CNT/High Mass Loading MnO2/Graphene-Grafted Carbon Cloth Electrodes for High-Energy Asymmetric Supercapacitors
Corresponding Author: Yuanzhe Piao
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 88
Abstract
Flexible supercapacitor electrodes with high mass loading are crucial for obtaining favorable electrochemical performance but still challenging due to sluggish electron and ion transport. Herein, rationally designed CNT/MnO2/graphene-grafted carbon cloth electrodes are prepared by a “graft-deposit-coat” strategy. Due to the large surface area and good conductivity, graphene grafted on carbon cloth offers additional surface areas for the uniform deposition of MnO2 (9.1 mg cm−2) and facilitates charge transfer. Meanwhile, the nanostructured MnO2 provides abundant electroactive sites and short ion transport distance, and CNT coated on MnO2 acts as interconnected conductive “highways” to accelerate the electron transport, significantly improving redox reaction kinetics. Benefiting from high mass loading of electroactive materials, favorable conductivity, and a porous structure, the electrode achieves large areal capacitances without compromising rate capability. The assembled asymmetric supercapacitor demonstrates a wide working voltage (2.2 V) and high energy density of 10.18 mWh cm−3.
Highlights:
1 CNT/MnO2/graphene-grafted carbon cloth electrode is designed and achieves high MnO2 mass loading (9.1 mg cm−2).
2 The electrode with favorable electronic/ionic conductivity delivers a large areal capacitance and rate capability.
3 The assembled asymmetric supercapacitor yields a large energy density of 10.18 mWh cm−3.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.P. Dubal, N.R. Chodankar, D.H. Kim, P. Gomez-Romero, Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47, 2065–2129 (2018). https://doi.org/10.1039/C7CS00505A
- H. Wang, C. Xu, Y. Chen, Y. Wang, MnO2 nanograsses on porous carbon cloth for flexible solid-state asymmetric supercapacitors with high energy density. Energy Storage Mater. 8, 127–133 (2017). https://doi.org/10.1016/j.ensm.2017.05.007
- D. Guo, X. Yu, W. Shi, Y. Luo, Q. Li, T. Wang, Facile synthesis of well-ordered manganese oxide nanosheet arrays on carbon cloth for high-performance supercapacitors. J. Mater. Chem. A 2, 8833–8838 (2014). https://doi.org/10.1039/c4ta01238k
- J.G. Wang, Y. Yang, Z.H. Huang, F. Kang, A high-performance asymmetric supercapacitor based on carbon and carbon–MnO2 nanofiber electrodes. Carbon 61, 190–199 (2013). https://doi.org/10.1016/j.carbon.2013.04.084
- M.S. Balogun, H. Yang, Y. Luo, W. Qiu, Y. Huang, Z.Q. Liu, Y. Tong, Achieving high gravimetric energy density for flexible lithium-ion batteries facilitated by core-double-shell electrodes. Energy Environ. Sci. 11, 1859–1869 (2018). https://doi.org/10.1039/C8EE00522B
- D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10, 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566
- Z.H. Huang, Y. Song, D.Y. Feng, Z. Sun, X. Sun, X.X. Liu, High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano 12, 3557–3567 (2018). https://doi.org/10.1021/acsnano.8b00621
- Z. Hu, X. Xiao, C. Chen, T. Li, L. Huang et al., Al-doped α-MnO2 for high mass-loading pseudocapacitor with excellent cycling stability. Nano Energy 11, 226–234 (2015). https://doi.org/10.1016/j.nanoen.2014.10.015
- Z. Wang, F. Wang, Y. Li, J. Hu, Y. Lu, M. Xu, Interlinked multiphase Fe-doped MnO2 nanostructures: a novel design for enhanced pseudocapacitive performance. Nanoscale 8, 7309–7317 (2016). https://doi.org/10.1039/C5NR08857G
- Y. Song, T. Liu, B. Yao, M. Li, T. Kou et al., Ostwald ripening improves rate capability of high mass loading manganese oxide for supercapacitors. ACS Energy Lett. 2, 1752–1759 (2017). https://doi.org/10.1021/acsenergylett.7b00405
- Z. Pan, M. Liu, J. Yang, Y. Qiu, W. Li, Y. Xu, X. Zhang, Y. Zhang, High electroactive material loading on a carbon nanotube@3D graphene aerogel for high-performance flexible all-solid-state asymmetric supercapacitors. Adv. Funct. Mater. 27, 1701122 (2017). https://doi.org/10.1002/adfm.201701122
- B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian et al., Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3, 459–470 (2019). https://doi.org/10.1016/j.joule.2018.09.020
- W. Fu, E. Zhao, X. Ren, A. Magasinski, G. Yushin, Hierarchical fabric decorated with carbon nanowire/metal oxide nanocomposites for 1.6 V wearable aqueous supercapacitors. Adv. Energy Mater. 8, 1703454 (2018). https://doi.org/10.1002/aenm.201703454
- Z. Pan, Y. Qiu, J. Yang, F. Ye, Y. Xu, X. Zhang, M. Liu, Y. Zhang, Ultra-endurance flexible all-solid-state asymmetric supercapacitors based on three-dimensionally coated MnOx nanosheets on nanoporous current collectors. Nano Energy 26, 610–619 (2016). https://doi.org/10.1016/j.nanoen.2016.05.053
- X. Liu, C. Guan, Y. Hu, L. Zhang, A.M. Elshahawy, J. Wang, 2D metal-organic frameworks derived nanocarbon arrays for substrate enhancement in flexible supercapacitors. Small 14, 1702641 (2018). https://doi.org/10.1002/smll.201702641
- J. Liang, H. Li, H. Li, X. Dong, X. Zheng et al., Building carbon-based versatile scaffolds on the electrode surface to boost capacitive performance for fiber pseudocapacitors. Small 15, 1900721 (2019). https://doi.org/10.1002/smll.201900721
- G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z. Bao, Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 11, 4438–4442 (2011). https://doi.org/10.1021/nl2026635
- J. Wang, L. Dong, C. Xu, D. Ren, X. Ma, F. Kang, Polymorphous supercapacitors constructed from flexible three-dimensional carbon network/polyaniline/MnO2 composite textiles. ACS Appl. Mater. Interfaces 10, 10851–10859 (2018). https://doi.org/10.1021/acsami.7b19195
- D. Ye, Y. Yu, J. Tang, L. Liu, Y. Wu, Electrochemical activation of carbon cloth in aqueous inorganic salt solution for superior capacitive performance. Nanoscale 8, 10406–10414 (2016). https://doi.org/10.1039/C6NR00606J
- C.X. Guo, C.M. Li, A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance. Energy Environ. Sci. 4, 4504–4507 (2011). https://doi.org/10.1039/c1ee01676h
- X. Ge, Z. Li, L. Yin, Metal-organic frameworks derived porous core/shell CoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery. Nano Energy 32, 117–124 (2017). https://doi.org/10.1016/j.nanoen.2016.11.055
- Z. Ye, T. Li, G. Ma, X. Peng, J. Zhao, Morphology controlled MnO2 electrodeposited on carbon fiber paper for high-performance supercapacitors. J. Power Sour 351, 51–57 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.104
- Y. Zhang, X. Yuan, W. Lu, Y. Yan, J. Zhu, T.W. Chou, MnO2 based sandwich structure electrode for supercapacitor with large voltage window and high mass loading. Chem. Eng. J. 368, 525–532 (2019). https://doi.org/10.1016/j.cej.2019.02.206
- L. Wang, M. Huang, S. Chen, L. Kang, X. He, δ-MnO2 nanofiber/single-walled carbon nanotube hybrid film for all-solid-state flexible supercapacitors with high performance. J. Mater. Chem. A 5, 19107–19115 (2017). https://doi.org/10.1039/C7TA04712F
- Y. Gao, Y. Lin, Z. Peng, Q. Zhou, Z. Fan, Accelerating ion diffusion with unique three-dimensionally interconnected nanopores for self-membrane high-performance pseudocapacitors. Nanoscale 9, 18311–18317 (2017). https://doi.org/10.1039/C7NR06234F
- L. Liu, H. Zhao, Y. Wang, Y. Fang, J. Xie, Y. Lei, Evaluating the role of nanostructured current collectors in energy storage capability of supercapacitor electrodes with thick electroactive materials layers. Adv. Funct. Mater. 28, 1705107 (2018). https://doi.org/10.1002/adfm.201705107
- S.H. Kazemi, M.A. Kiani, M. Ghaemmaghami, H. Kazemi, Nano-architectured MnO2 electrodeposited on the Cu-decorated nickel foam substrate as supercapacitor electrode with excellent areal capacitance. Electrochim. Acta 197, 107–116 (2016). https://doi.org/10.1016/j.electacta.2016.03.063
- L. Gao, J. Song, J.U. Surjadi, K. Cao, Y. Han, D. Sun, X. Tao, Y. Lu, Graphene-bridged multifunctional flexible fiber supercapacitor with high energy density. ACS Appl. Mater. Interfaces 10, 28597–28607 (2018). https://doi.org/10.1021/acsami.8b08680
- X. Xia, S. Deng, D. Xie, Y. Wang, S. Feng, J. Wu, J. Tu, Boosting sodium ion storage by anchoring MoO2 on vertical graphene arrays. Mater. Chem. A 6, 15546–15552 (2018). https://doi.org/10.1039/C8TA06232C
- S.B. Ma, K.Y. Ahn, E.S. Lee, K.H. Oh, K.B. Kim, Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes. Carbon 45, 375–382 (2007). https://doi.org/10.1016/j.carbon.2006.09.006
- C. Julien, M. Massot, R. Baddour-Hadjean, S. Franger, S. Bach, J.P. Pereira-Ramos, Raman spectra of birnessite manganese dioxides. Solid State Ion 159, 345–356 (2003). https://doi.org/10.1016/S0167-2738(03)00035-3
- P. Wu, S. Cheng, L. Yang, Z. Lin, X. Gui et al., Synthesis and characterization of self-standing and highly flexible δ-MnO2@CNTs/CNTs composite films for direct use of supercapacitor electrodes. ACS Appl. Mater. Interfaces 8, 23721–23728 (2016). https://doi.org/10.1021/acsami.6b07161
- J.H. Kim, K.H. Lee, L.J. Overzet, G.S. Lee, Synthesis and electrochemical properties of spin-capable carbon nanotube sheet/MnOx composites for high-performance energy storage devices. Nano Lett. 11, 2611–2617 (2011). https://doi.org/10.1021/nl200513a
- P. Shi, L. Li, L. Hua, Q. Qian, P. Wang, J. Zhou, G. Sun, W. Huang, Design of amorphous manganese oxide@multiwalled carbon nanotube fiber for robust solid-state supercapacitor. ACS Nano 11, 444–452 (2017). https://doi.org/10.1021/acsnano.6b06357
- M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004). https://doi.org/10.1021/cm049649j
- L. Hu, W. Chen, X. Xie, N. Liu, Y. Yang et al., Symmetrical MnO2–carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. ACS Nano 5, 8904–8913 (2011). https://doi.org/10.1021/nn203085j
- Z. Bo, W. Zhu, W. Ma, Z. Wen, X. Shuai et al., Vertically oriented graphene bridging active-layer/current-collector interface for ultrahigh rate supercapacitors. Adv. Mater. 25, 5799–5806 (2013). https://doi.org/10.1002/adma.201301794
- D. Chao, B. Ouyang, P. Liang, T.T.T. Huong, G. Jia et al., C-plasma of hierarchical graphene survives SnS bundles for ultrastable and high volumetric Na-ion storage. Adv. Mater. 30, 1804833 (2018). https://doi.org/10.1002/adma.201804833
- Z. Hu, S. Sayed, T. Jiang, X. Zhu, C. Lu et al., Self-assembled binary organic granules with multiple lithium uptake mechanisms toward high-energy flexible lithium-ion hybrid supercapacitors. Adv. Energy Mater. 8, 1802273 (2018). https://doi.org/10.1002/aenm.201802273
- B. Ouyang, D. Chao, G. Jia, Z. Zhang, H.J. Fan, R.S. Rawat, Hierarchical vertical graphene nanotube arrays via universal carbon plasma processing strategy: a platform for high-rate performance battery electrodes. Energy Storage Mater. 18, 462–469 (2019). https://doi.org/10.1016/j.ensm.2018.08.007
- J. Li, Y. Wang, W. Xu, Y. Wang, B. Zhang et al., Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy 57, 379–387 (2019). https://doi.org/10.1016/j.nanoen.2018.12.061
- Y. Liu, X. Miao, J. Fang, X. Zhang, S. Chen et al., Layered-MnO2 nanosheet grown on nitrogen-doped graphene template as a composite cathode for flexible solid-state asymmetric supercapacitor. ACS Appl. Mater. Interfaces 8, 5251–5260 (2016). https://doi.org/10.1021/acsami.5b10649
- J. Tao, N. Liu, L. Li, J. Su, Y. Gao, Hierarchical nanostructures of polypyrrole@MnO2 composite electrodes for high performance solid-state asymmetric supercapacitors. Nanoscale 6, 2922–2928 (2014). https://doi.org/10.1039/c3nr05845j
- S.H. Ji, N.R. Chodankar, W.S. Jang, D.H. Kim, High mass loading of h-WO3 and a-MnO2 on flexible carbon cloth for high-energy aqueous asymmetric supercapacitor. Electrochim. Acta 299, 245–252 (2019). https://doi.org/10.1021/acsami.8b09592
- Y. Wang, S. Su, L. Cai, B. Qiu, C. Yang, X. Tao, Y. Chai, Hierarchical supercapacitor electrodes based on metallized glass fiber for ultrahigh areal capacitance. Energy Storage Mater. 20, 315–323 (2019). https://doi.org/10.1016/j.ensm.2018.11.018
References
D.P. Dubal, N.R. Chodankar, D.H. Kim, P. Gomez-Romero, Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47, 2065–2129 (2018). https://doi.org/10.1039/C7CS00505A
H. Wang, C. Xu, Y. Chen, Y. Wang, MnO2 nanograsses on porous carbon cloth for flexible solid-state asymmetric supercapacitors with high energy density. Energy Storage Mater. 8, 127–133 (2017). https://doi.org/10.1016/j.ensm.2017.05.007
D. Guo, X. Yu, W. Shi, Y. Luo, Q. Li, T. Wang, Facile synthesis of well-ordered manganese oxide nanosheet arrays on carbon cloth for high-performance supercapacitors. J. Mater. Chem. A 2, 8833–8838 (2014). https://doi.org/10.1039/c4ta01238k
J.G. Wang, Y. Yang, Z.H. Huang, F. Kang, A high-performance asymmetric supercapacitor based on carbon and carbon–MnO2 nanofiber electrodes. Carbon 61, 190–199 (2013). https://doi.org/10.1016/j.carbon.2013.04.084
M.S. Balogun, H. Yang, Y. Luo, W. Qiu, Y. Huang, Z.Q. Liu, Y. Tong, Achieving high gravimetric energy density for flexible lithium-ion batteries facilitated by core-double-shell electrodes. Energy Environ. Sci. 11, 1859–1869 (2018). https://doi.org/10.1039/C8EE00522B
D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10, 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566
Z.H. Huang, Y. Song, D.Y. Feng, Z. Sun, X. Sun, X.X. Liu, High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano 12, 3557–3567 (2018). https://doi.org/10.1021/acsnano.8b00621
Z. Hu, X. Xiao, C. Chen, T. Li, L. Huang et al., Al-doped α-MnO2 for high mass-loading pseudocapacitor with excellent cycling stability. Nano Energy 11, 226–234 (2015). https://doi.org/10.1016/j.nanoen.2014.10.015
Z. Wang, F. Wang, Y. Li, J. Hu, Y. Lu, M. Xu, Interlinked multiphase Fe-doped MnO2 nanostructures: a novel design for enhanced pseudocapacitive performance. Nanoscale 8, 7309–7317 (2016). https://doi.org/10.1039/C5NR08857G
Y. Song, T. Liu, B. Yao, M. Li, T. Kou et al., Ostwald ripening improves rate capability of high mass loading manganese oxide for supercapacitors. ACS Energy Lett. 2, 1752–1759 (2017). https://doi.org/10.1021/acsenergylett.7b00405
Z. Pan, M. Liu, J. Yang, Y. Qiu, W. Li, Y. Xu, X. Zhang, Y. Zhang, High electroactive material loading on a carbon nanotube@3D graphene aerogel for high-performance flexible all-solid-state asymmetric supercapacitors. Adv. Funct. Mater. 27, 1701122 (2017). https://doi.org/10.1002/adfm.201701122
B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian et al., Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3, 459–470 (2019). https://doi.org/10.1016/j.joule.2018.09.020
W. Fu, E. Zhao, X. Ren, A. Magasinski, G. Yushin, Hierarchical fabric decorated with carbon nanowire/metal oxide nanocomposites for 1.6 V wearable aqueous supercapacitors. Adv. Energy Mater. 8, 1703454 (2018). https://doi.org/10.1002/aenm.201703454
Z. Pan, Y. Qiu, J. Yang, F. Ye, Y. Xu, X. Zhang, M. Liu, Y. Zhang, Ultra-endurance flexible all-solid-state asymmetric supercapacitors based on three-dimensionally coated MnOx nanosheets on nanoporous current collectors. Nano Energy 26, 610–619 (2016). https://doi.org/10.1016/j.nanoen.2016.05.053
X. Liu, C. Guan, Y. Hu, L. Zhang, A.M. Elshahawy, J. Wang, 2D metal-organic frameworks derived nanocarbon arrays for substrate enhancement in flexible supercapacitors. Small 14, 1702641 (2018). https://doi.org/10.1002/smll.201702641
J. Liang, H. Li, H. Li, X. Dong, X. Zheng et al., Building carbon-based versatile scaffolds on the electrode surface to boost capacitive performance for fiber pseudocapacitors. Small 15, 1900721 (2019). https://doi.org/10.1002/smll.201900721
G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z. Bao, Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 11, 4438–4442 (2011). https://doi.org/10.1021/nl2026635
J. Wang, L. Dong, C. Xu, D. Ren, X. Ma, F. Kang, Polymorphous supercapacitors constructed from flexible three-dimensional carbon network/polyaniline/MnO2 composite textiles. ACS Appl. Mater. Interfaces 10, 10851–10859 (2018). https://doi.org/10.1021/acsami.7b19195
D. Ye, Y. Yu, J. Tang, L. Liu, Y. Wu, Electrochemical activation of carbon cloth in aqueous inorganic salt solution for superior capacitive performance. Nanoscale 8, 10406–10414 (2016). https://doi.org/10.1039/C6NR00606J
C.X. Guo, C.M. Li, A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance. Energy Environ. Sci. 4, 4504–4507 (2011). https://doi.org/10.1039/c1ee01676h
X. Ge, Z. Li, L. Yin, Metal-organic frameworks derived porous core/shell CoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery. Nano Energy 32, 117–124 (2017). https://doi.org/10.1016/j.nanoen.2016.11.055
Z. Ye, T. Li, G. Ma, X. Peng, J. Zhao, Morphology controlled MnO2 electrodeposited on carbon fiber paper for high-performance supercapacitors. J. Power Sour 351, 51–57 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.104
Y. Zhang, X. Yuan, W. Lu, Y. Yan, J. Zhu, T.W. Chou, MnO2 based sandwich structure electrode for supercapacitor with large voltage window and high mass loading. Chem. Eng. J. 368, 525–532 (2019). https://doi.org/10.1016/j.cej.2019.02.206
L. Wang, M. Huang, S. Chen, L. Kang, X. He, δ-MnO2 nanofiber/single-walled carbon nanotube hybrid film for all-solid-state flexible supercapacitors with high performance. J. Mater. Chem. A 5, 19107–19115 (2017). https://doi.org/10.1039/C7TA04712F
Y. Gao, Y. Lin, Z. Peng, Q. Zhou, Z. Fan, Accelerating ion diffusion with unique three-dimensionally interconnected nanopores for self-membrane high-performance pseudocapacitors. Nanoscale 9, 18311–18317 (2017). https://doi.org/10.1039/C7NR06234F
L. Liu, H. Zhao, Y. Wang, Y. Fang, J. Xie, Y. Lei, Evaluating the role of nanostructured current collectors in energy storage capability of supercapacitor electrodes with thick electroactive materials layers. Adv. Funct. Mater. 28, 1705107 (2018). https://doi.org/10.1002/adfm.201705107
S.H. Kazemi, M.A. Kiani, M. Ghaemmaghami, H. Kazemi, Nano-architectured MnO2 electrodeposited on the Cu-decorated nickel foam substrate as supercapacitor electrode with excellent areal capacitance. Electrochim. Acta 197, 107–116 (2016). https://doi.org/10.1016/j.electacta.2016.03.063
L. Gao, J. Song, J.U. Surjadi, K. Cao, Y. Han, D. Sun, X. Tao, Y. Lu, Graphene-bridged multifunctional flexible fiber supercapacitor with high energy density. ACS Appl. Mater. Interfaces 10, 28597–28607 (2018). https://doi.org/10.1021/acsami.8b08680
X. Xia, S. Deng, D. Xie, Y. Wang, S. Feng, J. Wu, J. Tu, Boosting sodium ion storage by anchoring MoO2 on vertical graphene arrays. Mater. Chem. A 6, 15546–15552 (2018). https://doi.org/10.1039/C8TA06232C
S.B. Ma, K.Y. Ahn, E.S. Lee, K.H. Oh, K.B. Kim, Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes. Carbon 45, 375–382 (2007). https://doi.org/10.1016/j.carbon.2006.09.006
C. Julien, M. Massot, R. Baddour-Hadjean, S. Franger, S. Bach, J.P. Pereira-Ramos, Raman spectra of birnessite manganese dioxides. Solid State Ion 159, 345–356 (2003). https://doi.org/10.1016/S0167-2738(03)00035-3
P. Wu, S. Cheng, L. Yang, Z. Lin, X. Gui et al., Synthesis and characterization of self-standing and highly flexible δ-MnO2@CNTs/CNTs composite films for direct use of supercapacitor electrodes. ACS Appl. Mater. Interfaces 8, 23721–23728 (2016). https://doi.org/10.1021/acsami.6b07161
J.H. Kim, K.H. Lee, L.J. Overzet, G.S. Lee, Synthesis and electrochemical properties of spin-capable carbon nanotube sheet/MnOx composites for high-performance energy storage devices. Nano Lett. 11, 2611–2617 (2011). https://doi.org/10.1021/nl200513a
P. Shi, L. Li, L. Hua, Q. Qian, P. Wang, J. Zhou, G. Sun, W. Huang, Design of amorphous manganese oxide@multiwalled carbon nanotube fiber for robust solid-state supercapacitor. ACS Nano 11, 444–452 (2017). https://doi.org/10.1021/acsnano.6b06357
M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004). https://doi.org/10.1021/cm049649j
L. Hu, W. Chen, X. Xie, N. Liu, Y. Yang et al., Symmetrical MnO2–carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. ACS Nano 5, 8904–8913 (2011). https://doi.org/10.1021/nn203085j
Z. Bo, W. Zhu, W. Ma, Z. Wen, X. Shuai et al., Vertically oriented graphene bridging active-layer/current-collector interface for ultrahigh rate supercapacitors. Adv. Mater. 25, 5799–5806 (2013). https://doi.org/10.1002/adma.201301794
D. Chao, B. Ouyang, P. Liang, T.T.T. Huong, G. Jia et al., C-plasma of hierarchical graphene survives SnS bundles for ultrastable and high volumetric Na-ion storage. Adv. Mater. 30, 1804833 (2018). https://doi.org/10.1002/adma.201804833
Z. Hu, S. Sayed, T. Jiang, X. Zhu, C. Lu et al., Self-assembled binary organic granules with multiple lithium uptake mechanisms toward high-energy flexible lithium-ion hybrid supercapacitors. Adv. Energy Mater. 8, 1802273 (2018). https://doi.org/10.1002/aenm.201802273
B. Ouyang, D. Chao, G. Jia, Z. Zhang, H.J. Fan, R.S. Rawat, Hierarchical vertical graphene nanotube arrays via universal carbon plasma processing strategy: a platform for high-rate performance battery electrodes. Energy Storage Mater. 18, 462–469 (2019). https://doi.org/10.1016/j.ensm.2018.08.007
J. Li, Y. Wang, W. Xu, Y. Wang, B. Zhang et al., Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy 57, 379–387 (2019). https://doi.org/10.1016/j.nanoen.2018.12.061
Y. Liu, X. Miao, J. Fang, X. Zhang, S. Chen et al., Layered-MnO2 nanosheet grown on nitrogen-doped graphene template as a composite cathode for flexible solid-state asymmetric supercapacitor. ACS Appl. Mater. Interfaces 8, 5251–5260 (2016). https://doi.org/10.1021/acsami.5b10649
J. Tao, N. Liu, L. Li, J. Su, Y. Gao, Hierarchical nanostructures of polypyrrole@MnO2 composite electrodes for high performance solid-state asymmetric supercapacitors. Nanoscale 6, 2922–2928 (2014). https://doi.org/10.1039/c3nr05845j
S.H. Ji, N.R. Chodankar, W.S. Jang, D.H. Kim, High mass loading of h-WO3 and a-MnO2 on flexible carbon cloth for high-energy aqueous asymmetric supercapacitor. Electrochim. Acta 299, 245–252 (2019). https://doi.org/10.1021/acsami.8b09592
Y. Wang, S. Su, L. Cai, B. Qiu, C. Yang, X. Tao, Y. Chai, Hierarchical supercapacitor electrodes based on metallized glass fiber for ultrahigh areal capacitance. Energy Storage Mater. 20, 315–323 (2019). https://doi.org/10.1016/j.ensm.2018.11.018