Core–Shell Microfiber Encapsulation Enables Glycerol-Free Cryopreservation of RBCs with High Hematocrit
Corresponding Author: Gang Zhao
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 3
Abstract
Cryopreservation of red blood cells (RBCs) provides great potential benefits for providing transfusion timely in emergencies. High concentrations of glycerol (20% or 40%) are used for RBC cryopreservation in current clinical practice, which results in cytotoxicity and osmotic injuries that must be carefully controlled. However, existing studies on the low-glycerol cryopreservation of RBCs still suffer from the bottleneck of low hematocrit levels, which require relatively large storage space and an extra concentration process before transfusion, making it inconvenient (time-consuming, and also may cause injury and sample lose) for clinical applications. To this end, we develop a novel method for the glycerol-free cryopreservation of human RBCs with a high final hematocrit by using trehalose as the sole cryoprotectant to dehydrate RBCs and using core–shell alginate hydrogel microfibers to enhance heat transfer during cryopreservation. Different from previous studies, we achieve the cryopreservation of human RBCs at high hematocrit (> 40%) with high recovery (up to 95%). Additionally, the washed RBCs post-cryopreserved are proved to maintain their morphology, mechanics, and functional properties. This may provide a nontoxic, high-efficiency, and glycerol-free approach for RBC cryopreservation, along with potential clinical transfusion benefits.
Highlights:
1 We developed a novel method for high-efficiency, nontoxic, glycerol-free, scalable cryopreservation of human red blood cells with a high hematocrit (> 40%).
2 This method offered the potential for ultrafast and convenient applications by eliminating the need for permeable cryoprotectants, simplifying the washing steps, and reducing the washing time.
3 This method achieved a high RBC recovery of up to 95%, and the RBCs post-cryopreserved maintained their morphology, mechanics, and functional properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.G. Klein, D.R. Spahn, J.L. Carson, Transfusion medicine 1—red blood cell transfusion in clinical practice. Lancet 370, 415–426 (2007). https://doi.org/10.1016/S0140-6736(07)61197-0
- C.F. Högman, Preparation and preservation of red cells. Vox Sang. 74, 177–187 (1998). https://doi.org/10.1111/j.1423-0410.1998.tb05419.x
- G. Ramsey, Frozen red blood cells: cold comfort in a disaster? Transfusion 48, 2053–2055 (2008). https://doi.org/10.1111/j.1537-2995.2008.01915.x
- T. Kanias, J.P. Acker, Biopreservation of red blood cells—the struggle with hemoglobin oxidation. FEBS J. 277, 343–356 (2010). https://doi.org/10.1111/j.1742-4658.2009.07472.x
- P. Mazur, Cryobiology: the freezing of biological systems. Science 168, 939–949 (1970). https://doi.org/10.1126/science.168.3934.939
- M.A. Schreiber, B.H. McCully, J.B. Holcomb, B.R. Robinson, J.P. Minei et al., Transfusion of cryopreserved packed red blood cells is safe and effective after trauma: a prospective randomized trial. Ann. Surg. 262, 426–433 (2015). https://doi.org/10.1097/SLA.0000000000001404
- C.R. Valeri, G. Ragno, L.E. Pivacek, G.P. Cassidy, R. Srey et al., An experiment with glycerol-frozen red blood cells stored at − 80 °C for up to 37 years. VOX 79, 168–174 (2000). https://doi.org/10.1159/000031236
- S.J. Neuhaus, K. Wishaw, C. Lelkens, Australian experience with frozen blood products on military operations. Med. J. Aust. 192, 203–205 (2010). https://doi.org/10.5694/j.1326-5377.2010.tb03479.x
- R.O. Gilcher, S. McCombs, Seasonal blood shortages can be eliminated. Curr. Opin. Hematol. 12, 503–508 (2005). https://doi.org/10.1097/01.moh.0000180436.98990.ce
- A. Rowe, E. Eyster, A. Kellner, Liquid nitrogen preservation of red blood cells for transfusion—a low glycerol-rapid freeze procedure. Cryobiology 5, 119–128 (1968). https://doi.org/10.1016/S0011-2240(68)80154-3
- H. Meryman, M. Hornblower, Method for freezing and washing red blood-cells using a high glycerol concentration. Transfusion 12, 145–156 (1972). https://doi.org/10.1111/j.1537-2995.1972.tb00001.x
- A. Sputtek, P. Kuehnl, A.W. Rowe, Cryopreservation of erythrocytes, thrombocytes, and lymphocytes. Transfus. Med. Hemother. 34, 262–267 (2007). https://doi.org/10.1159/000104136
- D. Pegg, Long-term preservation of cells and tissues—review. J. Clin. Pathol. 29, 271–285 (1976). https://doi.org/10.1136/jcp.29.4.271
- S. Henkelman, F. Noorman, J.F. Badloe, J.W.M. Lagerberg, Utilization and quality of cryopreserved red blood cells in transfusion medicine. Vox Sang. 108, 103–112 (2015). https://doi.org/10.1111/vox.12218
- K.L. Scott, J. Lecak, J.P. Acker, Biopreservation of red blood cells: past, present, and future. Transf. Med. Rev. 19, 127–142 (2005). https://doi.org/10.1016/j.tmrv.2004.11.004
- V. Pallotta, G.M. D’Amici, A. D’Alessandro, R. Rossetti, L. Zolla, Red blood cell processing for cryopreservation: from fresh blood to deglycerolization. Blood Cell Mol. Dis. 48, 226–232 (2012). https://doi.org/10.1016/j.bcmd.2012.02.004
- C.R. Valeri, G. Ragno, P. Van Houten, L. Rose, M. Rose et al., Automation of the glycerolization of red blood cells with the high-separation bowl in the Haemonetics ACP 215 instrument. Transfusion 45, 1621–1627 (2005). https://doi.org/10.1111/j.1537-2995.2005.00588.x
- C.J. Capicciotti, J.D.R. Kurach, T.R. Turner, R.S. Mancini, J.P. Acker et al., Small molecule ice recrystallization inhibitors enable freezing of human red blood cells with reduced glycerol concentrations. Sci. Rep. 5, 9692 (2015). https://doi.org/10.1038/srep09692
- A. Sputtek, G. Rau, Cryopreservation of human erythrocytes with hydroxyethyl starch (HES)—part 1: the procedure. Infusionsther. Transfusionsmed. 19, 269–275 (1992)
- X. Sui, C. Wen, J. Yang, H. Guo, W. Zhao et al., Betaine combined with membrane stabilizers enables solvent-free whole blood cryopreservation and one-step cryoprotectant removal. ACS Biomater. Sci. Eng. 5, 1083–1091 (2019). https://doi.org/10.1021/acsbiomaterials.8b01286
- A. Murray, T.R. Congdon, R.M.F. Tomás, P. Kilbride, M.I. Gibson, Red blood cell cryopreservation with minimal post-thaw lysis enabled by a synergistic combination of a cryoprotecting polyampholyte with DMSO/trehalose. Biomacromol 23, 467–477 (2021). https://doi.org/10.1021/acs.biomac.1c00599
- J. Yang, C. Pan, J. Zhang, X. Sui, Y. Zhu et al., Exploring the potential of biocompatible osmoprotectants as highly efficient cryoprotectants. ACS Appl. Mater. Interfaces 9, 42516–42524 (2017). https://doi.org/10.1021/acsami.7b12189
- J.G. Briard, J.S. Poisson, T.R. Turner, C.J. Capicciotti, J.P. Acker et al., Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing. Sci. Rep. 6, 23619 (2016). https://doi.org/10.1038/srep23619
- C.I. Biggs, T.L. Bailey, R. Ben Graham, C. Stubbs, A. Fayter et al., Polymer mimics of biomacromolecular antifreezes. Nat. Commun. 8, 1546 (2017). https://doi.org/10.1038/s41467-017-01421-7
- Y. Hou, C. Lu, M. Dou, C. Zhang, H. Chang et al., Soft liquid metal nanops achieve reduced crystal nucleation and ultrarapid rewarming for human bone marrow stromal cell and blood vessel cryopreservation. Acta Biomater. 102, 403–415 (2020). https://doi.org/10.1016/j.actbio.2019.11.023
- G. Bai, Z. Song, H. Geng, D. Gao, K. Liu et al., Oxidized quasi-carbon nitride quantum dots inhibit ice growth. Adv. Mater. 29, 1606843 (2017). https://doi.org/10.1002/adma.201606843
- D.E. Mitchell, J.R. Lovett, S.P. Armes, M.I. Gibson, Combining biomimetic block copolymer worms with an ice-inhibiting polymer for the solvent-free cryopreservation of red blood cells. Angew. Chem. 128, 2851–2854 (2016). https://doi.org/10.1002/anie.201511454
- R.C. Deller, M. Vatish, D.A. Mitchell, M.I. Gibson, Synthetic polymers enable non-vitreous cellular cryopreservation by reducing ice crystal growth during thawing. Nat. Commun. 5, 3244 (2014). https://doi.org/10.1038/ncomms4244
- S. Gao, K. Zhu, Q. Zhang, Q. Niu, J. Chong et al., Development of icephilic active glycopeptides for cryopreservation of human erythrocytes. Biomacromol 23, 530–542 (2022). https://doi.org/10.1021/acs.biomac.1c01372
- S. Chen, L. Wu, J. Ren, V. Bemmer, R. Zajicek et al., Comb-like pseudopeptides enable very rapid and efficient intracellular trehalose delivery for enhanced cryopreservation of erythrocytes. ACS Appl. Mater. Interfaces 12, 28941–28951 (2020). https://doi.org/10.1021/acsami.0c03260
- S. Jin, L. Yin, B. Kong, S. Wu, Z. He, H. Xue, Z. Liu et al., Spreading fully at the ice-water interface is required for high ice recrystallization inhibition activity. Sci. China Chem. 62, 909–915 (2019). https://doi.org/10.1007/s11426-018-9428-4
- G. Bai, D. Gao, Z. Liu, X. Zhou, J. Wang, Probing the critical nucleus size for ice formation with graphene oxide nanosheets. Nature 576, 437–441 (2019). https://doi.org/10.1038/s41586-019-1827-6
- H. Geng, X. Liu, G. Shi, G. Bai, J. Ma et al., Graphene oxide restricts growth and recrystallization of ice crystals. Angew. Chem. Int. Ed. 56, 997–1001 (2017). https://doi.org/10.1002/anie.201609230
- K. Liu, C. Wang, J. Ma, G. Shi, X. Yao et al., Janus effect of antifreeze proteins on ice nucleation. Proc. Natl. Acad. Sci. U.S.A. 113, 14739–14744 (2016). https://doi.org/10.1073/pnas.1614379114
- A. Eroglu, M.J. Russo, R. Bieganski, A. Fowler, S. Cheley et al., Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat. Biotechnol. 18, 163–167 (2000). https://doi.org/10.1038/72608
- H. Huang, G. Zhao, Y. Zhang, J. Xu, T.L. Toth et al., Predehydration and ice seeding in the presence of trehalose enable cell cryopreservation. ACS Biomater. Sci. Eng. 3, 1758–1768 (2017). https://doi.org/10.1021/acsbiomaterials.7b00201
- S. Gao, Q. Niu, Y. Wang, L. Ren, J. Chong et al., A dynamic membrane-active glycopeptide for enhanced protection of human red blood cells against freeze-stress. Adv. Healthc. Mater. (2023). https://doi.org/10.1002/adhm.202202516
- Q. Niu, S. Gao, X. Liu, J. Chong, L. Ren et al., Membrane stabilization versus perturbation by aromatic monoamine-modified γ-PGA for cryopreservation of human RBCs with high intracellular trehalose. J. Mater. Chem. B 10, 6038–6048 (2022). https://doi.org/10.1039/D2TB01074G
- X. Liu, S. Gao, L. Ren, X. Yuan, Achieving high intracellular trehalose in hRBCs by reversible membrane perturbation of maltopyranosides with synergistic membrane protection of macromolecular protectants. Biomater. Adv. 141, 213114 (2022). https://doi.org/10.1016/j.bioadv.2022.213114
- X. Liu, S. Gao, Q. Niu, K. Zhu, L. Ren et al., Facilitating trehalose entry into hRBCs at 4 °C by alkylated ε-poly(l-lysine) for glycerol-free cryopreservation. J. Mater. Chem. B 10, 1042–1054 (2022). https://doi.org/10.1039/D1TB02674G
- M. Stefanic, K. Ward, H. Tawfik, R. Seemann, V. Baulin et al., Apatite nanops strongly improve red blood cell cryopreservation by mediating trehalose delivery via enhanced membrane permeation. Biomaterials 140, 138–149 (2017). https://doi.org/10.1016/j.biomaterials.2017.06.018
- L. Shen, X. Guo, X. Ouyang, Y. Huang, D. Gao et al., Fine-tuned dehydration by trehalose enables the cryopreservation of RBCs with unusually low concentrations of glycerol. J. Mater. Chem. B 9, 295–306 (2021). https://doi.org/10.1039/D0TB02426K
- L. Shen, X. Qin, M. Wang, D. Gao, X. Ouyang et al., Combining cooling enhancement and trehalose dehydration to enable scalable volume cryopreservation of red blood cells with low concentration of glycerol. Adv. Eng. Mater. (2022). https://doi.org/10.1002/adem.202200835
- C.T. Wagner, M.B. Burnett, S.A. Livesey, J. Connor, Red blood cell stabilization reduces the effect of cell density on recovery following cryopreservation. Cryobiology 41, 178–194 (2000). https://doi.org/10.1006/cryo.2000.2279
- L. Paz-Artigas, K. Ziani, C. Alcaine, C. Báez-Díaz, V. Blanco-Blázquez et al., Benefits of cryopreservation as long-term storage method of encapsulated cardiosphere-derived cells for cardiac therapy: a biomechanical analysis. Int. J. Pharmaceut. 607, 121014 (2021). https://doi.org/10.1016/j.ijpharm.2021.121014
- C. Tian, X. Zhang, G. Zhao, Vitrification of stem cell-laden core–shell microfibers with unusually low concentrations of cryoprotective agents. Biomater. Sci. UK 7, 889–900 (2019). https://doi.org/10.1039/C8BM01231H
- O. Jeon, Y.B. Lee, T.J. Hinton, A.W. Feinberg, E. Alsberg, Cryopreserved cell-laden alginate microgel bioink for 3D bioprinting of living tissues. Mater. Today Chem. 12, 61–70 (2019). https://doi.org/10.1016/j.mtchem.2018.11.009
- X. Liu, G. Zhao, Z. Chen, F. Panhwar, X. He, Dual suppression effect of magnetic induction heating and microencapsulation on ice crystallization enables low-cryoprotectant vitrification of stem cell–alginate hydrogel constructs. ACS Appl. Mater. Interfaces 10, 16822–16835 (2018). https://doi.org/10.1021/acsami.8b04496
- G. Zhao, X. Liu, K. Zhu, X. He, Hydrogel encapsulation facilitates rapid-cooling cryopreservation of stem cell-laden core-shell microcapsules as cell-biomaterial constructs. Adv. Healthc. Mater. 6, 1700988 (2017). https://doi.org/10.1002/adhm.201700988
- C. Tian, L. Shen, C. Gong, Y. Cao, Q. Shi et al., Microencapsulation and nanowarming enables vitrification cryopreservation of mouse preantral follicles. Nat. Commun. 13, 1–16 (2022). https://doi.org/10.1038/s41467-022-34549-2
- W. Chen, Z. Shu, D. Gao, A.Q. Shen, Sensing and sensibility: single-islet-based quality control assay of cryopreserved pancreatic islets with functionalized hydrogel microcapsules. Adv. Healthc. Mater. 5, 223–231 (2016). https://doi.org/10.1002/adhm.201500515
- L. Shao, Q. Gao, C. Xie, J. Fu, M. Xiang et al., Bioprinting of cell-laden microfiber: can it become a standard product? Adv. Healthc. Mater. 8, 1900014 (2019). https://doi.org/10.1002/adhm.201900014
- A. Murua, G. Orive, R.M. Hernández, J.L. Pedraz, Cryopreservation based on freezing protocols for the long-term storage of microencapsulated myoblasts. Biomaterials 30, 3495–3501 (2009). https://doi.org/10.1016/j.biomaterials.2009.03.005
- W. Zhang, G. Yang, A. Zhang, L.X. Xu, X. He, Preferential vitrification of water in small alginate microcapsules significantly augments cell cryopreservation by vitrification. Biomed. Microdevices 12, 89–96 (2010). https://doi.org/10.1007/s10544-009-9363-z
- K. Cao, L. Shen, X. Guo, K. Wang, X. Hu et al., Hydrogel microfiber encapsulation enhances cryopreservation of human red blood cells with low concentrations of glycerol. Biopreserv. Biobank. 18, bio.2020.0003 (2020). https://doi.org/10.1089/bio.2020.0003
- V. Han, K. Serrano, D.V. Devine, A comparative study of common techniques used to measure haemolysis in stored red cell concentrates. Vox Sang. 98, 116–123 (2010). https://doi.org/10.1111/j.1423-0410.2009.01249.x
- R. Finken, U. Seifert, Wrinkling of microcapsules in shear flow. J. Phys. Condens. Matter 18, L185–L191 (2006). https://doi.org/10.1088/0953-8984/18/15/L04
- Y. Zhang, G. Zhao, S.M. ChapalHossain, X. He, Modeling and experimental studies of enhanced cooling by medical gauze for cell cryopreservation by vitrification. Int. J. Heat Mass Transf. 114, 1–7 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.036
- H. Janssen, Thermal diffusion of water vapour in porous materials: fact or fiction? Int. J. Heat Mass Transf. 54, 1548–1562 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.034
- N. Shokri, P. Lehmann, D. Or, Critical evaluation of enhancement factors for vapor transport through unsaturated porous media. Water Resour. Res. (2009). https://doi.org/10.1029/2009WR007769
- C.K. Ho, S.W. Webb, Review of porous media enhanced vapor-phase diffusion mechanisms, models, and data-does enhanced vapor-phase diffusion exist? J. Porous Media 1, 71–92 (1998). https://doi.org/10.1615/jpormedia.v1.i1.60
- C.D. Díaz-Marín, L. Zhang, B.E. Fil, Z. Lu, M. Alshrah et al., Heat and mass transfer in hygroscopic hydrogels. Int. J. Heat Mass Transf. 195, 123103 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.123103
- Y. Ma, L. Gao, Y. Tian, P. Chen, J. Yang et al., Advanced biomaterials in cell preservation: hypothermic preservation and cryopreservation. Acta Biomater. 131, 97–116 (2021). https://doi.org/10.1016/j.actbio.2021.07.001
- J.H. Crowe, L.M. Crowe, Preservation of mammalian cells—learning nature’s tricks. Nat. Biotechnol. 18, 145–146 (2000). https://doi.org/10.1038/72580
- P. Mazur, Kinetics of water loss from cells at subzero temperatures and likelihood of intracellular freezing. J. Gen. Physiol. 47, 347 (1963). https://doi.org/10.1085/jgp.47.2.347
- S. Fujikawa, The effect of various cooling rates on the membrane ultrastructure of frozen human erythrocytes and its relation to the extent of haemolysis after thawing. J. Cell Sci. 49, 369–382 (1981). https://doi.org/10.1242/jcs.49.1.369
- G. Rapatz, J.J. Sullivan, B. Luyet, Preservation of erythrocytes in blood containing various cryoprotective agents, frozen at various rates and brought to a given final temperature. Cryobiology 5, 18–25 (1968). https://doi.org/10.1016/S0011-2240(68)80139-7
- A.M. Freedman, I.A. Mirsky, Estimation of red blood cell count from hematocrit. Am. J. Clin. Pathol. 16, 104–109 (1946). https://doi.org/10.1093/ajcp/16.5_ts.104
- D.E. Pegg, M.P. Diaper, H. Le, B. Skaer, C.J. Hunt, The effect of cooling rate and warming rate on the packing effect in human erythrocytes frozen and thawed in the presence of 2 M glycerol. Cryobiology 21, 491–502 (1984). https://doi.org/10.1016/0011-2240(84)90047-6
- Q.T. Shubhra, A. Alam, M. Quaiyyum, Mechanical properties of polypropylene composites: a review. J. Thermoplast. Compos. 26, 362–391 (2013). https://doi.org/10.1177/0892705711428659
- P. Mazur, Basic problems in cryobiology, in Advances in Cryogenic Engineering. ed. by K.D. Timmerhaus (Springer, Boston, 1964), pp.28–37. https://doi.org/10.1007/978-1-4757-0525-6_4
- H. Souzu, P. Mazur, Temperature dependence of the survival of human erythrocytes frozen slowly in various concentrations of glycerol. Biophys. J. 23, 89–100 (1978). https://doi.org/10.1016/S0006-3495(78)85435-6
- G. Rapatz, B. Luyet, Effects of cooling rates on the preservation of erythrocytes in frozen blood containing various protective agents. Biodynamica 9, 333–350 (1965)
- G. Rapatz, B. Luyet, Effects of cooling rates on the preservation of erythrocytes in frozen glycerolated blood. Biodynamica 9, 125–136 (1963)
- W. Jiang, M. Li, Z. Chen, K.W. Leong, Cell-laden microfluidic microgels for tissue regeneration. Lab Chip 16, 4482–4506 (2016). https://doi.org/10.1039/C6LC01193D
- L. Kuo, N. Thengchaisri, T.W. Hein, Regulation of coronary vasomotor function by reactive oxygen species. Mol. Med. Ther. 1, 25 (2012). https://doi.org/10.4172/2324-8769.1000101
- I. Chin-Yee, N. Arya, M.S. d’Almeida, The red cell storage lesion and its implication for transfusion. Transfus. Sci. 18, 447–458 (1997). https://doi.org/10.1016/S0955-3886(97)00043-X
- T. Yoshida, J.P. AuBuchon, L. Tryzelaar, K.Y. Foster, M.W. Bitensky, Extended storage of red blood cells under anaerobic conditions. Vox Sang. 92, 22–31 (2007). https://doi.org/10.1111/j.1423-0410.2006.00860.x
- A.G. Kriebardis, M.H. Antonelou, K.E. Stamoulis, E. Economou-Petersen, L.H. Margaritis et al., Progressive oxidation of cytoskeletal proteins and accumulation of denatured hemoglobin in stored red cells. J. Cell. Mol. Med. 11, 148–155 (2007). https://doi.org/10.1111/j.1582-4934.2007.00008.x
- M. Grau, S. Pauly, J. Ali, K. Walpurgis, M. Thevis et al., RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability. PLoS ONE 8, e56759 (2013). https://doi.org/10.1371/journal.pone.0056759
- B. Jee, Clinical implications of the loss of vasoactive nitric oxide during red blood cell storage. Proc. Natl. Acad. Sci. U.S.A. 104, 19165–19166 (2007). https://doi.org/10.1073/pnas.0708871105
- S.C. Rogers, L.B. Dosier, T.J. McMahon, H. Zhu, D. Timm et al., Red blood cell phenotype fidelity following glycerol cryopreservation optimized for research purposes. PLoS ONE 13, e0209201 (2018). https://doi.org/10.1371/journal.pone.0209201
- E.K. Meyer, D.F. Dumont, S. Baker, L.J. Dumont, Rejuvenation capacity of red blood cells in additive solutions over long-term storage. Transfusion 51, 1574–1579 (2011). https://doi.org/10.1111/j.1537-2995.2010.03021.x
- Z. Xu, W. Dou, C. Wang, Y. Sun, Stiffness and ATP recovery of stored red blood cells in serum. Microsyst. Nanoeng. 5, 1–9 (2019). https://doi.org/10.1038/s41378-019-0097-7
- M.M. Guest, T.P. Bond, R.G. Cooper, J.R. Derrick, Red blood cells: change in shape in capillaries. Science 142, 1319–1321 (1963). https://doi.org/10.1126/science.142.3597.1319
- N. Mohandas, P.G. Gallagher, Red cell membrane: past, present, and future. Blood 112, 3939–3948 (2008). https://doi.org/10.1182/blood-2008-07-161166
- R.E. Assal, S. Guven, U.A. Gurkan, I. Gozen, H. Shafiee et al., Bio-inspired cryo-ink preserves red blood cell phenotype and function during nanoliter vitrification. Adv. Mater. 26, 5815–5822 (2014). https://doi.org/10.1002/adma.201400941
- H. Ravanbakhsh, Z. Luo, X. Zhang, S. Maharjan, H.S. Mirkarimi et al., Freeform cell-laden cryobioprinting for shelf-ready tissue fabrication and storage. Matter 5, 573–593 (2022). https://doi.org/10.1016/j.matt.2021.11.020
References
H.G. Klein, D.R. Spahn, J.L. Carson, Transfusion medicine 1—red blood cell transfusion in clinical practice. Lancet 370, 415–426 (2007). https://doi.org/10.1016/S0140-6736(07)61197-0
C.F. Högman, Preparation and preservation of red cells. Vox Sang. 74, 177–187 (1998). https://doi.org/10.1111/j.1423-0410.1998.tb05419.x
G. Ramsey, Frozen red blood cells: cold comfort in a disaster? Transfusion 48, 2053–2055 (2008). https://doi.org/10.1111/j.1537-2995.2008.01915.x
T. Kanias, J.P. Acker, Biopreservation of red blood cells—the struggle with hemoglobin oxidation. FEBS J. 277, 343–356 (2010). https://doi.org/10.1111/j.1742-4658.2009.07472.x
P. Mazur, Cryobiology: the freezing of biological systems. Science 168, 939–949 (1970). https://doi.org/10.1126/science.168.3934.939
M.A. Schreiber, B.H. McCully, J.B. Holcomb, B.R. Robinson, J.P. Minei et al., Transfusion of cryopreserved packed red blood cells is safe and effective after trauma: a prospective randomized trial. Ann. Surg. 262, 426–433 (2015). https://doi.org/10.1097/SLA.0000000000001404
C.R. Valeri, G. Ragno, L.E. Pivacek, G.P. Cassidy, R. Srey et al., An experiment with glycerol-frozen red blood cells stored at − 80 °C for up to 37 years. VOX 79, 168–174 (2000). https://doi.org/10.1159/000031236
S.J. Neuhaus, K. Wishaw, C. Lelkens, Australian experience with frozen blood products on military operations. Med. J. Aust. 192, 203–205 (2010). https://doi.org/10.5694/j.1326-5377.2010.tb03479.x
R.O. Gilcher, S. McCombs, Seasonal blood shortages can be eliminated. Curr. Opin. Hematol. 12, 503–508 (2005). https://doi.org/10.1097/01.moh.0000180436.98990.ce
A. Rowe, E. Eyster, A. Kellner, Liquid nitrogen preservation of red blood cells for transfusion—a low glycerol-rapid freeze procedure. Cryobiology 5, 119–128 (1968). https://doi.org/10.1016/S0011-2240(68)80154-3
H. Meryman, M. Hornblower, Method for freezing and washing red blood-cells using a high glycerol concentration. Transfusion 12, 145–156 (1972). https://doi.org/10.1111/j.1537-2995.1972.tb00001.x
A. Sputtek, P. Kuehnl, A.W. Rowe, Cryopreservation of erythrocytes, thrombocytes, and lymphocytes. Transfus. Med. Hemother. 34, 262–267 (2007). https://doi.org/10.1159/000104136
D. Pegg, Long-term preservation of cells and tissues—review. J. Clin. Pathol. 29, 271–285 (1976). https://doi.org/10.1136/jcp.29.4.271
S. Henkelman, F. Noorman, J.F. Badloe, J.W.M. Lagerberg, Utilization and quality of cryopreserved red blood cells in transfusion medicine. Vox Sang. 108, 103–112 (2015). https://doi.org/10.1111/vox.12218
K.L. Scott, J. Lecak, J.P. Acker, Biopreservation of red blood cells: past, present, and future. Transf. Med. Rev. 19, 127–142 (2005). https://doi.org/10.1016/j.tmrv.2004.11.004
V. Pallotta, G.M. D’Amici, A. D’Alessandro, R. Rossetti, L. Zolla, Red blood cell processing for cryopreservation: from fresh blood to deglycerolization. Blood Cell Mol. Dis. 48, 226–232 (2012). https://doi.org/10.1016/j.bcmd.2012.02.004
C.R. Valeri, G. Ragno, P. Van Houten, L. Rose, M. Rose et al., Automation of the glycerolization of red blood cells with the high-separation bowl in the Haemonetics ACP 215 instrument. Transfusion 45, 1621–1627 (2005). https://doi.org/10.1111/j.1537-2995.2005.00588.x
C.J. Capicciotti, J.D.R. Kurach, T.R. Turner, R.S. Mancini, J.P. Acker et al., Small molecule ice recrystallization inhibitors enable freezing of human red blood cells with reduced glycerol concentrations. Sci. Rep. 5, 9692 (2015). https://doi.org/10.1038/srep09692
A. Sputtek, G. Rau, Cryopreservation of human erythrocytes with hydroxyethyl starch (HES)—part 1: the procedure. Infusionsther. Transfusionsmed. 19, 269–275 (1992)
X. Sui, C. Wen, J. Yang, H. Guo, W. Zhao et al., Betaine combined with membrane stabilizers enables solvent-free whole blood cryopreservation and one-step cryoprotectant removal. ACS Biomater. Sci. Eng. 5, 1083–1091 (2019). https://doi.org/10.1021/acsbiomaterials.8b01286
A. Murray, T.R. Congdon, R.M.F. Tomás, P. Kilbride, M.I. Gibson, Red blood cell cryopreservation with minimal post-thaw lysis enabled by a synergistic combination of a cryoprotecting polyampholyte with DMSO/trehalose. Biomacromol 23, 467–477 (2021). https://doi.org/10.1021/acs.biomac.1c00599
J. Yang, C. Pan, J. Zhang, X. Sui, Y. Zhu et al., Exploring the potential of biocompatible osmoprotectants as highly efficient cryoprotectants. ACS Appl. Mater. Interfaces 9, 42516–42524 (2017). https://doi.org/10.1021/acsami.7b12189
J.G. Briard, J.S. Poisson, T.R. Turner, C.J. Capicciotti, J.P. Acker et al., Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing. Sci. Rep. 6, 23619 (2016). https://doi.org/10.1038/srep23619
C.I. Biggs, T.L. Bailey, R. Ben Graham, C. Stubbs, A. Fayter et al., Polymer mimics of biomacromolecular antifreezes. Nat. Commun. 8, 1546 (2017). https://doi.org/10.1038/s41467-017-01421-7
Y. Hou, C. Lu, M. Dou, C. Zhang, H. Chang et al., Soft liquid metal nanops achieve reduced crystal nucleation and ultrarapid rewarming for human bone marrow stromal cell and blood vessel cryopreservation. Acta Biomater. 102, 403–415 (2020). https://doi.org/10.1016/j.actbio.2019.11.023
G. Bai, Z. Song, H. Geng, D. Gao, K. Liu et al., Oxidized quasi-carbon nitride quantum dots inhibit ice growth. Adv. Mater. 29, 1606843 (2017). https://doi.org/10.1002/adma.201606843
D.E. Mitchell, J.R. Lovett, S.P. Armes, M.I. Gibson, Combining biomimetic block copolymer worms with an ice-inhibiting polymer for the solvent-free cryopreservation of red blood cells. Angew. Chem. 128, 2851–2854 (2016). https://doi.org/10.1002/anie.201511454
R.C. Deller, M. Vatish, D.A. Mitchell, M.I. Gibson, Synthetic polymers enable non-vitreous cellular cryopreservation by reducing ice crystal growth during thawing. Nat. Commun. 5, 3244 (2014). https://doi.org/10.1038/ncomms4244
S. Gao, K. Zhu, Q. Zhang, Q. Niu, J. Chong et al., Development of icephilic active glycopeptides for cryopreservation of human erythrocytes. Biomacromol 23, 530–542 (2022). https://doi.org/10.1021/acs.biomac.1c01372
S. Chen, L. Wu, J. Ren, V. Bemmer, R. Zajicek et al., Comb-like pseudopeptides enable very rapid and efficient intracellular trehalose delivery for enhanced cryopreservation of erythrocytes. ACS Appl. Mater. Interfaces 12, 28941–28951 (2020). https://doi.org/10.1021/acsami.0c03260
S. Jin, L. Yin, B. Kong, S. Wu, Z. He, H. Xue, Z. Liu et al., Spreading fully at the ice-water interface is required for high ice recrystallization inhibition activity. Sci. China Chem. 62, 909–915 (2019). https://doi.org/10.1007/s11426-018-9428-4
G. Bai, D. Gao, Z. Liu, X. Zhou, J. Wang, Probing the critical nucleus size for ice formation with graphene oxide nanosheets. Nature 576, 437–441 (2019). https://doi.org/10.1038/s41586-019-1827-6
H. Geng, X. Liu, G. Shi, G. Bai, J. Ma et al., Graphene oxide restricts growth and recrystallization of ice crystals. Angew. Chem. Int. Ed. 56, 997–1001 (2017). https://doi.org/10.1002/anie.201609230
K. Liu, C. Wang, J. Ma, G. Shi, X. Yao et al., Janus effect of antifreeze proteins on ice nucleation. Proc. Natl. Acad. Sci. U.S.A. 113, 14739–14744 (2016). https://doi.org/10.1073/pnas.1614379114
A. Eroglu, M.J. Russo, R. Bieganski, A. Fowler, S. Cheley et al., Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat. Biotechnol. 18, 163–167 (2000). https://doi.org/10.1038/72608
H. Huang, G. Zhao, Y. Zhang, J. Xu, T.L. Toth et al., Predehydration and ice seeding in the presence of trehalose enable cell cryopreservation. ACS Biomater. Sci. Eng. 3, 1758–1768 (2017). https://doi.org/10.1021/acsbiomaterials.7b00201
S. Gao, Q. Niu, Y. Wang, L. Ren, J. Chong et al., A dynamic membrane-active glycopeptide for enhanced protection of human red blood cells against freeze-stress. Adv. Healthc. Mater. (2023). https://doi.org/10.1002/adhm.202202516
Q. Niu, S. Gao, X. Liu, J. Chong, L. Ren et al., Membrane stabilization versus perturbation by aromatic monoamine-modified γ-PGA for cryopreservation of human RBCs with high intracellular trehalose. J. Mater. Chem. B 10, 6038–6048 (2022). https://doi.org/10.1039/D2TB01074G
X. Liu, S. Gao, L. Ren, X. Yuan, Achieving high intracellular trehalose in hRBCs by reversible membrane perturbation of maltopyranosides with synergistic membrane protection of macromolecular protectants. Biomater. Adv. 141, 213114 (2022). https://doi.org/10.1016/j.bioadv.2022.213114
X. Liu, S. Gao, Q. Niu, K. Zhu, L. Ren et al., Facilitating trehalose entry into hRBCs at 4 °C by alkylated ε-poly(l-lysine) for glycerol-free cryopreservation. J. Mater. Chem. B 10, 1042–1054 (2022). https://doi.org/10.1039/D1TB02674G
M. Stefanic, K. Ward, H. Tawfik, R. Seemann, V. Baulin et al., Apatite nanops strongly improve red blood cell cryopreservation by mediating trehalose delivery via enhanced membrane permeation. Biomaterials 140, 138–149 (2017). https://doi.org/10.1016/j.biomaterials.2017.06.018
L. Shen, X. Guo, X. Ouyang, Y. Huang, D. Gao et al., Fine-tuned dehydration by trehalose enables the cryopreservation of RBCs with unusually low concentrations of glycerol. J. Mater. Chem. B 9, 295–306 (2021). https://doi.org/10.1039/D0TB02426K
L. Shen, X. Qin, M. Wang, D. Gao, X. Ouyang et al., Combining cooling enhancement and trehalose dehydration to enable scalable volume cryopreservation of red blood cells with low concentration of glycerol. Adv. Eng. Mater. (2022). https://doi.org/10.1002/adem.202200835
C.T. Wagner, M.B. Burnett, S.A. Livesey, J. Connor, Red blood cell stabilization reduces the effect of cell density on recovery following cryopreservation. Cryobiology 41, 178–194 (2000). https://doi.org/10.1006/cryo.2000.2279
L. Paz-Artigas, K. Ziani, C. Alcaine, C. Báez-Díaz, V. Blanco-Blázquez et al., Benefits of cryopreservation as long-term storage method of encapsulated cardiosphere-derived cells for cardiac therapy: a biomechanical analysis. Int. J. Pharmaceut. 607, 121014 (2021). https://doi.org/10.1016/j.ijpharm.2021.121014
C. Tian, X. Zhang, G. Zhao, Vitrification of stem cell-laden core–shell microfibers with unusually low concentrations of cryoprotective agents. Biomater. Sci. UK 7, 889–900 (2019). https://doi.org/10.1039/C8BM01231H
O. Jeon, Y.B. Lee, T.J. Hinton, A.W. Feinberg, E. Alsberg, Cryopreserved cell-laden alginate microgel bioink for 3D bioprinting of living tissues. Mater. Today Chem. 12, 61–70 (2019). https://doi.org/10.1016/j.mtchem.2018.11.009
X. Liu, G. Zhao, Z. Chen, F. Panhwar, X. He, Dual suppression effect of magnetic induction heating and microencapsulation on ice crystallization enables low-cryoprotectant vitrification of stem cell–alginate hydrogel constructs. ACS Appl. Mater. Interfaces 10, 16822–16835 (2018). https://doi.org/10.1021/acsami.8b04496
G. Zhao, X. Liu, K. Zhu, X. He, Hydrogel encapsulation facilitates rapid-cooling cryopreservation of stem cell-laden core-shell microcapsules as cell-biomaterial constructs. Adv. Healthc. Mater. 6, 1700988 (2017). https://doi.org/10.1002/adhm.201700988
C. Tian, L. Shen, C. Gong, Y. Cao, Q. Shi et al., Microencapsulation and nanowarming enables vitrification cryopreservation of mouse preantral follicles. Nat. Commun. 13, 1–16 (2022). https://doi.org/10.1038/s41467-022-34549-2
W. Chen, Z. Shu, D. Gao, A.Q. Shen, Sensing and sensibility: single-islet-based quality control assay of cryopreserved pancreatic islets with functionalized hydrogel microcapsules. Adv. Healthc. Mater. 5, 223–231 (2016). https://doi.org/10.1002/adhm.201500515
L. Shao, Q. Gao, C. Xie, J. Fu, M. Xiang et al., Bioprinting of cell-laden microfiber: can it become a standard product? Adv. Healthc. Mater. 8, 1900014 (2019). https://doi.org/10.1002/adhm.201900014
A. Murua, G. Orive, R.M. Hernández, J.L. Pedraz, Cryopreservation based on freezing protocols for the long-term storage of microencapsulated myoblasts. Biomaterials 30, 3495–3501 (2009). https://doi.org/10.1016/j.biomaterials.2009.03.005
W. Zhang, G. Yang, A. Zhang, L.X. Xu, X. He, Preferential vitrification of water in small alginate microcapsules significantly augments cell cryopreservation by vitrification. Biomed. Microdevices 12, 89–96 (2010). https://doi.org/10.1007/s10544-009-9363-z
K. Cao, L. Shen, X. Guo, K. Wang, X. Hu et al., Hydrogel microfiber encapsulation enhances cryopreservation of human red blood cells with low concentrations of glycerol. Biopreserv. Biobank. 18, bio.2020.0003 (2020). https://doi.org/10.1089/bio.2020.0003
V. Han, K. Serrano, D.V. Devine, A comparative study of common techniques used to measure haemolysis in stored red cell concentrates. Vox Sang. 98, 116–123 (2010). https://doi.org/10.1111/j.1423-0410.2009.01249.x
R. Finken, U. Seifert, Wrinkling of microcapsules in shear flow. J. Phys. Condens. Matter 18, L185–L191 (2006). https://doi.org/10.1088/0953-8984/18/15/L04
Y. Zhang, G. Zhao, S.M. ChapalHossain, X. He, Modeling and experimental studies of enhanced cooling by medical gauze for cell cryopreservation by vitrification. Int. J. Heat Mass Transf. 114, 1–7 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.036
H. Janssen, Thermal diffusion of water vapour in porous materials: fact or fiction? Int. J. Heat Mass Transf. 54, 1548–1562 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.034
N. Shokri, P. Lehmann, D. Or, Critical evaluation of enhancement factors for vapor transport through unsaturated porous media. Water Resour. Res. (2009). https://doi.org/10.1029/2009WR007769
C.K. Ho, S.W. Webb, Review of porous media enhanced vapor-phase diffusion mechanisms, models, and data-does enhanced vapor-phase diffusion exist? J. Porous Media 1, 71–92 (1998). https://doi.org/10.1615/jpormedia.v1.i1.60
C.D. Díaz-Marín, L. Zhang, B.E. Fil, Z. Lu, M. Alshrah et al., Heat and mass transfer in hygroscopic hydrogels. Int. J. Heat Mass Transf. 195, 123103 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.123103
Y. Ma, L. Gao, Y. Tian, P. Chen, J. Yang et al., Advanced biomaterials in cell preservation: hypothermic preservation and cryopreservation. Acta Biomater. 131, 97–116 (2021). https://doi.org/10.1016/j.actbio.2021.07.001
J.H. Crowe, L.M. Crowe, Preservation of mammalian cells—learning nature’s tricks. Nat. Biotechnol. 18, 145–146 (2000). https://doi.org/10.1038/72580
P. Mazur, Kinetics of water loss from cells at subzero temperatures and likelihood of intracellular freezing. J. Gen. Physiol. 47, 347 (1963). https://doi.org/10.1085/jgp.47.2.347
S. Fujikawa, The effect of various cooling rates on the membrane ultrastructure of frozen human erythrocytes and its relation to the extent of haemolysis after thawing. J. Cell Sci. 49, 369–382 (1981). https://doi.org/10.1242/jcs.49.1.369
G. Rapatz, J.J. Sullivan, B. Luyet, Preservation of erythrocytes in blood containing various cryoprotective agents, frozen at various rates and brought to a given final temperature. Cryobiology 5, 18–25 (1968). https://doi.org/10.1016/S0011-2240(68)80139-7
A.M. Freedman, I.A. Mirsky, Estimation of red blood cell count from hematocrit. Am. J. Clin. Pathol. 16, 104–109 (1946). https://doi.org/10.1093/ajcp/16.5_ts.104
D.E. Pegg, M.P. Diaper, H. Le, B. Skaer, C.J. Hunt, The effect of cooling rate and warming rate on the packing effect in human erythrocytes frozen and thawed in the presence of 2 M glycerol. Cryobiology 21, 491–502 (1984). https://doi.org/10.1016/0011-2240(84)90047-6
Q.T. Shubhra, A. Alam, M. Quaiyyum, Mechanical properties of polypropylene composites: a review. J. Thermoplast. Compos. 26, 362–391 (2013). https://doi.org/10.1177/0892705711428659
P. Mazur, Basic problems in cryobiology, in Advances in Cryogenic Engineering. ed. by K.D. Timmerhaus (Springer, Boston, 1964), pp.28–37. https://doi.org/10.1007/978-1-4757-0525-6_4
H. Souzu, P. Mazur, Temperature dependence of the survival of human erythrocytes frozen slowly in various concentrations of glycerol. Biophys. J. 23, 89–100 (1978). https://doi.org/10.1016/S0006-3495(78)85435-6
G. Rapatz, B. Luyet, Effects of cooling rates on the preservation of erythrocytes in frozen blood containing various protective agents. Biodynamica 9, 333–350 (1965)
G. Rapatz, B. Luyet, Effects of cooling rates on the preservation of erythrocytes in frozen glycerolated blood. Biodynamica 9, 125–136 (1963)
W. Jiang, M. Li, Z. Chen, K.W. Leong, Cell-laden microfluidic microgels for tissue regeneration. Lab Chip 16, 4482–4506 (2016). https://doi.org/10.1039/C6LC01193D
L. Kuo, N. Thengchaisri, T.W. Hein, Regulation of coronary vasomotor function by reactive oxygen species. Mol. Med. Ther. 1, 25 (2012). https://doi.org/10.4172/2324-8769.1000101
I. Chin-Yee, N. Arya, M.S. d’Almeida, The red cell storage lesion and its implication for transfusion. Transfus. Sci. 18, 447–458 (1997). https://doi.org/10.1016/S0955-3886(97)00043-X
T. Yoshida, J.P. AuBuchon, L. Tryzelaar, K.Y. Foster, M.W. Bitensky, Extended storage of red blood cells under anaerobic conditions. Vox Sang. 92, 22–31 (2007). https://doi.org/10.1111/j.1423-0410.2006.00860.x
A.G. Kriebardis, M.H. Antonelou, K.E. Stamoulis, E. Economou-Petersen, L.H. Margaritis et al., Progressive oxidation of cytoskeletal proteins and accumulation of denatured hemoglobin in stored red cells. J. Cell. Mol. Med. 11, 148–155 (2007). https://doi.org/10.1111/j.1582-4934.2007.00008.x
M. Grau, S. Pauly, J. Ali, K. Walpurgis, M. Thevis et al., RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability. PLoS ONE 8, e56759 (2013). https://doi.org/10.1371/journal.pone.0056759
B. Jee, Clinical implications of the loss of vasoactive nitric oxide during red blood cell storage. Proc. Natl. Acad. Sci. U.S.A. 104, 19165–19166 (2007). https://doi.org/10.1073/pnas.0708871105
S.C. Rogers, L.B. Dosier, T.J. McMahon, H. Zhu, D. Timm et al., Red blood cell phenotype fidelity following glycerol cryopreservation optimized for research purposes. PLoS ONE 13, e0209201 (2018). https://doi.org/10.1371/journal.pone.0209201
E.K. Meyer, D.F. Dumont, S. Baker, L.J. Dumont, Rejuvenation capacity of red blood cells in additive solutions over long-term storage. Transfusion 51, 1574–1579 (2011). https://doi.org/10.1111/j.1537-2995.2010.03021.x
Z. Xu, W. Dou, C. Wang, Y. Sun, Stiffness and ATP recovery of stored red blood cells in serum. Microsyst. Nanoeng. 5, 1–9 (2019). https://doi.org/10.1038/s41378-019-0097-7
M.M. Guest, T.P. Bond, R.G. Cooper, J.R. Derrick, Red blood cells: change in shape in capillaries. Science 142, 1319–1321 (1963). https://doi.org/10.1126/science.142.3597.1319
N. Mohandas, P.G. Gallagher, Red cell membrane: past, present, and future. Blood 112, 3939–3948 (2008). https://doi.org/10.1182/blood-2008-07-161166
R.E. Assal, S. Guven, U.A. Gurkan, I. Gozen, H. Shafiee et al., Bio-inspired cryo-ink preserves red blood cell phenotype and function during nanoliter vitrification. Adv. Mater. 26, 5815–5822 (2014). https://doi.org/10.1002/adma.201400941
H. Ravanbakhsh, Z. Luo, X. Zhang, S. Maharjan, H.S. Mirkarimi et al., Freeform cell-laden cryobioprinting for shelf-ready tissue fabrication and storage. Matter 5, 573–593 (2022). https://doi.org/10.1016/j.matt.2021.11.020