Layered Potassium Titanium Niobate/Reduced Graphene Oxide Nanocomposite as a Potassium-Ion Battery Anode
Corresponding Author: Yang Xu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 1
Abstract
With graphite currently leading as the most viable anode for potassium-ion batteries (KIBs), other materials have been left relatively under-examined. Transition metal oxides are among these, with many positive attributes such as synthetic maturity, long-term cycling stability and fast redox kinetics. Therefore, to address this research deficiency we report herein a layered potassium titanium niobate KTiNbO5 (KTNO) and its rGO nanocomposite (KTNO/rGO) synthesised via solvothermal methods as a high-performance anode for KIBs. Through effective distribution across the electrically conductive rGO, the electrochemical performance of the KTNO nanoparticles was enhanced. The potassium storage performance of the KTNO/rGO was demonstrated by its first charge capacity of 128.1 mAh g−1 and reversible capacity of 97.5 mAh g−1 after 500 cycles at 20 mA g−1, retaining 76.1% of the initial capacity, with an exceptional rate performance of 54.2 mAh g−1 at 1 A g−1. Furthermore, to investigate the attributes of KTNO in-situ XRD was performed, indicating a low-strain material. Ex-situ X-ray photoelectron spectra further investigated the mechanism of charge storage, with the titanium showing greater redox reversibility than the niobium. This work suggests this low-strain nature is a highly advantageous property and well worth regarding KTNO as a promising anode for future high-performance KIBs.
Highlights:
1 KTiNbO5 and KTiNbO5/reduced graphene oxide (rGO) nanocomposites were successfully synthesised via solvothermal methods. Optimising the rGO wt% yielded a composite with 12 wt% (KTNO/rGO-12).
2 KTNO/rGO-12 was tested for its potassium storage performance, achieving a first charge capacity of 128.1 mAh g−1 and retaining 76.1% over 500 cycles at 20 mAh g−1.
3 The mechanism of intercalation was examined, suggesting a potentially low-strain material, with both titanium and niobium redox activity contributing to the charge storage.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen et al., The success story of graphite as a lithium-ion anode material—fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels 4(11), 5387–5416 (2020). https://doi.org/10.1039/D0SE00175A
- Y. Mizutani, T. Abe, K. Ikeda, E. Ihara, M. Asano et al., Graphite intercalation compounds prepared in solutions of alkali metals in 2-methyltetrahydrofuran and 2,5-dimethyltetrahydrofuran. Carbon 35(1), 61–65 (1997). https://doi.org/10.1016/S0008-6223(96)00127-3
- D.M. Ottmers, H.F. Rase, Potassium graphites prepared by mixed-reaction technique. Carbon 4(1), 125–127 (1966). https://doi.org/10.1016/0008-6223(66)90017-0
- S. Komaba, T. Hasegawa, M. Dahbi, K. Kubota, Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 60, 172–175 (2015). https://doi.org/10.1016/j.elecom.2015.09.002
- Z. Jian, W. Luo, X. Ji, Carbon electrodes for k-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
- X. Wu, Y. Chen, Z. Xing, C.W.K. Lam, S.-S. Pang et al., Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 9(21), 1900343 (2019). https://doi.org/10.1002/aenm.201900343
- J. Zheng, Y. Wu, Y. Tong, X. Liu, Y. Sun et al., High capacity and fast kinetics of potassium-ion batteries boosted by nitrogen-doped mesoporous carbon spheres. Nano-Micro Lett. 13(1), 174 (2021). https://doi.org/10.1007/s40820-021-00706-3
- N. Cheng, W. Zhou, J. Liu, Z. Liu, B. Lu, Reversible oxygen-rich functional groups grafted 3d honeycomb-like carbon anode for super-long potassium ion batteries. Nano-Micro Lett. 14(1), 146 (2022). https://doi.org/10.1007/s40820-022-00892-8
- D. Li, F. Ji, T. Liu, X. Zhao, Q. Sun et al., Trash to treasure: recycling discarded agarose gel for practical na/k-ion batteries. J. Mater. Chem. A 10(28), 15026–15035 (2022). https://doi.org/10.1039/d2ta02007f
- D. Li, X. Ren, Q. Ai, Q. Sun, L. Zhu et al., Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201802386
- X. Li, J. Li, L. Ma, C. Yu, Z. Ji et al., Graphite anode for potassium ion batteries: current status and perspective. Energy Environ. Mater. 5(2), 458–469 (2022). https://doi.org/10.1002/eem2.12194
- D. Li, L. Dai, X. Ren, F. Ji, Q. Sun et al., Foldable potassium-ion batteries enabled by free-standing and flexible SnS2@C nanofibers. Energy Environ. Sci. 14(1), 424–436 (2021). https://doi.org/10.1039/d0ee02919j
- M.T. McDowell, S. Xia, T. Zhu, The mechanics of large-volume-change transformations in high-capacity battery materials. Extreme Mech. Lett. 9, 480–494 (2016). https://doi.org/10.1016/j.eml.2016.03.004
- J. Cao, J. Li, D. Li, Z. Yuan, Y. Zhang et al., Strongly coupled 2d transition metal chalcogenide-mxene-carbonaceous nanoribbon heterostructures with ultrafast ion transport for boosting sodium/potassium ions storage. Nano-Micro Lett. 13(1), 113 (2021). https://doi.org/10.1007/s40820-021-00623-5
- X. Li, J. Li, W. Zhuo, Z. Li, L. Ma et al., In situ monitoring the potassium-ion storage enhancement in iron selenide with ether-based electrolyte. Nano-Micro Lett. 13(1), 179 (2021). https://doi.org/10.1007/s40820-021-00708-1
- A. Rudola, A.J.R. Rennie, R. Heap, S.S. Meysami, A. Lowbridge et al., Commercialisation of high energy density sodium-ion batteries: Faradion’s journey and outlook. J. Mater. Chem A 9(13), 8279–8302 (2021). https://doi.org/10.1039/D1TA00376C
- R.C. Massé, C. Liu, Y. Li, L. Mai, G. Cao, Energy storage through intercalation reactions: electrodes for rechargeable batteries. Natl. Sci. Rev. 4(1), 26–53 (2017). https://doi.org/10.1093/nsr/nww093
- Crc handbook of chemistry and physics. 97th. pp 14–17
- Z. Tong, R. Yang, S. Wu, D. Shen, T. Jiao et al., Surface-engineered black niobium oxide@graphene nanosheets for high-performance sodium-/potassium-ion full batteries. Small 15(28), e1901272 (2019). https://doi.org/10.1002/smll.201901272
- J. Han, M. Xu, Y. Niu, G.N. Li, M. Wang, Y. Zhang, M. Jia, C.M. Li, Exploration of K2Ti8O17 as an anode material for potassium-ion batteries. Chem. Commun. 52(75), 11274–11276 (2016). https://doi.org/10.1039/c6cc05102b
- S. Zhao, L. Dong, B. Sun, K. Yan, J. Zhang et al., K2Ti2O5 @c microspheres with enhanced k(+) intercalation pseudocapacitance ensuring fast potassium storage and long-term cycling stability. Small 16(4), e1906131 (2020). https://doi.org/10.1002/smll.201906131
- A.P. Vijaya Kumar Saroja, Z. Wang, H.R. Tinker, F.R. Wang, P.R. Shearing et al., Enabling intercalation-type TiNb24O62 anode for sodium- and potassium-ion batteries via a synergetic strategy of oxygen vacancy and carbon incorporation. SusMat 3(2), 222–234 (2023). https://doi.org/10.1002/sus2.113
- B. Kishore, V.G.N. Munichandraiah, K2Ti4O9: a promising anode material for potassium ion batteries. J. Electrochem. Soc. 163(13), A2551–A2554 (2016). https://doi.org/10.1149/2.0421613jes
- Y. Dong, Z.S. Wu, S. Zheng, X. Wang, J. Qin, S. Wang et al., Ti3C2 mxene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano 11(5), 4792–4800 (2017). https://doi.org/10.1021/acsnano.7b01165
- D. Su, Y. Pei, L. Liu, Z. Liu, J. Liu et al., Wire-in-wire TiO(2)/C nanofibers free-standing anodes for Li-ion and K-ion batteries with long cycling stability and high capacity. Nano-Micro Lett. 13(1), 107 (2021). https://doi.org/10.1007/s40820-021-00632-4
- S. Dong, Z. Li, Z. Xing, X. Wu, X. Ji et al., Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS Appl. Mater. Interfaces 10(18), 15542–15547 (2018). https://doi.org/10.1021/acsami.7b15314
- A.K. Kulkarni, C.S. Praveen, Y.A. Sethi, R.P. Panmand, S.S. Arbuj et al., Nanostructured n-doped orthorhombic Nb2O5 as an efficient stable photocatalyst for hydrogen generation under visible light. Dalton Trans. 46(43), 14859–14868 (2017). https://doi.org/10.1039/c7dt02611k
- Y.-H. Zhu, J.-Z. Wang, Q. Zhang, Y.-F. Cui, G. Huang et al., Creation of a rigid host framework with optimum crystal structure and interface for zero-strain k-ion storage. Energy Environ. Sci. 15(4), 1529–1535 (2022). https://doi.org/10.1039/d1ee03924e
- L. Ling, X. Wang, M. Zhou, K. Wu, C. Lin et al., Carbon-coated flower-like TiO2 nanosphere as an ultrastable anode material for potassium-ion batteries: structure design and mechanism study. ACS Appl. Energy Mater. (2022). https://doi.org/10.1021/acsaem.2c03171
- A.D. Wadsley, Alkali titanoniobates. The crystal structures of KTinBO5 and KTi3NbO9. Acta Crystallogr. 17(6), 623–628 (1964). https://doi.org/10.1107/s0365110x64001530
- H. Takahashi, M. Kakihana, Y. Yamashita, K. Yoshida, S. Ikeda et al., Synthesis of nio-loaded ktinbo5 photocatalysts by a novel polymerizable complex method. J. Alloys Compd. 285(1), 77–81 (1999). https://doi.org/10.1016/S0925-8388(98)00968-2
- A. Kudo, E. Kaneko, Photoluminescent properties of ion-exchangeable layered oxides. Micropor. Mesopor. Mater. 21(4), 615–620 (1998). https://doi.org/10.1016/S1387-1811(98)00037-7
- H. Park, J. Kwon, H. Choi, T. Song, U. Paik, Microstructural control of new intercalation layered titanoniobates with large and reversible d-spacing for easy Na(+) ion uptake. Sci. Adv. 3(10), e1700509 (2017). https://doi.org/10.1126/sciadv.1700509
- Y. Yuan, H. Yu, X. Cheng, W. Ye, T. Liu et al., H0.92K0.08TinBo5 nanowires enabling high-performance lithium-ion uptake. ACS Appl. Mater. Interfaces 11(9), 9136–9143 (2019). https://doi.org/10.1021/acsami.8b21817
- C. Lai, Z. Zhang, Y. Xu, J. Liao, Z. Xu et al., A general strategy for embedding ultrasmall CoMx nanocrystals (m = S, O, Se, and Te) in hierarchical porous carbon nanofibers for high-performance potassium storage. J. Mater. Chem. A 9(3), 1487–1494 (2021). https://doi.org/10.1039/d0ta11273a
- M. Jiang, L. Sheng, C. Wang, L. Jiang, Z. Fan, Graphene film for supercapacitors: preparation, foundational unit structure and surface regulation. Acta Phys. Chim. Sinica (2021). https://doi.org/10.3866/pku.Whxb202012085
- S. Che, S.K. Behura, V. Berry, Photo-organometallic, nanop nucleation on graphene for cascaded doping. ACS Nano 13(11), 12929–12938 (2019). https://doi.org/10.1021/acsnano.9b05484
- J. Li, M. Östling, Prevention of graphene restacking for performance boost of supercapacitors—a review. Crystals 3(1), 163–190 (2013). https://doi.org/10.3390/cryst3010163
- Y. Du, Z. Yi, B. Chen, J. Xu, Z. Zhang et al., Sn4P3 nanops confined in multilayer graphene sheets as a high-performance anode material for potassium-ion batteries. J. Energy Chem. 66, 413–421 (2022). https://doi.org/10.1016/j.jechem.2021.08.043
- W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958). https://doi.org/10.1021/ja01539a017
- Q. Cheng, J. Liang, Y. Zhu, L. Si, C. Guo et al., Bulk ti2nb10o29as long-life and high-power li-ion battery anodes. J. Mater. Chem. A 2(41), 17258–17262 (2014). https://doi.org/10.1039/c4ta04184d
- C. Yang, S. Deng, C. Lin, S. Lin, Y. Chen et al., Porous Tinb(24)O(62) microspheres as high-performance anode materials for lithium-ion batteries of electric vehicles. Nanoscale 8(44), 18792–18799 (2016). https://doi.org/10.1039/c6nr04992c
- O. Budak, P. Srimuk, M. Aslan, H. Shim, L. Borchardt et al., Titanium niobium oxide Ti(2) Nb(10) O(29)/carbon hybrid electrodes derived by mechanochemically synthesized carbide for high-performance lithium-ion batteries. Chemsuschem 14(1), 398–407 (2021). https://doi.org/10.1002/cssc.202002229
- H. Shim, E. Lim, S. Fleischmann, A. Quade, A. Tolosa et al., Nanosized titanium niobium oxide/carbon electrodes for lithium-ion energy storage applications. Sustain. Energy Fuels 3(7), 1776–1789 (2019). https://doi.org/10.1039/c9se00166b
- Nist x-ray photoelectron spectroscopy database, nist standard reference database number 20. 20899 (2000).
- D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108–112 (2014). https://doi.org/10.1016/j.jcis.2014.05.033
- M. Hervieu, H. Rebbah, G. Desgardin, B. Raveau, Layer structure: the oxides a3ti5mo14. J. Solid State Chem. 35(2), 200–206 (1980). https://doi.org/10.1016/0022-4596(80)90494-6
- M. Bains, D. Bradley, Coordination complexes of metal alkoxides: Part ii. Metal alkoxide–ethylenediamine complexes. Canadian J. Chem. 40(12), 2218–2228 (1962). https://doi.org/10.1139/v62-344
- P. Xu, H. Xiao, X. Liang, T. Zhang, F. Zhang et al., A mxene-based eda-ti3c2tx intercalation compound with expanded interlayer spacing as high performance supercapacitor electrode material. Carbon 173, 135–144 (2021). https://doi.org/10.1016/j.carbon.2020.11.010
- R.-C. Xie, J.K. Shang, Morphological control in solvothermal synthesis of titanium oxide. J. Mater. Sci. 42(16), 6583–6589 (2007). https://doi.org/10.1007/s10853-007-1506-0
- M. Kusuma, G.T. Chandrappa, Effect of calcination temperature on characteristic properties of camoo4 nanops. J. Sci. Adv. Mater. Devices 4(1), 150–157 (2019). https://doi.org/10.1016/j.jsamd.2019.02.003
- X. Han, P.A. Russo, C. Triolo, S. Santangelo, N. Goubard-Bretesché et al., Comparing the performance of Nb2O5 composites with reduced graphene oxide and amorphous carbon in li- and na-ion electrochemical storage devices. ChemElectroChem 7(7), 1689–1698 (2020). https://doi.org/10.1002/celc.202000181
- J. Bao, W. Deng, J. Liu, C.-F. Sun, Ultrafast-kinetics, ultralong-cycle-life, bifunctional inorganic open-framework for potassium-ion batteries. Energy Storage Mater. 42, 806–814 (2021). https://doi.org/10.1016/j.ensm.2021.08.029
- W. Wang, Z. Kang, C.-F. Sun, Y. Li, K2.13V1.52Ti0.48(PO4)3 as an anode material with a long cycle life for potassium-ion batteries. Electrochem. Commun. (2022). https://doi.org/10.1016/j.elecom.2022.107247
- G.H. Du, Y. Yu, Q. Chen, R.H. Wang, W. Zhou et al., Exfoliating ktinbo5 ps into nanosheets. Chem. Phys. Lett. 377(3–4), 445–448 (2003). https://doi.org/10.1016/s0009-2614(03)01202-8
- X. Zhao, Y. Chen, H. Sun, T. Yuan, Y. Gong et al., Impact of surface structure on sei for carbon materials in alkali ion batteries: a review. Batteries 9(4), 9040226 (2023). https://doi.org/10.3390/batteries9040226
- L. Bläubaum, F. Röder, C. Nowak, H.S. Chan, A. Kwade et al., Impact of p size distribution on performance of lithium-ion batteries. ChemElectroChem 7(23), 4755–4766 (2020). https://doi.org/10.1002/celc.202001249
- L. Deng, Z. Yang, L. Tan, L. Zeng, Y. Zhu et al., Investigation of the prussian blue analog Co3[Co(CN)6]2 as an anode material for nonaqueous potassium-ion batteries. Adv. Mater. 30(31), e1802510 (2018). https://doi.org/10.1002/adma.201802510
- W. Choi, H.-C. Shin, J.M. Kim, J.-Y. Choi, W.-S. Yoon, Modeling and applications of electrochemical impedance spectroscopy (eis) for lithium-ion batteries. J. Electrochem. Sci. Techn. 11(1), 1–13 (2020). https://doi.org/10.33961/jecst.2019.00528
- A. Nickol, T. Schied, C. Heubner, M. Schneider, A. Michaelis et al., Gitt analysis of lithium insertion cathodes for determining the lithium diffusion coefficient at low temperature: challenges and pitfalls. J. Electrochem. Soc. 167(9), 090546 (2020). https://doi.org/10.1149/1945-7111/ab9404
- H. Lindström, S. Södergren, A. Solbrand, H. Rensmo, J. Hjelm et al., Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 101(39), 7717–7722 (1997). https://doi.org/10.1021/jp970490q
- J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanops. J. Phys. Chem. C 111(40), 14925–14931 (2007). https://doi.org/10.1021/jp074464w
References
J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen et al., The success story of graphite as a lithium-ion anode material—fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels 4(11), 5387–5416 (2020). https://doi.org/10.1039/D0SE00175A
Y. Mizutani, T. Abe, K. Ikeda, E. Ihara, M. Asano et al., Graphite intercalation compounds prepared in solutions of alkali metals in 2-methyltetrahydrofuran and 2,5-dimethyltetrahydrofuran. Carbon 35(1), 61–65 (1997). https://doi.org/10.1016/S0008-6223(96)00127-3
D.M. Ottmers, H.F. Rase, Potassium graphites prepared by mixed-reaction technique. Carbon 4(1), 125–127 (1966). https://doi.org/10.1016/0008-6223(66)90017-0
S. Komaba, T. Hasegawa, M. Dahbi, K. Kubota, Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 60, 172–175 (2015). https://doi.org/10.1016/j.elecom.2015.09.002
Z. Jian, W. Luo, X. Ji, Carbon electrodes for k-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
X. Wu, Y. Chen, Z. Xing, C.W.K. Lam, S.-S. Pang et al., Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 9(21), 1900343 (2019). https://doi.org/10.1002/aenm.201900343
J. Zheng, Y. Wu, Y. Tong, X. Liu, Y. Sun et al., High capacity and fast kinetics of potassium-ion batteries boosted by nitrogen-doped mesoporous carbon spheres. Nano-Micro Lett. 13(1), 174 (2021). https://doi.org/10.1007/s40820-021-00706-3
N. Cheng, W. Zhou, J. Liu, Z. Liu, B. Lu, Reversible oxygen-rich functional groups grafted 3d honeycomb-like carbon anode for super-long potassium ion batteries. Nano-Micro Lett. 14(1), 146 (2022). https://doi.org/10.1007/s40820-022-00892-8
D. Li, F. Ji, T. Liu, X. Zhao, Q. Sun et al., Trash to treasure: recycling discarded agarose gel for practical na/k-ion batteries. J. Mater. Chem. A 10(28), 15026–15035 (2022). https://doi.org/10.1039/d2ta02007f
D. Li, X. Ren, Q. Ai, Q. Sun, L. Zhu et al., Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201802386
X. Li, J. Li, L. Ma, C. Yu, Z. Ji et al., Graphite anode for potassium ion batteries: current status and perspective. Energy Environ. Mater. 5(2), 458–469 (2022). https://doi.org/10.1002/eem2.12194
D. Li, L. Dai, X. Ren, F. Ji, Q. Sun et al., Foldable potassium-ion batteries enabled by free-standing and flexible SnS2@C nanofibers. Energy Environ. Sci. 14(1), 424–436 (2021). https://doi.org/10.1039/d0ee02919j
M.T. McDowell, S. Xia, T. Zhu, The mechanics of large-volume-change transformations in high-capacity battery materials. Extreme Mech. Lett. 9, 480–494 (2016). https://doi.org/10.1016/j.eml.2016.03.004
J. Cao, J. Li, D. Li, Z. Yuan, Y. Zhang et al., Strongly coupled 2d transition metal chalcogenide-mxene-carbonaceous nanoribbon heterostructures with ultrafast ion transport for boosting sodium/potassium ions storage. Nano-Micro Lett. 13(1), 113 (2021). https://doi.org/10.1007/s40820-021-00623-5
X. Li, J. Li, W. Zhuo, Z. Li, L. Ma et al., In situ monitoring the potassium-ion storage enhancement in iron selenide with ether-based electrolyte. Nano-Micro Lett. 13(1), 179 (2021). https://doi.org/10.1007/s40820-021-00708-1
A. Rudola, A.J.R. Rennie, R. Heap, S.S. Meysami, A. Lowbridge et al., Commercialisation of high energy density sodium-ion batteries: Faradion’s journey and outlook. J. Mater. Chem A 9(13), 8279–8302 (2021). https://doi.org/10.1039/D1TA00376C
R.C. Massé, C. Liu, Y. Li, L. Mai, G. Cao, Energy storage through intercalation reactions: electrodes for rechargeable batteries. Natl. Sci. Rev. 4(1), 26–53 (2017). https://doi.org/10.1093/nsr/nww093
Crc handbook of chemistry and physics. 97th. pp 14–17
Z. Tong, R. Yang, S. Wu, D. Shen, T. Jiao et al., Surface-engineered black niobium oxide@graphene nanosheets for high-performance sodium-/potassium-ion full batteries. Small 15(28), e1901272 (2019). https://doi.org/10.1002/smll.201901272
J. Han, M. Xu, Y. Niu, G.N. Li, M. Wang, Y. Zhang, M. Jia, C.M. Li, Exploration of K2Ti8O17 as an anode material for potassium-ion batteries. Chem. Commun. 52(75), 11274–11276 (2016). https://doi.org/10.1039/c6cc05102b
S. Zhao, L. Dong, B. Sun, K. Yan, J. Zhang et al., K2Ti2O5 @c microspheres with enhanced k(+) intercalation pseudocapacitance ensuring fast potassium storage and long-term cycling stability. Small 16(4), e1906131 (2020). https://doi.org/10.1002/smll.201906131
A.P. Vijaya Kumar Saroja, Z. Wang, H.R. Tinker, F.R. Wang, P.R. Shearing et al., Enabling intercalation-type TiNb24O62 anode for sodium- and potassium-ion batteries via a synergetic strategy of oxygen vacancy and carbon incorporation. SusMat 3(2), 222–234 (2023). https://doi.org/10.1002/sus2.113
B. Kishore, V.G.N. Munichandraiah, K2Ti4O9: a promising anode material for potassium ion batteries. J. Electrochem. Soc. 163(13), A2551–A2554 (2016). https://doi.org/10.1149/2.0421613jes
Y. Dong, Z.S. Wu, S. Zheng, X. Wang, J. Qin, S. Wang et al., Ti3C2 mxene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano 11(5), 4792–4800 (2017). https://doi.org/10.1021/acsnano.7b01165
D. Su, Y. Pei, L. Liu, Z. Liu, J. Liu et al., Wire-in-wire TiO(2)/C nanofibers free-standing anodes for Li-ion and K-ion batteries with long cycling stability and high capacity. Nano-Micro Lett. 13(1), 107 (2021). https://doi.org/10.1007/s40820-021-00632-4
S. Dong, Z. Li, Z. Xing, X. Wu, X. Ji et al., Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS Appl. Mater. Interfaces 10(18), 15542–15547 (2018). https://doi.org/10.1021/acsami.7b15314
A.K. Kulkarni, C.S. Praveen, Y.A. Sethi, R.P. Panmand, S.S. Arbuj et al., Nanostructured n-doped orthorhombic Nb2O5 as an efficient stable photocatalyst for hydrogen generation under visible light. Dalton Trans. 46(43), 14859–14868 (2017). https://doi.org/10.1039/c7dt02611k
Y.-H. Zhu, J.-Z. Wang, Q. Zhang, Y.-F. Cui, G. Huang et al., Creation of a rigid host framework with optimum crystal structure and interface for zero-strain k-ion storage. Energy Environ. Sci. 15(4), 1529–1535 (2022). https://doi.org/10.1039/d1ee03924e
L. Ling, X. Wang, M. Zhou, K. Wu, C. Lin et al., Carbon-coated flower-like TiO2 nanosphere as an ultrastable anode material for potassium-ion batteries: structure design and mechanism study. ACS Appl. Energy Mater. (2022). https://doi.org/10.1021/acsaem.2c03171
A.D. Wadsley, Alkali titanoniobates. The crystal structures of KTinBO5 and KTi3NbO9. Acta Crystallogr. 17(6), 623–628 (1964). https://doi.org/10.1107/s0365110x64001530
H. Takahashi, M. Kakihana, Y. Yamashita, K. Yoshida, S. Ikeda et al., Synthesis of nio-loaded ktinbo5 photocatalysts by a novel polymerizable complex method. J. Alloys Compd. 285(1), 77–81 (1999). https://doi.org/10.1016/S0925-8388(98)00968-2
A. Kudo, E. Kaneko, Photoluminescent properties of ion-exchangeable layered oxides. Micropor. Mesopor. Mater. 21(4), 615–620 (1998). https://doi.org/10.1016/S1387-1811(98)00037-7
H. Park, J. Kwon, H. Choi, T. Song, U. Paik, Microstructural control of new intercalation layered titanoniobates with large and reversible d-spacing for easy Na(+) ion uptake. Sci. Adv. 3(10), e1700509 (2017). https://doi.org/10.1126/sciadv.1700509
Y. Yuan, H. Yu, X. Cheng, W. Ye, T. Liu et al., H0.92K0.08TinBo5 nanowires enabling high-performance lithium-ion uptake. ACS Appl. Mater. Interfaces 11(9), 9136–9143 (2019). https://doi.org/10.1021/acsami.8b21817
C. Lai, Z. Zhang, Y. Xu, J. Liao, Z. Xu et al., A general strategy for embedding ultrasmall CoMx nanocrystals (m = S, O, Se, and Te) in hierarchical porous carbon nanofibers for high-performance potassium storage. J. Mater. Chem. A 9(3), 1487–1494 (2021). https://doi.org/10.1039/d0ta11273a
M. Jiang, L. Sheng, C. Wang, L. Jiang, Z. Fan, Graphene film for supercapacitors: preparation, foundational unit structure and surface regulation. Acta Phys. Chim. Sinica (2021). https://doi.org/10.3866/pku.Whxb202012085
S. Che, S.K. Behura, V. Berry, Photo-organometallic, nanop nucleation on graphene for cascaded doping. ACS Nano 13(11), 12929–12938 (2019). https://doi.org/10.1021/acsnano.9b05484
J. Li, M. Östling, Prevention of graphene restacking for performance boost of supercapacitors—a review. Crystals 3(1), 163–190 (2013). https://doi.org/10.3390/cryst3010163
Y. Du, Z. Yi, B. Chen, J. Xu, Z. Zhang et al., Sn4P3 nanops confined in multilayer graphene sheets as a high-performance anode material for potassium-ion batteries. J. Energy Chem. 66, 413–421 (2022). https://doi.org/10.1016/j.jechem.2021.08.043
W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958). https://doi.org/10.1021/ja01539a017
Q. Cheng, J. Liang, Y. Zhu, L. Si, C. Guo et al., Bulk ti2nb10o29as long-life and high-power li-ion battery anodes. J. Mater. Chem. A 2(41), 17258–17262 (2014). https://doi.org/10.1039/c4ta04184d
C. Yang, S. Deng, C. Lin, S. Lin, Y. Chen et al., Porous Tinb(24)O(62) microspheres as high-performance anode materials for lithium-ion batteries of electric vehicles. Nanoscale 8(44), 18792–18799 (2016). https://doi.org/10.1039/c6nr04992c
O. Budak, P. Srimuk, M. Aslan, H. Shim, L. Borchardt et al., Titanium niobium oxide Ti(2) Nb(10) O(29)/carbon hybrid electrodes derived by mechanochemically synthesized carbide for high-performance lithium-ion batteries. Chemsuschem 14(1), 398–407 (2021). https://doi.org/10.1002/cssc.202002229
H. Shim, E. Lim, S. Fleischmann, A. Quade, A. Tolosa et al., Nanosized titanium niobium oxide/carbon electrodes for lithium-ion energy storage applications. Sustain. Energy Fuels 3(7), 1776–1789 (2019). https://doi.org/10.1039/c9se00166b
Nist x-ray photoelectron spectroscopy database, nist standard reference database number 20. 20899 (2000).
D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108–112 (2014). https://doi.org/10.1016/j.jcis.2014.05.033
M. Hervieu, H. Rebbah, G. Desgardin, B. Raveau, Layer structure: the oxides a3ti5mo14. J. Solid State Chem. 35(2), 200–206 (1980). https://doi.org/10.1016/0022-4596(80)90494-6
M. Bains, D. Bradley, Coordination complexes of metal alkoxides: Part ii. Metal alkoxide–ethylenediamine complexes. Canadian J. Chem. 40(12), 2218–2228 (1962). https://doi.org/10.1139/v62-344
P. Xu, H. Xiao, X. Liang, T. Zhang, F. Zhang et al., A mxene-based eda-ti3c2tx intercalation compound with expanded interlayer spacing as high performance supercapacitor electrode material. Carbon 173, 135–144 (2021). https://doi.org/10.1016/j.carbon.2020.11.010
R.-C. Xie, J.K. Shang, Morphological control in solvothermal synthesis of titanium oxide. J. Mater. Sci. 42(16), 6583–6589 (2007). https://doi.org/10.1007/s10853-007-1506-0
M. Kusuma, G.T. Chandrappa, Effect of calcination temperature on characteristic properties of camoo4 nanops. J. Sci. Adv. Mater. Devices 4(1), 150–157 (2019). https://doi.org/10.1016/j.jsamd.2019.02.003
X. Han, P.A. Russo, C. Triolo, S. Santangelo, N. Goubard-Bretesché et al., Comparing the performance of Nb2O5 composites with reduced graphene oxide and amorphous carbon in li- and na-ion electrochemical storage devices. ChemElectroChem 7(7), 1689–1698 (2020). https://doi.org/10.1002/celc.202000181
J. Bao, W. Deng, J. Liu, C.-F. Sun, Ultrafast-kinetics, ultralong-cycle-life, bifunctional inorganic open-framework for potassium-ion batteries. Energy Storage Mater. 42, 806–814 (2021). https://doi.org/10.1016/j.ensm.2021.08.029
W. Wang, Z. Kang, C.-F. Sun, Y. Li, K2.13V1.52Ti0.48(PO4)3 as an anode material with a long cycle life for potassium-ion batteries. Electrochem. Commun. (2022). https://doi.org/10.1016/j.elecom.2022.107247
G.H. Du, Y. Yu, Q. Chen, R.H. Wang, W. Zhou et al., Exfoliating ktinbo5 ps into nanosheets. Chem. Phys. Lett. 377(3–4), 445–448 (2003). https://doi.org/10.1016/s0009-2614(03)01202-8
X. Zhao, Y. Chen, H. Sun, T. Yuan, Y. Gong et al., Impact of surface structure on sei for carbon materials in alkali ion batteries: a review. Batteries 9(4), 9040226 (2023). https://doi.org/10.3390/batteries9040226
L. Bläubaum, F. Röder, C. Nowak, H.S. Chan, A. Kwade et al., Impact of p size distribution on performance of lithium-ion batteries. ChemElectroChem 7(23), 4755–4766 (2020). https://doi.org/10.1002/celc.202001249
L. Deng, Z. Yang, L. Tan, L. Zeng, Y. Zhu et al., Investigation of the prussian blue analog Co3[Co(CN)6]2 as an anode material for nonaqueous potassium-ion batteries. Adv. Mater. 30(31), e1802510 (2018). https://doi.org/10.1002/adma.201802510
W. Choi, H.-C. Shin, J.M. Kim, J.-Y. Choi, W.-S. Yoon, Modeling and applications of electrochemical impedance spectroscopy (eis) for lithium-ion batteries. J. Electrochem. Sci. Techn. 11(1), 1–13 (2020). https://doi.org/10.33961/jecst.2019.00528
A. Nickol, T. Schied, C. Heubner, M. Schneider, A. Michaelis et al., Gitt analysis of lithium insertion cathodes for determining the lithium diffusion coefficient at low temperature: challenges and pitfalls. J. Electrochem. Soc. 167(9), 090546 (2020). https://doi.org/10.1149/1945-7111/ab9404
H. Lindström, S. Södergren, A. Solbrand, H. Rensmo, J. Hjelm et al., Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 101(39), 7717–7722 (1997). https://doi.org/10.1021/jp970490q
J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanops. J. Phys. Chem. C 111(40), 14925–14931 (2007). https://doi.org/10.1021/jp074464w