Coaxial Wet Spinning of Boron Nitride Nanosheet-Based Composite Fibers with Enhanced Thermal Conductivity and Mechanical Strength
Corresponding Author: Ling Qiu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 25
Abstract
Hexagonal boron nitride nanosheets (BNNSs) exhibit remarkable thermal and dielectric properties. However, their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron nitride, thereby limiting their performance in applications such as thermal management. In this study, we present a coaxial wet spinning approach for the fabrication of BNNSs/polymer composite fibers with high nanosheet orientation. The composite fibers were prepared using a superacid-based solvent system and showed a layered structure comprising an aramid core and an aramid/BNNSs sheath. Notably, the coaxial fibers exhibited significantly higher BNNSs alignment compared to uniaxial aramid/BNNSs fibers, primarily due to the additional compressive forces exerted at the core-sheath interface during the hot drawing process. With a BNNSs loading of 60 wt%, the resulting coaxial fibers showed exceptional properties, including an ultrahigh Herman orientation parameter of 0.81, thermal conductivity of 17.2 W m−1 K−1, and tensile strength of 192.5 MPa. These results surpassed those of uniaxial fibers and previously reported BNNSs composite fibers, making them highly suitable for applications such as wearable thermal management textiles. Our findings present a promising strategy for fabricating high-performance composite fibers based on BNNSs.
Highlights:
1 A core-sheath structured coaxial composite fiber with highly aligned and densely stacked boron nitride nanosheets arrangements in the sheath was successfully fabricated.
2 The coaxial fibers have an ultrahigh axial Herman orientation parameter of 0.81, thermal conductivity of 17.2 W m−1 K−1, and tensile strength of 192.5 MPa.
3 The coaxial fibers exhibit intensively potential applications in the wearable thermal management textile.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk et al., Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(46), 3906–3924 (2010). https://doi.org/10.1002/adma.201001068
- Y. Zhao, Y. Chen, Y. Zhang, S. Liu, Recent advance in black phosphorus: properties and applications. Mater. Chem. Phys. 189, 215–229 (2017). https://doi.org/10.1016/j.matchemphys.2016.12.014
- Y. Deng, T. Shang, Z. Wu, Y. Tao, C. Luo et al., Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 31(43), 1902432 (2019). https://doi.org/10.1002/adma.201902432
- W. Qian, S. Xu, X. Zhang, C. Li, W. Yang et al., Differences and similarities of photocatalysis and electrocatalysis in two-dimensional nanomaterials: strategies, traps, applications and challenges. Nano-Micro Lett. 13, 156 (2021). https://doi.org/10.1007/s40820-021-00681-9
- Z. Xu, H. Sun, X. Zhao, C. Gao, Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 25(2), 188–193 (2013). https://doi.org/10.1002/adma.201203448
- J. Michael, Q.F. Zhang, D.L. Wang, Titanium carbide MXene: Synthesis, electrical and optical properties and their applications in sensors and energy storage devices. Nanomater. Nanotechn. 9, 1–9 (2019). https://doi.org/10.1177/1847980418824470
- M.A.M. Hasan, Y. Wang, C.R. Bowen, Y. Yang, 2D Nanomaterials for effective energy scavenging. Nano-Micro Lett. 13, 82 (2021). https://doi.org/10.1007/s40820-021-00603-9
- W. Eom, H. Shin, R.B. Ambade, S.H. Lee, K.H. Lee et al., Large-scale wet-spinning of highly electroconductive MXene fibers. Nat. Commun. 11, 2825 (2020). https://doi.org/10.1038/s41467-020-16671-1
- Z. Guo, Z. Lu, Y. Li, W. Liu, Highly performed fiber-based supercapacitor in a conjugation of mesoporous MXene. Adv. Mater. Interfaces 9(5), 2101977 (2022). https://doi.org/10.1002/admi.202101977
- H. Shin, W. Eom, K.H. Lee, W. Jeong, D. Kang et al., Highly electroconductive and mechanically strong Ti3C2Tx MXene fibers using a deformable MXene gel. ACS Nano 15(2), 3320–3329 (2021). https://doi.org/10.1021/acsnano.0c10255
- Z. Wang, S. Qin, S. Seyedin, J. Zhang, J. Wang et al., High-performance biscrolled MXene/carbon nanotube yarn supercapacitors. Small 14(37), 1802225 (2018). https://doi.org/10.1002/smll.201802225
- J. Zhang, S. Uzun, S. Seyedin, P.A. Lynch, B. Akuzum et al., Additive-free MXene liquid crystals and fibers. ACS Cent. Sci. 6(2), 254–265 (2020). https://doi.org/10.1021/acscentsci.9b01217
- L. Kou, Y. Liu, C. Zhang, L. Shao, Z. Tian et al., A mini review on nanocarbon-based 1D macroscopic fibers: assembly strategies and mechanical properties. Nano-Micro Lett. 9, 51 (2017). https://doi.org/10.1007/s40820-017-0151-7
- L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao et al., Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014). https://doi.org/10.1038/ncomms4754
- A. Marais, J. Erlandsson, L.D. Söderberg, L. Wågberg, Coaxial spinning of oriented nanocellulose filaments and core-shell structures for interactive materials and fiber-reinforced composites. ACS Appl. Nano Mater. 3(10), 10246–10251 (2020). https://doi.org/10.1021/acsanm.0c02192
- L. Liu, W. Chen, H. Zhang, L. Ye, Z. Wang et al., Super-tough and environmentally stable aramid nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14, 111 (2022). https://doi.org/10.1007/s40820-022-00853-1
- S. Uzun, S. Seyedin, A. Levitt, B. Anasori, G. Dion et al., MXene composite and coaxial fibers with high stretchability and conductivity for wearables strain sensing textiles. Adv. Funct. Mater. 30(12), 1910504 (2020). https://doi.org/10.1002/adfm.201910504
- Y. Lin, Q. Kang, Y. Liu, Y. Zhu, P. Jiang et al., Flexible, highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5G base stations and thermoelectric generators. Nano-Micro Lett. 15, 31 (2023). https://doi.org/10.1007/s40820-022-01003-3
- S. Cai, T. Huang, H. Chen, M. Salman, K. Gopalsamy et al., Wet-spinning of ternary synergistic coaxial fibers for high performance yarn supercapacitors. J. Mater. Chem. A 5, 22489–22494 (2017). https://doi.org/10.1039/C7TA07937K
- P. Li, W. Wu, J. Xu, J. Cao, H. Zhang, Highly-ordered assembly sheath layers of graphene coaxial fibers for high-performance wearable devices. Sens. Actuators A: Phys. 303, 1–10 (2020). https://doi.org/10.1016/j.sna.2020.111840
- J. Orangi, M. Beidaghi, A Review of the effects of electrode fabrication and assembly processes on the structure and electrochemical performance of 2D MXenes. Adv. Funct. Mater. 30(47), 2005305 (2020). https://doi.org/10.1002/adfm.202005305
- B. Fang, D. Chang, Z. Xu, C. Gao, A review on graphene fibers: expectations, advances, and prospects. Adv. Mater. 32(5), 1902664 (2020). https://doi.org/10.1002/adma.201902664
- Y. Wen, C. Chen, Y. Ye, Z. Xue, H. Liu et al., Advances on thermally conductive epoxy-based composites as electronic packaging underfill materials-a review. Adv. Mater. 34(52), 2201023 (2022). https://doi.org/10.1002/adma.202201023
- A. Rafique, I. Ferreira, G. Abbas, A.C. Baptista, Recent advances and challenges toward application of fibers and textiles in integrated photovoltaic energy storage devices. Nano-Micro Lett. 15, 40 (2023). https://doi.org/10.1007/s40820-022-01008-y
- T. Zhou, Y. Yu, B. He, Z. Wang, T. Xiong et al., Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses. Nat. Commun. 13, 4564 (2022). https://doi.org/10.1038/s41467-022-32361-6
- A. Ahmed, S. Sharma, B. Adak, M.M. Hossain, A.M. LaChance et al., Two-dimensional MXenes: new frontier of wearable and flexible electronics. InfoMat 4(4), 12295 (2022). https://doi.org/10.1002/inf2.12295
- Q. Yang, Z. Xu, B. Fang, T. Huang, S. Cai et al., MXene/graphene hybrid fibers for high performance flexible supercapacitors. J. Mater. Chem. A 5, 22113–22119 (2017). https://doi.org/10.1039/C7TA07999K
- Y.B. Dmitri Golberg, Y. Huang, T. Terao, M. Mitome, C. Tang et al., Boron nitride nanotubes and nanosheets. ACS Nano 4(6), 2979–2993 (2010). https://doi.org/10.1021/nn1006495
- S. Roy, X. Zhang, A.B. Puthirath, A. Meiyazhagan, S. Bhattacharyya et al., Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv. Mater. 33(44), 2101589 (2021). https://doi.org/10.1002/adma.202101589
- Q. Yan, W. Dai, J. Gao, X. Tan, L. Lv et al., Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 15(4), 6489–6498 (2021). https://doi.org/10.1021/acsnano.0c09229
- Y. Han, H. Han, Y. Rah, C. Kim, M. Kim et al., Desolvation-triggered versatile transfer-printing of pure BN films with thermal-optical dual functionality. Adv. Mater. 32(38), 2002099 (2020). https://doi.org/10.1002/adma.202002099
- S. Moon, J. Kim, J. Park, S. Im, J. Kim et al., Hexagonal boron nitride for next-generation photonics and electronics. Adv. Mater. 35(4), 2204161 (2023). https://doi.org/10.1002/adma.202204161
- H. Niu, H. Guo, L. Kang, L. Ren, R. Lv et al., Vertical alignment of anisotropic fillers assisted by expansion flow in polymer composites. Nano-Micro Lett. 14, 153 (2022). https://doi.org/10.1007/s40820-022-00909-2
- Z. Liu, A. Dibaji, D. Li, S. Mateti, J. Liu et al., Challenges and solutions in surface engineering and assembly of boron nitride nanosheets. Mater. Today 44, 194 (2021). https://doi.org/10.1016/j.mattod.2020.11.020
- S. Chen, R. Xu, J. Liu, X. Zou, L. Qiu et al., Simultaneous production and functionalization of boron nitride nanosheets by sugar-assisted mechanochemical exfoliation. Adv. Mater. 31, 1804810 (2019). https://doi.org/10.1038/s41699-019-0111-9
- A.E. Naclerio, P.R. Kidambi, A review of scalable hexagonal boron nitride (h-BN) synthesis for present and future applications. Adv. Mater. 35(6), 2207374 (2023). https://doi.org/10.1002/adma.202207374
- L.M. Guiney, N.D. Mansukhani, A.E. Jakus, S.G. Wallace, R.N. Shah et al., Three-dimensional printing of cytocompatible, thermally conductive hexagonal boron nitride nanocomposites. Nano Lett. 18, 3488–3493 (2018). https://doi.org/10.1021/acs.nanolett.8b00555
- J. Liu, W. Li, Y. Guo, H. Zhang, Z. Zhang, Improved thermal conductivity of thermoplastic polyurethane via aligned boron nitride platelets assisted by 3D printing. Compos. A: Appl. Sci. Manufact. 120, 140–146 (2019). https://doi.org/10.1016/j.compositesa.2019.02.026
- K. Wu, Y. Zhang, F. Gong, D. Liu, C. Lei et al., Highly thermo-conductive but electrically insulating filament via a volume-confinement self-assembled strategy for thermoelectric wearables. Chem. Eng. J. 421, 127764 (2021). https://doi.org/10.1016/j.cej.2020.127764
- H. Guo, H. Niu, H. Zhao, L. Kang, Y. Ren et al., Highly anisotropic thermal conductivity of three-dimensional printed boron nitride-filled thermoplastic polyurethane composites: effects of size, orientation, viscosity, and voids. ACS Appl. Mater. Interfaces 14(12), 14568–14578 (2022). https://doi.org/10.1021/acsami.1c23944
- K. Wu, L. Yu, C. Lei, J. Huang, D. Liu et al., Green production of regenerated cellulose/boron nitride nanosheet textiles for static and dynamic personal cooling. ACS Appl. Mater. Interfaces 11(43), 40685–40693 (2019). https://doi.org/10.1021/acsami.9b15612
- J. Gao, M. Hao, Y. Wang, X. Kong, B. Yang et al., 3D printing boron nitride nanosheets filled thermoplastic polyurethane composites with enhanced mechanical and thermal conductive properties. Addit Manufact. 56, 1–13 (2022). https://doi.org/10.1016/j.addma.2022.102897
- C. Lei, Y. Zhang, D. Liu, X. Xu, K. Wu et al., Highly thermo-conductive yet electrically insulating material with perpendicularly engineered assembly of boron nitride nanosheets. Compos. Sci. Technol. 214, 108995 (2021). https://doi.org/10.1016/j.compscitech.2021.108995
- R. Mo, Z. Liu, W. Guo, X. Wu, Q. Xu et al., Interfacial crosslinking for highly thermally conductive and mechanically strong boron nitride/aramid nanofiber composite film. Compos. Commun. 28, 100962 (2021). https://doi.org/10.1016/j.coco.2021.100962
- S. Farajikhah, R. Amber, S. Sayyar, S. Shafei, C.D. Fay et al., Processable thermally conductive polyurethane composite fibers. Macromolecular Mater. Eng. 304(3), 1800542 (2018). https://doi.org/10.1002/mame.201800542
- C.S. Boland, S. Barwich, U. Khan, J.N. Coleman, High stiffness nano-composite fibres from polyvinylalcohol filled with graphene and boron nitride. Carbon 99, 280–288 (2016). https://doi.org/10.1016/j.carbon.2015.12.023
- Q. Zhang, T. Xue, J. Tian, Y. Yang, W. Fan et al., Polyimide/boron nitride composite aerogel fiber-based phase-changeable textile for intelligent personal thermoregulation. Compos. Sci. Technol. 226, 109541 (2022). https://doi.org/10.1016/j.compscitech.2022.109541
- W. Guo, A. Chen, Y. Lv, Y. Zhu, J. Wu, Microscale heat-flux meter for low-dimensional thermal measurement and its application in heat-loss modified angstrom method. Int. J. Heat Mass. Transfer. 169, 120938 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.120938
- Y. Fang, J. Dong, X. Zhao, T. Chen, L. Xiang et al., Covalently linked polydopamine-modified boron nitride nanosheets/polyimide composite fibers with enhanced heat diffusion and mechanical behaviors. Compos. B Eng. 199, 108281 (2020). https://doi.org/10.1016/j.compositesb.2020.108281
- T. Sibillano, A. Terzi, L. De Caro, M. Ladisa, D. Altamura et al., Wide angle X-ray scattering to study the atomic structure of polymeric fibers. Crystals 10, 274 (2020). https://doi.org/10.3390/cryst10040274
- N. Sun, J. Sun, X. Zeng, P. Chen, J. Qian et al., Hot-pressing induced orientation of boron nitride in polycarbonate composites with enhanced thermal conductivity. Compos. A: Appl. Sci. Manufact. 110, 45–52 (2018). https://doi.org/10.1016/j.compositesa.2018.04.010
- X. Zhang, B. Xie, S. Zhou, X. Yang, Y. Fan et al., Radially oriented functional thermal materials prepared by flow field-driven self-assembly strategy. Nano Energy 104, 107986 (2022). https://doi.org/10.1016/j.nanoen.2022.107986
- X. Li, C. Li, X. Zhang, Y. Jiang, L. Xia et al., Simultaneously enhanced thermal conductivity and mechanical properties of PP/BN composites via constructing reinforced segregated structure with a trace amount of BN wrapped PP fiber. Chem. Eng. J. 390, 124563 (2020). https://doi.org/10.1016/j.cej.2020.124563
- T. Gao, Z. Yang, C. Chen, Y. Li, K. Fu et al., Three-dimensional printed thermal regulation textiles. ACS Nano 11, 11513–11520 (2017). https://doi.org/10.1021/acsnano.7b06295
- H. He, W. Peng, J. Liu, X.Y. Chan, S. Liu et al., Microstructured BN composites with internally designed high thermal conductivity paths for 3D electronic packaging. Adv. Mater. 22, 2205120 (2022). https://doi.org/10.1002/adma.202205120
- T. Wang, C. Wei, L. Yan, Y. Liao, G. Wang et al., Thermally conductive, mechanically strong dielectric film made from aramid nanofiber and edge-hydroxylated boron nitride nanosheet for thermal management applications. Compos. Interfaces 28, 1067–1080 (2020). https://doi.org/10.1080/09276440.2020.1855573
- L. Zhao, L. Wang, Y. Jin, J. Ren, Z. Wang et al., Simultaneously improved thermal conductivity and mechanical properties of boron nitride nanosheets/aramid nanofiber films by constructing multilayer gradient structure. Compos. B: Engin. 229, 109454 (2022). https://doi.org/10.1016/j.compositesb.2021.109454
- L. Xu, K. Zhan, S. Ding, J. Zhu, M. Liu et al., A malleable composite dough with well-dispersed and high-content boron nitride nanosheets. ACS Nano 17, 4886–4895 (2023). https://doi.org/10.1021/acsnano.2c11826
- G. Xiao, J. Di, H. Li, J. Wang, Highly thermally conductive, ductile biomimetic boron nitride/aramid nanofiber composite film. Compos. Sci. Technol. 189, 1–8 (2020). https://doi.org/10.1016/j.compscitech.2020.108021
- K. Wu, J. Wang, D. Liu, C. Lei, D. Liu et al., Highly thermo-conductive, thermostable, and super-flexible film by engineering 1D rigid rod-like aramid nanofiber/2D boron nitride nanosheets. Adv. Mater. 32, 1906939 (2020). https://doi.org/10.1002/adma.201906939
- Z. Liang, Y. Pei, C. Chen, B. Jiang, Y. Yao et al., General, vertical, three-dimensional printing of two-dimensional materials with multiscale alignment. ACS Nano 13, 12653–12661 (2019). https://doi.org/10.1021/acsnano.9b04202
- H. Liu, F. Zhou, X. Shi, K. Sun, Y. Kou et al., A thermoregulatory flexible phase change nonwoven for all-season high-efficiency wearable thermal management. Nano-Micro Lett. 15, 29 (2023). https://doi.org/10.1007/s40820-022-00991-6
- L. An, B. Liang, Z. Guo, J. Wang, C. Li et al., Wearable aramid ceramic aerogel composite for harsh environment. Adv. Eng. Mater. 23, 2001169 (2020). https://doi.org/10.1002/adem.202001169
- X. Zuo, X. Zhang, L. Qu, J. Miao, Smart fibers and textiles for personal thermal management in emerging wearable applications. Adv. Mater. Technol. 8, 2201137 (2022). https://doi.org/10.1002/admt.202201137
References
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk et al., Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(46), 3906–3924 (2010). https://doi.org/10.1002/adma.201001068
Y. Zhao, Y. Chen, Y. Zhang, S. Liu, Recent advance in black phosphorus: properties and applications. Mater. Chem. Phys. 189, 215–229 (2017). https://doi.org/10.1016/j.matchemphys.2016.12.014
Y. Deng, T. Shang, Z. Wu, Y. Tao, C. Luo et al., Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 31(43), 1902432 (2019). https://doi.org/10.1002/adma.201902432
W. Qian, S. Xu, X. Zhang, C. Li, W. Yang et al., Differences and similarities of photocatalysis and electrocatalysis in two-dimensional nanomaterials: strategies, traps, applications and challenges. Nano-Micro Lett. 13, 156 (2021). https://doi.org/10.1007/s40820-021-00681-9
Z. Xu, H. Sun, X. Zhao, C. Gao, Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 25(2), 188–193 (2013). https://doi.org/10.1002/adma.201203448
J. Michael, Q.F. Zhang, D.L. Wang, Titanium carbide MXene: Synthesis, electrical and optical properties and their applications in sensors and energy storage devices. Nanomater. Nanotechn. 9, 1–9 (2019). https://doi.org/10.1177/1847980418824470
M.A.M. Hasan, Y. Wang, C.R. Bowen, Y. Yang, 2D Nanomaterials for effective energy scavenging. Nano-Micro Lett. 13, 82 (2021). https://doi.org/10.1007/s40820-021-00603-9
W. Eom, H. Shin, R.B. Ambade, S.H. Lee, K.H. Lee et al., Large-scale wet-spinning of highly electroconductive MXene fibers. Nat. Commun. 11, 2825 (2020). https://doi.org/10.1038/s41467-020-16671-1
Z. Guo, Z. Lu, Y. Li, W. Liu, Highly performed fiber-based supercapacitor in a conjugation of mesoporous MXene. Adv. Mater. Interfaces 9(5), 2101977 (2022). https://doi.org/10.1002/admi.202101977
H. Shin, W. Eom, K.H. Lee, W. Jeong, D. Kang et al., Highly electroconductive and mechanically strong Ti3C2Tx MXene fibers using a deformable MXene gel. ACS Nano 15(2), 3320–3329 (2021). https://doi.org/10.1021/acsnano.0c10255
Z. Wang, S. Qin, S. Seyedin, J. Zhang, J. Wang et al., High-performance biscrolled MXene/carbon nanotube yarn supercapacitors. Small 14(37), 1802225 (2018). https://doi.org/10.1002/smll.201802225
J. Zhang, S. Uzun, S. Seyedin, P.A. Lynch, B. Akuzum et al., Additive-free MXene liquid crystals and fibers. ACS Cent. Sci. 6(2), 254–265 (2020). https://doi.org/10.1021/acscentsci.9b01217
L. Kou, Y. Liu, C. Zhang, L. Shao, Z. Tian et al., A mini review on nanocarbon-based 1D macroscopic fibers: assembly strategies and mechanical properties. Nano-Micro Lett. 9, 51 (2017). https://doi.org/10.1007/s40820-017-0151-7
L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao et al., Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014). https://doi.org/10.1038/ncomms4754
A. Marais, J. Erlandsson, L.D. Söderberg, L. Wågberg, Coaxial spinning of oriented nanocellulose filaments and core-shell structures for interactive materials and fiber-reinforced composites. ACS Appl. Nano Mater. 3(10), 10246–10251 (2020). https://doi.org/10.1021/acsanm.0c02192
L. Liu, W. Chen, H. Zhang, L. Ye, Z. Wang et al., Super-tough and environmentally stable aramid nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14, 111 (2022). https://doi.org/10.1007/s40820-022-00853-1
S. Uzun, S. Seyedin, A. Levitt, B. Anasori, G. Dion et al., MXene composite and coaxial fibers with high stretchability and conductivity for wearables strain sensing textiles. Adv. Funct. Mater. 30(12), 1910504 (2020). https://doi.org/10.1002/adfm.201910504
Y. Lin, Q. Kang, Y. Liu, Y. Zhu, P. Jiang et al., Flexible, highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5G base stations and thermoelectric generators. Nano-Micro Lett. 15, 31 (2023). https://doi.org/10.1007/s40820-022-01003-3
S. Cai, T. Huang, H. Chen, M. Salman, K. Gopalsamy et al., Wet-spinning of ternary synergistic coaxial fibers for high performance yarn supercapacitors. J. Mater. Chem. A 5, 22489–22494 (2017). https://doi.org/10.1039/C7TA07937K
P. Li, W. Wu, J. Xu, J. Cao, H. Zhang, Highly-ordered assembly sheath layers of graphene coaxial fibers for high-performance wearable devices. Sens. Actuators A: Phys. 303, 1–10 (2020). https://doi.org/10.1016/j.sna.2020.111840
J. Orangi, M. Beidaghi, A Review of the effects of electrode fabrication and assembly processes on the structure and electrochemical performance of 2D MXenes. Adv. Funct. Mater. 30(47), 2005305 (2020). https://doi.org/10.1002/adfm.202005305
B. Fang, D. Chang, Z. Xu, C. Gao, A review on graphene fibers: expectations, advances, and prospects. Adv. Mater. 32(5), 1902664 (2020). https://doi.org/10.1002/adma.201902664
Y. Wen, C. Chen, Y. Ye, Z. Xue, H. Liu et al., Advances on thermally conductive epoxy-based composites as electronic packaging underfill materials-a review. Adv. Mater. 34(52), 2201023 (2022). https://doi.org/10.1002/adma.202201023
A. Rafique, I. Ferreira, G. Abbas, A.C. Baptista, Recent advances and challenges toward application of fibers and textiles in integrated photovoltaic energy storage devices. Nano-Micro Lett. 15, 40 (2023). https://doi.org/10.1007/s40820-022-01008-y
T. Zhou, Y. Yu, B. He, Z. Wang, T. Xiong et al., Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses. Nat. Commun. 13, 4564 (2022). https://doi.org/10.1038/s41467-022-32361-6
A. Ahmed, S. Sharma, B. Adak, M.M. Hossain, A.M. LaChance et al., Two-dimensional MXenes: new frontier of wearable and flexible electronics. InfoMat 4(4), 12295 (2022). https://doi.org/10.1002/inf2.12295
Q. Yang, Z. Xu, B. Fang, T. Huang, S. Cai et al., MXene/graphene hybrid fibers for high performance flexible supercapacitors. J. Mater. Chem. A 5, 22113–22119 (2017). https://doi.org/10.1039/C7TA07999K
Y.B. Dmitri Golberg, Y. Huang, T. Terao, M. Mitome, C. Tang et al., Boron nitride nanotubes and nanosheets. ACS Nano 4(6), 2979–2993 (2010). https://doi.org/10.1021/nn1006495
S. Roy, X. Zhang, A.B. Puthirath, A. Meiyazhagan, S. Bhattacharyya et al., Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv. Mater. 33(44), 2101589 (2021). https://doi.org/10.1002/adma.202101589
Q. Yan, W. Dai, J. Gao, X. Tan, L. Lv et al., Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 15(4), 6489–6498 (2021). https://doi.org/10.1021/acsnano.0c09229
Y. Han, H. Han, Y. Rah, C. Kim, M. Kim et al., Desolvation-triggered versatile transfer-printing of pure BN films with thermal-optical dual functionality. Adv. Mater. 32(38), 2002099 (2020). https://doi.org/10.1002/adma.202002099
S. Moon, J. Kim, J. Park, S. Im, J. Kim et al., Hexagonal boron nitride for next-generation photonics and electronics. Adv. Mater. 35(4), 2204161 (2023). https://doi.org/10.1002/adma.202204161
H. Niu, H. Guo, L. Kang, L. Ren, R. Lv et al., Vertical alignment of anisotropic fillers assisted by expansion flow in polymer composites. Nano-Micro Lett. 14, 153 (2022). https://doi.org/10.1007/s40820-022-00909-2
Z. Liu, A. Dibaji, D. Li, S. Mateti, J. Liu et al., Challenges and solutions in surface engineering and assembly of boron nitride nanosheets. Mater. Today 44, 194 (2021). https://doi.org/10.1016/j.mattod.2020.11.020
S. Chen, R. Xu, J. Liu, X. Zou, L. Qiu et al., Simultaneous production and functionalization of boron nitride nanosheets by sugar-assisted mechanochemical exfoliation. Adv. Mater. 31, 1804810 (2019). https://doi.org/10.1038/s41699-019-0111-9
A.E. Naclerio, P.R. Kidambi, A review of scalable hexagonal boron nitride (h-BN) synthesis for present and future applications. Adv. Mater. 35(6), 2207374 (2023). https://doi.org/10.1002/adma.202207374
L.M. Guiney, N.D. Mansukhani, A.E. Jakus, S.G. Wallace, R.N. Shah et al., Three-dimensional printing of cytocompatible, thermally conductive hexagonal boron nitride nanocomposites. Nano Lett. 18, 3488–3493 (2018). https://doi.org/10.1021/acs.nanolett.8b00555
J. Liu, W. Li, Y. Guo, H. Zhang, Z. Zhang, Improved thermal conductivity of thermoplastic polyurethane via aligned boron nitride platelets assisted by 3D printing. Compos. A: Appl. Sci. Manufact. 120, 140–146 (2019). https://doi.org/10.1016/j.compositesa.2019.02.026
K. Wu, Y. Zhang, F. Gong, D. Liu, C. Lei et al., Highly thermo-conductive but electrically insulating filament via a volume-confinement self-assembled strategy for thermoelectric wearables. Chem. Eng. J. 421, 127764 (2021). https://doi.org/10.1016/j.cej.2020.127764
H. Guo, H. Niu, H. Zhao, L. Kang, Y. Ren et al., Highly anisotropic thermal conductivity of three-dimensional printed boron nitride-filled thermoplastic polyurethane composites: effects of size, orientation, viscosity, and voids. ACS Appl. Mater. Interfaces 14(12), 14568–14578 (2022). https://doi.org/10.1021/acsami.1c23944
K. Wu, L. Yu, C. Lei, J. Huang, D. Liu et al., Green production of regenerated cellulose/boron nitride nanosheet textiles for static and dynamic personal cooling. ACS Appl. Mater. Interfaces 11(43), 40685–40693 (2019). https://doi.org/10.1021/acsami.9b15612
J. Gao, M. Hao, Y. Wang, X. Kong, B. Yang et al., 3D printing boron nitride nanosheets filled thermoplastic polyurethane composites with enhanced mechanical and thermal conductive properties. Addit Manufact. 56, 1–13 (2022). https://doi.org/10.1016/j.addma.2022.102897
C. Lei, Y. Zhang, D. Liu, X. Xu, K. Wu et al., Highly thermo-conductive yet electrically insulating material with perpendicularly engineered assembly of boron nitride nanosheets. Compos. Sci. Technol. 214, 108995 (2021). https://doi.org/10.1016/j.compscitech.2021.108995
R. Mo, Z. Liu, W. Guo, X. Wu, Q. Xu et al., Interfacial crosslinking for highly thermally conductive and mechanically strong boron nitride/aramid nanofiber composite film. Compos. Commun. 28, 100962 (2021). https://doi.org/10.1016/j.coco.2021.100962
S. Farajikhah, R. Amber, S. Sayyar, S. Shafei, C.D. Fay et al., Processable thermally conductive polyurethane composite fibers. Macromolecular Mater. Eng. 304(3), 1800542 (2018). https://doi.org/10.1002/mame.201800542
C.S. Boland, S. Barwich, U. Khan, J.N. Coleman, High stiffness nano-composite fibres from polyvinylalcohol filled with graphene and boron nitride. Carbon 99, 280–288 (2016). https://doi.org/10.1016/j.carbon.2015.12.023
Q. Zhang, T. Xue, J. Tian, Y. Yang, W. Fan et al., Polyimide/boron nitride composite aerogel fiber-based phase-changeable textile for intelligent personal thermoregulation. Compos. Sci. Technol. 226, 109541 (2022). https://doi.org/10.1016/j.compscitech.2022.109541
W. Guo, A. Chen, Y. Lv, Y. Zhu, J. Wu, Microscale heat-flux meter for low-dimensional thermal measurement and its application in heat-loss modified angstrom method. Int. J. Heat Mass. Transfer. 169, 120938 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.120938
Y. Fang, J. Dong, X. Zhao, T. Chen, L. Xiang et al., Covalently linked polydopamine-modified boron nitride nanosheets/polyimide composite fibers with enhanced heat diffusion and mechanical behaviors. Compos. B Eng. 199, 108281 (2020). https://doi.org/10.1016/j.compositesb.2020.108281
T. Sibillano, A. Terzi, L. De Caro, M. Ladisa, D. Altamura et al., Wide angle X-ray scattering to study the atomic structure of polymeric fibers. Crystals 10, 274 (2020). https://doi.org/10.3390/cryst10040274
N. Sun, J. Sun, X. Zeng, P. Chen, J. Qian et al., Hot-pressing induced orientation of boron nitride in polycarbonate composites with enhanced thermal conductivity. Compos. A: Appl. Sci. Manufact. 110, 45–52 (2018). https://doi.org/10.1016/j.compositesa.2018.04.010
X. Zhang, B. Xie, S. Zhou, X. Yang, Y. Fan et al., Radially oriented functional thermal materials prepared by flow field-driven self-assembly strategy. Nano Energy 104, 107986 (2022). https://doi.org/10.1016/j.nanoen.2022.107986
X. Li, C. Li, X. Zhang, Y. Jiang, L. Xia et al., Simultaneously enhanced thermal conductivity and mechanical properties of PP/BN composites via constructing reinforced segregated structure with a trace amount of BN wrapped PP fiber. Chem. Eng. J. 390, 124563 (2020). https://doi.org/10.1016/j.cej.2020.124563
T. Gao, Z. Yang, C. Chen, Y. Li, K. Fu et al., Three-dimensional printed thermal regulation textiles. ACS Nano 11, 11513–11520 (2017). https://doi.org/10.1021/acsnano.7b06295
H. He, W. Peng, J. Liu, X.Y. Chan, S. Liu et al., Microstructured BN composites with internally designed high thermal conductivity paths for 3D electronic packaging. Adv. Mater. 22, 2205120 (2022). https://doi.org/10.1002/adma.202205120
T. Wang, C. Wei, L. Yan, Y. Liao, G. Wang et al., Thermally conductive, mechanically strong dielectric film made from aramid nanofiber and edge-hydroxylated boron nitride nanosheet for thermal management applications. Compos. Interfaces 28, 1067–1080 (2020). https://doi.org/10.1080/09276440.2020.1855573
L. Zhao, L. Wang, Y. Jin, J. Ren, Z. Wang et al., Simultaneously improved thermal conductivity and mechanical properties of boron nitride nanosheets/aramid nanofiber films by constructing multilayer gradient structure. Compos. B: Engin. 229, 109454 (2022). https://doi.org/10.1016/j.compositesb.2021.109454
L. Xu, K. Zhan, S. Ding, J. Zhu, M. Liu et al., A malleable composite dough with well-dispersed and high-content boron nitride nanosheets. ACS Nano 17, 4886–4895 (2023). https://doi.org/10.1021/acsnano.2c11826
G. Xiao, J. Di, H. Li, J. Wang, Highly thermally conductive, ductile biomimetic boron nitride/aramid nanofiber composite film. Compos. Sci. Technol. 189, 1–8 (2020). https://doi.org/10.1016/j.compscitech.2020.108021
K. Wu, J. Wang, D. Liu, C. Lei, D. Liu et al., Highly thermo-conductive, thermostable, and super-flexible film by engineering 1D rigid rod-like aramid nanofiber/2D boron nitride nanosheets. Adv. Mater. 32, 1906939 (2020). https://doi.org/10.1002/adma.201906939
Z. Liang, Y. Pei, C. Chen, B. Jiang, Y. Yao et al., General, vertical, three-dimensional printing of two-dimensional materials with multiscale alignment. ACS Nano 13, 12653–12661 (2019). https://doi.org/10.1021/acsnano.9b04202
H. Liu, F. Zhou, X. Shi, K. Sun, Y. Kou et al., A thermoregulatory flexible phase change nonwoven for all-season high-efficiency wearable thermal management. Nano-Micro Lett. 15, 29 (2023). https://doi.org/10.1007/s40820-022-00991-6
L. An, B. Liang, Z. Guo, J. Wang, C. Li et al., Wearable aramid ceramic aerogel composite for harsh environment. Adv. Eng. Mater. 23, 2001169 (2020). https://doi.org/10.1002/adem.202001169
X. Zuo, X. Zhang, L. Qu, J. Miao, Smart fibers and textiles for personal thermal management in emerging wearable applications. Adv. Mater. Technol. 8, 2201137 (2022). https://doi.org/10.1002/admt.202201137