Atomic Dispersed Hetero-Pairs for Enhanced Electrocatalytic CO2 Reduction
Corresponding Author: Xiaoqiang Cui
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 4
Abstract
Electrochemical carbon dioxide reduction reaction (CO2RR) involves a variety of intermediates with highly correlated reaction and ad-desorption energies, hindering optimization of the catalytic activity. For example, increasing the binding of the *COOH to the active site will generally increase the *CO desorption energy. Breaking this relationship may be expected to dramatically improve the intrinsic activity of CO2RR, but remains an unsolved challenge. Herein, we addressed this conundrum by constructing a unique atomic dispersed hetero-pair consisting of Mo-Fe di-atoms anchored on N-doped carbon carrier. This system shows an unprecedented CO2RR intrinsic activity with TOF of 3336 h−1, high selectivity toward CO production, Faradaic efficiency of 95.96% at − 0.60 V and excellent stability. Theoretical calculations show that the Mo-Fe diatomic sites increased the *COOH intermediate adsorption energy by bridging adsorption of *COOH intermediates. At the same time, d-d orbital coupling in the Mo-Fe di-atom results in electron delocalization and facilitates desorption of *CO intermediates. Thus, the undesirable correlation between these steps is broken. This work provides a promising approach, specifically the use of di-atoms, for breaking unfavorable relationships based on understanding of the catalytic mechanisms at the atomic scale.
Highlights:
1 A unique atomic dispersed hetero-pair was successfully synthesized, consisting of Mo-Fe di-atoms anchored on N-doped carbon carrier.
2 This strategy breaks the linear scaling relationships of electrocatalytic CO2 reduction by simultaneously regulating the *COOH adsorption energy and *CO desorption energy.
3 The as-prepared MoFe–N–C exhibits excellent performance for CO2RR to CO with a high turnover frequency (TOF) of 3336.21 h−1, CO Faradaic efficiency (FECO) of 95.96% at − 0.60 V (versus RHE) and outstanding stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Chen, Y. Li, S. Yu, S. Louisia, J. Jin et al., Cu-Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule 4, 1688–1699 (2020). https://doi.org/10.1016/j.joule.2020.07.009
- Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, A.J. Göttle, F. Calle-Vallejo et al., Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019). https://doi.org/10.1038/s41560-019-0450-y
- C. Zhu, Y. Song, D. Xiao, G. Li, A. Chen et al., Ampere-level CO2 reduction to multicarbon products over a copper gas penetration electrode. Energy Environ. Sci. 15, 5391–5404 (2022). https://doi.org/10.1039/D2EE02121H
- X. Ma, F. Wang, D. Jiao, D. Zhang, X. Zhao et al., Room-temperature liquid metal synthesis of nanoporous copper-indium heterostructures for efficient carbon dioxide reduction to syngas. Sci. China Mater. 65, 3504–3512 (2022). https://doi.org/10.1007/s40843-022-2058-5
- W. Huang, C. Su, C. Zhu, T. Bo, S. Zuo et al., Isolated electron trap-induced charge accumulation for efficient photocatalytic hydrogen production. Angew. Chem. Int. Ed. 62, 202304634 (2023). https://doi.org/10.1002/anie.202304634
- G. Wen, B. Ren, X. Wang, D. Luo, H. Dou et al., Continuous CO2 electrolysis using a CO2 exsolution-induced flow cell. Nat. Energy 7, 978–988 (2022). https://doi.org/10.1038/s41560-022-01130-6
- C. Chen, S. Yu, Y. Yang, S. Louisia, I. Roh et al., Exploration of the bio-analogous asymmetric C–C coupling mechanism in tandem CO2 electroreduction. Nat. Catal. 5, 878–887 (2022). https://doi.org/10.1038/s41929-022-00844-w
- S. Xu, R. Wang, T. Gasser, P. Ciais, J. Peñuelas et al., Delayed use of bioenergy crops might threaten climate and food security. Nature 609, 299–306 (2022). https://doi.org/10.1038/s41586-022-05055-8
- X. Ma, D. Jiao, J. Fan, Y. Dong, X. Cui, Metal-oxide heterointerface synergistic effects of copper-zinc systems for highly selective CO2-to-CH4 electrochemical conversion. Inorg. Chem. Front. 10, 168–173 (2023). https://doi.org/10.1039/D2QI02051C
- F. Pan, Y. Yang, Designing CO2 reduction electrode materials by morphology and interface engineering. Energy Environ. Sci. 13, 2275–2309 (2020). https://doi.org/10.1039/D0EE00900H
- J.H. Kim, H. Jang, G. Bak, W. Choi, H. Yun et al., The insensitive cation effect on a single atom ni catalyst allows selective electrochemical conversion of captured co2 in universal media. Energy Environ. Sci. 15, 4301–4312 (2022). https://doi.org/10.1039/D2EE01825J
- X. Zhang, W. Huang, L. Yu, M.G. Melchor, D. Wang et al., Enabling heterogeneous catalysis to achieve carbon neutrality: directional catalytic conversion of CO2 into carboxylic acids. Carbon Energy (2023). https://doi.org/10.1002/cey2.362
- B. Chang, H. Pang, F. Raziq, S. Wang, K. Huang et al., Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: challenges and perspectives. Energy Environ. Sci. (2023). https://doi.org/10.1039/D3EE00964E
- W. Zhou, H. Su, W. Cheng, Y. Li, J. Jiang et al., Regulating the scaling relationship for high catalytic kinetics and selectivity of the oxygen reduction reaction. Nat. Commun. 13, 6414 (2022). https://doi.org/10.1038/s41467-022-34169-w
- Z.F. Huang, S. Xi, J. Song, S. Dou, X. Li et al., Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst. Nat. Commun. 12, 3992 (2021). https://doi.org/10.1038/s41467-021-24182-w
- D. Zhao, K. Yu, P. Song, W. Feng, B. Hu et al., Atomic-level engineering Fe1-N2O2 interfacial structure derived from oxygen-abundant metal–organic frameworks to promote electrochemical CO2 reduction. Energy Environ. Sci. 15, 3795–3804 (2022). https://doi.org/10.1039/D2EE00878E
- T. Zhang, J.C. Bui, Z. Li, A.T. Bell, A.Z. Weber et al., Highly selective and productive reduction of carbon dioxide to multicarbon products via in situ CO management using segmented tandem electrodes. Nat. Catal. 5, 202–211 (2022). https://doi.org/10.1038/s41929-022-00751-0
- S. Li, W. Chen, X. Dong, C. Zhu, A. Chen et al., Hierarchical micro/nanostructured silver hollow fiber boosts electroreduction of carbon dioxide. Nat. Commun. 13, 3080 (2022). https://doi.org/10.1038/s41467-022-30733-6
- Y. Wang, B.J. Park, V.K. Paidi, R. Huang, Y. Lee et al., Precisely constructing orbital coupling-modulated dual-atom fe pair sites for synergistic CO2 electroreduction. ACS Energy Lett. 7, 640–649 (2022). https://doi.org/10.1021/acsenergylett.1c02446
- M. Ferri, L. Delafontaine, S. Guo, T. Asset, P. Cristiani et al., Steering Cu-based CO2RR electrocatalysts’ selectivity: effect of hydroxyapatite acid/base moieties in promoting formate production. ACS Energy Lett. 7, 2304–2310 (2022). https://doi.org/10.1021/acsenergylett.2c01144
- L. Xiong, X. Zhang, H. Yuan, J. Wang, X. Yuan et al., Breaking the linear scaling relationship by compositional and structural crafting of ternary Cu–Au/Ag nanoframes for electrocatalytic ethylene production. Angew. Chem. Int. Ed. 60, 2508–2518 (2021). https://doi.org/10.1002/anie.202012631
- G. Zhang, Z.-J. Zhao, D. Cheng, H. Li, J. Yu et al., Efficient CO2 electroreduction on facet-selective copper films with high conversion rate. Nat. Commun. 12, 5745 (2021). https://doi.org/10.1038/s41467-021-26053-w
- L. Xiong, X. Zhang, L. Chen, Z. Deng, S. Han et al., Geometric modulation of local Co flux in Ag@Cu2O nanoreactors for steering the CO2RR pathway toward high-efficacy methane production. Adv. Mater. 33, 2101741 (2021). https://doi.org/10.1002/adma.202101741
- W. Ren, A. Xu, K. Chan, X. Hu, A cation concentration gradient approach to tune the selectivity and activity of CO2 electroreduction. Angew. Chem. Int. Ed. 61, 202214173 (2022). https://doi.org/10.1002/anie.202214173
- J. Gu, S. Liu, W. Ni, W. Ren, S. Haussener et al., Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal. 5, 268–276 (2022). https://doi.org/10.1038/s41929-022-00761-y
- Z. Zeng, L.Y. Gan, H.B. Yang, X. Su, J. Gao et al., Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 12, 4088 (2021). https://doi.org/10.1038/s41467-021-24052-5
- T. Ding, X. Liu, Z. Tao, T. Liu, T. Chen et al., Atomically precise dinuclear site active toward electrocatalytic CO2 reduction. J. Am. Chem. Soc. 143, 11317–11324 (2021). https://doi.org/10.1021/jacs.1c05754
- X. Wu, H. Zhang, S. Zuo, J. Dong, Y. Li et al., Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 13, 136 (2021). https://doi.org/10.1007/s40820-021-00668-6
- Y. Cao, L. Guo, M. Dan, D.E. Doronkin, C. Han et al., Modulating electron density of vacancy site by single au atom for effective CO2 photoreduction. Nat. Commun. 12, 1675 (2021). https://doi.org/10.1038/s41467-021-21925-7
- Y. Wang, G. Jia, X. Cui, X. Zhao, Q. Zhang, Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem 7, 436–449 (2021). https://doi.org/10.1016/j.chempr.2020.10.023
- W. Ren, X. Tan, W. Yang, C. Jia, S. Xu, Isolated diatomic Ni-Fe metal–nitrogen sites for synergistic electroreduction of CO2. Angew. Chem. Int. Ed. 58, 6972–6976 (2019). https://doi.org/10.1002/anie.201901575
- H.B. Yang, S.F. Hung, S. Liu, K. Yuan, S. Miao, Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8
- T. Zheng, K. Jiang, H. Wang, Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts. Adv. Mater. 30, 1802066 (2018). https://doi.org/10.1002/adma.201802066
- J. Zhao, J. Deng, J. Han, S. Imhanria, K. Chen et al., Effective tunable syngas generation via CO2 reduction reaction by non-precious Fe–N–C electrocatalyst. Chem. Eng. J. 389, 124323 (2020). https://doi.org/10.1016/j.cej.2020.124323
- W. Ju, A. Bagger, G.-P. Hao, A.S. Varela, I. Sinev et al., Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8, 944 (2017). https://doi.org/10.1038/s41467-017-01035-z
- H. Shang, X. Zhou, J. Dong, A. Li, X. Zhao et al., Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 11, 3049 (2020). https://doi.org/10.1038/s41467-020-16848-8
- G. Yang, J. Zhu, P. Yuan, Y. Hu, G. Qu et al., Regulating Fe-spin state by atomically dispersed Mn-N in Fe–N–C catalysts with high oxygen reduction activity. Nat. Commun. 12, 1734 (2021). https://doi.org/10.1038/s41467-021-21919-5
- X. Wang, Z. Chen, X. Zhao, T. Yao, W. Chen et al., Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2. Angew. Chem. Int. Ed. 57, 1944–1948 (2018). https://doi.org/10.1002/anie.201712451
- Z. Zhu, H. Yin, Y. Wang, C.H. Chuang, L. Xing et al., Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient orr electrocatalyst. Adv. Mater. 32, 2004670 (2020). https://doi.org/10.1002/adma.202004670
- L. Jiao, J. Zhu, Y. Zhang, W. Yang, W. Yang et al., Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 143, 19417–19424 (2021). https://doi.org/10.1021/jacs.1c08050
- J. Li, M. Chen, D.A. Cullen, S. Hwang, M. Wang et al., Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 1, 935–945 (2018). https://doi.org/10.1038/s41929-018-0164-8
- B. Yang, X. Li, Q. Zhang, X. Yang, J. Wan et al., Ultrathin porous carbon nitride nanosheets with well-tuned band structures via carbon vacancies and oxygen doping for significantly boosting H2 production. Appl. Catal. B Environ. 314, 121521 (2022). https://doi.org/10.1016/j.apcatb.2022.121521
- H. Tian, A. Song, P. Zhang, K. Sun, J. Wang et al., High durability of Fe-N-C single atom catalysts with carbon vacancies towards oxygen reduction reaction in alkaline media. Adv. Mater. 35, 2210714 (2023). https://doi.org/10.1002/adma.202210714
- X. Ruan, C. Huang, H. Cheng, Z. Zhang, Y. Cui et al., A Twin S-scheme artificial photosynthetic system with self-assembled heterojunctions yields superior photocatalytic hydrogen evolution rate. Adv. Mater. 35, 2209141 (2023). https://doi.org/10.1002/adma.202209141
- S. Gong, C. Wang, P. Jiang, L. Hu, H. Lei et al., Designing highly efficient dual-metal single-atom electrocatalysts for the oxygen reduction reaction inspired by biological enzyme systems. J. Materi. Chem. A 6, 13254–13262 (2018). https://doi.org/10.1039/C8TA04564J
- X.Y. Zhang, W.J. Li, X.F. Wu, Y.W. Liu, J. Chen et al., Selective methane electrosynthesis enabled by a hydrophobic carbon coated copper core–shell architecture. Energy Environ. Sci. 15, 234–243 (2022). https://doi.org/10.1039/D1EE01493E
- Y. Wang, X. Cui, J. Zhao, G. Jia, L. Gu et al., Rational Design of Fe–N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution. ACS Catal. 9, 336–344 (2019). https://doi.org/10.1021/acscatal.8b03802
- T. Zhang, D. Zhang, X. Han, T. Dong, X. Guo et al., Preassembly strategy to fabricate porous hollow carbonitride spheres inlaid with single Cu–N3 sites for selective oxidation of benzene to phenol. J. Am. Chem. Soc. 140, 16936–16940 (2018). https://doi.org/10.1021/jacs.8b10703
- Y. Wang, K. Qi, S. Yu, G. Jia, Z. Cheng et al., Revealing the intrinsic peroxidase-like catalytic mechanism of heterogeneous single-atom Co–MoS2. Nano-Micro Lett. 11, 102 (2019). https://doi.org/10.1007/s40820-019-0324-7
- K. Qi, X. Cui, L. Gu, S. Yu, X. Fan et al., Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 10, 5231 (2019). https://doi.org/10.1038/s41467-019-12997-7
- F. Lü, S. Zhao, R. Guo, J. He, X. Peng et al., Nitrogen-coordinated single fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy 61, 420–427 (2019). https://doi.org/10.1016/j.nanoen.2019.04.092
- L. Han, X. Liu, J. Chen, R. Lin, H. Liu et al., Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem. Int. Ed. 58, 2321–2325 (2019). https://doi.org/10.1002/anie.201900203
- R. Jiang, L. Li, T. Sheng, G. Hu, Y. Chen et al., Edge-site engineering of atomically dispersed Fe–N4 by Selective C–N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 140, 11594–11598 (2018). https://doi.org/10.1021/jacs.8b07294
- Q. Li, W. Chen, H. Xiao, Y. Gong, Z. Li et al., Fe isolated single atoms on s, n codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 30, 1800588 (2018). https://doi.org/10.1002/adma.201800588
- L. Roldán, Y. Marco, E. García-Bordejé, Origin of the excellent performance of ru on nitrogen-doped carbon nanofibers for CO2 hydrogenation to CH4. Chemsuschem 10, 1139–1144 (2017). https://doi.org/10.1002/cssc.201601217
- S. Zhang, C. Yang, Y. Jiang, P. Li, C. Xia, A robust fluorine-containing ceramic cathode for direct CO2 electrolysis in solid oxide electrolysis cells. J. Energy Chem. 77, 300–309 (2023). https://doi.org/10.1016/j.jechem.2022.10.021
- Y. Ling, F.M.D. Kazim, S. Ma, Q. Zhang, K. Qu et al., Strain induced rich planar defects in heterogeneous ws2/wo2 enable efficient nitrogen fixation at low overpotential. J. Mater. Chem. A 8, 12996–13003 (2020). https://doi.org/10.1039/C9TA13812A
References
C. Chen, Y. Li, S. Yu, S. Louisia, J. Jin et al., Cu-Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule 4, 1688–1699 (2020). https://doi.org/10.1016/j.joule.2020.07.009
Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, A.J. Göttle, F. Calle-Vallejo et al., Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019). https://doi.org/10.1038/s41560-019-0450-y
C. Zhu, Y. Song, D. Xiao, G. Li, A. Chen et al., Ampere-level CO2 reduction to multicarbon products over a copper gas penetration electrode. Energy Environ. Sci. 15, 5391–5404 (2022). https://doi.org/10.1039/D2EE02121H
X. Ma, F. Wang, D. Jiao, D. Zhang, X. Zhao et al., Room-temperature liquid metal synthesis of nanoporous copper-indium heterostructures for efficient carbon dioxide reduction to syngas. Sci. China Mater. 65, 3504–3512 (2022). https://doi.org/10.1007/s40843-022-2058-5
W. Huang, C. Su, C. Zhu, T. Bo, S. Zuo et al., Isolated electron trap-induced charge accumulation for efficient photocatalytic hydrogen production. Angew. Chem. Int. Ed. 62, 202304634 (2023). https://doi.org/10.1002/anie.202304634
G. Wen, B. Ren, X. Wang, D. Luo, H. Dou et al., Continuous CO2 electrolysis using a CO2 exsolution-induced flow cell. Nat. Energy 7, 978–988 (2022). https://doi.org/10.1038/s41560-022-01130-6
C. Chen, S. Yu, Y. Yang, S. Louisia, I. Roh et al., Exploration of the bio-analogous asymmetric C–C coupling mechanism in tandem CO2 electroreduction. Nat. Catal. 5, 878–887 (2022). https://doi.org/10.1038/s41929-022-00844-w
S. Xu, R. Wang, T. Gasser, P. Ciais, J. Peñuelas et al., Delayed use of bioenergy crops might threaten climate and food security. Nature 609, 299–306 (2022). https://doi.org/10.1038/s41586-022-05055-8
X. Ma, D. Jiao, J. Fan, Y. Dong, X. Cui, Metal-oxide heterointerface synergistic effects of copper-zinc systems for highly selective CO2-to-CH4 electrochemical conversion. Inorg. Chem. Front. 10, 168–173 (2023). https://doi.org/10.1039/D2QI02051C
F. Pan, Y. Yang, Designing CO2 reduction electrode materials by morphology and interface engineering. Energy Environ. Sci. 13, 2275–2309 (2020). https://doi.org/10.1039/D0EE00900H
J.H. Kim, H. Jang, G. Bak, W. Choi, H. Yun et al., The insensitive cation effect on a single atom ni catalyst allows selective electrochemical conversion of captured co2 in universal media. Energy Environ. Sci. 15, 4301–4312 (2022). https://doi.org/10.1039/D2EE01825J
X. Zhang, W. Huang, L. Yu, M.G. Melchor, D. Wang et al., Enabling heterogeneous catalysis to achieve carbon neutrality: directional catalytic conversion of CO2 into carboxylic acids. Carbon Energy (2023). https://doi.org/10.1002/cey2.362
B. Chang, H. Pang, F. Raziq, S. Wang, K. Huang et al., Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: challenges and perspectives. Energy Environ. Sci. (2023). https://doi.org/10.1039/D3EE00964E
W. Zhou, H. Su, W. Cheng, Y. Li, J. Jiang et al., Regulating the scaling relationship for high catalytic kinetics and selectivity of the oxygen reduction reaction. Nat. Commun. 13, 6414 (2022). https://doi.org/10.1038/s41467-022-34169-w
Z.F. Huang, S. Xi, J. Song, S. Dou, X. Li et al., Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst. Nat. Commun. 12, 3992 (2021). https://doi.org/10.1038/s41467-021-24182-w
D. Zhao, K. Yu, P. Song, W. Feng, B. Hu et al., Atomic-level engineering Fe1-N2O2 interfacial structure derived from oxygen-abundant metal–organic frameworks to promote electrochemical CO2 reduction. Energy Environ. Sci. 15, 3795–3804 (2022). https://doi.org/10.1039/D2EE00878E
T. Zhang, J.C. Bui, Z. Li, A.T. Bell, A.Z. Weber et al., Highly selective and productive reduction of carbon dioxide to multicarbon products via in situ CO management using segmented tandem electrodes. Nat. Catal. 5, 202–211 (2022). https://doi.org/10.1038/s41929-022-00751-0
S. Li, W. Chen, X. Dong, C. Zhu, A. Chen et al., Hierarchical micro/nanostructured silver hollow fiber boosts electroreduction of carbon dioxide. Nat. Commun. 13, 3080 (2022). https://doi.org/10.1038/s41467-022-30733-6
Y. Wang, B.J. Park, V.K. Paidi, R. Huang, Y. Lee et al., Precisely constructing orbital coupling-modulated dual-atom fe pair sites for synergistic CO2 electroreduction. ACS Energy Lett. 7, 640–649 (2022). https://doi.org/10.1021/acsenergylett.1c02446
M. Ferri, L. Delafontaine, S. Guo, T. Asset, P. Cristiani et al., Steering Cu-based CO2RR electrocatalysts’ selectivity: effect of hydroxyapatite acid/base moieties in promoting formate production. ACS Energy Lett. 7, 2304–2310 (2022). https://doi.org/10.1021/acsenergylett.2c01144
L. Xiong, X. Zhang, H. Yuan, J. Wang, X. Yuan et al., Breaking the linear scaling relationship by compositional and structural crafting of ternary Cu–Au/Ag nanoframes for electrocatalytic ethylene production. Angew. Chem. Int. Ed. 60, 2508–2518 (2021). https://doi.org/10.1002/anie.202012631
G. Zhang, Z.-J. Zhao, D. Cheng, H. Li, J. Yu et al., Efficient CO2 electroreduction on facet-selective copper films with high conversion rate. Nat. Commun. 12, 5745 (2021). https://doi.org/10.1038/s41467-021-26053-w
L. Xiong, X. Zhang, L. Chen, Z. Deng, S. Han et al., Geometric modulation of local Co flux in Ag@Cu2O nanoreactors for steering the CO2RR pathway toward high-efficacy methane production. Adv. Mater. 33, 2101741 (2021). https://doi.org/10.1002/adma.202101741
W. Ren, A. Xu, K. Chan, X. Hu, A cation concentration gradient approach to tune the selectivity and activity of CO2 electroreduction. Angew. Chem. Int. Ed. 61, 202214173 (2022). https://doi.org/10.1002/anie.202214173
J. Gu, S. Liu, W. Ni, W. Ren, S. Haussener et al., Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal. 5, 268–276 (2022). https://doi.org/10.1038/s41929-022-00761-y
Z. Zeng, L.Y. Gan, H.B. Yang, X. Su, J. Gao et al., Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 12, 4088 (2021). https://doi.org/10.1038/s41467-021-24052-5
T. Ding, X. Liu, Z. Tao, T. Liu, T. Chen et al., Atomically precise dinuclear site active toward electrocatalytic CO2 reduction. J. Am. Chem. Soc. 143, 11317–11324 (2021). https://doi.org/10.1021/jacs.1c05754
X. Wu, H. Zhang, S. Zuo, J. Dong, Y. Li et al., Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 13, 136 (2021). https://doi.org/10.1007/s40820-021-00668-6
Y. Cao, L. Guo, M. Dan, D.E. Doronkin, C. Han et al., Modulating electron density of vacancy site by single au atom for effective CO2 photoreduction. Nat. Commun. 12, 1675 (2021). https://doi.org/10.1038/s41467-021-21925-7
Y. Wang, G. Jia, X. Cui, X. Zhao, Q. Zhang, Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem 7, 436–449 (2021). https://doi.org/10.1016/j.chempr.2020.10.023
W. Ren, X. Tan, W. Yang, C. Jia, S. Xu, Isolated diatomic Ni-Fe metal–nitrogen sites for synergistic electroreduction of CO2. Angew. Chem. Int. Ed. 58, 6972–6976 (2019). https://doi.org/10.1002/anie.201901575
H.B. Yang, S.F. Hung, S. Liu, K. Yuan, S. Miao, Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8
T. Zheng, K. Jiang, H. Wang, Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts. Adv. Mater. 30, 1802066 (2018). https://doi.org/10.1002/adma.201802066
J. Zhao, J. Deng, J. Han, S. Imhanria, K. Chen et al., Effective tunable syngas generation via CO2 reduction reaction by non-precious Fe–N–C electrocatalyst. Chem. Eng. J. 389, 124323 (2020). https://doi.org/10.1016/j.cej.2020.124323
W. Ju, A. Bagger, G.-P. Hao, A.S. Varela, I. Sinev et al., Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8, 944 (2017). https://doi.org/10.1038/s41467-017-01035-z
H. Shang, X. Zhou, J. Dong, A. Li, X. Zhao et al., Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 11, 3049 (2020). https://doi.org/10.1038/s41467-020-16848-8
G. Yang, J. Zhu, P. Yuan, Y. Hu, G. Qu et al., Regulating Fe-spin state by atomically dispersed Mn-N in Fe–N–C catalysts with high oxygen reduction activity. Nat. Commun. 12, 1734 (2021). https://doi.org/10.1038/s41467-021-21919-5
X. Wang, Z. Chen, X. Zhao, T. Yao, W. Chen et al., Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2. Angew. Chem. Int. Ed. 57, 1944–1948 (2018). https://doi.org/10.1002/anie.201712451
Z. Zhu, H. Yin, Y. Wang, C.H. Chuang, L. Xing et al., Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient orr electrocatalyst. Adv. Mater. 32, 2004670 (2020). https://doi.org/10.1002/adma.202004670
L. Jiao, J. Zhu, Y. Zhang, W. Yang, W. Yang et al., Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 143, 19417–19424 (2021). https://doi.org/10.1021/jacs.1c08050
J. Li, M. Chen, D.A. Cullen, S. Hwang, M. Wang et al., Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 1, 935–945 (2018). https://doi.org/10.1038/s41929-018-0164-8
B. Yang, X. Li, Q. Zhang, X. Yang, J. Wan et al., Ultrathin porous carbon nitride nanosheets with well-tuned band structures via carbon vacancies and oxygen doping for significantly boosting H2 production. Appl. Catal. B Environ. 314, 121521 (2022). https://doi.org/10.1016/j.apcatb.2022.121521
H. Tian, A. Song, P. Zhang, K. Sun, J. Wang et al., High durability of Fe-N-C single atom catalysts with carbon vacancies towards oxygen reduction reaction in alkaline media. Adv. Mater. 35, 2210714 (2023). https://doi.org/10.1002/adma.202210714
X. Ruan, C. Huang, H. Cheng, Z. Zhang, Y. Cui et al., A Twin S-scheme artificial photosynthetic system with self-assembled heterojunctions yields superior photocatalytic hydrogen evolution rate. Adv. Mater. 35, 2209141 (2023). https://doi.org/10.1002/adma.202209141
S. Gong, C. Wang, P. Jiang, L. Hu, H. Lei et al., Designing highly efficient dual-metal single-atom electrocatalysts for the oxygen reduction reaction inspired by biological enzyme systems. J. Materi. Chem. A 6, 13254–13262 (2018). https://doi.org/10.1039/C8TA04564J
X.Y. Zhang, W.J. Li, X.F. Wu, Y.W. Liu, J. Chen et al., Selective methane electrosynthesis enabled by a hydrophobic carbon coated copper core–shell architecture. Energy Environ. Sci. 15, 234–243 (2022). https://doi.org/10.1039/D1EE01493E
Y. Wang, X. Cui, J. Zhao, G. Jia, L. Gu et al., Rational Design of Fe–N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution. ACS Catal. 9, 336–344 (2019). https://doi.org/10.1021/acscatal.8b03802
T. Zhang, D. Zhang, X. Han, T. Dong, X. Guo et al., Preassembly strategy to fabricate porous hollow carbonitride spheres inlaid with single Cu–N3 sites for selective oxidation of benzene to phenol. J. Am. Chem. Soc. 140, 16936–16940 (2018). https://doi.org/10.1021/jacs.8b10703
Y. Wang, K. Qi, S. Yu, G. Jia, Z. Cheng et al., Revealing the intrinsic peroxidase-like catalytic mechanism of heterogeneous single-atom Co–MoS2. Nano-Micro Lett. 11, 102 (2019). https://doi.org/10.1007/s40820-019-0324-7
K. Qi, X. Cui, L. Gu, S. Yu, X. Fan et al., Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 10, 5231 (2019). https://doi.org/10.1038/s41467-019-12997-7
F. Lü, S. Zhao, R. Guo, J. He, X. Peng et al., Nitrogen-coordinated single fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy 61, 420–427 (2019). https://doi.org/10.1016/j.nanoen.2019.04.092
L. Han, X. Liu, J. Chen, R. Lin, H. Liu et al., Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem. Int. Ed. 58, 2321–2325 (2019). https://doi.org/10.1002/anie.201900203
R. Jiang, L. Li, T. Sheng, G. Hu, Y. Chen et al., Edge-site engineering of atomically dispersed Fe–N4 by Selective C–N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 140, 11594–11598 (2018). https://doi.org/10.1021/jacs.8b07294
Q. Li, W. Chen, H. Xiao, Y. Gong, Z. Li et al., Fe isolated single atoms on s, n codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 30, 1800588 (2018). https://doi.org/10.1002/adma.201800588
L. Roldán, Y. Marco, E. García-Bordejé, Origin of the excellent performance of ru on nitrogen-doped carbon nanofibers for CO2 hydrogenation to CH4. Chemsuschem 10, 1139–1144 (2017). https://doi.org/10.1002/cssc.201601217
S. Zhang, C. Yang, Y. Jiang, P. Li, C. Xia, A robust fluorine-containing ceramic cathode for direct CO2 electrolysis in solid oxide electrolysis cells. J. Energy Chem. 77, 300–309 (2023). https://doi.org/10.1016/j.jechem.2022.10.021
Y. Ling, F.M.D. Kazim, S. Ma, Q. Zhang, K. Qu et al., Strain induced rich planar defects in heterogeneous ws2/wo2 enable efficient nitrogen fixation at low overpotential. J. Mater. Chem. A 8, 12996–13003 (2020). https://doi.org/10.1039/C9TA13812A