Structural Isomers: Small Change with Big Difference in Anion Storage
Corresponding Author: Chengliang Wang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 13
Abstract
Organic electrode materials are promising for batteries. However, the reported organic electrodes are often facing the challenges of low specific capacity, low voltage, poor rate capability and vague charge storage mechanisms, etc. Isomers are good platform to investigate the charge storage mechanisms and enhance the performance of batteries, which, however, have not been focused in batteries. Herein, two isomers are reported for batteries. As a result, the isomer tetrathiafulvalene (TTF) could store two monovalent anions reversibly, deriving an average discharge voltage of 1.05 V and a specific capacity of 220 mAh g−1 at a current density of 2 C. On the other hand, the other isomer tetrathianaphthalene could only reversibly store one monovalent anion and upon further oxidation, it would undergo an irreversible solid-state molecular rearrangement to TTF. The molecular rearrangement was confirmed by electrochemical performances, X-ray diffraction patterns, nuclear magnetic resonance spectra, and 1H detected heteronuclear multiple bond correlation spectra. These results suggested the small structural change could lead to a big difference in anion storage, and we hope this work will stimulate more attention to the structural design for boosting the performance of organic batteries.
Highlights:
1 The effect of small changes in isomers on electrochemical performance have not been focused in batteries and two isomers are reported for Zn-ion batteries here.
2 The isomer tetrathiafulvalene (TTF) could store two monovalent anions reversibly, showing remarkable performance that outperformed most of the reported organic electrode materials for zinc-ion batteries.
3 The isomer tetrathianaphthalene (TTN) could only reversibly store one monovalent anion and upon further oxidation, it would undergo an irreversible solid-state molecular rearrangement to TTF.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Chen, C. Wang, Designing high performance organic batteries. Acc. Chem. Res. 53, 2636 (2020). https://doi.org/10.1021/acs.accounts.0c00465
- Z. Song, H. Zhou, Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ. Sci. 6, 2280 (2013). https://doi.org/10.1039/c3ee40709h
- Y. Chen, H. Dai, K. Fan, G. Zhang, M. Tang et al., A recyclable and scalable high-capacity organic battery. Angew. Chem. Int. Ed. 62, e202302539 (2023). https://doi.org/10.1002/anie.202302539
- C. Wang, Weak intermolecular interactions for strengthening organic batteries. Energy Environ. Mater. 3, 441 (2020). https://doi.org/10.1002/eem2.12076
- C. Chen, C.S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15, 121 (2023). https://doi.org/10.1007/s40820-023-01086-6
- X.L. Chen, M. Xie, Z.L. Zheng, X. Luo, H. Jin et al., Multiple accessible redox-active sites in a robust covalent organic framework for high-performance potassium storage. J. Am. Chem. Soc. 145, 5105 (2023). https://doi.org/10.1021/jacs.2c11264
- C. Peng, G.H. Ning, J. Su, G. Zhong, W. Tang et al., Reversible multi-electron redox chemistry of π-conjugated n-containing heteroaromatic molecule-based organic cathodes. Nat. Energy 2, 17074 (2017). https://doi.org/10.1038/nenergy.2017.74
- G. Zhang, Y. Chen, L. Fu, L. Zheng, K. Fan et al., Regulating the solvation sheath of zinc ions by supramolecular coordination chemistry toward ultrastable zinc anodes. SmartMat (2023). https://doi.org/10.1002/smm2.1216
- Y. Chen, S.M. Zhuo, Z.Y. Li, C.L. Wang, Redox polymers for rechargeable metal-ion batteries. EnergyChem. 2, 100030 (2020). https://doi.org/10.1016/j.enchem.2020.100030
- J. Kim, Y. Kim, J. Yoo, G. Kwon, Y. Ko et al., Organic batteries for a greener rechargeable world. Nat. Rev. Mater. 8, 54 (2023). https://doi.org/10.1038/s41578-022-00478-1
- K. Fan, C. Zhang, Y. Chen, Y. Wu, C. Wang, The chemical states of conjugated coordination polymers. Chem 7, 1224 (2021). https://doi.org/10.1016/j.chempr.2020.12.007
- S. Yang, G. Yang, Adsorption and isomerization of amino acids within zeolites: impacts of acidity, amine functionalization, pore topology and sidechains. Mol. Catal. 493, 111088 (2020). https://doi.org/10.1016/j.mcat.2020.111088
- V.L. Murphy, B. Kahr, Planar hydrocarbons more optically active than their isomeric helicenes. J. Am. Chem. Soc. 133, 12918 (2011). https://doi.org/10.1021/ja203509s
- A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton et al., Rifm fragrance ingredient safety assessment, anethole (isomer unspecified), cas registry number 104-46-1. Food Chem. Toxicol. 159, 112645 (2022). https://doi.org/10.1016/j.fct.2021.112645
- T. Schnitzer, H. Wennemers, Influence of the trans/cis conformer ratio on the stereoselectivity of peptidic catalysts. J. Am. Chem. Soc. 139, 15356 (2017). https://doi.org/10.1021/jacs.7b06194
- J.G. Xu, Q.P. Hu, Y. Liu, Antioxidant and DNA-protective activities of chlorogenic acid isomers. J. Agric. Food Chem. 60, 11625 (2012). https://doi.org/10.1021/jf303771s
- B. Salehi, A.P. Mishra, I. Shukla, M. Sharifi-Rad, M.D. Contreras et al., Thymol, thyme, and other plant sources: health and potential uses. Phytother. Res. 32, 1688 (2018). https://doi.org/10.1002/ptr.6109
- S. Wang, Y. Yao, Z. Su, Y. Liu, H. Xu, The change of hydrogen position on pi-conjugated bridge to affect nlo property of D(–NH2)-π(DHTPs)-A(–NO2) system. Comput. Theor. Chem. 1220, 114004 (2023). https://doi.org/10.1016/j.comptc.2022.114004
- Y. Huang, G. Zhang, R. Zhao, D. Zhang, Tetraphenylethene-based cis/trans isomers for targeted fluorescence sensing and biomedical applications. Chem. Eur. J. 29, e202300539 (2023). https://doi.org/10.1002/chem.202300539
- Y. Chen, K. Fan, Y. Gao, C. Wang, Challenges and perspectives of organic multivalent metal-ion batteries. Adv. Mater. 34, 2200662 (2022). https://doi.org/10.1002/adma.202200662
- T. Sun, Q. Sun, Y. Yu, X. Zhang, Polypyrrole as an ultrafast organic cathode for dual-ion batteries. eScience 1, 186 (2021). https://doi.org/10.1016/j.esci.2021.11.003
- K.S. Varma, N. Sasaki, R.A. Clark, A.E. Underhill, O. Simonsen et al., A new improved synthesis and x-ray crystal structure of [1,4]dithiino[2,3-b]-1,4-dithiin. J. Heterocycl. Chem. 25, 783 (1988). https://doi.org/10.1002/jhet.5570250314
- Y. Zhao, D.G. Truhlar, The m06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four m06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215 (2007). https://doi.org/10.1007/s00214-007-0310-x
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
- F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for h to rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297 (2005). https://doi.org/10.1039/b508541a
- T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580 (2012). https://doi.org/10.1002/jcc.22885
- W. Humphrey, A. Dalke, K. Schulten, Vmd: Visual molecular dynamics. J. Mol. Graph. Model. 14, 33 (1996). https://doi.org/10.1016/0263-7855(96)00018-5
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- A. Batsanov, Tetrathiafulvalene revisited. Acta Cryst. 62, o501 (2006). https://doi.org/10.1107/S0108270106022554
- H. Cui, T. Wang, Z. Huang, G. Liang, Z. Chen et al., High-voltage organic cathodes for zinc-ion batteries through electron cloud and solvation structure regulation. Angew. Chem. Int. Ed. 61, e202203453 (2022). https://doi.org/10.1002/anie.202203453
- N. Patil, C. Cruz, D. Ciurduc, A. Mavrandonakis, J. Palma et al., An ultrahigh performance zinc-organic battery using poly(catechol) cathode in Zn(TfSi)2-based concentrated aqueous electrolytes. Adv. Energy Mater. 11, 2100939 (2021). https://doi.org/10.1002/aenm.202100939
- D.E. Ciurduc, C. de la Cruz, N. Patil, A. Mavrandonakis, R. Marcilla, An improved peg-based molecular crowding electrolyte using Zn(TFSI)2 vs. Zn(OTf)2 for aqueous Zn//V2O5 battery. Mater. Today Energy 36, 101339 (2023). https://doi.org/10.1016/j.mtener.2023.101339
- D.E. Ciurduc, C.D.L. Cruz, N. Patil, A. Mavrandonakis, R. Marcilla, Molecular crowding bi-salt electrolyte for aqueous zinc hybrid batteries. Energy Stor. Mater. 53, 532 (2022). https://doi.org/10.1016/j.ensm.2022.09.036
- M. Tang, C. Jiang, S. Liu, X. Li, Y. Chen et al., Small amount cofs enhancing storage of large anions. Energy Stor. Mater. 27, 35 (2020). https://doi.org/10.1016/j.ensm.2020.01.015
- C. Jiang, Y. Gu, M. Tang, Y. Chen, Y. Wu et al., Toward stable lithium plating/stripping by successive desolvation and exclusive transport of li ions. ACS Appl. Mater. Interfaces 12, 10461 (2020). https://doi.org/10.1021/acsami.9b21993
- C. Luo, Y. Zhu, Y. Xu, Y. Liu, T. Gao et al., Graphene oxide wrapped croconic acid disodium salt for sodium ion battery electrodes. J. Power. Sources 250, 372 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.131
- M. Fu, C. Zhang, Y. Chen, K. Fan, G. Zhang et al., A thianthrene-based small molecule as a high-potential cathode for lithium-organic batteries. Chem. Commun. 58, 11993 (2022). https://doi.org/10.1039/d2cc04765a
- T. Sun, S. Zheng, H. Du, Z. Tao, Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 13, 204 (2021). https://doi.org/10.1007/s40820-021-00733-0
- R.L. Meline, R.L. Elsenbaumer, An expedient, cost effective large scale synthesis of tetrathiafulvalene. J. Chem. Soc. Perkin Trans. 1(16), 2467 (1998). https://doi.org/10.1039/a805226c
- H. Wang, P. Hu, J. Yang, G. Gong, L. Guo et al., Renewable-juglone-based high-performance sodium-ion batteries. Adv. Mater. 27, 2348 (2015). https://doi.org/10.1002/adma.201405904
- Y. Chen, H. Li, M. Tang, S. Zhuo, Y. Wu et al., Capacitive conjugated ladder polymers for fast-charge and -discharge sodium-ion batteries and hybrid supercapacitors. J. Mater. Chem. A 7, 20891 (2019). https://doi.org/10.1039/c9ta07546a
- T. Sun, W. Zhang, Q. Nian, Z. Tao, Molecular engineering design for high-performance aqueous zinc-organic battery. Nano-Micro Lett. 15, 36 (2023). https://doi.org/10.1007/s40820-022-01009-x
- V. Mukherjee, D.P. Ojha, Spectroscopic investigation of some electron withdrawing groups substituted ttf donor. Spectrochim. Acta A Mol. Biomol. Spectrosc. 231, 117849 (2020). https://doi.org/10.1016/j.saa.2019.117849
- Y. Wu, Y. Chen, M. Tang, S. Zhu, C. Jiang et al., A highly conductive conjugated coordination polymer for fast-charge sodium-ion batteries: reconsidering its structures. Chem. Commun. 55, 10856 (2019). https://doi.org/10.1039/c9cc05679c
- Q. Pan, S. Chen, C. Wu, Z. Zhang, Z. Li et al., Sulfur-rich graphdiyne-containing electrochemical active tetrathiafulvalene for highly efficient lithium storage application. ACS Appl. Mater. Interfaces 11, 46070 (2019). https://doi.org/10.1021/acsami.9b15133
- Y. Wu, Y. Zhang, Y. Chen, H. Tang, M. Tang et al., Heterochelation boosts sodium storage in π-d conjugated coordination polymers. Energy Environ. Sci. 14, 6514 (2021). https://doi.org/10.1039/d1ee02414k
- J. Bergkamp, S. Decurtins, S. Liu, Current advances in fused tetrathiafulvalene donor-acceptor systems. Chem. Soc. Rev. 44, 863 (2015). https://doi.org/10.1039/c4cs00255e
- H. Bock, B. Roth, M.V. Lakshmikantham, M.P. Cava, Radical ions 64.1ionization and oxidation of 1,4,5,8-tetrathiatetralin. Phosphorus Sulfur Silicon Relat. Elem. 21, 67 (2006). https://doi.org/10.1080/03086648408073129
- J.L. Segura, N. Martín, New concepts in tetrathiafulvalene chemistry. Angew. Chem. Int. Ed. 40, 1372 (2001). https://doi.org/10.1002/1521-3773(20010417)40:8
- Y. Sun, Z. Cui, L. Chen, X. Lu, Y. Wu et al., Aryl-fused tetrathianaphthalene (ttn): synthesis, structures, properties, and cocrystals with fullerenes. RSC Adv. 6, 79978 (2016). https://doi.org/10.1039/c6ra18945h
- H. Dai, J. Zou, Y. Gao, Z. Li, C. Zhang et al., A novel conjugated porous polymer based on triazine and imide as cathodes for sodium storage. J. Polym. Sci. 60, 992 (2022). https://doi.org/10.1002/pol.20210573
- S. Xu, H. Dai, S. Zhu, Y. Wu, M. Sun et al., A branched dihydrophenazine-based polymer as a cathode material to achieve dual-ion batteries with high energy and power density. eScience 1, 60 (2021). https://doi.org/10.1016/j.esci.2021.08.002
- C. Zhang, W. Ma, C. Han, L.-W. Luo, A. Daniyar et al., Tailoring the linking patterns of polypyrene cathodes for high-performance aqueous zn dual-ion batteries. Energy Environ. Sci. 14, 462 (2021). https://doi.org/10.1039/d0ee03356a
- G. Dai, Y. He, Z. Niu, P. He, C. Zhang et al., A dual-ion organic symmetric battery constructed from phenazine-based artificial bipolar molecules. Angew. Chem. Int. Ed. 58, 9902 (2019). https://doi.org/10.1002/anie.201901040
References
Y. Chen, C. Wang, Designing high performance organic batteries. Acc. Chem. Res. 53, 2636 (2020). https://doi.org/10.1021/acs.accounts.0c00465
Z. Song, H. Zhou, Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ. Sci. 6, 2280 (2013). https://doi.org/10.1039/c3ee40709h
Y. Chen, H. Dai, K. Fan, G. Zhang, M. Tang et al., A recyclable and scalable high-capacity organic battery. Angew. Chem. Int. Ed. 62, e202302539 (2023). https://doi.org/10.1002/anie.202302539
C. Wang, Weak intermolecular interactions for strengthening organic batteries. Energy Environ. Mater. 3, 441 (2020). https://doi.org/10.1002/eem2.12076
C. Chen, C.S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15, 121 (2023). https://doi.org/10.1007/s40820-023-01086-6
X.L. Chen, M. Xie, Z.L. Zheng, X. Luo, H. Jin et al., Multiple accessible redox-active sites in a robust covalent organic framework for high-performance potassium storage. J. Am. Chem. Soc. 145, 5105 (2023). https://doi.org/10.1021/jacs.2c11264
C. Peng, G.H. Ning, J. Su, G. Zhong, W. Tang et al., Reversible multi-electron redox chemistry of π-conjugated n-containing heteroaromatic molecule-based organic cathodes. Nat. Energy 2, 17074 (2017). https://doi.org/10.1038/nenergy.2017.74
G. Zhang, Y. Chen, L. Fu, L. Zheng, K. Fan et al., Regulating the solvation sheath of zinc ions by supramolecular coordination chemistry toward ultrastable zinc anodes. SmartMat (2023). https://doi.org/10.1002/smm2.1216
Y. Chen, S.M. Zhuo, Z.Y. Li, C.L. Wang, Redox polymers for rechargeable metal-ion batteries. EnergyChem. 2, 100030 (2020). https://doi.org/10.1016/j.enchem.2020.100030
J. Kim, Y. Kim, J. Yoo, G. Kwon, Y. Ko et al., Organic batteries for a greener rechargeable world. Nat. Rev. Mater. 8, 54 (2023). https://doi.org/10.1038/s41578-022-00478-1
K. Fan, C. Zhang, Y. Chen, Y. Wu, C. Wang, The chemical states of conjugated coordination polymers. Chem 7, 1224 (2021). https://doi.org/10.1016/j.chempr.2020.12.007
S. Yang, G. Yang, Adsorption and isomerization of amino acids within zeolites: impacts of acidity, amine functionalization, pore topology and sidechains. Mol. Catal. 493, 111088 (2020). https://doi.org/10.1016/j.mcat.2020.111088
V.L. Murphy, B. Kahr, Planar hydrocarbons more optically active than their isomeric helicenes. J. Am. Chem. Soc. 133, 12918 (2011). https://doi.org/10.1021/ja203509s
A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton et al., Rifm fragrance ingredient safety assessment, anethole (isomer unspecified), cas registry number 104-46-1. Food Chem. Toxicol. 159, 112645 (2022). https://doi.org/10.1016/j.fct.2021.112645
T. Schnitzer, H. Wennemers, Influence of the trans/cis conformer ratio on the stereoselectivity of peptidic catalysts. J. Am. Chem. Soc. 139, 15356 (2017). https://doi.org/10.1021/jacs.7b06194
J.G. Xu, Q.P. Hu, Y. Liu, Antioxidant and DNA-protective activities of chlorogenic acid isomers. J. Agric. Food Chem. 60, 11625 (2012). https://doi.org/10.1021/jf303771s
B. Salehi, A.P. Mishra, I. Shukla, M. Sharifi-Rad, M.D. Contreras et al., Thymol, thyme, and other plant sources: health and potential uses. Phytother. Res. 32, 1688 (2018). https://doi.org/10.1002/ptr.6109
S. Wang, Y. Yao, Z. Su, Y. Liu, H. Xu, The change of hydrogen position on pi-conjugated bridge to affect nlo property of D(–NH2)-π(DHTPs)-A(–NO2) system. Comput. Theor. Chem. 1220, 114004 (2023). https://doi.org/10.1016/j.comptc.2022.114004
Y. Huang, G. Zhang, R. Zhao, D. Zhang, Tetraphenylethene-based cis/trans isomers for targeted fluorescence sensing and biomedical applications. Chem. Eur. J. 29, e202300539 (2023). https://doi.org/10.1002/chem.202300539
Y. Chen, K. Fan, Y. Gao, C. Wang, Challenges and perspectives of organic multivalent metal-ion batteries. Adv. Mater. 34, 2200662 (2022). https://doi.org/10.1002/adma.202200662
T. Sun, Q. Sun, Y. Yu, X. Zhang, Polypyrrole as an ultrafast organic cathode for dual-ion batteries. eScience 1, 186 (2021). https://doi.org/10.1016/j.esci.2021.11.003
K.S. Varma, N. Sasaki, R.A. Clark, A.E. Underhill, O. Simonsen et al., A new improved synthesis and x-ray crystal structure of [1,4]dithiino[2,3-b]-1,4-dithiin. J. Heterocycl. Chem. 25, 783 (1988). https://doi.org/10.1002/jhet.5570250314
Y. Zhao, D.G. Truhlar, The m06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four m06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215 (2007). https://doi.org/10.1007/s00214-007-0310-x
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for h to rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297 (2005). https://doi.org/10.1039/b508541a
T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580 (2012). https://doi.org/10.1002/jcc.22885
W. Humphrey, A. Dalke, K. Schulten, Vmd: Visual molecular dynamics. J. Mol. Graph. Model. 14, 33 (1996). https://doi.org/10.1016/0263-7855(96)00018-5
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
A. Batsanov, Tetrathiafulvalene revisited. Acta Cryst. 62, o501 (2006). https://doi.org/10.1107/S0108270106022554
H. Cui, T. Wang, Z. Huang, G. Liang, Z. Chen et al., High-voltage organic cathodes for zinc-ion batteries through electron cloud and solvation structure regulation. Angew. Chem. Int. Ed. 61, e202203453 (2022). https://doi.org/10.1002/anie.202203453
N. Patil, C. Cruz, D. Ciurduc, A. Mavrandonakis, J. Palma et al., An ultrahigh performance zinc-organic battery using poly(catechol) cathode in Zn(TfSi)2-based concentrated aqueous electrolytes. Adv. Energy Mater. 11, 2100939 (2021). https://doi.org/10.1002/aenm.202100939
D.E. Ciurduc, C. de la Cruz, N. Patil, A. Mavrandonakis, R. Marcilla, An improved peg-based molecular crowding electrolyte using Zn(TFSI)2 vs. Zn(OTf)2 for aqueous Zn//V2O5 battery. Mater. Today Energy 36, 101339 (2023). https://doi.org/10.1016/j.mtener.2023.101339
D.E. Ciurduc, C.D.L. Cruz, N. Patil, A. Mavrandonakis, R. Marcilla, Molecular crowding bi-salt electrolyte for aqueous zinc hybrid batteries. Energy Stor. Mater. 53, 532 (2022). https://doi.org/10.1016/j.ensm.2022.09.036
M. Tang, C. Jiang, S. Liu, X. Li, Y. Chen et al., Small amount cofs enhancing storage of large anions. Energy Stor. Mater. 27, 35 (2020). https://doi.org/10.1016/j.ensm.2020.01.015
C. Jiang, Y. Gu, M. Tang, Y. Chen, Y. Wu et al., Toward stable lithium plating/stripping by successive desolvation and exclusive transport of li ions. ACS Appl. Mater. Interfaces 12, 10461 (2020). https://doi.org/10.1021/acsami.9b21993
C. Luo, Y. Zhu, Y. Xu, Y. Liu, T. Gao et al., Graphene oxide wrapped croconic acid disodium salt for sodium ion battery electrodes. J. Power. Sources 250, 372 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.131
M. Fu, C. Zhang, Y. Chen, K. Fan, G. Zhang et al., A thianthrene-based small molecule as a high-potential cathode for lithium-organic batteries. Chem. Commun. 58, 11993 (2022). https://doi.org/10.1039/d2cc04765a
T. Sun, S. Zheng, H. Du, Z. Tao, Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 13, 204 (2021). https://doi.org/10.1007/s40820-021-00733-0
R.L. Meline, R.L. Elsenbaumer, An expedient, cost effective large scale synthesis of tetrathiafulvalene. J. Chem. Soc. Perkin Trans. 1(16), 2467 (1998). https://doi.org/10.1039/a805226c
H. Wang, P. Hu, J. Yang, G. Gong, L. Guo et al., Renewable-juglone-based high-performance sodium-ion batteries. Adv. Mater. 27, 2348 (2015). https://doi.org/10.1002/adma.201405904
Y. Chen, H. Li, M. Tang, S. Zhuo, Y. Wu et al., Capacitive conjugated ladder polymers for fast-charge and -discharge sodium-ion batteries and hybrid supercapacitors. J. Mater. Chem. A 7, 20891 (2019). https://doi.org/10.1039/c9ta07546a
T. Sun, W. Zhang, Q. Nian, Z. Tao, Molecular engineering design for high-performance aqueous zinc-organic battery. Nano-Micro Lett. 15, 36 (2023). https://doi.org/10.1007/s40820-022-01009-x
V. Mukherjee, D.P. Ojha, Spectroscopic investigation of some electron withdrawing groups substituted ttf donor. Spectrochim. Acta A Mol. Biomol. Spectrosc. 231, 117849 (2020). https://doi.org/10.1016/j.saa.2019.117849
Y. Wu, Y. Chen, M. Tang, S. Zhu, C. Jiang et al., A highly conductive conjugated coordination polymer for fast-charge sodium-ion batteries: reconsidering its structures. Chem. Commun. 55, 10856 (2019). https://doi.org/10.1039/c9cc05679c
Q. Pan, S. Chen, C. Wu, Z. Zhang, Z. Li et al., Sulfur-rich graphdiyne-containing electrochemical active tetrathiafulvalene for highly efficient lithium storage application. ACS Appl. Mater. Interfaces 11, 46070 (2019). https://doi.org/10.1021/acsami.9b15133
Y. Wu, Y. Zhang, Y. Chen, H. Tang, M. Tang et al., Heterochelation boosts sodium storage in π-d conjugated coordination polymers. Energy Environ. Sci. 14, 6514 (2021). https://doi.org/10.1039/d1ee02414k
J. Bergkamp, S. Decurtins, S. Liu, Current advances in fused tetrathiafulvalene donor-acceptor systems. Chem. Soc. Rev. 44, 863 (2015). https://doi.org/10.1039/c4cs00255e
H. Bock, B. Roth, M.V. Lakshmikantham, M.P. Cava, Radical ions 64.1ionization and oxidation of 1,4,5,8-tetrathiatetralin. Phosphorus Sulfur Silicon Relat. Elem. 21, 67 (2006). https://doi.org/10.1080/03086648408073129
J.L. Segura, N. Martín, New concepts in tetrathiafulvalene chemistry. Angew. Chem. Int. Ed. 40, 1372 (2001). https://doi.org/10.1002/1521-3773(20010417)40:8
Y. Sun, Z. Cui, L. Chen, X. Lu, Y. Wu et al., Aryl-fused tetrathianaphthalene (ttn): synthesis, structures, properties, and cocrystals with fullerenes. RSC Adv. 6, 79978 (2016). https://doi.org/10.1039/c6ra18945h
H. Dai, J. Zou, Y. Gao, Z. Li, C. Zhang et al., A novel conjugated porous polymer based on triazine and imide as cathodes for sodium storage. J. Polym. Sci. 60, 992 (2022). https://doi.org/10.1002/pol.20210573
S. Xu, H. Dai, S. Zhu, Y. Wu, M. Sun et al., A branched dihydrophenazine-based polymer as a cathode material to achieve dual-ion batteries with high energy and power density. eScience 1, 60 (2021). https://doi.org/10.1016/j.esci.2021.08.002
C. Zhang, W. Ma, C. Han, L.-W. Luo, A. Daniyar et al., Tailoring the linking patterns of polypyrene cathodes for high-performance aqueous zn dual-ion batteries. Energy Environ. Sci. 14, 462 (2021). https://doi.org/10.1039/d0ee03356a
G. Dai, Y. He, Z. Niu, P. He, C. Zhang et al., A dual-ion organic symmetric battery constructed from phenazine-based artificial bipolar molecules. Angew. Chem. Int. Ed. 58, 9902 (2019). https://doi.org/10.1002/anie.201901040