Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable, Safe, and High-Performance Li-Ion Batteries
Corresponding Author: Jaeyun Kim
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 2
Abstract
Current lithium-ion batteries (LIBs) rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity. The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern. Water-based (aqueous) electrolytes have been receiving attention as an alternative to organic electrolytes. However, a narrow electrochemical-stability window, water decomposition, and the consequent low battery operating voltage and energy density hinder the practical use of aqueous electrolytes. Therefore, developing novel aqueous electrolytes for sustainable, safe, high-performance LIBs remains challenging. This Review first commences by summarizing the roles and requirements of electrolytes–separators and then delineates the progression of aqueous electrolytes for LIBs, encompassing aqueous liquid and gel electrolyte development trends along with detailed principles of the electrolytes. These aqueous electrolytes are progressed based on strategies using superconcentrated salts, concentrated diluents, polymer additives, polymer networks, and artificial passivation layers, which are used for suppressing water decomposition and widening the electrochemical stability window of water of the electrolytes. In addition, this Review discusses potential strategies for the implementation of aqueous Li-metal batteries with improved electrolyte–electrode interfaces. A comprehensive understanding of each strategy in the aqueous system will assist in the design of an aqueous electrolyte and the development of sustainable and safe high-performance batteries.
Highlights:
1 This Review encompasses the role, requirement, and development direction of water-based electrolytes for sustainable, safe, high-performance Li-ion batteries.
2 Water-based electrolytes (aqueous liquid and gel electrolytes) and their mechanisms are comprehensively summarized to widen the electrolyte electrochemical stability window and battery operating voltage and to achieve long-term operation stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety. Sci. Adv. 4(6), eaas9820 (2018). https://doi.org/10.1126/sciadv.aas9820
- D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6(21), eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098
- G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater et al., Recycling lithium-ion batteries from electric vehicles. Nature 575(7781), 75–86 (2019). https://doi.org/10.1038/s41586-019-1682-5
- C.P. Grey, J.M. Tarascon, Sustainability and in situ monitoring in battery development. Nat. Mater. 16(1), 45–56 (2017). https://doi.org/10.1038/nmat4777
- D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7(1), 19–29 (2015). https://doi.org/10.1038/nchem.2085
- K. Xu, Li-ion battery electrolytes. Nat. Energy 6(7), 763–763 (2021). https://doi.org/10.1038/s41560-021-00841-6
- L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350(6263), 938–943 (2015)
- L. Smith, B. Dunn, Opening the window for aqueous electrolytes. Science 350(6263), 918–918 (2015). https://doi.org/10.1126/science.aad5575
- C. Yang, J. Chen, X. Ji, T.P. Pollard, X. Lü et al., Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. Nature 569(7755), 245–250 (2019). https://doi.org/10.1038/s41586-019-1175-6
- X. Wu, X. Ji, Aqueous batteries get energetic. Nat. Chem. 11(8), 680–681 (2019). https://doi.org/10.1038/s41557-019-0300-3
- Y. Liu, X. Lu, F. Lai, T. Liu, P.R. Shearing et al., Rechargeable aqueous Zn-based energy storage devices. Joule 5(11), 2845–2903 (2021). https://doi.org/10.1016/j.joule.2021.10.011
- X. Zhang, J.-P. Hu, N. Fu, W.-B. Zhou, B. Liu et al., Comprehensive review on zinc-ion battery anode: challenges and strategies. InfoMat 4(7), e12306 (2022). https://doi.org/10.1002/inf2.12306
- Y.S. Zhang, N.E. Courtier, Z. Zhang, K. Liu, J.J. Bailey et al., A review of lithium-ion battery electrode drying: mechanisms and metrology. Adv. Energy Mater. 12(2), 2102233 (2022). https://doi.org/10.1002/aenm.202102233
- T.-W. Kwon, J.W. Choi, A. Coskun, Prospect for supramolecular chemistry in high-energy-density rechargeable batteries. Joule 3(3), 662–682 (2019). https://doi.org/10.1016/j.joule.2019.01.006
- J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen et al., The success story of graphite as a lithium-ion anode material – fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels 4(11), 5387–5416 (2020). https://doi.org/10.1039/D0SE00175A
- J. Shin, J. Lee, Y. Park, J.W. Choi, Aqueous zinc ion batteries: Focus on zinc metal anodes. Chem. Sci. 11(8), 2028–2044 (2020). https://doi.org/10.1039/D0SC00022A
- S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure et al., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105, 52–76 (2016). https://doi.org/10.1016/j.carbon.2016.04.008
- Q. Li, J. Chen, L. Fan, X. Kong, Y. Lu, Progress in electrolytes for rechargeable li-based batteries and beyond. Green Energy Environ. 1(1), 18–42 (2016). https://doi.org/10.1016/j.gee.2016.04.006
- B. Yuan, K. Wen, D. Chen, Y. Liu, Y. Dong et al., Composite separators for robust high rate lithium ion batteries. Adv. Funct. Mater. 31(32), 2101420 (2021). https://doi.org/10.1002/adfm.202101420
- W. Luo, S. Cheng, M. Wu, X. Zhang, D. Yang et al., A review of advanced separators for rechargeable batteries. J. Power. Sources 509, 230372 (2021). https://doi.org/10.1016/j.jpowsour.2021.230372
- W. Zhang, Z. Tu, J. Qian, S. Choudhury, L.A. Archer et al., Design principles of functional polymer separators for high-energy, metal-based batteries. Small 14(11), 1703001 (2018). https://doi.org/10.1002/smll.201703001
- A.L. Mong, Q.X. Shi, H. Jeon, Y.S. Ye, X.L. Xie et al., Tough and flexible, super ion-conductive electrolyte membranes for lithium-based secondary battery applications. Adv. Funct. Mater. 31(12), 2008586 (2021). https://doi.org/10.1002/adfm.202008586
- F. Baskoro, H.Q. Wong, H.-J. Yen, Strategic structural design of a gel polymer electrolyte toward a high efficiency lithium-ion battery. ACS Appl. Energy Mater. 2(6), 3937–3971 (2019). https://doi.org/10.1021/acsaem.9b00295
- H. Zhang, C. Li, M. Piszcz, E. Coya, T. Rojo et al., Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem. Soc. Rev. 46(3), 797–815 (2017). https://doi.org/10.1039/C6CS00491A
- T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18(12), 1278–1291 (2019). https://doi.org/10.1038/s41563-019-0431-3
- T. Ye, L. Li, Y. Zhang, Recent progress in solid electrolytes for energy storage devices. Adv. Funct. Mater. 30(29), 2000077 (2020). https://doi.org/10.1002/adfm.202000077
- F. Duffner, N. Kronemeyer, J. Tübke, J. Leker, M. Winter et al., Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 6(2), 123–134 (2021). https://doi.org/10.1038/s41560-020-00748-8
- Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4(4), 269–280 (2019). https://doi.org/10.1038/s41560-019-0336-z
- M.D. Tikekar, S. Choudhury, Z. Tu, L.A. Archer, Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1(9), 16114 (2016). https://doi.org/10.1038/nenergy.2016.114
- Y. Lv, Y. Xiao, L. Ma, C. Zhi, S. Chen, Recent advances in electrolytes for “beyond aqueous” zinc-ion batteries. Adv. Mater. 34(4), 2106409 (2022). https://doi.org/10.1002/adma.202106409
- H. Zhang, X. Liu, H. Li, I. Hasa, S. Passerini, Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew. Chem. Int. Ed. 60(2), 598–616 (2021). https://doi.org/10.1002/anie.202004433
- M. Li, C. Wang, Z. Chen, K. Xu, J. Lu, New concepts in electrolytes. Chem. Rev. 120(14), 6783–6819 (2020). https://doi.org/10.1021/acs.chemrev.9b00531
- F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu et al., A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54(100), 14097–14099 (2018). https://doi.org/10.1039/C8CC07730D
- L. Suo, O. Borodin, W. Sun, X. Fan, C. Yang et al., Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem. Int. Ed. 55(25), 7136–7141 (2016). https://doi.org/10.1002/anie.201602397
- Y. Yamada, K. Usui, K. Sodeyama, S. Ko, Y. Tateyama et al., Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nat. Energy 1(10), 16129 (2016). https://doi.org/10.1038/nenergy.2016.129
- S. Kondou, E. Nozaki, S. Terada, M.L. Thomas, K. Ueno et al., Enhanced electrochemical stability of molten li salt hydrate electrolytes by the addition of divalent cations. J. Phys. Chem. C 122(35), 20167–20175 (2018). https://doi.org/10.1021/acs.jpcc.8b06251
- S. Ko, Y. Yamada, K. Miyazaki, T. Shimada, E. Watanabe et al., Lithium-salt monohydrate melt: a stable electrolyte for aqueous lithium-ion batteries. Electrochem. Commun. 104, 106488 (2019). https://doi.org/10.1016/j.elecom.2019.106488
- N. Dubouis, P. Lemaire, B. Mirvaux, E. Salager, M. Deschamps et al., The role of the hydrogen evolution reaction in the solid–electrolyte interphase formation mechanism for “water-in-salt” electrolytes. Energy Environ. Sci. 11(12), 3491–3499 (2018). https://doi.org/10.1039/C8EE02456A
- C. Yang, X. Ji, X. Fan, T. Gao, L. Suo et al., Flexible aqueous Li-ion battery with high energy and power densities. Adv. Mater. 29(44), 1701972 (2017). https://doi.org/10.1002/adma.201701972
- C. Yang, J. Chen, T. Qing, X. Fan, W. Sun et al., 4.0 V Aqueous Li-ion batteries. Joule 1(1), 122–132 (2017). https://doi.org/10.1016/j.joule.2017.08.009
- L. Li, H. Cheng, J. Zhang, Y. Guo, C. Sun et al., Quantitative chemistry in electrolyte solvation design for aqueous batteries. ACS Energy Lett. 8(2), 1076–1095 (2023). https://doi.org/10.1021/acsenergylett.2c02585
- S. Weng, X. Zhang, G. Yang, S. Zhang, B. Ma et al., Temperature-dependent interphase formation and Li+ transport in lithium metal batteries. Nat. Commun. 14(1), 4474 (2023). https://doi.org/10.1038/s41467-023-40221-0
- Z. Chang, Y. Qiao, H. Deng, H. Yang, P. He et al., A liquid electrolyte with de-solvated lithium ions for lithium-metal battery. Joule 4(8), 1776–1789 (2020). https://doi.org/10.1016/j.joule.2020.06.011
- C. Yang, L. Suo, O. Borodin, F. Wang, W. Sun et al., Unique Aqueous Li-ion/sulfur chemistry with high energy density and reversibility. Proc. Natl. Acad. Sci. U.S.A. 114(24), 6197–6202 (2017). https://doi.org/10.1073/pnas.1703937114
- H. Zhang, X. Liu, H. Li, B. Qin, S. Passerini, High-voltage operation of a V2O5 cathode in a concentrated gel polymer electrolyte for high-energy aqueous zinc batteries. ACS Appl. Mater. Interfaces 12(13), 15305–15312 (2020). https://doi.org/10.1021/acsami.0c02102
- S.A. Langevin, B. Tan, A.W. Freeman, J.C. Gagnon, C.M. Hoffman et al., UV-cured gel polymer electrolytes with improved stability for advanced aqueous Li-ion batteries. Chem. Commun. 55(87), 13085–13088 (2019). https://doi.org/10.1039/C9CC06207F
- J.M. Park, M. Jana, P. Nakhanivej, B.-K. Kim, H.S. Park, Facile multivalent redox chemistries in water-in-bisalt hydrogel electrolytes for hybrid energy storage full cells. ACS Energy Lett. 5(4), 1054–1061 (2020). https://doi.org/10.1021/acsenergylett.0c00059
- J. Zhang, C. Cui, P.-F. Wang, Q. Li, L. Chen et al., “Water-in-salt” polymer electrolyte for Li-ion batteries. Energy Environ. Sci. 13(9), 2878–2887 (2020). https://doi.org/10.1039/D0EE01510E
- Y. Tamai, H. Tanaka, K. Nakanishi, Molecular dynamics study of polymer−water interaction in hydrogels. 1. Hydrogen-bond structure. Macromolecules 29(21), 6750–6760 (1996). https://doi.org/10.1021/ma951635z
- Y. Tamai, H. Tanaka, K. Nakanishi, Molecular dynamics study of polymer−water interaction in hydrogels. 2. Hydrogen-bond dynamics. Macromolecules 29(21), 6761–6769 (1996). https://doi.org/10.1021/ma960961r
- R. Yudianti, M. Karina, M. Sakamoto, J.-I. Azuma, DSC analysis on water state of salvia hydrogels. Macromol. Res. 17(12), 1015–1020 (2009). https://doi.org/10.1007/BF03218650
- P. Yang, J.-L. Yang, K. Liu, H.J. Fan, Hydrogels enable future smart batteries. ACS Nano 16(10), 15528–15536 (2022). https://doi.org/10.1021/acsnano.2c07468
- F. Yang, J.A. Yuwono, J. Hao, J. Long, L. Yuan et al., Understanding H2 evolution electrochemistry to minimize solvated water impact on zinc-anode performance. Adv. Mater. 34(45), 2206754 (2022). https://doi.org/10.1002/adma.202206754
- C. Zhang, No need to reduce water. Nat. Energy 5(5), 355–355 (2020). https://doi.org/10.1038/s41560-020-0626-5
- J. Brown, A. Grimaud, With only a grain of salt. Nat. Energy 7(2), 126–127 (2022). https://doi.org/10.1038/s41560-022-00981-3
- J. Yue, J. Zhang, Y. Tong, M. Chen, L. Liu et al., Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime. Nat. Chem. 13(11), 1061–1069 (2021). https://doi.org/10.1038/s41557-021-00787-y
- J. Xu, C. Wang, Perspective—electrolyte design for aqueous batteries: from ultra-high concentration to low concentration. J. Electrochem. Soc. 169(3), 030530 (2022). https://doi.org/10.1149/1945-7111/ac5ba9
- X. He, B. Yan, X. Zhang, Z. Liu, D. Bresser et al., Fluorine-free water-in-ionomer electrolytes for sustainable lithium-ion batteries. Nat. Commun. 9(1), 5320 (2018). https://doi.org/10.1038/s41467-018-07331-6
- J. Xie, Z. Liang, Y.-C. Lu, Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19(9), 1006–1011 (2020). https://doi.org/10.1038/s41563-020-0667-y
- J. Xu, X. Ji, J. Zhang, C. Yang, P. Wang et al., Aqueous electrolyte design for super-stable 2.5 V LiMn2O4 ||Li4Ti5O12 pouch cells. Nat. Energy 7(2), 186–193 (2022). https://doi.org/10.1038/s41560-021-00977-5
- D.T. Boyle, S.C. Kim, S.T. Oyakhire, R.A. Vilá, Z. Huang et al., Correlating kinetics to cyclability reveals thermodynamic origin of lithium anode morphology in liquid electrolytes. J. Am. Chem. Soc. 144(45), 20717–20725 (2022). https://doi.org/10.1021/jacs.2c08182
- D. Ji, J.M. Park, M.S. Oh, T.L. Nguyen, H. Shin et al., Superstrong, superstiff, and conductive alginate hydrogels. Nat. Commun. 13(1), 3019 (2022). https://doi.org/10.1038/s41467-022-30691-z
- Y. Liang, Y. Yao, Designing modern aqueous batteries. Nat. Rev. Mater. 8(2), 109–122 (2023). https://doi.org/10.1038/s41578-022-00511-3
- D. Kilburn, J.H. Roh, L. Guo, R.M. Briber, S.A. Woodson, Molecular crowding stabilizes folded RNA structure by the excluded volume effect. J. Am. Chem. Soc. 132(25), 8690–8696 (2010). https://doi.org/10.1021/ja101500g
- M. Gao, D. Gnutt, A. Orban, B. Appel, F. Righetti et al., RNA hairpin folding in the crowded cell. Angew. Chem. Int. Ed. 55(9), 3224–3228 (2016). https://doi.org/10.1002/anie.201510847
- L.A. Ferreira, V.N. Uversky, B.Y. Zaslavsky, Role of solvent properties of water in crowding effects induced by macromolecular agents and osmolytes. Mol. BioSyst. 13(12), 2551–2563 (2017). https://doi.org/10.1039/C7MB00436B
- S. Wang, A. Lu, C.-J. Zhong, Hydrogen production from water electrolysis: role of catalysts. Nano Converg. 8(1), 4 (2021). https://doi.org/10.1186/s40580-021-00254-x
- Y. Hata, T. Sawada, T. Serizawa, Macromolecular crowding for materials-directed controlled self-assembly. J. Mater. Chem. B 6(40), 6344–6359 (2018). https://doi.org/10.1039/C8TB02201A
- G. Rivas, A.P. Minton, Macromolecular crowding in vitro, in vivo, and in between. Trends Biochem. Sci. 41(11), 970–981 (2016). https://doi.org/10.1016/j.tibs.2016.08.013
- V. Raj, V. Venturi, V.R. Kankanallu, B. Kuiri, V. Viswanathan et al., Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers. Nat. Mater. 21(9), 1050–1056 (2022). https://doi.org/10.1038/s41563-022-01264-8
- H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
- Z. Miao, F. Zhang, H. Zhao, M. Du, H. Li et al., Tailoring local electrolyte solvation structure via a mesoporous molecular sieve for dendrite-free zinc batteries. Adv. Funct. Mater. 32(20), 2111635 (2022). https://doi.org/10.1002/adfm.202111635
- R. Xiao, Z. Cai, R. Zhan, J. Wang, Y. Ou et al., Localizing concentrated electrolyte in pore geometry for highly reversible aqueous Zn metal batteries. Chem. Eng. J. 420, 129642 (2021). https://doi.org/10.1016/j.cej.2021.129642
- B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14(1), 6 (2021). https://doi.org/10.1007/s40820-021-00764-7
- J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14(1), 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
- S. Ye, X. Chen, R. Zhang, Y. Jiang, F. Huang et al., Revisiting the role of physical confinement and chemical regulation of 3D hosts for dendrite-free Li metal anode. Nano-Micro Lett. 14(1), 187 (2022). https://doi.org/10.1007/s40820-022-00932-3
- Y. Lu, R. Zhou, N. Wang, Y. Yang, Z. Zheng et al., Engineer nanoscale defects into selective channels: MOF-Enhanced Li+ separation by porous layered double hydroxide membrane. Nano-Micro Lett. 15(1), 147 (2023). https://doi.org/10.1007/s40820-023-01101-w
- C. Monroe, J. Newman, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152(2), A396 (2005). https://doi.org/10.1149/1.1850854
- C.D. Fincher, C.E. Athanasiou, C. Gilgenbach, M. Wang, B.W. Sheldon et al., Controlling dendrite propagation in solid-state batteries with engineered stress. Joule. https://doi.org/10.1016/j.joule.2022.10.011
- D. Ji, T.L. Nguyen, J. Kim, Bioinspired structural composite hydrogels with a combination of high strength, stiffness, and toughness. Adv. Funct. Mater. 31(28), 2101095 (2021). https://doi.org/10.1002/adfm.202101095
- X. Yang, J. Liu, N. Pei, Z. Chen, R. Li et al., The critical role of fillers in composite polymer electrolytes for lithium battery. Nano-Micro Lett. 15(1), 74 (2023). https://doi.org/10.1007/s40820-023-01051-3
- Y. Su, F. Xu, X. Zhang, Y. Qiu, H. Wang, Rational design of high-performance PEO/ceramic composite solid electrolytes for lithium metal batteries. Nano-Micro Lett. 15(1), 82 (2023). https://doi.org/10.1007/s40820-023-01055-z
- D. Aurbach, M. Levi, N. Shpigel, Upshifting potentials to increase reversibility. Nat. Energy (2022). https://doi.org/10.1038/s41560-022-01171-x
- S. Ko, T. Obukata, T. Shimada, N. Takenaka, M. Nakayama et al., Electrode potential influences the reversibility of lithium-metal anodes. Nat. Energy 7, 1217–1224 (2022). https://doi.org/10.1038/s41560-022-01144-0
- S. Ko, N. Takenaka, A. Kitada, A. Yamada, Electrolyte science, What’s next? Next Energy 1(2), 100014 (2023). https://doi.org/10.1016/j.nxener.2023.100014
References
K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety. Sci. Adv. 4(6), eaas9820 (2018). https://doi.org/10.1126/sciadv.aas9820
D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6(21), eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098
G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater et al., Recycling lithium-ion batteries from electric vehicles. Nature 575(7781), 75–86 (2019). https://doi.org/10.1038/s41586-019-1682-5
C.P. Grey, J.M. Tarascon, Sustainability and in situ monitoring in battery development. Nat. Mater. 16(1), 45–56 (2017). https://doi.org/10.1038/nmat4777
D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7(1), 19–29 (2015). https://doi.org/10.1038/nchem.2085
K. Xu, Li-ion battery electrolytes. Nat. Energy 6(7), 763–763 (2021). https://doi.org/10.1038/s41560-021-00841-6
L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350(6263), 938–943 (2015)
L. Smith, B. Dunn, Opening the window for aqueous electrolytes. Science 350(6263), 918–918 (2015). https://doi.org/10.1126/science.aad5575
C. Yang, J. Chen, X. Ji, T.P. Pollard, X. Lü et al., Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. Nature 569(7755), 245–250 (2019). https://doi.org/10.1038/s41586-019-1175-6
X. Wu, X. Ji, Aqueous batteries get energetic. Nat. Chem. 11(8), 680–681 (2019). https://doi.org/10.1038/s41557-019-0300-3
Y. Liu, X. Lu, F. Lai, T. Liu, P.R. Shearing et al., Rechargeable aqueous Zn-based energy storage devices. Joule 5(11), 2845–2903 (2021). https://doi.org/10.1016/j.joule.2021.10.011
X. Zhang, J.-P. Hu, N. Fu, W.-B. Zhou, B. Liu et al., Comprehensive review on zinc-ion battery anode: challenges and strategies. InfoMat 4(7), e12306 (2022). https://doi.org/10.1002/inf2.12306
Y.S. Zhang, N.E. Courtier, Z. Zhang, K. Liu, J.J. Bailey et al., A review of lithium-ion battery electrode drying: mechanisms and metrology. Adv. Energy Mater. 12(2), 2102233 (2022). https://doi.org/10.1002/aenm.202102233
T.-W. Kwon, J.W. Choi, A. Coskun, Prospect for supramolecular chemistry in high-energy-density rechargeable batteries. Joule 3(3), 662–682 (2019). https://doi.org/10.1016/j.joule.2019.01.006
J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen et al., The success story of graphite as a lithium-ion anode material – fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels 4(11), 5387–5416 (2020). https://doi.org/10.1039/D0SE00175A
J. Shin, J. Lee, Y. Park, J.W. Choi, Aqueous zinc ion batteries: Focus on zinc metal anodes. Chem. Sci. 11(8), 2028–2044 (2020). https://doi.org/10.1039/D0SC00022A
S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure et al., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105, 52–76 (2016). https://doi.org/10.1016/j.carbon.2016.04.008
Q. Li, J. Chen, L. Fan, X. Kong, Y. Lu, Progress in electrolytes for rechargeable li-based batteries and beyond. Green Energy Environ. 1(1), 18–42 (2016). https://doi.org/10.1016/j.gee.2016.04.006
B. Yuan, K. Wen, D. Chen, Y. Liu, Y. Dong et al., Composite separators for robust high rate lithium ion batteries. Adv. Funct. Mater. 31(32), 2101420 (2021). https://doi.org/10.1002/adfm.202101420
W. Luo, S. Cheng, M. Wu, X. Zhang, D. Yang et al., A review of advanced separators for rechargeable batteries. J. Power. Sources 509, 230372 (2021). https://doi.org/10.1016/j.jpowsour.2021.230372
W. Zhang, Z. Tu, J. Qian, S. Choudhury, L.A. Archer et al., Design principles of functional polymer separators for high-energy, metal-based batteries. Small 14(11), 1703001 (2018). https://doi.org/10.1002/smll.201703001
A.L. Mong, Q.X. Shi, H. Jeon, Y.S. Ye, X.L. Xie et al., Tough and flexible, super ion-conductive electrolyte membranes for lithium-based secondary battery applications. Adv. Funct. Mater. 31(12), 2008586 (2021). https://doi.org/10.1002/adfm.202008586
F. Baskoro, H.Q. Wong, H.-J. Yen, Strategic structural design of a gel polymer electrolyte toward a high efficiency lithium-ion battery. ACS Appl. Energy Mater. 2(6), 3937–3971 (2019). https://doi.org/10.1021/acsaem.9b00295
H. Zhang, C. Li, M. Piszcz, E. Coya, T. Rojo et al., Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem. Soc. Rev. 46(3), 797–815 (2017). https://doi.org/10.1039/C6CS00491A
T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18(12), 1278–1291 (2019). https://doi.org/10.1038/s41563-019-0431-3
T. Ye, L. Li, Y. Zhang, Recent progress in solid electrolytes for energy storage devices. Adv. Funct. Mater. 30(29), 2000077 (2020). https://doi.org/10.1002/adfm.202000077
F. Duffner, N. Kronemeyer, J. Tübke, J. Leker, M. Winter et al., Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 6(2), 123–134 (2021). https://doi.org/10.1038/s41560-020-00748-8
Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4(4), 269–280 (2019). https://doi.org/10.1038/s41560-019-0336-z
M.D. Tikekar, S. Choudhury, Z. Tu, L.A. Archer, Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1(9), 16114 (2016). https://doi.org/10.1038/nenergy.2016.114
Y. Lv, Y. Xiao, L. Ma, C. Zhi, S. Chen, Recent advances in electrolytes for “beyond aqueous” zinc-ion batteries. Adv. Mater. 34(4), 2106409 (2022). https://doi.org/10.1002/adma.202106409
H. Zhang, X. Liu, H. Li, I. Hasa, S. Passerini, Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew. Chem. Int. Ed. 60(2), 598–616 (2021). https://doi.org/10.1002/anie.202004433
M. Li, C. Wang, Z. Chen, K. Xu, J. Lu, New concepts in electrolytes. Chem. Rev. 120(14), 6783–6819 (2020). https://doi.org/10.1021/acs.chemrev.9b00531
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu et al., A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54(100), 14097–14099 (2018). https://doi.org/10.1039/C8CC07730D
L. Suo, O. Borodin, W. Sun, X. Fan, C. Yang et al., Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem. Int. Ed. 55(25), 7136–7141 (2016). https://doi.org/10.1002/anie.201602397
Y. Yamada, K. Usui, K. Sodeyama, S. Ko, Y. Tateyama et al., Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nat. Energy 1(10), 16129 (2016). https://doi.org/10.1038/nenergy.2016.129
S. Kondou, E. Nozaki, S. Terada, M.L. Thomas, K. Ueno et al., Enhanced electrochemical stability of molten li salt hydrate electrolytes by the addition of divalent cations. J. Phys. Chem. C 122(35), 20167–20175 (2018). https://doi.org/10.1021/acs.jpcc.8b06251
S. Ko, Y. Yamada, K. Miyazaki, T. Shimada, E. Watanabe et al., Lithium-salt monohydrate melt: a stable electrolyte for aqueous lithium-ion batteries. Electrochem. Commun. 104, 106488 (2019). https://doi.org/10.1016/j.elecom.2019.106488
N. Dubouis, P. Lemaire, B. Mirvaux, E. Salager, M. Deschamps et al., The role of the hydrogen evolution reaction in the solid–electrolyte interphase formation mechanism for “water-in-salt” electrolytes. Energy Environ. Sci. 11(12), 3491–3499 (2018). https://doi.org/10.1039/C8EE02456A
C. Yang, X. Ji, X. Fan, T. Gao, L. Suo et al., Flexible aqueous Li-ion battery with high energy and power densities. Adv. Mater. 29(44), 1701972 (2017). https://doi.org/10.1002/adma.201701972
C. Yang, J. Chen, T. Qing, X. Fan, W. Sun et al., 4.0 V Aqueous Li-ion batteries. Joule 1(1), 122–132 (2017). https://doi.org/10.1016/j.joule.2017.08.009
L. Li, H. Cheng, J. Zhang, Y. Guo, C. Sun et al., Quantitative chemistry in electrolyte solvation design for aqueous batteries. ACS Energy Lett. 8(2), 1076–1095 (2023). https://doi.org/10.1021/acsenergylett.2c02585
S. Weng, X. Zhang, G. Yang, S. Zhang, B. Ma et al., Temperature-dependent interphase formation and Li+ transport in lithium metal batteries. Nat. Commun. 14(1), 4474 (2023). https://doi.org/10.1038/s41467-023-40221-0
Z. Chang, Y. Qiao, H. Deng, H. Yang, P. He et al., A liquid electrolyte with de-solvated lithium ions for lithium-metal battery. Joule 4(8), 1776–1789 (2020). https://doi.org/10.1016/j.joule.2020.06.011
C. Yang, L. Suo, O. Borodin, F. Wang, W. Sun et al., Unique Aqueous Li-ion/sulfur chemistry with high energy density and reversibility. Proc. Natl. Acad. Sci. U.S.A. 114(24), 6197–6202 (2017). https://doi.org/10.1073/pnas.1703937114
H. Zhang, X. Liu, H. Li, B. Qin, S. Passerini, High-voltage operation of a V2O5 cathode in a concentrated gel polymer electrolyte for high-energy aqueous zinc batteries. ACS Appl. Mater. Interfaces 12(13), 15305–15312 (2020). https://doi.org/10.1021/acsami.0c02102
S.A. Langevin, B. Tan, A.W. Freeman, J.C. Gagnon, C.M. Hoffman et al., UV-cured gel polymer electrolytes with improved stability for advanced aqueous Li-ion batteries. Chem. Commun. 55(87), 13085–13088 (2019). https://doi.org/10.1039/C9CC06207F
J.M. Park, M. Jana, P. Nakhanivej, B.-K. Kim, H.S. Park, Facile multivalent redox chemistries in water-in-bisalt hydrogel electrolytes for hybrid energy storage full cells. ACS Energy Lett. 5(4), 1054–1061 (2020). https://doi.org/10.1021/acsenergylett.0c00059
J. Zhang, C. Cui, P.-F. Wang, Q. Li, L. Chen et al., “Water-in-salt” polymer electrolyte for Li-ion batteries. Energy Environ. Sci. 13(9), 2878–2887 (2020). https://doi.org/10.1039/D0EE01510E
Y. Tamai, H. Tanaka, K. Nakanishi, Molecular dynamics study of polymer−water interaction in hydrogels. 1. Hydrogen-bond structure. Macromolecules 29(21), 6750–6760 (1996). https://doi.org/10.1021/ma951635z
Y. Tamai, H. Tanaka, K. Nakanishi, Molecular dynamics study of polymer−water interaction in hydrogels. 2. Hydrogen-bond dynamics. Macromolecules 29(21), 6761–6769 (1996). https://doi.org/10.1021/ma960961r
R. Yudianti, M. Karina, M. Sakamoto, J.-I. Azuma, DSC analysis on water state of salvia hydrogels. Macromol. Res. 17(12), 1015–1020 (2009). https://doi.org/10.1007/BF03218650
P. Yang, J.-L. Yang, K. Liu, H.J. Fan, Hydrogels enable future smart batteries. ACS Nano 16(10), 15528–15536 (2022). https://doi.org/10.1021/acsnano.2c07468
F. Yang, J.A. Yuwono, J. Hao, J. Long, L. Yuan et al., Understanding H2 evolution electrochemistry to minimize solvated water impact on zinc-anode performance. Adv. Mater. 34(45), 2206754 (2022). https://doi.org/10.1002/adma.202206754
C. Zhang, No need to reduce water. Nat. Energy 5(5), 355–355 (2020). https://doi.org/10.1038/s41560-020-0626-5
J. Brown, A. Grimaud, With only a grain of salt. Nat. Energy 7(2), 126–127 (2022). https://doi.org/10.1038/s41560-022-00981-3
J. Yue, J. Zhang, Y. Tong, M. Chen, L. Liu et al., Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime. Nat. Chem. 13(11), 1061–1069 (2021). https://doi.org/10.1038/s41557-021-00787-y
J. Xu, C. Wang, Perspective—electrolyte design for aqueous batteries: from ultra-high concentration to low concentration. J. Electrochem. Soc. 169(3), 030530 (2022). https://doi.org/10.1149/1945-7111/ac5ba9
X. He, B. Yan, X. Zhang, Z. Liu, D. Bresser et al., Fluorine-free water-in-ionomer electrolytes for sustainable lithium-ion batteries. Nat. Commun. 9(1), 5320 (2018). https://doi.org/10.1038/s41467-018-07331-6
J. Xie, Z. Liang, Y.-C. Lu, Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19(9), 1006–1011 (2020). https://doi.org/10.1038/s41563-020-0667-y
J. Xu, X. Ji, J. Zhang, C. Yang, P. Wang et al., Aqueous electrolyte design for super-stable 2.5 V LiMn2O4 ||Li4Ti5O12 pouch cells. Nat. Energy 7(2), 186–193 (2022). https://doi.org/10.1038/s41560-021-00977-5
D.T. Boyle, S.C. Kim, S.T. Oyakhire, R.A. Vilá, Z. Huang et al., Correlating kinetics to cyclability reveals thermodynamic origin of lithium anode morphology in liquid electrolytes. J. Am. Chem. Soc. 144(45), 20717–20725 (2022). https://doi.org/10.1021/jacs.2c08182
D. Ji, J.M. Park, M.S. Oh, T.L. Nguyen, H. Shin et al., Superstrong, superstiff, and conductive alginate hydrogels. Nat. Commun. 13(1), 3019 (2022). https://doi.org/10.1038/s41467-022-30691-z
Y. Liang, Y. Yao, Designing modern aqueous batteries. Nat. Rev. Mater. 8(2), 109–122 (2023). https://doi.org/10.1038/s41578-022-00511-3
D. Kilburn, J.H. Roh, L. Guo, R.M. Briber, S.A. Woodson, Molecular crowding stabilizes folded RNA structure by the excluded volume effect. J. Am. Chem. Soc. 132(25), 8690–8696 (2010). https://doi.org/10.1021/ja101500g
M. Gao, D. Gnutt, A. Orban, B. Appel, F. Righetti et al., RNA hairpin folding in the crowded cell. Angew. Chem. Int. Ed. 55(9), 3224–3228 (2016). https://doi.org/10.1002/anie.201510847
L.A. Ferreira, V.N. Uversky, B.Y. Zaslavsky, Role of solvent properties of water in crowding effects induced by macromolecular agents and osmolytes. Mol. BioSyst. 13(12), 2551–2563 (2017). https://doi.org/10.1039/C7MB00436B
S. Wang, A. Lu, C.-J. Zhong, Hydrogen production from water electrolysis: role of catalysts. Nano Converg. 8(1), 4 (2021). https://doi.org/10.1186/s40580-021-00254-x
Y. Hata, T. Sawada, T. Serizawa, Macromolecular crowding for materials-directed controlled self-assembly. J. Mater. Chem. B 6(40), 6344–6359 (2018). https://doi.org/10.1039/C8TB02201A
G. Rivas, A.P. Minton, Macromolecular crowding in vitro, in vivo, and in between. Trends Biochem. Sci. 41(11), 970–981 (2016). https://doi.org/10.1016/j.tibs.2016.08.013
V. Raj, V. Venturi, V.R. Kankanallu, B. Kuiri, V. Viswanathan et al., Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers. Nat. Mater. 21(9), 1050–1056 (2022). https://doi.org/10.1038/s41563-022-01264-8
H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
Z. Miao, F. Zhang, H. Zhao, M. Du, H. Li et al., Tailoring local electrolyte solvation structure via a mesoporous molecular sieve for dendrite-free zinc batteries. Adv. Funct. Mater. 32(20), 2111635 (2022). https://doi.org/10.1002/adfm.202111635
R. Xiao, Z. Cai, R. Zhan, J. Wang, Y. Ou et al., Localizing concentrated electrolyte in pore geometry for highly reversible aqueous Zn metal batteries. Chem. Eng. J. 420, 129642 (2021). https://doi.org/10.1016/j.cej.2021.129642
B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14(1), 6 (2021). https://doi.org/10.1007/s40820-021-00764-7
J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14(1), 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
S. Ye, X. Chen, R. Zhang, Y. Jiang, F. Huang et al., Revisiting the role of physical confinement and chemical regulation of 3D hosts for dendrite-free Li metal anode. Nano-Micro Lett. 14(1), 187 (2022). https://doi.org/10.1007/s40820-022-00932-3
Y. Lu, R. Zhou, N. Wang, Y. Yang, Z. Zheng et al., Engineer nanoscale defects into selective channels: MOF-Enhanced Li+ separation by porous layered double hydroxide membrane. Nano-Micro Lett. 15(1), 147 (2023). https://doi.org/10.1007/s40820-023-01101-w
C. Monroe, J. Newman, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152(2), A396 (2005). https://doi.org/10.1149/1.1850854
C.D. Fincher, C.E. Athanasiou, C. Gilgenbach, M. Wang, B.W. Sheldon et al., Controlling dendrite propagation in solid-state batteries with engineered stress. Joule. https://doi.org/10.1016/j.joule.2022.10.011
D. Ji, T.L. Nguyen, J. Kim, Bioinspired structural composite hydrogels with a combination of high strength, stiffness, and toughness. Adv. Funct. Mater. 31(28), 2101095 (2021). https://doi.org/10.1002/adfm.202101095
X. Yang, J. Liu, N. Pei, Z. Chen, R. Li et al., The critical role of fillers in composite polymer electrolytes for lithium battery. Nano-Micro Lett. 15(1), 74 (2023). https://doi.org/10.1007/s40820-023-01051-3
Y. Su, F. Xu, X. Zhang, Y. Qiu, H. Wang, Rational design of high-performance PEO/ceramic composite solid electrolytes for lithium metal batteries. Nano-Micro Lett. 15(1), 82 (2023). https://doi.org/10.1007/s40820-023-01055-z
D. Aurbach, M. Levi, N. Shpigel, Upshifting potentials to increase reversibility. Nat. Energy (2022). https://doi.org/10.1038/s41560-022-01171-x
S. Ko, T. Obukata, T. Shimada, N. Takenaka, M. Nakayama et al., Electrode potential influences the reversibility of lithium-metal anodes. Nat. Energy 7, 1217–1224 (2022). https://doi.org/10.1038/s41560-022-01144-0
S. Ko, N. Takenaka, A. Kitada, A. Yamada, Electrolyte science, What’s next? Next Energy 1(2), 100014 (2023). https://doi.org/10.1016/j.nxener.2023.100014