J. Chen, M. Yang, M. Xu, D. Liu et al., Realizing simultaneous detrimental reactions suppression and multiple benefits generation from nickel doping toward improved protonic ceramic fuel cell performance. Small 18, 2200450 (2022). https://doi.org/10.1002/smll.202200450
- Y. Gao, Z. Lu, T.L. You, J. Wang, L. Xie et al., Energetics of nanop exsolution from perovskite oxides. J. Phys. Chem. Lett. 9, 3772–3778 (2018). https://doi.org/10.1021/acs.jpclett.8b01380
- A.S. Raman, A. Vojvodic, Modeling exsolution of Pt from ATiO3 perovskites (A = Ca/Sr/Ba) using first-principles methods. Chem. Mater. 32, 9642–9649 (2020). https://doi.org/10.1021/acs.chemmater.0c03260
- N.T.K. Thanh, N. Maclean, S. Mahiddine, Mechanisms of nucleation and growth of nanops in solution. Chem. Rev. 114, 7610–7630 (2014). https://doi.org/10.1021/cr400544s
- H. Iddir, V. Komanicky, S. Öǧüt, Y. Hoydoo, P. Zapol, Shape of platinum nanops supported on SrTiO3: experiment and theory. J. Phys. Chem. C 111, 14782–14789 (2007). https://doi.org/10.1021/jp073041r
- K.J. Kim, H. Han, T. Defferriere, D. Yoon, S. Na et al., Facet-dependent in situ growth of nanops in epitaxial thin films: the role of interfacial energy. J. Am. Chem. Soc. 141, 7509–7517 (2019). https://doi.org/10.1021/jacs.9b02283
- Y. Gao, D. Chen, M. Saccoccio, Z. Lu, F. Ciucci, From material design to mechanism study: Nanoscale Ni exsolution on a highly active A-site deficient anode material for solid oxide fuel cells. Nano Energy 27, 499–508 (2016). https://doi.org/10.1016/j.nanoen.2016.07.013
- J. Wang, A. Kumar, J.L. Wardini, Z. Zhang, H. Zhou et al., Exsolution-driven surface transformation in the host oxide. Nano Lett. 22, 5401–5408 (2022). https://doi.org/10.1021/acs.nanolett.2c01439
- D. Zeng, Y. Qiu, S. Peng, C. Chen, J. Zeng et al., Enhanced hydrogen production performance through controllable redox exsolution within CoFeAlOX spinel oxygen carrier materials. J. Mater. Chem. A 6, 11306–11316 (2018). https://doi.org/10.1039/c8ta02477d
- S. Jeon, T. Heo, S.-Y. Hwang, J. Ciston, K.C. Bustillo et al., Reversible disorder-order transitions in atomic crystal nucleation. Science 371, 498–503 (2021). https://doi.org/10.1126/science.aaz7555
- Z. Shang, J. Zhang, L. Ye, K. Xie, Metal nanops at grain boundaries of titanate toward efficient carbon dioxide electrolysis. J. Mater. Chem. A 10, 12458–12463 (2022). https://doi.org/10.1039/d2ta02601e
- J. Wang, J. Yang, A.K. Opitz, W. Bowman, R. Bliem et al., Tuning point defects by elastic strain modulates nanop exsolution on perovskite oxides. Chem. Mater. 33, 5021–5034 (2021). https://doi.org/10.1021/acs.chemmater.1c00821
- H. Han, Y. Xing, B. Park, D.I. Bazhanov, Y. Jin et al., Anti-phase boundary accelerated exsolution of nanops in non-stoichiometric perovskite thin films. Nat. Commun. 13, 6682 (2022). https://doi.org/10.1038/s41467-022-34289-3
- E. Calì, M.P. Thomas, R. Vasudevan, J. Wu, O. Gavalda-Diaz et al., Real-time insight into the multistage mechanism of nanop exsolution from a perovskite host surface. Nat. Commun. 14, 1754 (2023). https://doi.org/10.1038/s41467-023-37212-6
- T. Ruh, D. Berkovec, F. Schrenk, C. Rameshan, Exsolution on perovskite oxides: morphology and anchorage of nanops. Chem. Commun. 59, 3948–3956 (2023). https://doi.org/10.1039/d3cc00456b
- H. Kim, A. Jan, D.H. Kwon, H. Il Ji, K.J. Yoon et al., Exsolution of Ru nanops on BaCe0.9Y0.1O3−δ modifying geometry and electronic structure of Ru for ammonia synthesis reaction under mild conditions. Small 19, 2205424 (2023). https://doi.org/10.1002/smll.202205424
- T.S. Oh, E.K. Rahani, D. Neagu, J.T.S. Irvine, V.B. Shenoy et al., Evidence and model for strain-driven release of metal nanocatalysts from perovskites during exsolution. J. Phys. Chem. Lett. 6, 5106–5110 (2015). https://doi.org/10.1021/acs.jpclett.5b02292
- Y. Wan, Y. Xing, Y. Xie, N. Shi, J. Xu et al., Vanadium-doped strontium molybdate with exsolved Ni nanops as anode material for solid oxide fuel cells. ACS Appl. Mater. Interfaces 11, 42271–42279 (2019). https://doi.org/10.1021/acsami.9b15584
- L. Lindenthal, J. Huber, H. Drexler, T. Ruh, R. Rameshan et al., In situ growth of exsolved nanops under varying rWGS reaction conditions—a catalysis and near ambient pressure-XPS study. Catalysts 11, 1484 (2021). https://doi.org/10.3390/catal11121484
- Y. Li, Y. Li, S. Zhang, C. Ren, Y. Jing et al., Mutual conversion of CO–CO2 on a perovskite fuel electrode with endogenous alloy nanops for reversible solid oxide cells. ACS Appl. Mater. Interfaces 14, 9138–9150 (2022). https://doi.org/10.1021/acsami.1c23548
- V. Kyriakou, R.K. Sharma, D. Neagu, F. Peeters, O. De Luca et al., Plasma driven exsolution for nanoscale functionalization of perovskite oxides. Small Methods 5, 2100868 (2021). https://doi.org/10.1002/smtd.202100868
- Y.H. Kim, Y. Kang, S. Jo, H. Jeong, D. Neagu et al., Shape-shifting nanops on a perovskite oxide for highly stable and active heterogeneous catalysis. Chem. Eng. J. 441, 136025 (2022). https://doi.org/10.1016/j.nanoen.2016.07.013
- Y.R. Jo, B. Koo, M.J. Seo, J.K. Kim, S. Lee et al., Growth kinetics of individual Co ps ex-solved on SrTi0.75Co0.25O3−d polycrystalline perovskite thin films. J. Am. Chem. Soc. 141, 6690–6697 (2019). https://doi.org/10.1021/jacs.9b01882
- H. Lv, L. Lin, X. Zhang, R. Li, Y. Song et al., Promoting exsolution of RuFe alloy nanops on Sr2Fe1.4Ru0.1Mo0.5O6−δ via repeated redox manipulations for CO2 electrolysis. Nat. Commun. 12, 5665 (2021). https://doi.org/10.1038/s41467-021-26001-8
- Y.H. Kim, H. Jeong, B. Won, J. Myung, Exsolution modeling and control to improve the catalytic activity of nanostructured electrodes. Adv. Mater. 35, 2208984 (2023). https://doi.org/10.1002/adma.202208984
- Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanops. Science 298, 2176–2179 (2002). https://doi.org/10.1126/science.1077229
- F. Silly, A.C. Powell, M.G. Martin, M.R. Castell, Growth shapes of supported Pd nanocrystals on SrTiO3 (001). Phys. Rev. B Condens. Matter. Mater. Phys. 72, 165403 (2005). https://doi.org/10.1103/PhysRevB.72.165403
- K. An, G.A. Somorjai, Size and shape control of metal nanops for reaction selectivity in catalysis. ChemCatChem 4, 1512–1524 (2012). https://doi.org/10.1002/cctc.201200229
- V.B. Tinti, D. Marani, A.S. Ferlauto, F.C. Fonseca, V. Esposito et al., Exsolution of nickel nanops from mixed-valence metal oxides: a quantitative evaluation by magnetic measurements. Part. Part. Syst. Charact. 37, 1900472 (2020). https://doi.org/10.1002/ppsc.201900472
- L. Ye, M. Zhang, P. Huang, G. Guo, M. Hong et al., Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures. Nat. Commun. 8, 14785 (2017). https://doi.org/10.1038/ncomms14785
- H.M. Ansari, A.S. Bass, N. Ahmad, V.I. Birss, Unraveling the evolution of exsolved Fe–Ni alloy nanops in Ni-doped La0.3Ca0.7Fe0.7Cr0.3O3−δ and their role in enhancing CO2–CO electrocatalysis. J. Mater. Chem. A 10, 2280–2294 (2022). https://doi.org/10.1039/d1ta07552g
- D.M. Amaya-Dueñas, G. Chen, A. Weidenkaff, N. Sata, F. Han et al., A-site deficient chromite with in situ Ni exsolution as a fuel electrode for solid oxide cells (SOCs). J. Mater. Chem. A 9, 5685–5701 (2021). https://doi.org/10.1039/d0ta07090d
- Y. Yang, Y. Wang, Z. Yang, Y. Chen, S. Peng, A highly active and durable electrode with in situ exsolved Co nanops for solid oxide electrolysis cells. J. Power. Sources 478, 229082 (2020). https://doi.org/10.1016/j.jpowsour.2020.229082
- F. Liu, F. Sommer, C. Bos, E.J. Mittemeijer, Analysis of solid state phase transformation kinetics: models and recipes. Int. Mater. Rev. 52, 193–212 (2007). https://doi.org/10.1179/174328007X160308
- T. Götsch, L. Schlicker, M.F. Bekheet, A. Doran, M. Grünbacher et al., Structural investigations of La0.6Sr0.4FeO3-δ under reducing conditions: kinetic and thermodynamic limitations for phase transformations and iron exsolution phenomena. RSC Adv. 8, 3120–3131 (2018). https://doi.org/10.1039/c7ra12309d
- Y.F. Sun, Y.Q. Zhang, J. Chen, J.H. Li, Y.T. Zhu et al., New opportunity for in situ exsolution of metallic nanops on perovskite parent. Nano Lett. 16, 5303–5309 (2016). https://doi.org/10.1021/acs.nanolett.6b02757
- H. Lv, L. Lin, X. Zhang, Y. Song, H. Matsumoto et al., In situ investigation of reversible exsolution/dissolution of CoFe alloy nanops in a Co-Doped Sr2Fe1.5Mo0.5O6−δ cathode for CO2 electrolysis. Adv. Mater. 32, 1906193 (2020). https://doi.org/10.1002/adma.201906193
- J.K. Kim, Y.-R. Jo, S. Kim, B. Koo, J.H. Kim et al., Exceptional tunability over size and density of spontaneously formed nanops via nucleation dynamics. ACS Appl. Mater. Interfaces 12, 24039–24047 (2020). https://doi.org/10.1021/acsami.0c05215
- W.T. Wallace, B.K. Min, D.W. Goodman, The nucleation, growth, stability of oxide-supported metal clusters. Top. Catal. 34, 17–30 (2005). https://doi.org/10.1007/s11244-005-3786-4
- A.J. Carrillo, J.M. Serra, Exploring the stability of Fe–Ni alloy nanops exsolved from double-layered perovskites for dry reforming of methane. Catalysts 11, 741 (2021). https://doi.org/10.3390/catal11060741
- G. Tsekouras, D. Neagu, J.T.S. Irvine, Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants. Energy Environ. Sci. 6, 256–266 (2013). https://doi.org/10.1039/c2ee22547f
- Y. Sun, J. Li, Y. Zeng, B.S. Amirkhiz, M. Wang et al., A-site deficient perovskite: the parent for in situ exsolution of highly active, regenerable nano-ps as SOFC anodes. J. Mater. Chem. A 3, 11048–11056 (2015). https://doi.org/10.1039/c5ta01733e
- Z.-X. Tian, A. Uozumi, I. Hamada, S. Yanagisawa, H. Kizaki et al., First-principles investigation on the segregation of Pd at LaFe1−xPdxO3−y surfaces. Nanoscale Res. Lett. 8, 203 (2013). https://doi.org/10.1186/1556-276X-8-203
- W. Fan, Z. Sun, Y. Bai, K. Wu, J. Zhou et al., In situ growth of nanops in A-site deficient ferrite perovskite as an advanced electrode for symmetrical solid oxide fuel cells. J. Power Sources (2020). https://doi.org/10.1016/j.jpowsour.2020.228000
- T. Zhu, H. Troiani, L.V. Mogni, M. Santaya, M. Han et al., Exsolution and electrochemistry in perovskite solid oxide fuel cell anodes: role of stoichiometry in Sr(Ti, Fe, Ni)O3. J. Power. Sources 439, 227077 (2019). https://doi.org/10.1016/j.jpowsour.2019.227077
- N. Yu, G. Jiang, T. Liu, X. Chen, M. Miao et al., Understanding the A-site non-stoichiometry in perovskites: promotion of exsolution of metallic nanops and the hydrogen oxidation reaction in solid oxide fuel cells. Sustain. Energy Fuels 5, 401–411 (2021). https://doi.org/10.1039/d0se01280g
- R.A. De Souza, M. Saiful Islamb, E. Ivers-Tifféea, Formation and migration of cation defects in the perovskite oxide LaMnO3. J. Mater. Chem. 9, 1621–1627 (1999). https://doi.org/10.1039/a901512d
- R. Gao, A. Fernandez, T. Chakraborty, A. Luo, D. Pesquera et al., Correlating surface crystal orientation and gas kinetics in perovskite oxide electrodes. Adv. Mater. 33, 2100977 (2021). https://doi.org/10.1002/adma.202100977
- L. Zhang, W. Ji, Q. Guo, Y. Cheng, X. Liu et al., Probing into the in-situ exsolution mechanism of metal nanops from doped ceria host. Nanomaterials 11, 2114 (2021). https://doi.org/10.3390/nano11082114
- H. Han, J. Park, S.Y. Nam, K.J. Kim, G.M. Choi et al., Lattice strain-enhanced exsolution of nanops in thin films. Nat. Commun. 10, 1471 (2019). https://doi.org/10.1038/s41467-019-09395-4
- K. Kim, B. Koo, Y.R. Jo, S. Lee, J.K. Kim et al., Control of transition metal-oxygen bond strength boosts the redox ex-solution in a perovskite oxide surface. Energy Environ. Sci. 13, 3404–3411 (2020). https://doi.org/10.1039/d0ee01308k
- T. Chen, S. Sun, Y. He, H. Leng, C. Sun et al., In situ exsolution of ternary alloy nanops from perovskite oxides to realize enhanced oxygen evolution reactivity. J. Alloys Compd. 960, 170974 (2023). https://doi.org/10.1016/j.jallcom.2023.170974
- Z. Liu, J. Zhou, Y. Sun, X. Yue, J. Yang et al., Tuning exsolution of nanops in defect engineered layered perovskite oxides for efficient CO2 electrolysis. J. Energy Chem. 84, 219–227 (2023). https://doi.org/10.1016/j.jechem.2023.05.033
- C. Duan, R.J. Kee, H. Zhu, C. Karakaya, Y. Chen et al., Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature 557, 217–222 (2018). https://doi.org/10.1038/s41586-018-0082-6
- K.Y. Lai, A. Manthiram, Evolution of exsolved nanops on a perovskite oxide surface during a redox process. Chem. Mater. 30, 2838–2847 (2018). https://doi.org/10.1021/acs.chemmater.8b01029
- K.Y. Lai, A. Manthiram, Self-regenerating Co–Fe nanops on perovskite oxides as a hydrocarbon fuel oxidation catalyst in solid oxide fuel cells. Chem. Mater. 30, 2515–2525 (2018). https://doi.org/10.1021/acs.chemmater.7b04569
- M. Xu, R. Cao, S. Wu, J.G. Lee, D. Chen et al., Nanop exsolution via electrochemical switching in perovskite fibers for solid oxide fuel cell electrodes. J. Mater. Chem. A 24, 13007–13015 (2023). https://doi.org/10.1039/d3ta00535f
- A.K. Opitz, A. Nenning, V. Vonk, S. Volkov, F. Bertram et al., Understanding electrochemical switchability of perovskite-type exsolution catalysts. Nat. Commun. 11, 4801 (2020). https://doi.org/10.1038/s41467-020-18563-w
- E.L. Wolf, Nanophysics and Nanotechnology: An Introduction to Modern Concepts in nanoscience. Nanophysics and Nanotechnology: An Introduction to Modern Concepts in nanoscience (Wiley, London, 2004)
- H. Khalid, A. ul Haq, B. Alessi, J. Wu, C.D. Savaniu et al., Rapid plasma exsolution from an A-site deficient perovskite oxide at room temperature. Adv. Energy Mater. 12, 2201131 (2022). https://doi.org/10.1002/aenm.202201131
- Z. Sun, W. Fan, Y. Bai, A flexible method to fabricate exsolution-based nanop-decorated materials in seconds. Adv. Sci. 9, 2200250 (2022). https://doi.org/10.1002/advs.202200250
- E. Shin, D.H. Kim, J.H. Cha, S. Yun, H. Shin et al., ultrafast ambient-air exsolution on metal oxide via momentary photothermal effect. ACS Nano 16, 18133–18142 (2022). https://doi.org/10.1021/acsnano.2c05128
- Y. Tian, C. Yang, Y. Wang, M. Xu, Y. Ling et al., Phase transition with in situ exsolution nanops in the reduced Pr0.5Ba0.5Fe0.8Ni0.2O3−δ electrode for symmetric solid oxide cells. J. Mater. Chem. A 10, 16490–16496 (2022). https://doi.org/10.1039/d2ta03395j
- P. Qiu, X. Yang, W. Wang, T. Wei, Y. Lu et al., Redox-reversible electrode material for direct hydrocarbon solid oxide fuel cells. ACS Appl. Mater. Interfaces 12, 13988–13995 (2020). https://doi.org/10.1021/acsami.0c00922
- Y.S. Chung, T. Kim, T.H. Shin, H. Yoon, S. Park et al., In situ preparation of a La1.2Sr0.8Mn0.4Fe0.6O4 Ruddlesden–Popper phase with exsolved Fe nanops as an anode for SOFCs. J. Mater. Chem. A 5, 6437–6446 (2017). https://doi.org/10.1039/c6ta09692a
- Z. Du, H. Zhao, S. Yi, Q. Xia, Y. Gong et al., High-performance anode material Sr2FeMo0.65Ni0.35O6 − δ with in situ exsolved nanop catalyst. ACS Nano 10, 8660–8669 (2016). https://doi.org/10.1021/acsnano.6b03979
- A. Jun, J. Kim, J. Shin, G. Kim, Achieving high efficiency and eliminating degradation in solid oxide electrochemical cells using high oxygen-capacity perovskite. Angew. Chem. 128, 12700–12703 (2016). https://doi.org/10.1002/ange.201606972
- S. Choi, S. Yoo, J. Kim, S. Park, A. Jun et al., Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2−xFexO5+δ. Sci. Rep. 3, 2426 (2013). https://doi.org/10.1038/srep02426
- S. Yoo, A. Jun, Y.-W. Ju, D. Odkhuu, J. Hyodo et al., Development of double-perovskite compounds as cathode materials for low-temperature solid oxide fuel cells. Angew. Chem. 126, 13280–13283 (2014). https://doi.org/10.1002/ange.201407006
- S. Joo, O. Kwon, K. Kim, S. Kim, H. Kim et al., Cation-swapped homogeneous nanops in perovskite oxides for high power density. Nat. Commun. 10, 697 (2019). https://doi.org/10.1038/s41467-019-08624-0
- H. Chen, C. Lim, M. Zhou, Z. He, X. Sun et al., Activating lattice oxygen in perovskite oxide by B-site cation doping for modulated stability and activity at elevated temperatures. Adv. Sci. 8, 2102713 (2021). https://doi.org/10.1002/advs.202102713
- H. Kim, C. Lim, O. Kwon, J. Oh, M.T. Curnan et al., Unveiling the key factor for the phase reconstruction and exsolved metallic p distribution in perovskites. Nat. Commun. 12, 6814 (2021). https://doi.org/10.1038/s41467-021-26739-1
- K. Kim, S. Joo, R. Huang, H.J. Kim, G. Kim et al., Mechanistic insights into the phase transition and metal ex-solution phenomena of Pr0.5Ba0.5Mn0.85Co0.15O3−δ from simple to layered perovskite under reducing conditions and enhanced catalytic activity. Energy Environ. Sci. 14, 873–882 (2021). https://doi.org/10.1039/d0ee02875d
- S. Park, Y. Kim, Y. Noh, T. Kim, H. Han et al., A sulfur-tolerant cathode catalyst fabricated with in situ exsolved CoNi alloy nanops anchored on a Ruddlesden–Popper support for CO2 electrolysis. J. Mater. Chem. A 8, 138–148 (2020). https://doi.org/10.1039/c9ta07700f
- K. Zhu, T. Wu, M. Li, R. Lu, X. Zhu et al., Perovskites decorated with oxygen vacancies and Fe–Ni alloy nanops as high-efficiency electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 5, 19836–19845 (2017). https://doi.org/10.1039/c7ta05404a
- H. Lv, S. Wang, Y. Shen, X. Zhang, Y. Song et al., Iron-triggered exsolution of FeNi alloy nanops via topotactic cation exchange on Pr0.7Sr0.3Cr0.9Ni0.1O3−δ perovskite for CO2 electrolysis. Next Energy 1, 100024 (2023). https://doi.org/10.1016/j.nxener.2023.100024
- B.W. Zhang, M.N. Zhu, M.R. Gao, X. Xi, N. Duan et al., Boosting the stability of perovskites with exsolved nanops by B-site supplement mechanism. Nat. Commun. 13, 4618 (2022). https://doi.org/10.1038/s41467-022-32393-y
- T. Wei, L. Jia, H. Zheng, B. Chi, J. Pu et al., LaMnO3-based perovskite with in-situ exsolved Ni nanops: a highly active, performance stable and coking resistant catalyst for CO2 dry reforming of CH4. Appl. Catal. A Gen. 564, 199–207 (2018). https://doi.org/10.1016/j.apcata.2018.07.031
- V. Kyriakou, D. Neagu, E.I. Papaioannou, I.S. Metcalfe, M.C.M. van de Sanden et al., Co-electrolysis of H2O and CO2 on exsolved Ni nanops for efficient syngas generation at controllable H2/CO ratios. Appl. Catal. B 258, 117950 (2019). https://doi.org/10.1016/j.apcatb.2019.117950
- C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15, 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
References
J.H. Myung, D. Neagu, D.N. Miller, J.T.S. Irvine, Switching on electrocatalytic activity in solid oxide cells. Nature 537, 528–531 (2016). https://doi.org/10.1038/nature19090
P. Zhou, I.A. Navid, Y. Ma, Y. Xiao, P. Wang et al., Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 613, 66–70 (2023). https://doi.org/10.1038/s41586-022-05399-1
X. Li, L. Dai, Z. He, W. Meng, Y. Li et al., In situ exsolution of PdO nanops from non-stoichiometric LaFePd0.05O3+δ electrode for impedancemetric NO2 sensor. Sens. Actuators B Chem. 298, 126827 (2019). https://doi.org/10.1016/j.snb.2019.126827
S.H. Kim, H. Jeong, B. Sharma, J.H. Myung, In situ exsolution catalyst: An innovative approach to develop highly selective and sensitive gas sensors. ACS Appl. Mater. Interfaces 14, 18275–18282 (2022). https://doi.org/10.1021/acsami.1c22701
M. Akri, S. Zhao, X. Li, K. Zang, A.F. Lee et al., Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Nat. Commun. 10, 5181 (2019). https://doi.org/10.1038/s41467-019-12843-w
Y.H. Hu, E. Ruckenstein, Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO. Science 368, 777–781 (2020). https://doi.org/10.1126/science.abb5459
S. Chandrasekaran, R. Hu, L. Yao, L. Sui, Y. Liu et al., Mutual self-regulation of d-electrons of single atoms and adjacent nanops for bifunctional oxygen electrocatalysis and rechargeable zinc-air batteries. Nano-Micro Lett. 15, 48 (2023). https://doi.org/10.1007/s40820-023-01022-8
J.T.S. Irvine, D. Neagu, M.C. Verbraeken, C. Chatzichristodoulou, C. Graves et al., Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat. Energy 1, 15014 (2016). https://doi.org/10.1038/nenergy.2015.14
C. Xu, L. Wang, X. Li, X. Qian, Z. Wu et al., Hierarchical magnetic network constructed by CoFe nanops suspended within “tubes on rods” matrix toward enhanced microwave absorption. Nano-Micro Lett. 13, 47 (2021). https://doi.org/10.1007/s40820-020-00572-5
X. Shi, Z. Xu, C. Han, R. Shi, X. Wu et al., Highly dispersed cobalt nanops embedded in nitrogen-doped graphitized carbon for fast and durable potassium storage. Nano-Micro Lett. 13, 21 (2021). https://doi.org/10.1007/s40820-020-00534-x
M. Wang, E.I. Papaioannou, I.S. Metcalfe, A. Naden, C.D. Savaniu et al., The exsolution of Cu ps from doped barium cerate zirconate via barium cuprate intermediate phases. Adv. Funct. Mater. 33, 2302102 (2023). https://doi.org/10.1002/adfm.202302102
X. Kang, V.M. Reinertsen, K.G. Both, A. Galeckas, T. Aarholt et al., Galvanic restructuring of exsolved nanops for plasmonic and electrocatalytic energy conversion. Small 18, 2201106 (2022). https://doi.org/10.1002/smll.202201106
J. Wang, J. Zhou, J. Yang, D. Neagu, L. Fu et al., Tailoring the surface of perovskite through in situ growth of Ru/RuO2 nanops as robust symmetrical electrodes for reversible solid oxide cells. Adv. Mater. Interfaces 7, 2000828 (2020). https://doi.org/10.1002/admi.202000828
D. Neagu, E.I. Papaioannou, W.K.W. Ramli, D.N. Miller, B.J. Murdoch et al., Demonstration of chemistry at a point through restructuring and catalytic activation at anchored nanops. Nat. Commun. 8, 1855 (2017). https://doi.org/10.1038/s41467-017-01880-y
J.G. Lee, J.H. Myung, A.B. Naden, O.S. Jeon, Y.G. Shul et al., Replacement of Ca by Ni in a perovskite titanate to yield a novel perovskite exsolution architecture for oxygen-evolution reactions. Adv. Energy Mater. 10, 1903693 (2020). https://doi.org/10.1002/aenm.201903693
Y. Jiang, Z. Geng, Y. Sun, X. Wang, K. Huang et al., Highly efficient B-Site exsolution assisted by Co doping in lanthanum ferrite toward high-performance electrocatalysts for oxygen evolution and oxygen reduction. ACS Sustain. Chem. Eng. 8, 302–310 (2020). https://doi.org/10.1021/acssuschemeng.9b05344
S. Yu, D. Yoon, Y. Lee, H. Yoon, H. Han et al., Metal nanop exsolution on a perovskite stannate support with high electrical conductivity. Nano Lett. 20, 3538–3544 (2020). https://doi.org/10.1021/acs.nanolett.0c00488
R. Lv, Z. Guo, X. Hou, X. Wu, K. Huang et al., Exsolution: a promising strategy for constructing advanced composite solids. Mater. Today Sustain. 19, 100172 (2022). https://doi.org/10.1016/j.mtsust.2022.100172
B. Hua, M. Li, Y.F. Sun, J.H. Li, J.L. Luo, Enhancing perovskite electrocatalysis of solid oxide cells through controlled exsolution of nanops. ChemSusChem 10, 3333–3341 (2017). https://doi.org/10.1002/cssc.201700936
S.P. Padi, L. Shelly, E.P. Komarala, D. Schweke, S. Hayun et al., Coke-free methane dry reforming over nano-sized NiO–CeO2 solid solution after exsolution. Catal. Commun. 138, 105951 (2020). https://doi.org/10.1016/j.catcom.2020.105951
S. Jo, H.G. Jeong, Y.H. Kim, D. Neagu, J. Myung, Stability and activity controls of Cu nanops for high-performance solid oxide fuel cells. Appl. Catal. B 285, 119828 (2020). https://doi.org/10.1016/j.apcatb.2020.119828
D. Zubenko, S. Singh, B.A. Rosen, Exsolution of Re-alloy catalysts with enhanced stability for methane dry reforming. Appl. Catal. B 209, 711–719 (2017). https://doi.org/10.1016/j.apcatb.2017.03.047
E. Cho, Y.H. Lee, H. Kim, E.J. Jang, J.H. Kwak et al., Ni catalysts for dry methane reforming prepared by A-site exsolution on mesoporous defect spinel magnesium aluminate. Appl. Catal. A Gen. 602, 117694 (2020). https://doi.org/10.1016/j.apcata.2020.117694
M.A. Naeem, P.M. Abdala, A. Armutlulu, S.M. Kim, A. Fedorov et al., Exsolution of metallic Ru nanops from defective, fluorite-type solid solutions Sm2RuxCe2−xO7 to impart stability on dry reforming catalysts. ACS Catal. 10, 1923–1937 (2020). https://doi.org/10.1021/acscatal.9b04555
S. Joo, O. Kwon, S. Kim, H.Y. Jeong, G. Kim, Ni–Fe bimetallic nanocatalysts produced by topotactic exsolution in Fe deposited PrBaMn1.7Ni0.3O5+δ for dry reforming of methane. J. Electrochem. Soc. 167, 064518 (2020). https://doi.org/10.1149/1945-7111/ab8390
J.H. Oh, B.W. Kwon, J. Cho, C.H. Lee, M.K. Kim et al., Importance of exsolution in transition-metal (Co, Rh, and Ir)-doped LaCrO3 perovskite catalysts for boosting dry reforming of CH4 Using CO2 for hydrogen production. Ind. Eng. Chem. Res. 58, 6385–6393 (2019). https://doi.org/10.1021/acs.iecr.8b05337
C. Arrivé, T. Delahaye, O. Joubert, G.H. Gauthier, Study of (La, Sr)(Ti, Ni)O3−δ materials for symmetrical solid oxide cell electrode—part B: conditions of Ni exsolution. Ceram. Int. 46, 5841–5849 (2020). https://doi.org/10.1016/j.ceramint.2019.11.034
X. Yang, W. Sun, M. Ma, C. Xu, R. Ren et al., Enhancing stability and catalytic activity by in situ exsolution for high-performance direct hydrocarbon solid oxide fuel cell anodes. Ind. Eng. Chem. Res. 60, 7826–7834 (2021). https://doi.org/10.1021/acs.iecr.1c00806
Y. Yang, Y. Wang, Z. Yang, Z. Lei, C. Jin et al., Co-substituted Sr2Fe1.5Mo0.5O6−δ as anode materials for solid oxide fuel cells: achieving high performance via nanop exsolution. J. Power Sources 438, 226989 (2019). https://doi.org/10.1016/j.jpowsour.2019.226989
J. Qiao, H. Chen, Z. Wang, W. Sun, H. Li et al., Enhancing the catalytic activity of Y0.08Sr0.92TiO3−δ anodes through in situ Cu exsolution for direct carbon solid oxide fuel cells. Ind. Eng. Chem. Res. 59, 13105–13112 (2020). https://doi.org/10.1021/acs.iecr.0c02203
K. Kousi, D. Neagu, L. Bekris, E.I. Papaioannou, I.S. Metcalfe, Endogenous nanops strain perovskite host lattice providing oxygen capacity and driving oxygen exchange and CH4 conversion to syngas. Angew. Chem. Int. Ed. 59, 2510–2519 (2020). https://doi.org/10.1002/anie.201915140
K. Kousi, D. Neagu, L. Bekris, E. Calì, G. Kerherve et al., Low temperature methane conversion with perovskite-supported: exo/endo-ps. J. Mater. Chem. A 8, 12406–12417 (2020). https://doi.org/10.1039/d0ta05122e
K.J. Kim, M.K. Rath, H.H. Kwak, H.J. Kim, J.W. Han et al., A highly active and redox-stable SrGdNi0.2Mn0.8O4±δ anode with in situ exsolution of nanocatalysts. ACS Catal. 9, 1172–1182 (2019). https://doi.org/10.1021/acscatal.8b03669
S.K. Otto, K. Kousi, D. Neagu, L. Bekris, J. Janek et al., Exsolved nickel nanops acting as oxygen storage reservoirs and active sites for redox CH4 conversion. ACS Appl. Energy Mater. 2, 7288–7298 (2019). https://doi.org/10.1021/acsaem.9b01267
L. Xu, Y.M. Yin, N. Zhou, Z. Wang, Z.F. Ma, Sulfur tolerant redox stable layered perovskite SrLaFeO4−δ as anode for solid oxide fuel cells. Electrochem. Commun. 76, 51–54 (2017). https://doi.org/10.1016/j.elecom.2017.01.017
D. Neagu, J.T.S. Irvine, Enhancing electronic conductivity in strontium titanates through correlated A and B-site doping. Chem. Mater. 23, 1607–1617 (2011). https://doi.org/10.1021/cm103489r
D. Neagu, J.T.S. Irvine, Structure and properties of La0.4Sr0.4TiO3 ceramics for use as anode materials in solid oxide fuel cells. Chem. Mater. 22, 5042–5053 (2010). https://doi.org/10.1021/cm101508w
D. Neagu, G. Tsekouras, D.N. Miller, H. Ménard, J.T.S. Irvine, In situ growth of nanops through control of non-stoichiometry. Nat. Chem. 5, 916–923 (2013). https://doi.org/10.1038/nchem.1773
T. Ishigaki, S. Yamauchi, K. Kishio, J. Mizusaki, K. Fueki, Diffusion of oxide ion vacancies in perovskite-type oxides. J. Solid State Chem. 73, 179–187 (1988). https://doi.org/10.1016/0022-4596(88)90067-9
J. Kim, M. Ferree, S. Gunduz, J.M.M. Millet, M. Aouine et al., Exsolution of nanops on A-site-deficient lanthanum ferrite perovskites: Its effect on co-electrolysis of CO2 and H2O. J. Mater. Chem. A Mater. 10, 2483–2495 (2022). https://doi.org/10.1039/d1ta07389c
W. Zhou, Z. Shao, F. Liang, Z.G. Chen, Z. Zhu et al., A new cathode for solid oxide fuel cells capable of in situ electrochemical regeneration. J. Mater. Chem. 21, 15343–15351 (2011). https://doi.org/10.1039/c1jm12660a
J.H. Kim, J.K. Kim, J. Liu, A. Curcio, J.S. Jang et al., Nanop ex-solution for supported catalysts: materials design, mechanism and future perspectives. ACS Nano 15, 81–110 (2021). https://doi.org/10.1021/acsnano.0c07105
C. Tang, K. Kousi, D. Neagu, J. Portolés, E.I. Papaioannou et al., Towards efficient use of noble metals: via exsolution exemplified for CO oxidation. Nanoscale 11, 16935–16944 (2019). https://doi.org/10.1039/c9nr05617c
T. Zhu, H.E. Troiani, L.V. Mogni, M. Han, S.A. Barnett, Ni-substituted Sr(Ti, Fe)O3 SOFC anodes: achieving high performance via metal alloy nanop exsolution. Joule 2, 478–496 (2018). https://doi.org/10.1016/j.joule.2018.02.006
K. Kousi, C. Tang, I.S. Metcalfe, D. Neagu, Emergence and future of exsolved materials. Small 17, 2006479 (2021). https://doi.org/10.1002/smll.202006479
T. Zhang, Y. Zhao, X. Zhang, H. Zhang, N. Yu et al., Thermal stability of an in situ exsolved metallic nanop structured perovskite type hydrogen electrode for solid oxide cells. ACS Sustain. Chem. Eng. 7, 17834–17844 (2019). https://doi.org/10.1021/acssuschemeng.9b04350
S. Park, Y. Kim, H. Han, Y.S. Chung, W. Yoon et al., In situ exsolved Co nanops on Ruddlesden–Popper material as highly active catalyst for CO2 electrolysis to CO. Appl. Catal. B 248, 147–156 (2019). https://doi.org/10.1016/j.apcatb.2019.02.013
J. Oh, S. Joo, C. Lim, H.J. Kim, F. Ciucci et al., Precise modulation of triple-phase boundaries towards a highly functional exsolved catalyst for dry reforming of methane under a dilution-free system. Angew. Chem. 134, e202204990 (2022). https://doi.org/10.1002/ange.202204990
M. Qin, T. Tan, K. Li, Z. Wang, H. Yang et al., In-situ exsolved FeRu alloy nanops on Ruddlesden–Popper oxides for direct hydrocarbon fuel solid oxide fuel cells. Int. J. Hydrog. Energy 45, 21464–21472 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.242
Y. Wang, T. Liu, M. Li, C. Xia, B. Zhou et al., Exsolved Fe–Ni nano-ps from Sr2Fe1.3Ni0.2Mo0.5O6 perovskite oxide as a cathode for solid oxide steam electrolysis cells. J. Mater. Chem. A 4, 14163–14169 (2016). https://doi.org/10.1039/c6ta06078a
O. Kwon, S. Joo, S. Choi, S. Sengodan, G. Kim, Review on exsolution and its driving forces in perovskites. J. Phys. Energy 2, 032001 (2020). https://doi.org/10.1088/2515-7655/ab8c1f
Y. Li, W. Zhang, Y. Zheng, J. Chen, B. Yu et al., Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability. Chem. Soc. Rev. 46, 6345–6378 (2017). https://doi.org/10.1039/c7cs00120g
T. Cao, O. Kwon, R.J. Gorte, J.M. Vohs, Metal exsolution to enhance the catalytic activity of electrodes in solid oxide fuel cells. Nanomaterials 10(2445), 1–23 (2020). https://doi.org/10.3390/nano10122445
H. Jeong, Y.H. Kim, B.R. Won, H. Jeon, C.H. Park et al., Emerging exsolution materials for diverse energy applications: design, mechanism, and future prospects. Chem. Mater. 35, 3745–3764 (2023). https://doi.org/10.1021/acs.chemmater.3c00004
J. Zhang, M.R. Gao, J.L. Luo, In situ exsolved metal nanops: a smart approach for optimization of catalysts. Chem. Mater. 32, 5424–5441 (2020). https://doi.org/10.1021/acs.chemmater.0c00721
Q.A. Islam, S. Paydar, N. Akbar, B. Zhu, Y. Wu, Nanop exsolution in perovskite oxide and its sustainable electrochemical energy systems. J. Power. Sources 492, 229626 (2021). https://doi.org/10.1016/j.jpowsour.2021.229626
Y. Yang, J. Li, Y. Sun, The metal/oxide heterointerface delivered by solid-based exsolution strategy: a review. Chem. Engin. J. 440, 135868 (2022). https://doi.org/10.1016/j.cej.2022.135868
J.H. Kim, J. Hong, D.K. Lim, S. Ahn, J. Kim et al., Water as a hole-predatory instrument to create metal nanops on triple-conducting oxides. Energy Environ. Sci. 15, 1097–1105 (2021). https://doi.org/10.1039/d1ee03046a
D. Neagu, V. Kyriakou, I.L. Roiban, M. Aouine, C. Tang et al., In situ observation of nanop exsolution from perovskite oxides: from atomic scale mechanistic insight to nanostructure tailoring. ACS Nano 13, 12996–13005 (2019). https://doi.org/10.1021/acsnano.9b05652
J. Wang, D. Kalaev, J. Yang, I. Waluyo, A. Hunt et al., Fast surface oxygen release kinetics accelerate nanop exsolution in perovskite oxides. J. Am. Chem. Soc. 145, 1714–1727 (2023). https://doi.org/10.1021/jacs.2c10256
D. Neagu, T.S. Oh, D.N. Miller, H. Ménard, S.M. Bukhari et al., Nano-socketed nickel ps with enhanced coking resistance grown in situ by redox exsolution. Nat. Commun. 6, 8120 (2015). https://doi.org/10.1038/ncomms9120
X. Li, L. Dai, Z. He, W. Meng, Y. Li et al., Enhancing NH3 sensing performance of mixed potential type sensors by chemical exsolution of Ag nanop on AgNbO3 sensing electrode. Sens. Actuators B Chem. 298, 126854 (2019). https://doi.org/10.1016/j.snb.2019.126854
J. Yu, L. Zhang, J. Qian, Z. Zhu, S. Ni et al., In situ exsolution of silver nanops on AgTaO3–SrTiO3 solid solutions as efficient plasmonic photocatalysts for water splitting. Appl. Catal. B 256, 117818 (2019). https://doi.org/10.1016/j.apcatb.2019.117818
S. Jo, Y. Han Kim, H. Jeong, C. Park, B.R. Won et al., Exsolution of phase-separated nanops via trigger effect toward reversible solid oxide cell. Appl. Energy 323, 119615 (2022). https://doi.org/10.1016/j.apenergy.2022.119615
M. Kothari, Y. Jeon, D.N. Miller, A.E. Pascui, J. Kilmartin et al., Platinum incorporation into titanate perovskites to deliver emergent active and stable platinum nanops. Nat. Chem. 13, 677–682 (2021). https://doi.org/10.1038/s41557-021-00696-0
Y. Song, J. Chen, M. Yang, M. Xu, D. Liu et al., Realizing simultaneous detrimental reactions suppression and multiple benefits generation from nickel doping toward improved protonic ceramic fuel cell performance. Small 18, 2200450 (2022). https://doi.org/10.1002/smll.202200450
Y. Gao, Z. Lu, T.L. You, J. Wang, L. Xie et al., Energetics of nanop exsolution from perovskite oxides. J. Phys. Chem. Lett. 9, 3772–3778 (2018). https://doi.org/10.1021/acs.jpclett.8b01380
A.S. Raman, A. Vojvodic, Modeling exsolution of Pt from ATiO3 perovskites (A = Ca/Sr/Ba) using first-principles methods. Chem. Mater. 32, 9642–9649 (2020). https://doi.org/10.1021/acs.chemmater.0c03260
N.T.K. Thanh, N. Maclean, S. Mahiddine, Mechanisms of nucleation and growth of nanops in solution. Chem. Rev. 114, 7610–7630 (2014). https://doi.org/10.1021/cr400544s
H. Iddir, V. Komanicky, S. Öǧüt, Y. Hoydoo, P. Zapol, Shape of platinum nanops supported on SrTiO3: experiment and theory. J. Phys. Chem. C 111, 14782–14789 (2007). https://doi.org/10.1021/jp073041r
K.J. Kim, H. Han, T. Defferriere, D. Yoon, S. Na et al., Facet-dependent in situ growth of nanops in epitaxial thin films: the role of interfacial energy. J. Am. Chem. Soc. 141, 7509–7517 (2019). https://doi.org/10.1021/jacs.9b02283
Y. Gao, D. Chen, M. Saccoccio, Z. Lu, F. Ciucci, From material design to mechanism study: Nanoscale Ni exsolution on a highly active A-site deficient anode material for solid oxide fuel cells. Nano Energy 27, 499–508 (2016). https://doi.org/10.1016/j.nanoen.2016.07.013
J. Wang, A. Kumar, J.L. Wardini, Z. Zhang, H. Zhou et al., Exsolution-driven surface transformation in the host oxide. Nano Lett. 22, 5401–5408 (2022). https://doi.org/10.1021/acs.nanolett.2c01439
D. Zeng, Y. Qiu, S. Peng, C. Chen, J. Zeng et al., Enhanced hydrogen production performance through controllable redox exsolution within CoFeAlOX spinel oxygen carrier materials. J. Mater. Chem. A 6, 11306–11316 (2018). https://doi.org/10.1039/c8ta02477d
S. Jeon, T. Heo, S.-Y. Hwang, J. Ciston, K.C. Bustillo et al., Reversible disorder-order transitions in atomic crystal nucleation. Science 371, 498–503 (2021). https://doi.org/10.1126/science.aaz7555
Z. Shang, J. Zhang, L. Ye, K. Xie, Metal nanops at grain boundaries of titanate toward efficient carbon dioxide electrolysis. J. Mater. Chem. A 10, 12458–12463 (2022). https://doi.org/10.1039/d2ta02601e
J. Wang, J. Yang, A.K. Opitz, W. Bowman, R. Bliem et al., Tuning point defects by elastic strain modulates nanop exsolution on perovskite oxides. Chem. Mater. 33, 5021–5034 (2021). https://doi.org/10.1021/acs.chemmater.1c00821
H. Han, Y. Xing, B. Park, D.I. Bazhanov, Y. Jin et al., Anti-phase boundary accelerated exsolution of nanops in non-stoichiometric perovskite thin films. Nat. Commun. 13, 6682 (2022). https://doi.org/10.1038/s41467-022-34289-3
E. Calì, M.P. Thomas, R. Vasudevan, J. Wu, O. Gavalda-Diaz et al., Real-time insight into the multistage mechanism of nanop exsolution from a perovskite host surface. Nat. Commun. 14, 1754 (2023). https://doi.org/10.1038/s41467-023-37212-6
T. Ruh, D. Berkovec, F. Schrenk, C. Rameshan, Exsolution on perovskite oxides: morphology and anchorage of nanops. Chem. Commun. 59, 3948–3956 (2023). https://doi.org/10.1039/d3cc00456b
H. Kim, A. Jan, D.H. Kwon, H. Il Ji, K.J. Yoon et al., Exsolution of Ru nanops on BaCe0.9Y0.1O3−δ modifying geometry and electronic structure of Ru for ammonia synthesis reaction under mild conditions. Small 19, 2205424 (2023). https://doi.org/10.1002/smll.202205424
T.S. Oh, E.K. Rahani, D. Neagu, J.T.S. Irvine, V.B. Shenoy et al., Evidence and model for strain-driven release of metal nanocatalysts from perovskites during exsolution. J. Phys. Chem. Lett. 6, 5106–5110 (2015). https://doi.org/10.1021/acs.jpclett.5b02292
Y. Wan, Y. Xing, Y. Xie, N. Shi, J. Xu et al., Vanadium-doped strontium molybdate with exsolved Ni nanops as anode material for solid oxide fuel cells. ACS Appl. Mater. Interfaces 11, 42271–42279 (2019). https://doi.org/10.1021/acsami.9b15584
L. Lindenthal, J. Huber, H. Drexler, T. Ruh, R. Rameshan et al., In situ growth of exsolved nanops under varying rWGS reaction conditions—a catalysis and near ambient pressure-XPS study. Catalysts 11, 1484 (2021). https://doi.org/10.3390/catal11121484
Y. Li, Y. Li, S. Zhang, C. Ren, Y. Jing et al., Mutual conversion of CO–CO2 on a perovskite fuel electrode with endogenous alloy nanops for reversible solid oxide cells. ACS Appl. Mater. Interfaces 14, 9138–9150 (2022). https://doi.org/10.1021/acsami.1c23548
V. Kyriakou, R.K. Sharma, D. Neagu, F. Peeters, O. De Luca et al., Plasma driven exsolution for nanoscale functionalization of perovskite oxides. Small Methods 5, 2100868 (2021). https://doi.org/10.1002/smtd.202100868
Y.H. Kim, Y. Kang, S. Jo, H. Jeong, D. Neagu et al., Shape-shifting nanops on a perovskite oxide for highly stable and active heterogeneous catalysis. Chem. Eng. J. 441, 136025 (2022). https://doi.org/10.1016/j.nanoen.2016.07.013
Y.R. Jo, B. Koo, M.J. Seo, J.K. Kim, S. Lee et al., Growth kinetics of individual Co ps ex-solved on SrTi0.75Co0.25O3−d polycrystalline perovskite thin films. J. Am. Chem. Soc. 141, 6690–6697 (2019). https://doi.org/10.1021/jacs.9b01882
H. Lv, L. Lin, X. Zhang, R. Li, Y. Song et al., Promoting exsolution of RuFe alloy nanops on Sr2Fe1.4Ru0.1Mo0.5O6−δ via repeated redox manipulations for CO2 electrolysis. Nat. Commun. 12, 5665 (2021). https://doi.org/10.1038/s41467-021-26001-8
Y.H. Kim, H. Jeong, B. Won, J. Myung, Exsolution modeling and control to improve the catalytic activity of nanostructured electrodes. Adv. Mater. 35, 2208984 (2023). https://doi.org/10.1002/adma.202208984
Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanops. Science 298, 2176–2179 (2002). https://doi.org/10.1126/science.1077229
F. Silly, A.C. Powell, M.G. Martin, M.R. Castell, Growth shapes of supported Pd nanocrystals on SrTiO3 (001). Phys. Rev. B Condens. Matter. Mater. Phys. 72, 165403 (2005). https://doi.org/10.1103/PhysRevB.72.165403
K. An, G.A. Somorjai, Size and shape control of metal nanops for reaction selectivity in catalysis. ChemCatChem 4, 1512–1524 (2012). https://doi.org/10.1002/cctc.201200229
V.B. Tinti, D. Marani, A.S. Ferlauto, F.C. Fonseca, V. Esposito et al., Exsolution of nickel nanops from mixed-valence metal oxides: a quantitative evaluation by magnetic measurements. Part. Part. Syst. Charact. 37, 1900472 (2020). https://doi.org/10.1002/ppsc.201900472
L. Ye, M. Zhang, P. Huang, G. Guo, M. Hong et al., Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures. Nat. Commun. 8, 14785 (2017). https://doi.org/10.1038/ncomms14785
H.M. Ansari, A.S. Bass, N. Ahmad, V.I. Birss, Unraveling the evolution of exsolved Fe–Ni alloy nanops in Ni-doped La0.3Ca0.7Fe0.7Cr0.3O3−δ and their role in enhancing CO2–CO electrocatalysis. J. Mater. Chem. A 10, 2280–2294 (2022). https://doi.org/10.1039/d1ta07552g
D.M. Amaya-Dueñas, G. Chen, A. Weidenkaff, N. Sata, F. Han et al., A-site deficient chromite with in situ Ni exsolution as a fuel electrode for solid oxide cells (SOCs). J. Mater. Chem. A 9, 5685–5701 (2021). https://doi.org/10.1039/d0ta07090d
Y. Yang, Y. Wang, Z. Yang, Y. Chen, S. Peng, A highly active and durable electrode with in situ exsolved Co nanops for solid oxide electrolysis cells. J. Power. Sources 478, 229082 (2020). https://doi.org/10.1016/j.jpowsour.2020.229082
F. Liu, F. Sommer, C. Bos, E.J. Mittemeijer, Analysis of solid state phase transformation kinetics: models and recipes. Int. Mater. Rev. 52, 193–212 (2007). https://doi.org/10.1179/174328007X160308
T. Götsch, L. Schlicker, M.F. Bekheet, A. Doran, M. Grünbacher et al., Structural investigations of La0.6Sr0.4FeO3-δ under reducing conditions: kinetic and thermodynamic limitations for phase transformations and iron exsolution phenomena. RSC Adv. 8, 3120–3131 (2018). https://doi.org/10.1039/c7ra12309d
Y.F. Sun, Y.Q. Zhang, J. Chen, J.H. Li, Y.T. Zhu et al., New opportunity for in situ exsolution of metallic nanops on perovskite parent. Nano Lett. 16, 5303–5309 (2016). https://doi.org/10.1021/acs.nanolett.6b02757
H. Lv, L. Lin, X. Zhang, Y. Song, H. Matsumoto et al., In situ investigation of reversible exsolution/dissolution of CoFe alloy nanops in a Co-Doped Sr2Fe1.5Mo0.5O6−δ cathode for CO2 electrolysis. Adv. Mater. 32, 1906193 (2020). https://doi.org/10.1002/adma.201906193
J.K. Kim, Y.-R. Jo, S. Kim, B. Koo, J.H. Kim et al., Exceptional tunability over size and density of spontaneously formed nanops via nucleation dynamics. ACS Appl. Mater. Interfaces 12, 24039–24047 (2020). https://doi.org/10.1021/acsami.0c05215
W.T. Wallace, B.K. Min, D.W. Goodman, The nucleation, growth, stability of oxide-supported metal clusters. Top. Catal. 34, 17–30 (2005). https://doi.org/10.1007/s11244-005-3786-4
A.J. Carrillo, J.M. Serra, Exploring the stability of Fe–Ni alloy nanops exsolved from double-layered perovskites for dry reforming of methane. Catalysts 11, 741 (2021). https://doi.org/10.3390/catal11060741
G. Tsekouras, D. Neagu, J.T.S. Irvine, Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants. Energy Environ. Sci. 6, 256–266 (2013). https://doi.org/10.1039/c2ee22547f
Y. Sun, J. Li, Y. Zeng, B.S. Amirkhiz, M. Wang et al., A-site deficient perovskite: the parent for in situ exsolution of highly active, regenerable nano-ps as SOFC anodes. J. Mater. Chem. A 3, 11048–11056 (2015). https://doi.org/10.1039/c5ta01733e
Z.-X. Tian, A. Uozumi, I. Hamada, S. Yanagisawa, H. Kizaki et al., First-principles investigation on the segregation of Pd at LaFe1−xPdxO3−y surfaces. Nanoscale Res. Lett. 8, 203 (2013). https://doi.org/10.1186/1556-276X-8-203
W. Fan, Z. Sun, Y. Bai, K. Wu, J. Zhou et al., In situ growth of nanops in A-site deficient ferrite perovskite as an advanced electrode for symmetrical solid oxide fuel cells. J. Power Sources (2020). https://doi.org/10.1016/j.jpowsour.2020.228000
T. Zhu, H. Troiani, L.V. Mogni, M. Santaya, M. Han et al., Exsolution and electrochemistry in perovskite solid oxide fuel cell anodes: role of stoichiometry in Sr(Ti, Fe, Ni)O3. J. Power. Sources 439, 227077 (2019). https://doi.org/10.1016/j.jpowsour.2019.227077
N. Yu, G. Jiang, T. Liu, X. Chen, M. Miao et al., Understanding the A-site non-stoichiometry in perovskites: promotion of exsolution of metallic nanops and the hydrogen oxidation reaction in solid oxide fuel cells. Sustain. Energy Fuels 5, 401–411 (2021). https://doi.org/10.1039/d0se01280g
R.A. De Souza, M. Saiful Islamb, E. Ivers-Tifféea, Formation and migration of cation defects in the perovskite oxide LaMnO3. J. Mater. Chem. 9, 1621–1627 (1999). https://doi.org/10.1039/a901512d
R. Gao, A. Fernandez, T. Chakraborty, A. Luo, D. Pesquera et al., Correlating surface crystal orientation and gas kinetics in perovskite oxide electrodes. Adv. Mater. 33, 2100977 (2021). https://doi.org/10.1002/adma.202100977
L. Zhang, W. Ji, Q. Guo, Y. Cheng, X. Liu et al., Probing into the in-situ exsolution mechanism of metal nanops from doped ceria host. Nanomaterials 11, 2114 (2021). https://doi.org/10.3390/nano11082114
H. Han, J. Park, S.Y. Nam, K.J. Kim, G.M. Choi et al., Lattice strain-enhanced exsolution of nanops in thin films. Nat. Commun. 10, 1471 (2019). https://doi.org/10.1038/s41467-019-09395-4
K. Kim, B. Koo, Y.R. Jo, S. Lee, J.K. Kim et al., Control of transition metal-oxygen bond strength boosts the redox ex-solution in a perovskite oxide surface. Energy Environ. Sci. 13, 3404–3411 (2020). https://doi.org/10.1039/d0ee01308k
T. Chen, S. Sun, Y. He, H. Leng, C. Sun et al., In situ exsolution of ternary alloy nanops from perovskite oxides to realize enhanced oxygen evolution reactivity. J. Alloys Compd. 960, 170974 (2023). https://doi.org/10.1016/j.jallcom.2023.170974
Z. Liu, J. Zhou, Y. Sun, X. Yue, J. Yang et al., Tuning exsolution of nanops in defect engineered layered perovskite oxides for efficient CO2 electrolysis. J. Energy Chem. 84, 219–227 (2023). https://doi.org/10.1016/j.jechem.2023.05.033
C. Duan, R.J. Kee, H. Zhu, C. Karakaya, Y. Chen et al., Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature 557, 217–222 (2018). https://doi.org/10.1038/s41586-018-0082-6
K.Y. Lai, A. Manthiram, Evolution of exsolved nanops on a perovskite oxide surface during a redox process. Chem. Mater. 30, 2838–2847 (2018). https://doi.org/10.1021/acs.chemmater.8b01029
K.Y. Lai, A. Manthiram, Self-regenerating Co–Fe nanops on perovskite oxides as a hydrocarbon fuel oxidation catalyst in solid oxide fuel cells. Chem. Mater. 30, 2515–2525 (2018). https://doi.org/10.1021/acs.chemmater.7b04569
M. Xu, R. Cao, S. Wu, J.G. Lee, D. Chen et al., Nanop exsolution via electrochemical switching in perovskite fibers for solid oxide fuel cell electrodes. J. Mater. Chem. A 24, 13007–13015 (2023). https://doi.org/10.1039/d3ta00535f
A.K. Opitz, A. Nenning, V. Vonk, S. Volkov, F. Bertram et al., Understanding electrochemical switchability of perovskite-type exsolution catalysts. Nat. Commun. 11, 4801 (2020). https://doi.org/10.1038/s41467-020-18563-w
E.L. Wolf, Nanophysics and Nanotechnology: An Introduction to Modern Concepts in nanoscience. Nanophysics and Nanotechnology: An Introduction to Modern Concepts in nanoscience (Wiley, London, 2004)
H. Khalid, A. ul Haq, B. Alessi, J. Wu, C.D. Savaniu et al., Rapid plasma exsolution from an A-site deficient perovskite oxide at room temperature. Adv. Energy Mater. 12, 2201131 (2022). https://doi.org/10.1002/aenm.202201131
Z. Sun, W. Fan, Y. Bai, A flexible method to fabricate exsolution-based nanop-decorated materials in seconds. Adv. Sci. 9, 2200250 (2022). https://doi.org/10.1002/advs.202200250
E. Shin, D.H. Kim, J.H. Cha, S. Yun, H. Shin et al., ultrafast ambient-air exsolution on metal oxide via momentary photothermal effect. ACS Nano 16, 18133–18142 (2022). https://doi.org/10.1021/acsnano.2c05128
Y. Tian, C. Yang, Y. Wang, M. Xu, Y. Ling et al., Phase transition with in situ exsolution nanops in the reduced Pr0.5Ba0.5Fe0.8Ni0.2O3−δ electrode for symmetric solid oxide cells. J. Mater. Chem. A 10, 16490–16496 (2022). https://doi.org/10.1039/d2ta03395j
P. Qiu, X. Yang, W. Wang, T. Wei, Y. Lu et al., Redox-reversible electrode material for direct hydrocarbon solid oxide fuel cells. ACS Appl. Mater. Interfaces 12, 13988–13995 (2020). https://doi.org/10.1021/acsami.0c00922
Y.S. Chung, T. Kim, T.H. Shin, H. Yoon, S. Park et al., In situ preparation of a La1.2Sr0.8Mn0.4Fe0.6O4 Ruddlesden–Popper phase with exsolved Fe nanops as an anode for SOFCs. J. Mater. Chem. A 5, 6437–6446 (2017). https://doi.org/10.1039/c6ta09692a
Z. Du, H. Zhao, S. Yi, Q. Xia, Y. Gong et al., High-performance anode material Sr2FeMo0.65Ni0.35O6 − δ with in situ exsolved nanop catalyst. ACS Nano 10, 8660–8669 (2016). https://doi.org/10.1021/acsnano.6b03979
A. Jun, J. Kim, J. Shin, G. Kim, Achieving high efficiency and eliminating degradation in solid oxide electrochemical cells using high oxygen-capacity perovskite. Angew. Chem. 128, 12700–12703 (2016). https://doi.org/10.1002/ange.201606972
S. Choi, S. Yoo, J. Kim, S. Park, A. Jun et al., Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2−xFexO5+δ. Sci. Rep. 3, 2426 (2013). https://doi.org/10.1038/srep02426
S. Yoo, A. Jun, Y.-W. Ju, D. Odkhuu, J. Hyodo et al., Development of double-perovskite compounds as cathode materials for low-temperature solid oxide fuel cells. Angew. Chem. 126, 13280–13283 (2014). https://doi.org/10.1002/ange.201407006
S. Joo, O. Kwon, K. Kim, S. Kim, H. Kim et al., Cation-swapped homogeneous nanops in perovskite oxides for high power density. Nat. Commun. 10, 697 (2019). https://doi.org/10.1038/s41467-019-08624-0
H. Chen, C. Lim, M. Zhou, Z. He, X. Sun et al., Activating lattice oxygen in perovskite oxide by B-site cation doping for modulated stability and activity at elevated temperatures. Adv. Sci. 8, 2102713 (2021). https://doi.org/10.1002/advs.202102713
H. Kim, C. Lim, O. Kwon, J. Oh, M.T. Curnan et al., Unveiling the key factor for the phase reconstruction and exsolved metallic p distribution in perovskites. Nat. Commun. 12, 6814 (2021). https://doi.org/10.1038/s41467-021-26739-1
K. Kim, S. Joo, R. Huang, H.J. Kim, G. Kim et al., Mechanistic insights into the phase transition and metal ex-solution phenomena of Pr0.5Ba0.5Mn0.85Co0.15O3−δ from simple to layered perovskite under reducing conditions and enhanced catalytic activity. Energy Environ. Sci. 14, 873–882 (2021). https://doi.org/10.1039/d0ee02875d
S. Park, Y. Kim, Y. Noh, T. Kim, H. Han et al., A sulfur-tolerant cathode catalyst fabricated with in situ exsolved CoNi alloy nanops anchored on a Ruddlesden–Popper support for CO2 electrolysis. J. Mater. Chem. A 8, 138–148 (2020). https://doi.org/10.1039/c9ta07700f
K. Zhu, T. Wu, M. Li, R. Lu, X. Zhu et al., Perovskites decorated with oxygen vacancies and Fe–Ni alloy nanops as high-efficiency electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 5, 19836–19845 (2017). https://doi.org/10.1039/c7ta05404a
H. Lv, S. Wang, Y. Shen, X. Zhang, Y. Song et al., Iron-triggered exsolution of FeNi alloy nanops via topotactic cation exchange on Pr0.7Sr0.3Cr0.9Ni0.1O3−δ perovskite for CO2 electrolysis. Next Energy 1, 100024 (2023). https://doi.org/10.1016/j.nxener.2023.100024
B.W. Zhang, M.N. Zhu, M.R. Gao, X. Xi, N. Duan et al., Boosting the stability of perovskites with exsolved nanops by B-site supplement mechanism. Nat. Commun. 13, 4618 (2022). https://doi.org/10.1038/s41467-022-32393-y
T. Wei, L. Jia, H. Zheng, B. Chi, J. Pu et al., LaMnO3-based perovskite with in-situ exsolved Ni nanops: a highly active, performance stable and coking resistant catalyst for CO2 dry reforming of CH4. Appl. Catal. A Gen. 564, 199–207 (2018). https://doi.org/10.1016/j.apcata.2018.07.031
V. Kyriakou, D. Neagu, E.I. Papaioannou, I.S. Metcalfe, M.C.M. van de Sanden et al., Co-electrolysis of H2O and CO2 on exsolved Ni nanops for efficient syngas generation at controllable H2/CO ratios. Appl. Catal. B 258, 117950 (2019). https://doi.org/10.1016/j.apcatb.2019.117950
C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15, 52 (2023). https://doi.org/10.1007/s40820-023-01024-6