Exploring the Roles of Single Atom in Hydrogen Peroxide Photosynthesis
Corresponding Author: Yu Lin Zhong
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 23
Abstract
This comprehensive review provides a deep exploration of the unique roles of single atom catalysts (SACs) in photocatalytic hydrogen peroxide (H2O2) production. SACs offer multiple benefits over traditional catalysts such as improved efficiency, selectivity, and flexibility due to their distinct electronic structure and unique properties. The review discusses the critical elements in the design of SACs, including the choice of metal atom, host material, and coordination environment, and how these elements impact the catalytic activity. The role of single atoms in photocatalytic H2O2 production is also analysed, focusing on enhancing light absorption and charge generation, improving the migration and separation of charge carriers, and lowering the energy barrier of adsorption and activation of reactants. Despite these advantages, several challenges, including H2O2 decomposition, stability of SACs, unclear mechanism, and low selectivity, need to be overcome. Looking towards the future, the review suggests promising research directions such as direct utilization of H2O2, high-throughput synthesis and screening, the creation of dual active sites, and employing density functional theory for investigating the mechanisms of SACs in H2O2 photosynthesis. This review provides valuable insights into the potential of single atom catalysts for advancing the field of photocatalytic H2O2 production.
Highlights:
1 The review explores single atom catalysts (SACs) for photocatalytic H2O2 production, highlighting their unique structure, properties, and advantages over traditional catalysts. It emphasizes the importance of metal atom types, host material selection, and coordination environment in SACs design.
2 The article explains how SACs enhance photocatalytic H2O2 production by improving light absorption, charge generation, migration, and lowering energy barriers for reactant adsorption and activation.
3 The review acknowledges challenges and future research directions in SACs for H2O2 photosynthesis.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Wang, Y. Zhang, W. Yu, F. Chen, T. Ma et al., Single-atom catalysts for energy conversion. J. Mater. Chem. A 11(6), 2568–2594 (2023). https://doi.org/10.1039/d2ta09024d
- C.F. Li, W.G. Pan, Z.R. Zhang, T. Wu, R.T. Guo, Recent progress of single-atom photocatalysts applied in energy conversion and environmental protection. Small (2023). https://doi.org/10.1002/smll.202300460
- X. Li, J. Yu, M. Jaroniec, Hierarchical photocatalysts. Chem. Soc. Rev. 45(9), 2603–2636 (2016). https://doi.org/10.1039/c5cs00838g
- Z. Chen, D. Yao, C. Chu, S. Mao, Photocatalytic H2O2 production systems: design strategies and environmental applications. Chem. Eng. J. 451, 138489 (2023). https://doi.org/10.1016/j.cej.2022.138489
- P. Zhu, X. Xiong, D. Wang, Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 15(7), 5792–5815 (2022). https://doi.org/10.1007/s12274-022-4265-y
- J. Tang, X. Li, Y. Ma, N. Xu, Y. Liu et al., Formation of interfacial P–Ni–P coordination to boost charge transfer of polymeric carbon nitride for enhanced photocatalytic activity of H2 evolution. Appl. Surf. Sci. 602, 154228 (2022). https://doi.org/10.1016/j.apsusc.2022.154228
- Z. Teng, H. Yang, Q. Zhang, T. Ohno, Carrier dynamics and surface reaction boosted by polymer-based single-atom photocatalysts. Chem. Res. Chin. Univ. 38(5), 1207–1218 (2022). https://doi.org/10.1007/s40242-022-2215-6
- Y. Song, C. Zhou, Z. Zheng, P. Sun, Y. She et al., Porous carbon nitride nanotubes efficiently promote two-electron O2 reduction for photocatalytic H2O2 production. J. Alloy. Compd. 934, 167901 (2023). https://doi.org/10.1016/j.jallcom.2022.167901
- Y. Ma, H. Sun, Q. Wang, L. Sun, Z. Liu et al., Driving hydrogen peroxide artificial photosynthesis and utilization for emerging contaminants removal by cyanided polymeric carbon nitride. Appl. Catal. B Environ. 335, 122878 (2023). https://doi.org/10.1016/j.apcatb.2023.122878
- Z. Teng, W. Cai, T. Ohno, Functionalized graphitic carbon nitrides for photocatalytic H2O2 production: desired properties leading to rational catalyst design. KONA Powd. Part. J. 40, 124–148 (2023). https://doi.org/10.14356/kona.2023004
- K. He, E. Campbell, Z. Huang, R. Shen, Q. Li et al., Metal carbide-based cocatalysts for photocatalytic solar-to-fuel conversion. Small Struct. 3(12), 2200104 (2022). https://doi.org/10.1002/sstr.202200104
- Z.-H. Xue, D. Luan, H. Zhang, X.W. Lou, Single-atom catalysts for photocatalytic energy conversion. Joule 6(1), 92–133 (2022). https://doi.org/10.1016/j.joule.2021.12.011
- J. Tang, X. Li, Y. Ma, K. Wang, Z. Liu et al., Boosting exciton dissociation and charge transfer by regulating dielectric constant in polymer carbon nitride for CO2 photoreduction. Appl. Catal. B Environ. 327, 122417 (2023). https://doi.org/10.1016/j.apcatb.2023.122417
- H. Li, L. Zhang, R. Li, W. Du, B. Wu et al., Atomically dispersed Ni–P4 active sites on few-layer violet phosphorene for efficient photocatalytic hydrogen evolution. Nano Today 51, 101885 (2023). https://doi.org/10.1016/j.nantod.2023.101885
- A. Khandelwal, D. Maarisetty, S.S. Baral, Fundamentals and application of single-atom photocatalyst in sustainable energy and environmental applications. Renew. Sustain. Energy Rev. 167, 112693 (2022). https://doi.org/10.1016/j.rser.2022.112693
- B. Xia, Y. Zhang, J. Ran, M. Jaroniec, S.Z. Qiao, Single-atom photocatalysts for emerging reactions. ACS Cent. Sci. 7(1), 39–54 (2021). https://doi.org/10.1021/acscentsci.0c01466
- A. Wang, J. Li, T. Zhang, Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2(6), 65–81 (2018). https://doi.org/10.1038/s41570-018-0010-1
- Y. Fan, S. Liu, Y. Yi, H. Rong, J. Zhang, Catalytic nanomaterials toward atomic levels for biomedical applications: From metal clusters to single-atom catalysts. ACS Nano 15(2), 2005–2037 (2021). https://doi.org/10.1021/acsnano.0c06962
- J. Liu, Z. Gong, M. Yan, G. He, H. Gong et al., Electronic structure regulation of single-atom catalysts for electrochemical oxygen reduction to H2O2. Small 18(3), e2103824 (2022). https://doi.org/10.1002/smll.202103824
- Y. Xia, M. Sayed, L. Zhang, B. Cheng, J. Yu, Single-atom heterogeneous photocatalysts. Chem. Catal 1(6), 1173–1214 (2021). https://doi.org/10.1016/j.checat.2021.08.009
- E. Jung, H. Shin, W. Hooch Antink, Y.-E. Sung, T. Hyeon, Recent advances in electrochemical oxygen reduction to H2O2: catalyst and cell design. ACS Energy Lett. 5(6), 1881–1892 (2020). https://doi.org/10.1021/acsenergylett.0c00812
- Y. Shang, X. Xu, B. Gao, S. Wang, X. Duan, Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem. Soc. Rev. 50(8), 5281–5322 (2021). https://doi.org/10.1039/d0cs01032d
- T. Freese, J.T. Meijer, B.L. Feringa, S.B. Beil, An organic perspective on photocatalytic production of hydrogen peroxide. Nat. Catal. 6(7), 553–558 (2023). https://doi.org/10.1038/s41929-023-00980-x
- L. Xiong, H. Qi, S. Zhang, L. Zhang, X. Liu et al., Highly selective transformation of biomass derivatives to valuable chemicals by single-atom photocatalyst Ni/TiO2. Adv. Mater. 35(16), e2209646 (2023). https://doi.org/10.1002/adma.202209646
- D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 13(1), 5 (2020). https://doi.org/10.1007/s40820-020-00538-7
- C. Chu, Q. Zhu, Z. Pan, S. Gupta, D. Huang et al., Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H2O2 production. Proc. Natl. Acad. Sci. U.S.A. 117(12), 6376–6382 (2020). https://doi.org/10.1073/pnas.1913403117
- Y. Kondo, K. Honda, Y. Kuwahara, K. Mori, H. Kobayashi et al., Boosting photocatalytic hydrogen peroxide production from oxygen and water using a hafnium-based metal–organic framework with missing-linker defects and nickel single atoms. ACS Catal. 12(24), 14825–14835 (2022). https://doi.org/10.1021/acscatal.2c04940
- H. Li, R. Li, G. Liu, M. Zhai, J. Yu, Noble-metal-free single- and dual-atom catalysts for artificial photosynthesis. Adv. Mater. (2023). https://doi.org/10.1002/adma.202301307
- M.B. Gawande, P. Fornasiero, R. Zbořil, Carbon-based single-atom catalysts for advanced applications. ACS Catal. 10(3), 2231–2259 (2020). https://doi.org/10.1021/acscatal.9b04217
- S. Qu, H. Wu, Y.H. Ng, Clean production of hydrogen peroxide: a heterogeneous solar-driven redox process. Adv. Energy Mater. (2023). https://doi.org/10.1002/aenm.202301047
- J. Sui, H. Liu, S. Hu, K. Sun, G. Wan et al., A general strategy to immobilize single-atom catalysts in metal-organic frameworks for enhanced photocatalysis. Adv. Mater. 34(6), e2109203 (2022). https://doi.org/10.1002/adma.202109203
- Q. Zhang, J. Guan, Recent progress in single-atom catalysts for photocatalytic water splitting. Solar RRL 4(9), 2000283 (2020). https://doi.org/10.1002/solr.202000283
- J. Zhang, J. Zhang, F. He, Y. Chen, J. Zhu et al., Defect and doping co-engineered non-metal nanocarbon ORR electrocatalyst. Nano-Micro Lett. 13(1), 65 (2021). https://doi.org/10.1007/s40820-020-00579-y
- B. Wang, H. Cai, S. Shen, Single metal atom photocatalysis. Small Methods (2019). https://doi.org/10.1002/smtd.201800447
- Q. Wang, D. Zhang, Y. Chen, W.-F. Fu, X.-J. Lv, Single-atom catalysts for photocatalytic reactions. ACS Sustain. Chem. Eng. 7(7), 6430–6443 (2019). https://doi.org/10.1021/acssuschemeng.8b06273
- X. Wang, D. Wu, S. Liu, J. Zhang, X.Z. Fu et al., Folic acid self-assembly enabling manganese single-atom electrocatalyst for selective nitrogen reduction to ammonia. Nano-Micro Lett. 13(1), 125 (2021). https://doi.org/10.1007/s40820-021-00651-1
- X. Wu, H. Zhang, S. Zuo, J. Dong, Y. Li et al., Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 13(1), 136 (2021). https://doi.org/10.1007/s40820-021-00668-6
- Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang et al., Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2(7), 1242–1264 (2018). https://doi.org/10.1016/j.joule.2018.06.019
- M. Zhang, C. Lai, F. Xu, D. Huang, T. Hu et al., Ultrahigh performance H2O2 generation by single-atom fe catalysts with N/O bidentate ligand via oxalic acid and oxygen molecules activation. Small (2023). https://doi.org/10.1002/smll.202301817
- W. Wang, Q. Song, Q. Luo, L. Li, X. Huo et al., Photothermal-enabled single-atom catalysts for high-efficiency hydrogen peroxide photosynthesis from natural seawater. Nat. Commun. 14(1), 2493 (2023). https://doi.org/10.1038/s41467-023-38211-3
- H. Tan, P. Zhou, M. Liu, Q. Zhang, F. Liu et al., Photocatalysis of water into hydrogen peroxide over an atomic Ga–N5 site. Nat. Synth. 2, 557–563 (2023). https://doi.org/10.1038/s44160-023-00272-z
- H. Li, B. Zhu, B. Cheng, G. Luo, J. Xu et al., Single-atom cu anchored on n-doped graphene/carbon nitride heterojunction for enhanced photocatalytic H2O2 production. J. Mater. Sci. Technol. 161, 192–200 (2023). https://doi.org/10.1016/j.jmst.2023.03.039
- Y.-Z. Zhang, C. Liang, H.-P. Feng, W. Liu, Nickel single atoms anchored on ultrathin carbon nitride for selective hydrogen peroxide generation with enhanced photocatalytic activity. Chem. Eng. J. 446, 137379 (2022). https://doi.org/10.1016/j.cej.2022.137379
- S. Yao, T. Tang, Y. Shen, F. Yang, C. An, Atomically dispersed scandium lewis acid sites on carbon nitride for efficient photocatalytic hydrogen peroxide production. Sci. China Mater. 66(2), 672–678 (2022). https://doi.org/10.1007/s40843-022-2185-1
- M. Wang, S. Xu, Z. Zhou, C.L. Dong, X. Guo et al., Atomically dispersed janus nickel sites on red phosphorus for photocatalytic overall water splitting. Angew. Chem. Int. Ed. 61(29), e202204711 (2022). https://doi.org/10.1002/anie.202204711
- Q. Luo, Y. Li, X. Huo, L. Li, Y. Song et al., Atomic chromium coordinated graphitic carbon nitride for bioinspired antibiofouling in seawater. Adv. Sci. 9(8), e2105346 (2022). https://doi.org/10.1002/advs.202105346
- M.A.R. da Silva, I.F. Silva, Q. Xue, B.T.W. Lo, N.V. Tarakina et al., Sustainable oxidation catalysis supported by light: Fe-poly (heptazine imide) as a heterogeneous single-atom photocatalyst. Appl. Catal. B Environ. 304, 120965 (2022). https://doi.org/10.1016/j.apcatb.2021.120965
- L. Bai, H. Sun, Q. Wu, W. Yao, Supported Ru single atoms and clusters on P-doped carbon nitride as an efficient photocatalyst for H2O2 production. ChemCatChem 14(15), 2101954 (2022). https://doi.org/10.1002/cctc.202101954
- Y. Wang, X. Zhao, D. Cao, Y. Wang, Y. Zhu, Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol a by single-atom dispersed Ag mesoporous g-C3N4 hybrid. Appl. Catal. B Environ. 211, 79–88 (2017). https://doi.org/10.1016/j.apcatb.2017.03.079
- X.G. Li, W.T. Bi, L. Zhang, S. Tao, W.S. Chu et al., Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 28(12), 2427–2431 (2016). https://doi.org/10.1002/adma.201505281
- G. Liu, Y. Huang, H. Lv, H. Wang, Y. Zeng et al., Confining single-atom Pd on g-C3N4 with carbon vacancies towards enhanced photocatalytic NO conversion. Appl. Catal. B Environ. 284, 119683 (2021). https://doi.org/10.1016/j.apcatb.2020.119683
- S. Wang, J.-J. Zhang, M.-Y. Zong, J. Xu, D.-H. Wang et al., Energy level engineering: Ru single atom anchored on Mo-MOF with a [Mo8O26(im)2]4– structure acts as a biomimetic photocatalyst. ACS Catal. 12(13), 7960–7974 (2022). https://doi.org/10.1021/acscatal.2c01756
- M. Gao, F. Tian, X. Zhang, Z. Chen, W. Yang et al., Improved plasmonic hot-electron capture in Au nanop/polymeric carbon nitride by Pt single atoms for broad-spectrum photocatalytic H2 evolution. Nano-Micro Lett. 15(1), 129 (2023). https://doi.org/10.1007/s40820-023-01098-2
- M. Tamtaji, H. Gao, M.D. Hossain, P.R. Galligan, H. Wong et al., Machine learning for design principles for single atom catalysts towards electrochemical reactions. J. Mater. Chem. A 10(29), 15309–15331 (2022). https://doi.org/10.1039/d2ta02039d
- Q. Liu, Y. Li, L. Zheng, J. Shang, X. Liu et al., Sequential synthesis and active-site coordination principle of precious metal single-atom catalysts for oxygen reduction reaction and pem fuel cells. Adv. Energy Mater. 10(20), 2000689 (2020). https://doi.org/10.1002/aenm.202000689
- D. Cao, H. Xu, H. Li, C. Feng, J. Zeng et al., Volcano-type relationship between oxidation states and catalytic activity of single-atom catalysts towards hydrogen evolution. Nat. Commun. 13(1), 5843 (2022). https://doi.org/10.1038/s41467-022-33589-y
- Z. Huang, J. Qin, Y. Zhu, K. He, H. Chen et al., Green and scalable electrochemical routes for cost-effective mass production of MXenes for supercapacitor electrodes. Carbon Energy (2023). https://doi.org/10.1002/cey2.295
- Z. Huang, Y. Zhu, Y. Kong, Z. Wang, K. He et al., Efficient synergism of chemisorption and wackenroder reaction via heterostructured La2O3-Ti3C2Tx-embedded carbon nanofiber for high-energy lithium–sulfur pouch cells. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202303422
- A. Zeb, S. Sahar, S.Y. Lv, A.B. Yousaf, P. Kasak et al., Engineering at subatomic scale: achieving selective catalytic pathways via tuning of the oxidation states in functionalized single-atom quantum catalysts. Small 18(34), e2202522 (2022). https://doi.org/10.1002/smll.202202522
- W. Yang, J. Li, X. Cui, C. Yang, Y. Liu et al., Fine-tuning inverse metal-support interaction boosts electrochemical transformation of methanol into formaldehyde based on density functional theory. Chin. Chem. Lett. 32(8), 2489–2494 (2021). https://doi.org/10.1016/j.cclet.2020.12.057
- H. Xu, Y. Zhao, Q. Wang, G. He, H. Chen, Supports promote single-atom catalysts toward advanced electrocatalysis. Coord. Chem. Rev. 451, 214261 (2022). https://doi.org/10.1016/j.ccr.2021.214261
- P. Hu, Z. Huang, Z. Amghouz, M. Makkee, F. Xu et al., Electronic metal-support interactions in single-atom catalysts. Angew. Chem. Int. Ed. 53(13), 3418–3421 (2014). https://doi.org/10.1002/anie.201309248
- K. Qi, M. Chhowalla, D. Voiry, Single atom is not alone: Metal-support interactions in single-atom catalysis. Mater. Today 40, 173–192 (2020). https://doi.org/10.1016/j.mattod.2020.07.002
- Z. Teng, N. Yang, H. Lv, S. Wang, M. Hu et al., Edge-functionalized g-C3N4 nanosheets as a highly efficient metal-free photocatalyst for safe drinking water. Chem 5(3), 664–680 (2019). https://doi.org/10.1016/j.chempr.2018.12.009
- J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72–123 (2017). https://doi.org/10.1016/j.apsusc.2016.07.030
- X. Li, J. Yu, J. Low, Y. Fang, J. Xiao et al., Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3(6), 2485–2534 (2015). https://doi.org/10.1039/c4ta04461d
- X. Luo, X. Wei, H. Wang, W. Gu, T. Kaneko et al., Secondary-atom-doping enables robust Fe–N–C single-atom catalysts with enhanced oxygen reduction reaction. Nano-Micro Lett. 12(1), 163 (2020). https://doi.org/10.1007/s40820-020-00502-5
- D. Zhao, Y. Wang, C.L. Dong, F. Meng, Y.C. Huang et al., Electron-deficient Zn–N6 configuration enabling polymeric carbon nitride for visible-light photocatalytic overall water splitting. Nano-Micro Lett. 14(1), 223 (2022). https://doi.org/10.1007/s40820-022-00962-x
- J. Ding, Z. Teng, X. Su, K. Kato, Y. Liu et al., Asymmetrically coordinated cobalt single atom on carbon nitride for highly selective photocatalytic oxidation of CH4 to CH3OH. Chem 9(4), 1017–1035 (2023). https://doi.org/10.1016/j.chempr.2023.02.011
- F. Dong, M. Wu, Z. Chen, X. Liu, G. Zhang et al., Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: recent advances and future perspectives. Nano-Micro Lett. 14(1), 36 (2021). https://doi.org/10.1007/s40820-021-00768-3
- Z. Teng, W. Cai, S. Liu, C. Wang, Q. Zhang et al., Bandgap engineering of polymetric carbon nitride copolymerized by 2,5,8-triamino-tri-s-triazine (melem) and barbituric acid for efficient nonsacrificial photocatalytic H2O2 production. Appl. Catal. B Environ. 271, 118917 (2020). https://doi.org/10.1016/j.apcatb.2020.118917
- T. Gan, D. Wang, Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. (2023). https://doi.org/10.1007/s12274-023-5700-4
- P. Sharma, M. Sharma, M. Dearg, M. Wilding, T.J.A. Slater et al., Cd/Pt precursor solution for solar H2 production and in situ photochemical synthesis of Pt single-atom decorated CdS nanops. Angew. Chem. Int. Ed. 62(20), e202301239 (2023). https://doi.org/10.1002/anie.202301239
- M. Kottwitz, Y. Li, H. Wang, A.I. Frenkel, R.G. Nuzzo, Single atom catalysts: a review of characterization methods. Chem. Methods 1(6), 278–294 (2021). https://doi.org/10.1002/cmtd.202100020
- S. Buchele, A. Yakimov, S.M. Collins, A. Ruiz-Ferrando, Z. Chen et al., Elucidation of metal local environments in single-atom catalysts based on carbon nitrides. Small 18(33), e2202080 (2022). https://doi.org/10.1002/smll.202202080
- J. Feng, H. Gao, L. Zheng, Z. Chen, S. Zeng et al., A Mn–N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nat. Commun. 11(1), 4341 (2020). https://doi.org/10.1038/s41467-020-18143-y
- H. Wang, J.X. Liu, L.F. Allard, S. Lee, J. Liu et al., Surpassing the single-atom catalytic activity limit through paired Pt–O–Pt ensemble built from isolated Pt1 atoms. Nat. Commun. 10(1), 3808 (2019). https://doi.org/10.1038/s41467-019-11856-9
- P. Wang, S. Fan, X. Li, J. Wang, Z. Liu et al., Single Pd atoms synergistically manipulating charge polarization and active sites for simultaneously photocatalytic hydrogen production and oxidation of benzylamine. Nano Energy 95, 107045 (2022). https://doi.org/10.1016/j.nanoen.2022.107045
- S.K. Kaiser, Z. Chen, D. Faust Akl, S. Mitchell, J. Perez-Ramirez, Single-atom catalysts across the periodic table. Chem. Rev. 120(21), 11703–11809 (2020). https://doi.org/10.1021/acs.chemrev.0c00576
- L. Sun, J. Xu, X. Liu, B. Qiao, L. Li et al., High-efficiency water gas shift reaction catalysis on α-MoC promoted by single-atom Ir species. ACS Catal. 11(10), 5942–5950 (2021). https://doi.org/10.1021/acscatal.1c00231
- R. Li, D. Wang, Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 15(8), 6888–6923 (2022). https://doi.org/10.1007/s12274-022-4371-x
- P. Xia, B. Cheng, J. Jiang, H. Tang, Localized π-conjugated structure and EPR investigation of g-C3N4 photocatalyst. Appl. Surf. Sci. 487, 335–342 (2019). https://doi.org/10.1016/j.apsusc.2019.05.064
- L. Sun, Y. Feng, K. Ma, X. Jiang, Z. Gao et al., Synergistic effect of single-atom Ag and hierarchical tremella-like g-C3N4: Electronic structure regulation and multi-channel carriers transport for boosting photocatalytic performance. Appl. Catal. B Environ. 306, 121106 (2022). https://doi.org/10.1016/j.apcatb.2022.121106
- Y. Wang, Y. Qu, B. Qu, L. Bai, Y. Liu et al., Construction of six-oxygen-coordinated single Ni sites on g-C3N4 with boron-oxo species for photocatalytic water-activation-induced CO2 reduction. Adv. Mater. 33(48), e2105482 (2021). https://doi.org/10.1002/adma.202105482
- X. Li, H. Rong, J. Zhang, D. Wang, Y. Li, Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 13(7), 1842–1855 (2020). https://doi.org/10.1007/s12274-020-2755-3
- L. Jiao, H. Yan, Y. Wu, W. Gu, C. Zhu et al., When nanozymes meet single-atom catalysis. Angew. Chem. Int. Ed. 59(7), 2565–2576 (2020). https://doi.org/10.1002/anie.201905645
- N. Cheng, L. Zhang, K. Doyle-Davis, X. Sun, Single-atom catalysts: from design to application. Electrochem. Energy Rev. 2(4), 539–573 (2019). https://doi.org/10.1007/s41918-019-00050-6
- H.E. Kim, I.H. Lee, J. Cho, S. Shin, H.C. Ham et al., Palladium single-atom catalysts supported on C@C3N4 for electrochemical reactions. ChemElectroChem 6(18), 4757–4764 (2019). https://doi.org/10.1002/celc.201900772
- J. Song, Z. Chen, X. Cai, X. Zhou, G. Zhan et al., Promoting dinuclear-type catalysis in Cu1–C3N4 single-atom catalysts. Adv. Mater. 34(33), e2204638 (2022). https://doi.org/10.1002/adma.202204638
- X. Peng, J. Wu, Z. Zhao, X. Wang, H. Dai et al., Activation of peroxymonosulfate by single-atom Fe-g-C3N4 catalysts for high efficiency degradation of tetracycline via nonradical pathways: role of high-valent iron-oxo species and Fe–Nx sites. Chem. Eng. J. 427, 130803 (2022). https://doi.org/10.1016/j.cej.2021.130803
- J. Zhang, H. Yang, B. Liu, Coordination engineering of single-atom catalysts for the oxygen reduction reaction: a review. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202002473
- J. Yang, W. Li, D. Wang, Y. Li, Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 32(49), e2003300 (2020). https://doi.org/10.1002/adma.202003300
- D. Zhou, L. Zhang, X. Liu, H. Qi, Q. Liu et al., Tuning the coordination environment of single-atom catalyst M–N–C towards selective hydrogenation of functionalized nitroarenes. Nano Res. 15(1), 519–527 (2021). https://doi.org/10.1007/s12274-021-3511-z
- D. Liu, Q. He, S. Ding, L. Song, Structural regulation and support coupling effect of single-atom catalysts for heterogeneous catalysis. Adv. Energy Mater. 10(32), 2001482 (2020). https://doi.org/10.1002/aenm.202001482
- T. Sun, S. Mitchell, J. Li, P. Lyu, X. Wu et al., Design of local atomic environments in single-atom electrocatalysts for renewable energy conversions. Adv. Mater. 33(5), e2003075 (2021). https://doi.org/10.1002/adma.202003075
- Y. Mun, S. Lee, K. Kim, S. Kim, S. Lee et al., Versatile strategy for tuning orr activity of a single Fe–N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 141(15), 6254–6262 (2019). https://doi.org/10.1021/jacs.8b13543
- R. Lang, X. Du, Y. Huang, X. Jiang, Q. Zhang et al., Single-atom catalysts based on the metal-oxide interaction. Chem. Rev. 120(21), 11986–12043 (2020). https://doi.org/10.1021/acs.chemrev.0c00797
- J. Cho, T. Lim, H. Kim, L. Meng, J. Kim et al., Importance of broken geometric symmetry of single-atom Pt sites for efficient electrocatalysis. Nat. Commun. 14(1), 3233 (2023). https://doi.org/10.1038/s41467-023-38964-x
- J. Hulva, M. Meier, R. Bliem, Z. Jakub, F. Kraushofer et al., Unraveling CO adsorption on model single-atom catalysts. Science 371(6527), 375–379 (2021). https://doi.org/10.1126/science.abe5757
- X. Zhang, X. Xu, S. Yao, C. Hao, C. Pan et al., Boosting electrocatalytic activity of single atom catalysts supported on nitrogen-doped carbon through N coordination environment engineering. Small 18(10), e2105329 (2022). https://doi.org/10.1002/smll.202105329
- D. Kunwar, S. Zhou, A. DeLaRiva, E.J. Peterson, H. Xiong et al., Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support. ACS Catal. 9(5), 3978–3990 (2019). https://doi.org/10.1021/acscatal.8b04885
- W. Liu, Y. Chen, H. Qi, L. Zhang, W. Yan et al., A durable nickel single-atom catalyst for hydrogenation reactions and cellulose valorization under harsh conditions. Angew. Chem. Int. Ed. 57(24), 7071–7075 (2018). https://doi.org/10.1002/anie.201802231
- Y. Li, Y. Wang, C.L. Dong, Y.C. Huang, J. Chen et al., Single-atom nickel terminating sp2 and sp3 nitride in polymeric carbon nitride for visible-light photocatalytic overall water splitting. Chem. Sci. 12(10), 3633–3643 (2021). https://doi.org/10.1039/d0sc07093a
- K. Chen, S. Kim, M. Je, H. Choi, Z. Shi et al., Ultrasonic plasma engineering toward facile synthesis of single-atom M-N4/N-doped carbon (M = Fe, Co) as superior oxygen electrocatalyst in rechargeable zinc-air batteries. Nano-Micro Lett. 13(1), 60 (2021). https://doi.org/10.1007/s40820-020-00581-4
- S. Chen, S. Yang, X. Sun, K. He, Y.H. Ng et al., Carbon-coated Cu nanops as a cocatalyst of g-C3N4 for enhanced photocatalytic H2 evolution activity under visible-light irradiation. Energy Technol. 7, 1800846 (2019). https://doi.org/10.1002/ente.201800846
- Y.C. Hao, L.W. Chen, J. Li, Y. Guo, X. Su et al., Metal-organic framework membranes with single-atomic centers for photocatalytic CO2 and O2 reduction. Nat. Commun. 12(1), 2682 (2021). https://doi.org/10.1038/s41467-021-22991-7
- Z. Teng, Q. Zhang, H. Yang, K. Kato, W. Yang et al., Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 4(5), 374–384 (2021). https://doi.org/10.1038/s41929-021-00605-1
- H. Wang, J. Gao, C. Chen, W. Zhao, Z. Zhang et al., PtNi-W/C with atomically dispersed tungsten sites toward boosted ORR in proton exchange membrane fuel cell devices. Nano-Micro Lett. 15(1), 143 (2023). https://doi.org/10.1007/s40820-023-01102-9
- K. He, R. Shen, L. Hao, Y. Li, P. Zhang et al., Advances in nanostructured silicon carbide photocatalysts. Acta Phys.-Chim. Sin. 38(11), 2201021 (2022)
- Z. Lyu, S. Ding, M. Wang, X. Pan, Z. Feng et al., Iron-imprinted single-atomic site catalyst-based nanoprobe for detection of hydrogen peroxide in living cells. Nano-Micro Lett. 13(1), 146 (2021). https://doi.org/10.1007/s40820-021-00661-z
- W. Yu, C. Hu, L. Bai, N. Tian, Y. Zhang et al., Photocatalytic hydrogen peroxide evolution: what is the most effective strategy? Nano Energy 104, 107906 (2022). https://doi.org/10.1016/j.nanoen.2022.107906
- L. Li, L. Xu, Z. Hu, J.C. Yu, Enhanced mass transfer of oxygen through a gas–liquid–solid interface for photocatalytic hydrogen peroxide production. Adv. Funct. Mater. 31(52), 2106120 (2021). https://doi.org/10.1002/adfm.202106120
- Y. Tian, D. Deng, L. Xu, M. Li, H. Chen et al., Strategies for sustainable production of hydrogen peroxide via oxygen reduction reaction: from catalyst design to device setup. Nano-Micro Lett. 15(1), 122 (2023). https://doi.org/10.1007/s40820-023-01067-9
- M. Song, W. Liu, J. Zhang, C. Zhang, X. Huang et al., Single-atom catalysts for H2O2 electrosynthesis via two-electron oxygen reduction reaction. Adv. Funct. Mater. 33(15), 2212087 (2023). https://doi.org/10.1002/adfm.202212087
- Y. Guo, X. Tong, N. Yang, Photocatalytic and electrocatalytic generation of hydrogen peroxide: principles, catalyst design and performance. Nano-Micro Lett. 15(1), 77 (2023). https://doi.org/10.1007/s40820-023-01052-2
- F.X. Hu, T. Hu, S. Chen, D. Wang, Q. Rao et al., Single-atom cobalt-based electrochemical biomimetic uric acid sensor with wide linear range and ultralow detection limit. Nano-Micro Lett. 13(1), 7 (2020). https://doi.org/10.1007/s40820-020-00536-9
- Z. Teng, W. Cai, W. Sim, Q. Zhang, C. Wang, Photoexcited single metal atom catalysts for heterogeneous photocatalytic H2O2 production: pragmatic guidelines for predicting charge separation. Appl. Catal. B: Environ. 282, 119589 (2021). https://doi.org/10.1016/j.apcatb.2020.119589
- W. Ma, M. Sun, D. Huang, C. Chu, T. Hedtke et al., Catalytic membrane with copper single-atom catalysts for effective hydrogen peroxide activation and pollutant destruction. Environ. Sci. Technol. 56(12), 8733–8745 (2022). https://doi.org/10.1021/acs.est.1c08937
- Y. Nie, P. Wang, Q. Ma, X. Su, Confined gold single atoms-MXene heterostructure-based electrochemiluminescence functional material and its sensing application. Anal. Chem. 94(31), 11016–11022 (2022). https://doi.org/10.1021/acs.analchem.2c01480
- Z. Wei, B. Deng, P. Chen, T. Zhao, S. Zhao, Palladium-based single atom catalysts for high-performance electrochemical production of hydrogen peroxide. Chem. Eng. J. 428, 131112 (2022). https://doi.org/10.1016/j.cej.2021.131112
- A. Rogolino, I.F. Silva, N.V. Tarakina, M.A.R. da Silva, G.F.S.R. Rocha et al., Modified poly(heptazine imides): minimizing H2O2 decomposition to maximize oxygen reduction. ACS Appl. Mater. Interfaces 14(44), 49820–49829 (2022). https://doi.org/10.1021/acsami.2c14872
- C. Pan, G. Bian, Y. Zhang, Y. Lou, Y. Zhang et al., Efficient and stable H2O2 production from H2O and O2 on BiPO4 photocatalyst. Appl. Catal. B 316, 121675 (2022). https://doi.org/10.1016/j.apcatb.2022.121675
- Z. Li, B. Li, Y. Hu, X. Liao, H. Yu et al., Emerging ultrahigh-density single-atom catalysts for versatile heterogeneous catalysis applications: redefinition, recent progress, and challenges. Small Struct. 3(6), 2200041 (2022). https://doi.org/10.1002/sstr.202200041
- Y. Liu, J. Wang, J. Wu, Y. Zhao, H. Huang et al., Critical roles of H2O and O2 in H2O2 photoproduction over biomass derived metal-free catalyst. Appl. Catal. B 319, 121944 (2022). https://doi.org/10.1016/j.apcatb.2022.121944
- Y. Pan, X. Liu, W. Zhang, B. Shao, Z. Liu et al., Bifunctional template-mediated synthesis of porous ordered g-C3N4 decorated with potassium and cyano groups for effective photocatalytic H2O2 evolution from dual-electron O2 reduction. Chem. Eng. J. 427, 132032 (2022). https://doi.org/10.1016/j.cej.2021.132032
- Y. Wu, Y. Ding, X. Han, B. Li, Y. Wang et al., Modulating coordination environment of Fe single atoms for high-efficiency all-pH-tolerated H2O2 electrochemical production. Appl. Catal. B 315, 121578 (2022). https://doi.org/10.1016/j.apcatb.2022.121578
- G. Wang, Y. Liu, N. Zhao, H. Chen, W. Wu et al., Constructing the separation pathway for photo-generated carriers by diatomic sites decorated on MIL-53-NH2(Al) for enhanced photocatalytic performance. Nano Res. 15(8), 7034–7041 (2022). https://doi.org/10.1007/s12274-022-4357-8
- Y. Zheng, Y. Luo, Q. Ruan, S. Wang, J. Yu et al., Plasma-induced hierarchical amorphous carbon nitride nanostructure with two N2C-site vacancies for photocatalytic H2O2 production. Appl. Catal. B 311, 121372 (2022). https://doi.org/10.1016/j.apcatb.2022.121372
- C. Zhuang, W. Li, T. Zhang, J. Li, Y. Zhang et al., Monodispersed aluminum in carbon nitride creates highly efficient nitrogen active sites for ultra-high hydrogen peroxide photoproduction. Nano Energy 108, 108225 (2023). https://doi.org/10.1016/j.nanoen.2023.108225
- B. Sun, X. Wang, Z. Ye, J. Zhang, X. Chen et al., Designing single-atom active sites on sp2-carbon linked covalent organic frameworks to induce bacterial ferroptosis-like for robust anti-infection therapy. Adv. Sci. 10(13), e2207507 (2023). https://doi.org/10.1002/advs.202207507
- J.N. Chang, Q. Li, J.W. Shi, M. Zhang, L. Zhang et al., Oxidation-reduction molecular junction covalent organic frameworks for full reaction photosynthesis of H2O2. Angew. Chem. Int. Ed. 62(9), e202218868 (2023). https://doi.org/10.1002/anie.202218868
- J. Luo, C. Fan, L. Tang, Y. Liu, Z. Gong et al., Reveal brønsted-evans-polanyi relation and attack mechanisms of reactive oxygen species for photocatalytic H2O2 production. Appl. Catal. B 301, 120757 (2022). https://doi.org/10.1016/j.apcatb.2021.120757
- W. Liu, P. Wang, J. Chen, X. Gao, H. Che et al., Unraveling the mechanism on ultrahigh efficiency photocatalytic H2O2 generation for dual-heteroatom incorporated polymeric carbon nitride. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202205119
- Y. Zou, X. Guo, X. Bian, Y. Zhang, W. Lin et al., Tailoring 2-electron oxygen reduction reaction selectivity on h-BN-based single-atom catalysts from superoxide dismutase: a DFT investigation. Appl. Surf. Sci. 592, 153233 (2022). https://doi.org/10.1016/j.apsusc.2022.153233
- J. Chen, Q. Ma, X. Zheng, Y. Fang, J. Wang et al., Kinetically restrained oxygen reduction to hydrogen peroxide with nearly 100% selectivity. Nat. Commun. 13(1), 2808 (2022). https://doi.org/10.1038/s41467-022-30411-7
- S. Zuo, Z. Guan, F. Yang, D. Xia, D. Li, Reactive oxygen species regulation and synergistic effect for effective water purification through fenton-like catalysis on single-atom Cu–N sites. J. Mater. Chem. A 10(19), 10503–10513 (2022). https://doi.org/10.1039/d2ta00561a
- F. Wu, J. Ma, Y. Wang, L. Xie, X. Yan et al., Single copper atom photocatalyst powers an integrated catalytic cascade for drug-resistant bacteria elimination. ACS Nano 17(3), 2980–2991 (2023). https://doi.org/10.1021/acsnano.2c11550
- Q. You, C. Zhang, M. Cao, B. Wang, J. Huang et al., Defects controlling, elements doping, and crystallinity improving triple-strategy modified carbon nitride for efficient photocatalytic diclofenac degradation and H2O2 production. Appl. Catal. B 321, 121941 (2023). https://doi.org/10.1016/j.apcatb.2022.121941
- H. Jin, P. Cui, C. Cao, X. Yu, R. Zhao et al., Understanding the density-dependent activity of Cu single-atom catalyst in the benzene hydroxylation reaction. ACS Catal. 13(2), 1316–1325 (2023). https://doi.org/10.1021/acscatal.2c05363
- Z. Xu, S. Gong, W. Ji, S. Zhang, Z. Bao et al., Photocatalysis coupling hydrogen peroxide synthesis and in-situ radical transform for tetracycline degradation. Chem. Eng. J. 446, 137009 (2022). https://doi.org/10.1016/j.cej.2022.137009
- Y. Wang, J. Zhang, W.X. Shi, G.L. Zhuang, Q.P. Zhao et al., W single-atom catalyst for CH4 photooxidation in water vapor. Adv. Mater. 34(33), e2204448 (2022). https://doi.org/10.1002/adma.202204448
- M. Kou, Y. Wang, Y. Xu, L. Ye, Y. Huang et al., Molecularly engineered covalent organic frameworks for hydrogen peroxide photosynthesis. Angew. Chem. Int. Ed. 61(19), e202200413 (2022). https://doi.org/10.1002/anie.202200413
- H. Mai, T.C. Le, D. Chen, D.A. Winkler, R.A. Caruso, Machine learning for electrocatalyst and photocatalyst design and discovery. Chem. Rev. 122(16), 13478–13515 (2022). https://doi.org/10.1021/acs.chemrev.2c00061
- S. Wang, H. Gao, L. Li, K.S. Hui, D.A. Dinh et al., High-throughput identification of highly active and selective single-atom catalysts for electrochemical ammonia synthesis through nitrate reduction. Nano Energy 100, 107517 (2022). https://doi.org/10.1016/j.nanoen.2022.107517
- W. Zhao, P. Yan, B. Li, M. Bahri, L. Liu et al., Accelerated synthesis and discovery of covalent organic framework photocatalysts for hydrogen peroxide production. J. Am. Chem. Soc. 144(22), 9902–9909 (2022). https://doi.org/10.1021/jacs.2c02666
- D. Chen, W. Chen, Y. Wu, L. Wang, X. Wu et al., Covalent organic frameworks containing dual O2 reduction centers for overall photosynthetic hydrogen peroxide production. Angew. Chem. Int. Ed. 62(9), e202217479 (2023). https://doi.org/10.1002/anie.202217479
- T. Liu, Z. Pan, J.J.M. Vequizo, K. Kato, B. Wu et al., Overall photosynthesis of H2O2 by an inorganic semiconductor. Nat. Commun. 13(1), 1034 (2022). https://doi.org/10.1038/s41467-022-28686-x
- Y. Xie, Q. Zhang, H. Sun, Z. Teng, C. Su, Semiconducting polymers for photosynthesis of H2O2: spatial separation and synergistic utilization of photoredox centers. Acta Phys. Chim. Sin. 39(11), 2301001 (2023). https://doi.org/10.3866/PKU.WHXB202301001
- H. Wang, C. Yang, F. Chen, G. Zheng, Q. Han, A crystalline partially fluorinated triazine covalent organic framework for efficient photosynthesis of hydrogen peroxide. Angew. Chem. Int. Ed. 61(19), e202202328 (2022). https://doi.org/10.1002/anie.202202328
- J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng et al., Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8(5), 1594–1601 (2015). https://doi.org/10.1039/c5ee00751h
- R. Luo, M. Luo, Z. Wang, P. Liu, S. Song et al., The atomic origin of nickel-doping-induced catalytic enhancement in MoS2 for electrochemical hydrogen production. Nanoscale 11(15), 7123–7128 (2019). https://doi.org/10.1039/c8nr10023c
- T. Zhang, B. Zhang, Q. Peng, J. Zhou, Z. Sun, Mo2B2 mbene-supported single-atom catalysts as bifunctional HER/OER and OER/ORR electrocatalysts. J. Mater. Chem. A 9(1), 433–441 (2021). https://doi.org/10.1039/d0ta08630d
- H. Fei, J. Dong, M.J. Arellano-Jimenez, G. Ye, N. Dong Kim et al., Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 6, 8668 (2015). https://doi.org/10.1038/ncomms9668
- N. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu et al., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016). https://doi.org/10.1038/ncomms13638
- J. Zhang, Y. Zhao, X. Guo, C. Chen, C.-L. Dong et al., Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 1(12), 985–992 (2018). https://doi.org/10.1038/s41929-018-0195-1
- D. Liu, X. Li, S. Chen, H. Yan, C. Wang et al., Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 4(6), 512–518 (2019). https://doi.org/10.1038/s41560-019-0402-6
- M. Li, K. Duanmu, C. Wan, T. Cheng, L. Zhang et al., Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2(6), 495–503 (2019). https://doi.org/10.1038/s41929-019-0279-6
- K. Qi, X. Cui, L. Gu, S. Yu, X. Fan et al., Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 10(1), 5231 (2019). https://doi.org/10.1038/s41467-019-12997-7
- K. Jiang, M. Luo, Z. Liu, M. Peng, D. Chen et al., Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nat. Commun. 12(1), 1687 (2021). https://doi.org/10.1038/s41467-021-21956-0
- Y. Shi, Z.R. Ma, Y.Y. Xiao, Y.C. Yin, W.M. Huang et al., Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 12(1), 3021 (2021). https://doi.org/10.1038/s41467-021-23306-6
- H.J. Qiu, Y. Ito, W. Cong, Y. Tan, P. Liu et al., Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem. Int. Ed. 54(47), 14031–14035 (2015). https://doi.org/10.1002/anie.201507381
- W. Chen, J. Pei, C.T. He, J. Wan, H. Ren et al., Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem. Int. Ed. 56(50), 16086–16090 (2017). https://doi.org/10.1002/anie.201710599
- T. Chao, X. Luo, W. Chen, B. Jiang, J. Ge et al., Atomically dispersed copper-platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew. Chem. Int. Ed. 56(50), 16047–16051 (2017). https://doi.org/10.1002/anie.201709803
- W. Chen, J. Pei, C.T. He, J. Wan, H. Ren et al., Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv. Mater. 30(30), e1800396 (2018). https://doi.org/10.1002/adma.201800396
- J. Yang, B. Chen, X. Liu, W. Liu, Z. Li et al., Efficient and robust hydrogen evolution: phosphorus nitride imide nanotubes as supports for anchoring single ruthenium sites. Angew. Chem. Int. Ed. 57(30), 9495–9500 (2018). https://doi.org/10.1002/anie.201804854
- X.P. Yin, H.J. Wang, S.F. Tang, X.L. Lu, M. Shu et al., Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 57(30), 9382–9386 (2018). https://doi.org/10.1002/anie.201804817
- L. Wang, X. Duan, X. Liu, J. Gu, R. Si et al., Atomically dispersed Mo supported on metallic Co9S8 nanoflakes as an advanced noble-metal-free bifunctional water splitting catalyst working in universal pH conditions. Adv. Energy Mater. 10(4), 1903137 (2019). https://doi.org/10.1002/aenm.201903137
- Q. He, D. Tian, H. Jiang, D. Cao, S. Wei et al., Achieving efficient alkaline hydrogen evolution reaction over a Ni5P4 catalyst incorporating single-atomic Ru sites. Adv. Mater. 32(11), e1906972 (2020). https://doi.org/10.1002/adma.201906972
- C. Wu, D. Li, S. Ding, Z.U. Rehman, Q. Liu et al., Monoatomic platinum-anchored metallic MoS2: correlation between surface dopant and hydrogen evolution. J. Phys. Chem. Lett. 10(20), 6081–6087 (2019). https://doi.org/10.1021/acs.jpclett.9b01892
- J. Wan, Z. Zhao, H. Shang, B. Peng, W. Chen et al., In situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks to design atomic Co1–P1N3 interfacial structure for promoting catalytic performance. J. Am. Chem. Soc. 142(18), 8431–8439 (2020). https://doi.org/10.1021/jacs.0c02229
- J. Wu, N. Han, S. Ning, T. Chen, C. Zhu et al., Single-atom tungsten-doped CoP nanoarrays as a high-efficiency pH-universal catalyst for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 8(39), 14825–14832 (2020). https://doi.org/10.1021/acssuschemeng.0c04322
- Y. Yang, Y. Qian, H. Li, Z. Zhang, Y. Mu et al., O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci. Adv. 6(23), eaba6586 (2020). https://doi.org/10.1126/sciadv.aba6586
- P. Ren, T. Zhang, N. Jain, H.Y.V. Ching, A. Jaworski et al., An atomically dispersed Mn-photocatalyst for generating hydrogen peroxide from seawater via the water oxidation reaction (WOR). J. Am. Chem. Soc. 145(30), 16584–16596 (2023). https://doi.org/10.1021/jacs.3c03785
References
Y. Wang, Y. Zhang, W. Yu, F. Chen, T. Ma et al., Single-atom catalysts for energy conversion. J. Mater. Chem. A 11(6), 2568–2594 (2023). https://doi.org/10.1039/d2ta09024d
C.F. Li, W.G. Pan, Z.R. Zhang, T. Wu, R.T. Guo, Recent progress of single-atom photocatalysts applied in energy conversion and environmental protection. Small (2023). https://doi.org/10.1002/smll.202300460
X. Li, J. Yu, M. Jaroniec, Hierarchical photocatalysts. Chem. Soc. Rev. 45(9), 2603–2636 (2016). https://doi.org/10.1039/c5cs00838g
Z. Chen, D. Yao, C. Chu, S. Mao, Photocatalytic H2O2 production systems: design strategies and environmental applications. Chem. Eng. J. 451, 138489 (2023). https://doi.org/10.1016/j.cej.2022.138489
P. Zhu, X. Xiong, D. Wang, Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 15(7), 5792–5815 (2022). https://doi.org/10.1007/s12274-022-4265-y
J. Tang, X. Li, Y. Ma, N. Xu, Y. Liu et al., Formation of interfacial P–Ni–P coordination to boost charge transfer of polymeric carbon nitride for enhanced photocatalytic activity of H2 evolution. Appl. Surf. Sci. 602, 154228 (2022). https://doi.org/10.1016/j.apsusc.2022.154228
Z. Teng, H. Yang, Q. Zhang, T. Ohno, Carrier dynamics and surface reaction boosted by polymer-based single-atom photocatalysts. Chem. Res. Chin. Univ. 38(5), 1207–1218 (2022). https://doi.org/10.1007/s40242-022-2215-6
Y. Song, C. Zhou, Z. Zheng, P. Sun, Y. She et al., Porous carbon nitride nanotubes efficiently promote two-electron O2 reduction for photocatalytic H2O2 production. J. Alloy. Compd. 934, 167901 (2023). https://doi.org/10.1016/j.jallcom.2022.167901
Y. Ma, H. Sun, Q. Wang, L. Sun, Z. Liu et al., Driving hydrogen peroxide artificial photosynthesis and utilization for emerging contaminants removal by cyanided polymeric carbon nitride. Appl. Catal. B Environ. 335, 122878 (2023). https://doi.org/10.1016/j.apcatb.2023.122878
Z. Teng, W. Cai, T. Ohno, Functionalized graphitic carbon nitrides for photocatalytic H2O2 production: desired properties leading to rational catalyst design. KONA Powd. Part. J. 40, 124–148 (2023). https://doi.org/10.14356/kona.2023004
K. He, E. Campbell, Z. Huang, R. Shen, Q. Li et al., Metal carbide-based cocatalysts for photocatalytic solar-to-fuel conversion. Small Struct. 3(12), 2200104 (2022). https://doi.org/10.1002/sstr.202200104
Z.-H. Xue, D. Luan, H. Zhang, X.W. Lou, Single-atom catalysts for photocatalytic energy conversion. Joule 6(1), 92–133 (2022). https://doi.org/10.1016/j.joule.2021.12.011
J. Tang, X. Li, Y. Ma, K. Wang, Z. Liu et al., Boosting exciton dissociation and charge transfer by regulating dielectric constant in polymer carbon nitride for CO2 photoreduction. Appl. Catal. B Environ. 327, 122417 (2023). https://doi.org/10.1016/j.apcatb.2023.122417
H. Li, L. Zhang, R. Li, W. Du, B. Wu et al., Atomically dispersed Ni–P4 active sites on few-layer violet phosphorene for efficient photocatalytic hydrogen evolution. Nano Today 51, 101885 (2023). https://doi.org/10.1016/j.nantod.2023.101885
A. Khandelwal, D. Maarisetty, S.S. Baral, Fundamentals and application of single-atom photocatalyst in sustainable energy and environmental applications. Renew. Sustain. Energy Rev. 167, 112693 (2022). https://doi.org/10.1016/j.rser.2022.112693
B. Xia, Y. Zhang, J. Ran, M. Jaroniec, S.Z. Qiao, Single-atom photocatalysts for emerging reactions. ACS Cent. Sci. 7(1), 39–54 (2021). https://doi.org/10.1021/acscentsci.0c01466
A. Wang, J. Li, T. Zhang, Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2(6), 65–81 (2018). https://doi.org/10.1038/s41570-018-0010-1
Y. Fan, S. Liu, Y. Yi, H. Rong, J. Zhang, Catalytic nanomaterials toward atomic levels for biomedical applications: From metal clusters to single-atom catalysts. ACS Nano 15(2), 2005–2037 (2021). https://doi.org/10.1021/acsnano.0c06962
J. Liu, Z. Gong, M. Yan, G. He, H. Gong et al., Electronic structure regulation of single-atom catalysts for electrochemical oxygen reduction to H2O2. Small 18(3), e2103824 (2022). https://doi.org/10.1002/smll.202103824
Y. Xia, M. Sayed, L. Zhang, B. Cheng, J. Yu, Single-atom heterogeneous photocatalysts. Chem. Catal 1(6), 1173–1214 (2021). https://doi.org/10.1016/j.checat.2021.08.009
E. Jung, H. Shin, W. Hooch Antink, Y.-E. Sung, T. Hyeon, Recent advances in electrochemical oxygen reduction to H2O2: catalyst and cell design. ACS Energy Lett. 5(6), 1881–1892 (2020). https://doi.org/10.1021/acsenergylett.0c00812
Y. Shang, X. Xu, B. Gao, S. Wang, X. Duan, Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem. Soc. Rev. 50(8), 5281–5322 (2021). https://doi.org/10.1039/d0cs01032d
T. Freese, J.T. Meijer, B.L. Feringa, S.B. Beil, An organic perspective on photocatalytic production of hydrogen peroxide. Nat. Catal. 6(7), 553–558 (2023). https://doi.org/10.1038/s41929-023-00980-x
L. Xiong, H. Qi, S. Zhang, L. Zhang, X. Liu et al., Highly selective transformation of biomass derivatives to valuable chemicals by single-atom photocatalyst Ni/TiO2. Adv. Mater. 35(16), e2209646 (2023). https://doi.org/10.1002/adma.202209646
D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 13(1), 5 (2020). https://doi.org/10.1007/s40820-020-00538-7
C. Chu, Q. Zhu, Z. Pan, S. Gupta, D. Huang et al., Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H2O2 production. Proc. Natl. Acad. Sci. U.S.A. 117(12), 6376–6382 (2020). https://doi.org/10.1073/pnas.1913403117
Y. Kondo, K. Honda, Y. Kuwahara, K. Mori, H. Kobayashi et al., Boosting photocatalytic hydrogen peroxide production from oxygen and water using a hafnium-based metal–organic framework with missing-linker defects and nickel single atoms. ACS Catal. 12(24), 14825–14835 (2022). https://doi.org/10.1021/acscatal.2c04940
H. Li, R. Li, G. Liu, M. Zhai, J. Yu, Noble-metal-free single- and dual-atom catalysts for artificial photosynthesis. Adv. Mater. (2023). https://doi.org/10.1002/adma.202301307
M.B. Gawande, P. Fornasiero, R. Zbořil, Carbon-based single-atom catalysts for advanced applications. ACS Catal. 10(3), 2231–2259 (2020). https://doi.org/10.1021/acscatal.9b04217
S. Qu, H. Wu, Y.H. Ng, Clean production of hydrogen peroxide: a heterogeneous solar-driven redox process. Adv. Energy Mater. (2023). https://doi.org/10.1002/aenm.202301047
J. Sui, H. Liu, S. Hu, K. Sun, G. Wan et al., A general strategy to immobilize single-atom catalysts in metal-organic frameworks for enhanced photocatalysis. Adv. Mater. 34(6), e2109203 (2022). https://doi.org/10.1002/adma.202109203
Q. Zhang, J. Guan, Recent progress in single-atom catalysts for photocatalytic water splitting. Solar RRL 4(9), 2000283 (2020). https://doi.org/10.1002/solr.202000283
J. Zhang, J. Zhang, F. He, Y. Chen, J. Zhu et al., Defect and doping co-engineered non-metal nanocarbon ORR electrocatalyst. Nano-Micro Lett. 13(1), 65 (2021). https://doi.org/10.1007/s40820-020-00579-y
B. Wang, H. Cai, S. Shen, Single metal atom photocatalysis. Small Methods (2019). https://doi.org/10.1002/smtd.201800447
Q. Wang, D. Zhang, Y. Chen, W.-F. Fu, X.-J. Lv, Single-atom catalysts for photocatalytic reactions. ACS Sustain. Chem. Eng. 7(7), 6430–6443 (2019). https://doi.org/10.1021/acssuschemeng.8b06273
X. Wang, D. Wu, S. Liu, J. Zhang, X.Z. Fu et al., Folic acid self-assembly enabling manganese single-atom electrocatalyst for selective nitrogen reduction to ammonia. Nano-Micro Lett. 13(1), 125 (2021). https://doi.org/10.1007/s40820-021-00651-1
X. Wu, H. Zhang, S. Zuo, J. Dong, Y. Li et al., Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 13(1), 136 (2021). https://doi.org/10.1007/s40820-021-00668-6
Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang et al., Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2(7), 1242–1264 (2018). https://doi.org/10.1016/j.joule.2018.06.019
M. Zhang, C. Lai, F. Xu, D. Huang, T. Hu et al., Ultrahigh performance H2O2 generation by single-atom fe catalysts with N/O bidentate ligand via oxalic acid and oxygen molecules activation. Small (2023). https://doi.org/10.1002/smll.202301817
W. Wang, Q. Song, Q. Luo, L. Li, X. Huo et al., Photothermal-enabled single-atom catalysts for high-efficiency hydrogen peroxide photosynthesis from natural seawater. Nat. Commun. 14(1), 2493 (2023). https://doi.org/10.1038/s41467-023-38211-3
H. Tan, P. Zhou, M. Liu, Q. Zhang, F. Liu et al., Photocatalysis of water into hydrogen peroxide over an atomic Ga–N5 site. Nat. Synth. 2, 557–563 (2023). https://doi.org/10.1038/s44160-023-00272-z
H. Li, B. Zhu, B. Cheng, G. Luo, J. Xu et al., Single-atom cu anchored on n-doped graphene/carbon nitride heterojunction for enhanced photocatalytic H2O2 production. J. Mater. Sci. Technol. 161, 192–200 (2023). https://doi.org/10.1016/j.jmst.2023.03.039
Y.-Z. Zhang, C. Liang, H.-P. Feng, W. Liu, Nickel single atoms anchored on ultrathin carbon nitride for selective hydrogen peroxide generation with enhanced photocatalytic activity. Chem. Eng. J. 446, 137379 (2022). https://doi.org/10.1016/j.cej.2022.137379
S. Yao, T. Tang, Y. Shen, F. Yang, C. An, Atomically dispersed scandium lewis acid sites on carbon nitride for efficient photocatalytic hydrogen peroxide production. Sci. China Mater. 66(2), 672–678 (2022). https://doi.org/10.1007/s40843-022-2185-1
M. Wang, S. Xu, Z. Zhou, C.L. Dong, X. Guo et al., Atomically dispersed janus nickel sites on red phosphorus for photocatalytic overall water splitting. Angew. Chem. Int. Ed. 61(29), e202204711 (2022). https://doi.org/10.1002/anie.202204711
Q. Luo, Y. Li, X. Huo, L. Li, Y. Song et al., Atomic chromium coordinated graphitic carbon nitride for bioinspired antibiofouling in seawater. Adv. Sci. 9(8), e2105346 (2022). https://doi.org/10.1002/advs.202105346
M.A.R. da Silva, I.F. Silva, Q. Xue, B.T.W. Lo, N.V. Tarakina et al., Sustainable oxidation catalysis supported by light: Fe-poly (heptazine imide) as a heterogeneous single-atom photocatalyst. Appl. Catal. B Environ. 304, 120965 (2022). https://doi.org/10.1016/j.apcatb.2021.120965
L. Bai, H. Sun, Q. Wu, W. Yao, Supported Ru single atoms and clusters on P-doped carbon nitride as an efficient photocatalyst for H2O2 production. ChemCatChem 14(15), 2101954 (2022). https://doi.org/10.1002/cctc.202101954
Y. Wang, X. Zhao, D. Cao, Y. Wang, Y. Zhu, Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol a by single-atom dispersed Ag mesoporous g-C3N4 hybrid. Appl. Catal. B Environ. 211, 79–88 (2017). https://doi.org/10.1016/j.apcatb.2017.03.079
X.G. Li, W.T. Bi, L. Zhang, S. Tao, W.S. Chu et al., Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 28(12), 2427–2431 (2016). https://doi.org/10.1002/adma.201505281
G. Liu, Y. Huang, H. Lv, H. Wang, Y. Zeng et al., Confining single-atom Pd on g-C3N4 with carbon vacancies towards enhanced photocatalytic NO conversion. Appl. Catal. B Environ. 284, 119683 (2021). https://doi.org/10.1016/j.apcatb.2020.119683
S. Wang, J.-J. Zhang, M.-Y. Zong, J. Xu, D.-H. Wang et al., Energy level engineering: Ru single atom anchored on Mo-MOF with a [Mo8O26(im)2]4– structure acts as a biomimetic photocatalyst. ACS Catal. 12(13), 7960–7974 (2022). https://doi.org/10.1021/acscatal.2c01756
M. Gao, F. Tian, X. Zhang, Z. Chen, W. Yang et al., Improved plasmonic hot-electron capture in Au nanop/polymeric carbon nitride by Pt single atoms for broad-spectrum photocatalytic H2 evolution. Nano-Micro Lett. 15(1), 129 (2023). https://doi.org/10.1007/s40820-023-01098-2
M. Tamtaji, H. Gao, M.D. Hossain, P.R. Galligan, H. Wong et al., Machine learning for design principles for single atom catalysts towards electrochemical reactions. J. Mater. Chem. A 10(29), 15309–15331 (2022). https://doi.org/10.1039/d2ta02039d
Q. Liu, Y. Li, L. Zheng, J. Shang, X. Liu et al., Sequential synthesis and active-site coordination principle of precious metal single-atom catalysts for oxygen reduction reaction and pem fuel cells. Adv. Energy Mater. 10(20), 2000689 (2020). https://doi.org/10.1002/aenm.202000689
D. Cao, H. Xu, H. Li, C. Feng, J. Zeng et al., Volcano-type relationship between oxidation states and catalytic activity of single-atom catalysts towards hydrogen evolution. Nat. Commun. 13(1), 5843 (2022). https://doi.org/10.1038/s41467-022-33589-y
Z. Huang, J. Qin, Y. Zhu, K. He, H. Chen et al., Green and scalable electrochemical routes for cost-effective mass production of MXenes for supercapacitor electrodes. Carbon Energy (2023). https://doi.org/10.1002/cey2.295
Z. Huang, Y. Zhu, Y. Kong, Z. Wang, K. He et al., Efficient synergism of chemisorption and wackenroder reaction via heterostructured La2O3-Ti3C2Tx-embedded carbon nanofiber for high-energy lithium–sulfur pouch cells. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202303422
A. Zeb, S. Sahar, S.Y. Lv, A.B. Yousaf, P. Kasak et al., Engineering at subatomic scale: achieving selective catalytic pathways via tuning of the oxidation states in functionalized single-atom quantum catalysts. Small 18(34), e2202522 (2022). https://doi.org/10.1002/smll.202202522
W. Yang, J. Li, X. Cui, C. Yang, Y. Liu et al., Fine-tuning inverse metal-support interaction boosts electrochemical transformation of methanol into formaldehyde based on density functional theory. Chin. Chem. Lett. 32(8), 2489–2494 (2021). https://doi.org/10.1016/j.cclet.2020.12.057
H. Xu, Y. Zhao, Q. Wang, G. He, H. Chen, Supports promote single-atom catalysts toward advanced electrocatalysis. Coord. Chem. Rev. 451, 214261 (2022). https://doi.org/10.1016/j.ccr.2021.214261
P. Hu, Z. Huang, Z. Amghouz, M. Makkee, F. Xu et al., Electronic metal-support interactions in single-atom catalysts. Angew. Chem. Int. Ed. 53(13), 3418–3421 (2014). https://doi.org/10.1002/anie.201309248
K. Qi, M. Chhowalla, D. Voiry, Single atom is not alone: Metal-support interactions in single-atom catalysis. Mater. Today 40, 173–192 (2020). https://doi.org/10.1016/j.mattod.2020.07.002
Z. Teng, N. Yang, H. Lv, S. Wang, M. Hu et al., Edge-functionalized g-C3N4 nanosheets as a highly efficient metal-free photocatalyst for safe drinking water. Chem 5(3), 664–680 (2019). https://doi.org/10.1016/j.chempr.2018.12.009
J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72–123 (2017). https://doi.org/10.1016/j.apsusc.2016.07.030
X. Li, J. Yu, J. Low, Y. Fang, J. Xiao et al., Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3(6), 2485–2534 (2015). https://doi.org/10.1039/c4ta04461d
X. Luo, X. Wei, H. Wang, W. Gu, T. Kaneko et al., Secondary-atom-doping enables robust Fe–N–C single-atom catalysts with enhanced oxygen reduction reaction. Nano-Micro Lett. 12(1), 163 (2020). https://doi.org/10.1007/s40820-020-00502-5
D. Zhao, Y. Wang, C.L. Dong, F. Meng, Y.C. Huang et al., Electron-deficient Zn–N6 configuration enabling polymeric carbon nitride for visible-light photocatalytic overall water splitting. Nano-Micro Lett. 14(1), 223 (2022). https://doi.org/10.1007/s40820-022-00962-x
J. Ding, Z. Teng, X. Su, K. Kato, Y. Liu et al., Asymmetrically coordinated cobalt single atom on carbon nitride for highly selective photocatalytic oxidation of CH4 to CH3OH. Chem 9(4), 1017–1035 (2023). https://doi.org/10.1016/j.chempr.2023.02.011
F. Dong, M. Wu, Z. Chen, X. Liu, G. Zhang et al., Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: recent advances and future perspectives. Nano-Micro Lett. 14(1), 36 (2021). https://doi.org/10.1007/s40820-021-00768-3
Z. Teng, W. Cai, S. Liu, C. Wang, Q. Zhang et al., Bandgap engineering of polymetric carbon nitride copolymerized by 2,5,8-triamino-tri-s-triazine (melem) and barbituric acid for efficient nonsacrificial photocatalytic H2O2 production. Appl. Catal. B Environ. 271, 118917 (2020). https://doi.org/10.1016/j.apcatb.2020.118917
T. Gan, D. Wang, Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. (2023). https://doi.org/10.1007/s12274-023-5700-4
P. Sharma, M. Sharma, M. Dearg, M. Wilding, T.J.A. Slater et al., Cd/Pt precursor solution for solar H2 production and in situ photochemical synthesis of Pt single-atom decorated CdS nanops. Angew. Chem. Int. Ed. 62(20), e202301239 (2023). https://doi.org/10.1002/anie.202301239
M. Kottwitz, Y. Li, H. Wang, A.I. Frenkel, R.G. Nuzzo, Single atom catalysts: a review of characterization methods. Chem. Methods 1(6), 278–294 (2021). https://doi.org/10.1002/cmtd.202100020
S. Buchele, A. Yakimov, S.M. Collins, A. Ruiz-Ferrando, Z. Chen et al., Elucidation of metal local environments in single-atom catalysts based on carbon nitrides. Small 18(33), e2202080 (2022). https://doi.org/10.1002/smll.202202080
J. Feng, H. Gao, L. Zheng, Z. Chen, S. Zeng et al., A Mn–N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nat. Commun. 11(1), 4341 (2020). https://doi.org/10.1038/s41467-020-18143-y
H. Wang, J.X. Liu, L.F. Allard, S. Lee, J. Liu et al., Surpassing the single-atom catalytic activity limit through paired Pt–O–Pt ensemble built from isolated Pt1 atoms. Nat. Commun. 10(1), 3808 (2019). https://doi.org/10.1038/s41467-019-11856-9
P. Wang, S. Fan, X. Li, J. Wang, Z. Liu et al., Single Pd atoms synergistically manipulating charge polarization and active sites for simultaneously photocatalytic hydrogen production and oxidation of benzylamine. Nano Energy 95, 107045 (2022). https://doi.org/10.1016/j.nanoen.2022.107045
S.K. Kaiser, Z. Chen, D. Faust Akl, S. Mitchell, J. Perez-Ramirez, Single-atom catalysts across the periodic table. Chem. Rev. 120(21), 11703–11809 (2020). https://doi.org/10.1021/acs.chemrev.0c00576
L. Sun, J. Xu, X. Liu, B. Qiao, L. Li et al., High-efficiency water gas shift reaction catalysis on α-MoC promoted by single-atom Ir species. ACS Catal. 11(10), 5942–5950 (2021). https://doi.org/10.1021/acscatal.1c00231
R. Li, D. Wang, Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 15(8), 6888–6923 (2022). https://doi.org/10.1007/s12274-022-4371-x
P. Xia, B. Cheng, J. Jiang, H. Tang, Localized π-conjugated structure and EPR investigation of g-C3N4 photocatalyst. Appl. Surf. Sci. 487, 335–342 (2019). https://doi.org/10.1016/j.apsusc.2019.05.064
L. Sun, Y. Feng, K. Ma, X. Jiang, Z. Gao et al., Synergistic effect of single-atom Ag and hierarchical tremella-like g-C3N4: Electronic structure regulation and multi-channel carriers transport for boosting photocatalytic performance. Appl. Catal. B Environ. 306, 121106 (2022). https://doi.org/10.1016/j.apcatb.2022.121106
Y. Wang, Y. Qu, B. Qu, L. Bai, Y. Liu et al., Construction of six-oxygen-coordinated single Ni sites on g-C3N4 with boron-oxo species for photocatalytic water-activation-induced CO2 reduction. Adv. Mater. 33(48), e2105482 (2021). https://doi.org/10.1002/adma.202105482
X. Li, H. Rong, J. Zhang, D. Wang, Y. Li, Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 13(7), 1842–1855 (2020). https://doi.org/10.1007/s12274-020-2755-3
L. Jiao, H. Yan, Y. Wu, W. Gu, C. Zhu et al., When nanozymes meet single-atom catalysis. Angew. Chem. Int. Ed. 59(7), 2565–2576 (2020). https://doi.org/10.1002/anie.201905645
N. Cheng, L. Zhang, K. Doyle-Davis, X. Sun, Single-atom catalysts: from design to application. Electrochem. Energy Rev. 2(4), 539–573 (2019). https://doi.org/10.1007/s41918-019-00050-6
H.E. Kim, I.H. Lee, J. Cho, S. Shin, H.C. Ham et al., Palladium single-atom catalysts supported on C@C3N4 for electrochemical reactions. ChemElectroChem 6(18), 4757–4764 (2019). https://doi.org/10.1002/celc.201900772
J. Song, Z. Chen, X. Cai, X. Zhou, G. Zhan et al., Promoting dinuclear-type catalysis in Cu1–C3N4 single-atom catalysts. Adv. Mater. 34(33), e2204638 (2022). https://doi.org/10.1002/adma.202204638
X. Peng, J. Wu, Z. Zhao, X. Wang, H. Dai et al., Activation of peroxymonosulfate by single-atom Fe-g-C3N4 catalysts for high efficiency degradation of tetracycline via nonradical pathways: role of high-valent iron-oxo species and Fe–Nx sites. Chem. Eng. J. 427, 130803 (2022). https://doi.org/10.1016/j.cej.2021.130803
J. Zhang, H. Yang, B. Liu, Coordination engineering of single-atom catalysts for the oxygen reduction reaction: a review. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202002473
J. Yang, W. Li, D. Wang, Y. Li, Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 32(49), e2003300 (2020). https://doi.org/10.1002/adma.202003300
D. Zhou, L. Zhang, X. Liu, H. Qi, Q. Liu et al., Tuning the coordination environment of single-atom catalyst M–N–C towards selective hydrogenation of functionalized nitroarenes. Nano Res. 15(1), 519–527 (2021). https://doi.org/10.1007/s12274-021-3511-z
D. Liu, Q. He, S. Ding, L. Song, Structural regulation and support coupling effect of single-atom catalysts for heterogeneous catalysis. Adv. Energy Mater. 10(32), 2001482 (2020). https://doi.org/10.1002/aenm.202001482
T. Sun, S. Mitchell, J. Li, P. Lyu, X. Wu et al., Design of local atomic environments in single-atom electrocatalysts for renewable energy conversions. Adv. Mater. 33(5), e2003075 (2021). https://doi.org/10.1002/adma.202003075
Y. Mun, S. Lee, K. Kim, S. Kim, S. Lee et al., Versatile strategy for tuning orr activity of a single Fe–N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 141(15), 6254–6262 (2019). https://doi.org/10.1021/jacs.8b13543
R. Lang, X. Du, Y. Huang, X. Jiang, Q. Zhang et al., Single-atom catalysts based on the metal-oxide interaction. Chem. Rev. 120(21), 11986–12043 (2020). https://doi.org/10.1021/acs.chemrev.0c00797
J. Cho, T. Lim, H. Kim, L. Meng, J. Kim et al., Importance of broken geometric symmetry of single-atom Pt sites for efficient electrocatalysis. Nat. Commun. 14(1), 3233 (2023). https://doi.org/10.1038/s41467-023-38964-x
J. Hulva, M. Meier, R. Bliem, Z. Jakub, F. Kraushofer et al., Unraveling CO adsorption on model single-atom catalysts. Science 371(6527), 375–379 (2021). https://doi.org/10.1126/science.abe5757
X. Zhang, X. Xu, S. Yao, C. Hao, C. Pan et al., Boosting electrocatalytic activity of single atom catalysts supported on nitrogen-doped carbon through N coordination environment engineering. Small 18(10), e2105329 (2022). https://doi.org/10.1002/smll.202105329
D. Kunwar, S. Zhou, A. DeLaRiva, E.J. Peterson, H. Xiong et al., Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support. ACS Catal. 9(5), 3978–3990 (2019). https://doi.org/10.1021/acscatal.8b04885
W. Liu, Y. Chen, H. Qi, L. Zhang, W. Yan et al., A durable nickel single-atom catalyst for hydrogenation reactions and cellulose valorization under harsh conditions. Angew. Chem. Int. Ed. 57(24), 7071–7075 (2018). https://doi.org/10.1002/anie.201802231
Y. Li, Y. Wang, C.L. Dong, Y.C. Huang, J. Chen et al., Single-atom nickel terminating sp2 and sp3 nitride in polymeric carbon nitride for visible-light photocatalytic overall water splitting. Chem. Sci. 12(10), 3633–3643 (2021). https://doi.org/10.1039/d0sc07093a
K. Chen, S. Kim, M. Je, H. Choi, Z. Shi et al., Ultrasonic plasma engineering toward facile synthesis of single-atom M-N4/N-doped carbon (M = Fe, Co) as superior oxygen electrocatalyst in rechargeable zinc-air batteries. Nano-Micro Lett. 13(1), 60 (2021). https://doi.org/10.1007/s40820-020-00581-4
S. Chen, S. Yang, X. Sun, K. He, Y.H. Ng et al., Carbon-coated Cu nanops as a cocatalyst of g-C3N4 for enhanced photocatalytic H2 evolution activity under visible-light irradiation. Energy Technol. 7, 1800846 (2019). https://doi.org/10.1002/ente.201800846
Y.C. Hao, L.W. Chen, J. Li, Y. Guo, X. Su et al., Metal-organic framework membranes with single-atomic centers for photocatalytic CO2 and O2 reduction. Nat. Commun. 12(1), 2682 (2021). https://doi.org/10.1038/s41467-021-22991-7
Z. Teng, Q. Zhang, H. Yang, K. Kato, W. Yang et al., Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 4(5), 374–384 (2021). https://doi.org/10.1038/s41929-021-00605-1
H. Wang, J. Gao, C. Chen, W. Zhao, Z. Zhang et al., PtNi-W/C with atomically dispersed tungsten sites toward boosted ORR in proton exchange membrane fuel cell devices. Nano-Micro Lett. 15(1), 143 (2023). https://doi.org/10.1007/s40820-023-01102-9
K. He, R. Shen, L. Hao, Y. Li, P. Zhang et al., Advances in nanostructured silicon carbide photocatalysts. Acta Phys.-Chim. Sin. 38(11), 2201021 (2022)
Z. Lyu, S. Ding, M. Wang, X. Pan, Z. Feng et al., Iron-imprinted single-atomic site catalyst-based nanoprobe for detection of hydrogen peroxide in living cells. Nano-Micro Lett. 13(1), 146 (2021). https://doi.org/10.1007/s40820-021-00661-z
W. Yu, C. Hu, L. Bai, N. Tian, Y. Zhang et al., Photocatalytic hydrogen peroxide evolution: what is the most effective strategy? Nano Energy 104, 107906 (2022). https://doi.org/10.1016/j.nanoen.2022.107906
L. Li, L. Xu, Z. Hu, J.C. Yu, Enhanced mass transfer of oxygen through a gas–liquid–solid interface for photocatalytic hydrogen peroxide production. Adv. Funct. Mater. 31(52), 2106120 (2021). https://doi.org/10.1002/adfm.202106120
Y. Tian, D. Deng, L. Xu, M. Li, H. Chen et al., Strategies for sustainable production of hydrogen peroxide via oxygen reduction reaction: from catalyst design to device setup. Nano-Micro Lett. 15(1), 122 (2023). https://doi.org/10.1007/s40820-023-01067-9
M. Song, W. Liu, J. Zhang, C. Zhang, X. Huang et al., Single-atom catalysts for H2O2 electrosynthesis via two-electron oxygen reduction reaction. Adv. Funct. Mater. 33(15), 2212087 (2023). https://doi.org/10.1002/adfm.202212087
Y. Guo, X. Tong, N. Yang, Photocatalytic and electrocatalytic generation of hydrogen peroxide: principles, catalyst design and performance. Nano-Micro Lett. 15(1), 77 (2023). https://doi.org/10.1007/s40820-023-01052-2
F.X. Hu, T. Hu, S. Chen, D. Wang, Q. Rao et al., Single-atom cobalt-based electrochemical biomimetic uric acid sensor with wide linear range and ultralow detection limit. Nano-Micro Lett. 13(1), 7 (2020). https://doi.org/10.1007/s40820-020-00536-9
Z. Teng, W. Cai, W. Sim, Q. Zhang, C. Wang, Photoexcited single metal atom catalysts for heterogeneous photocatalytic H2O2 production: pragmatic guidelines for predicting charge separation. Appl. Catal. B: Environ. 282, 119589 (2021). https://doi.org/10.1016/j.apcatb.2020.119589
W. Ma, M. Sun, D. Huang, C. Chu, T. Hedtke et al., Catalytic membrane with copper single-atom catalysts for effective hydrogen peroxide activation and pollutant destruction. Environ. Sci. Technol. 56(12), 8733–8745 (2022). https://doi.org/10.1021/acs.est.1c08937
Y. Nie, P. Wang, Q. Ma, X. Su, Confined gold single atoms-MXene heterostructure-based electrochemiluminescence functional material and its sensing application. Anal. Chem. 94(31), 11016–11022 (2022). https://doi.org/10.1021/acs.analchem.2c01480
Z. Wei, B. Deng, P. Chen, T. Zhao, S. Zhao, Palladium-based single atom catalysts for high-performance electrochemical production of hydrogen peroxide. Chem. Eng. J. 428, 131112 (2022). https://doi.org/10.1016/j.cej.2021.131112
A. Rogolino, I.F. Silva, N.V. Tarakina, M.A.R. da Silva, G.F.S.R. Rocha et al., Modified poly(heptazine imides): minimizing H2O2 decomposition to maximize oxygen reduction. ACS Appl. Mater. Interfaces 14(44), 49820–49829 (2022). https://doi.org/10.1021/acsami.2c14872
C. Pan, G. Bian, Y. Zhang, Y. Lou, Y. Zhang et al., Efficient and stable H2O2 production from H2O and O2 on BiPO4 photocatalyst. Appl. Catal. B 316, 121675 (2022). https://doi.org/10.1016/j.apcatb.2022.121675
Z. Li, B. Li, Y. Hu, X. Liao, H. Yu et al., Emerging ultrahigh-density single-atom catalysts for versatile heterogeneous catalysis applications: redefinition, recent progress, and challenges. Small Struct. 3(6), 2200041 (2022). https://doi.org/10.1002/sstr.202200041
Y. Liu, J. Wang, J. Wu, Y. Zhao, H. Huang et al., Critical roles of H2O and O2 in H2O2 photoproduction over biomass derived metal-free catalyst. Appl. Catal. B 319, 121944 (2022). https://doi.org/10.1016/j.apcatb.2022.121944
Y. Pan, X. Liu, W. Zhang, B. Shao, Z. Liu et al., Bifunctional template-mediated synthesis of porous ordered g-C3N4 decorated with potassium and cyano groups for effective photocatalytic H2O2 evolution from dual-electron O2 reduction. Chem. Eng. J. 427, 132032 (2022). https://doi.org/10.1016/j.cej.2021.132032
Y. Wu, Y. Ding, X. Han, B. Li, Y. Wang et al., Modulating coordination environment of Fe single atoms for high-efficiency all-pH-tolerated H2O2 electrochemical production. Appl. Catal. B 315, 121578 (2022). https://doi.org/10.1016/j.apcatb.2022.121578
G. Wang, Y. Liu, N. Zhao, H. Chen, W. Wu et al., Constructing the separation pathway for photo-generated carriers by diatomic sites decorated on MIL-53-NH2(Al) for enhanced photocatalytic performance. Nano Res. 15(8), 7034–7041 (2022). https://doi.org/10.1007/s12274-022-4357-8
Y. Zheng, Y. Luo, Q. Ruan, S. Wang, J. Yu et al., Plasma-induced hierarchical amorphous carbon nitride nanostructure with two N2C-site vacancies for photocatalytic H2O2 production. Appl. Catal. B 311, 121372 (2022). https://doi.org/10.1016/j.apcatb.2022.121372
C. Zhuang, W. Li, T. Zhang, J. Li, Y. Zhang et al., Monodispersed aluminum in carbon nitride creates highly efficient nitrogen active sites for ultra-high hydrogen peroxide photoproduction. Nano Energy 108, 108225 (2023). https://doi.org/10.1016/j.nanoen.2023.108225
B. Sun, X. Wang, Z. Ye, J. Zhang, X. Chen et al., Designing single-atom active sites on sp2-carbon linked covalent organic frameworks to induce bacterial ferroptosis-like for robust anti-infection therapy. Adv. Sci. 10(13), e2207507 (2023). https://doi.org/10.1002/advs.202207507
J.N. Chang, Q. Li, J.W. Shi, M. Zhang, L. Zhang et al., Oxidation-reduction molecular junction covalent organic frameworks for full reaction photosynthesis of H2O2. Angew. Chem. Int. Ed. 62(9), e202218868 (2023). https://doi.org/10.1002/anie.202218868
J. Luo, C. Fan, L. Tang, Y. Liu, Z. Gong et al., Reveal brønsted-evans-polanyi relation and attack mechanisms of reactive oxygen species for photocatalytic H2O2 production. Appl. Catal. B 301, 120757 (2022). https://doi.org/10.1016/j.apcatb.2021.120757
W. Liu, P. Wang, J. Chen, X. Gao, H. Che et al., Unraveling the mechanism on ultrahigh efficiency photocatalytic H2O2 generation for dual-heteroatom incorporated polymeric carbon nitride. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202205119
Y. Zou, X. Guo, X. Bian, Y. Zhang, W. Lin et al., Tailoring 2-electron oxygen reduction reaction selectivity on h-BN-based single-atom catalysts from superoxide dismutase: a DFT investigation. Appl. Surf. Sci. 592, 153233 (2022). https://doi.org/10.1016/j.apsusc.2022.153233
J. Chen, Q. Ma, X. Zheng, Y. Fang, J. Wang et al., Kinetically restrained oxygen reduction to hydrogen peroxide with nearly 100% selectivity. Nat. Commun. 13(1), 2808 (2022). https://doi.org/10.1038/s41467-022-30411-7
S. Zuo, Z. Guan, F. Yang, D. Xia, D. Li, Reactive oxygen species regulation and synergistic effect for effective water purification through fenton-like catalysis on single-atom Cu–N sites. J. Mater. Chem. A 10(19), 10503–10513 (2022). https://doi.org/10.1039/d2ta00561a
F. Wu, J. Ma, Y. Wang, L. Xie, X. Yan et al., Single copper atom photocatalyst powers an integrated catalytic cascade for drug-resistant bacteria elimination. ACS Nano 17(3), 2980–2991 (2023). https://doi.org/10.1021/acsnano.2c11550
Q. You, C. Zhang, M. Cao, B. Wang, J. Huang et al., Defects controlling, elements doping, and crystallinity improving triple-strategy modified carbon nitride for efficient photocatalytic diclofenac degradation and H2O2 production. Appl. Catal. B 321, 121941 (2023). https://doi.org/10.1016/j.apcatb.2022.121941
H. Jin, P. Cui, C. Cao, X. Yu, R. Zhao et al., Understanding the density-dependent activity of Cu single-atom catalyst in the benzene hydroxylation reaction. ACS Catal. 13(2), 1316–1325 (2023). https://doi.org/10.1021/acscatal.2c05363
Z. Xu, S. Gong, W. Ji, S. Zhang, Z. Bao et al., Photocatalysis coupling hydrogen peroxide synthesis and in-situ radical transform for tetracycline degradation. Chem. Eng. J. 446, 137009 (2022). https://doi.org/10.1016/j.cej.2022.137009
Y. Wang, J. Zhang, W.X. Shi, G.L. Zhuang, Q.P. Zhao et al., W single-atom catalyst for CH4 photooxidation in water vapor. Adv. Mater. 34(33), e2204448 (2022). https://doi.org/10.1002/adma.202204448
M. Kou, Y. Wang, Y. Xu, L. Ye, Y. Huang et al., Molecularly engineered covalent organic frameworks for hydrogen peroxide photosynthesis. Angew. Chem. Int. Ed. 61(19), e202200413 (2022). https://doi.org/10.1002/anie.202200413
H. Mai, T.C. Le, D. Chen, D.A. Winkler, R.A. Caruso, Machine learning for electrocatalyst and photocatalyst design and discovery. Chem. Rev. 122(16), 13478–13515 (2022). https://doi.org/10.1021/acs.chemrev.2c00061
S. Wang, H. Gao, L. Li, K.S. Hui, D.A. Dinh et al., High-throughput identification of highly active and selective single-atom catalysts for electrochemical ammonia synthesis through nitrate reduction. Nano Energy 100, 107517 (2022). https://doi.org/10.1016/j.nanoen.2022.107517
W. Zhao, P. Yan, B. Li, M. Bahri, L. Liu et al., Accelerated synthesis and discovery of covalent organic framework photocatalysts for hydrogen peroxide production. J. Am. Chem. Soc. 144(22), 9902–9909 (2022). https://doi.org/10.1021/jacs.2c02666
D. Chen, W. Chen, Y. Wu, L. Wang, X. Wu et al., Covalent organic frameworks containing dual O2 reduction centers for overall photosynthetic hydrogen peroxide production. Angew. Chem. Int. Ed. 62(9), e202217479 (2023). https://doi.org/10.1002/anie.202217479
T. Liu, Z. Pan, J.J.M. Vequizo, K. Kato, B. Wu et al., Overall photosynthesis of H2O2 by an inorganic semiconductor. Nat. Commun. 13(1), 1034 (2022). https://doi.org/10.1038/s41467-022-28686-x
Y. Xie, Q. Zhang, H. Sun, Z. Teng, C. Su, Semiconducting polymers for photosynthesis of H2O2: spatial separation and synergistic utilization of photoredox centers. Acta Phys. Chim. Sin. 39(11), 2301001 (2023). https://doi.org/10.3866/PKU.WHXB202301001
H. Wang, C. Yang, F. Chen, G. Zheng, Q. Han, A crystalline partially fluorinated triazine covalent organic framework for efficient photosynthesis of hydrogen peroxide. Angew. Chem. Int. Ed. 61(19), e202202328 (2022). https://doi.org/10.1002/anie.202202328
J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng et al., Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8(5), 1594–1601 (2015). https://doi.org/10.1039/c5ee00751h
R. Luo, M. Luo, Z. Wang, P. Liu, S. Song et al., The atomic origin of nickel-doping-induced catalytic enhancement in MoS2 for electrochemical hydrogen production. Nanoscale 11(15), 7123–7128 (2019). https://doi.org/10.1039/c8nr10023c
T. Zhang, B. Zhang, Q. Peng, J. Zhou, Z. Sun, Mo2B2 mbene-supported single-atom catalysts as bifunctional HER/OER and OER/ORR electrocatalysts. J. Mater. Chem. A 9(1), 433–441 (2021). https://doi.org/10.1039/d0ta08630d
H. Fei, J. Dong, M.J. Arellano-Jimenez, G. Ye, N. Dong Kim et al., Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 6, 8668 (2015). https://doi.org/10.1038/ncomms9668
N. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu et al., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016). https://doi.org/10.1038/ncomms13638
J. Zhang, Y. Zhao, X. Guo, C. Chen, C.-L. Dong et al., Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 1(12), 985–992 (2018). https://doi.org/10.1038/s41929-018-0195-1
D. Liu, X. Li, S. Chen, H. Yan, C. Wang et al., Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 4(6), 512–518 (2019). https://doi.org/10.1038/s41560-019-0402-6
M. Li, K. Duanmu, C. Wan, T. Cheng, L. Zhang et al., Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2(6), 495–503 (2019). https://doi.org/10.1038/s41929-019-0279-6
K. Qi, X. Cui, L. Gu, S. Yu, X. Fan et al., Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 10(1), 5231 (2019). https://doi.org/10.1038/s41467-019-12997-7
K. Jiang, M. Luo, Z. Liu, M. Peng, D. Chen et al., Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nat. Commun. 12(1), 1687 (2021). https://doi.org/10.1038/s41467-021-21956-0
Y. Shi, Z.R. Ma, Y.Y. Xiao, Y.C. Yin, W.M. Huang et al., Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 12(1), 3021 (2021). https://doi.org/10.1038/s41467-021-23306-6
H.J. Qiu, Y. Ito, W. Cong, Y. Tan, P. Liu et al., Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem. Int. Ed. 54(47), 14031–14035 (2015). https://doi.org/10.1002/anie.201507381
W. Chen, J. Pei, C.T. He, J. Wan, H. Ren et al., Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem. Int. Ed. 56(50), 16086–16090 (2017). https://doi.org/10.1002/anie.201710599
T. Chao, X. Luo, W. Chen, B. Jiang, J. Ge et al., Atomically dispersed copper-platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew. Chem. Int. Ed. 56(50), 16047–16051 (2017). https://doi.org/10.1002/anie.201709803
W. Chen, J. Pei, C.T. He, J. Wan, H. Ren et al., Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv. Mater. 30(30), e1800396 (2018). https://doi.org/10.1002/adma.201800396
J. Yang, B. Chen, X. Liu, W. Liu, Z. Li et al., Efficient and robust hydrogen evolution: phosphorus nitride imide nanotubes as supports for anchoring single ruthenium sites. Angew. Chem. Int. Ed. 57(30), 9495–9500 (2018). https://doi.org/10.1002/anie.201804854
X.P. Yin, H.J. Wang, S.F. Tang, X.L. Lu, M. Shu et al., Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 57(30), 9382–9386 (2018). https://doi.org/10.1002/anie.201804817
L. Wang, X. Duan, X. Liu, J. Gu, R. Si et al., Atomically dispersed Mo supported on metallic Co9S8 nanoflakes as an advanced noble-metal-free bifunctional water splitting catalyst working in universal pH conditions. Adv. Energy Mater. 10(4), 1903137 (2019). https://doi.org/10.1002/aenm.201903137
Q. He, D. Tian, H. Jiang, D. Cao, S. Wei et al., Achieving efficient alkaline hydrogen evolution reaction over a Ni5P4 catalyst incorporating single-atomic Ru sites. Adv. Mater. 32(11), e1906972 (2020). https://doi.org/10.1002/adma.201906972
C. Wu, D. Li, S. Ding, Z.U. Rehman, Q. Liu et al., Monoatomic platinum-anchored metallic MoS2: correlation between surface dopant and hydrogen evolution. J. Phys. Chem. Lett. 10(20), 6081–6087 (2019). https://doi.org/10.1021/acs.jpclett.9b01892
J. Wan, Z. Zhao, H. Shang, B. Peng, W. Chen et al., In situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks to design atomic Co1–P1N3 interfacial structure for promoting catalytic performance. J. Am. Chem. Soc. 142(18), 8431–8439 (2020). https://doi.org/10.1021/jacs.0c02229
J. Wu, N. Han, S. Ning, T. Chen, C. Zhu et al., Single-atom tungsten-doped CoP nanoarrays as a high-efficiency pH-universal catalyst for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 8(39), 14825–14832 (2020). https://doi.org/10.1021/acssuschemeng.0c04322
Y. Yang, Y. Qian, H. Li, Z. Zhang, Y. Mu et al., O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci. Adv. 6(23), eaba6586 (2020). https://doi.org/10.1126/sciadv.aba6586
P. Ren, T. Zhang, N. Jain, H.Y.V. Ching, A. Jaworski et al., An atomically dispersed Mn-photocatalyst for generating hydrogen peroxide from seawater via the water oxidation reaction (WOR). J. Am. Chem. Soc. 145(30), 16584–16596 (2023). https://doi.org/10.1021/jacs.3c03785