Direct Patterning of Carbon Nanotube via Stamp Contact Printing Process for Stretchable and Sensitive Sensing Devices
Corresponding Author: Xuchun Gui
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 92
Abstract
Flexible and wearable sensing devices have broad application prospects in bio-monitoring such as pulse measurement, motion detection and voice recognition. In recent years, many significant improvements had been made to enhance the sensor’s performance including sensitivity, flexibility and repeatability. However, it is still extremely complicated and difficult to prepare a patterned sensor directly on a flexible substrate. Herein, inspired by typography, a low-cost, environmentally friendly stamping method for the mass production of transparent conductive carbon nanotube (CNT) film is proposed. In this dry transfer strategy, a porous CNT block was used as both the seal and the ink; and Ecoflex film was served as an object substrate. Well-designed CNT patterns can be easily fabricated on the polymer substrate by engraving the target pattern on the CNT seal before the stamping process. Moreover, the CNT film can be directly used to fabricate ultrathin (300 μm) strain sensor. This strain sensor possesses high sensitivity with a gauge factor (GF) up to 9960 at 85% strain, high stretchability (> 200%) and repeatability (> 5000 cycles). It has been used to measure pulse signals and detect joint motion, suggesting promising application prospects in flexible and wearable electronic devices.
Highlights:
1 A dry transfer method for the mass production of transparent conductive carbon nanotube (CNT) films inspired by typography has been proposed.
2 The strain sensors based on the CNT films have high stretchability and repeatability (gauge factor up to 9960 at 85% strain).
3 These ultrathin strain sensors can detect human motion, sound, and pulse, suggesting promising application prospects in wearable devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo et al., Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano 11, 4507–4513 (2017). https://doi.org/10.1021/acsnano.6b08027
- J. Shi, L. Wang, Z. Dai, L. Zhao, M. Du et al., Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small 14, 1800819 (2018). https://doi.org/10.1002/smll.201800819
- C. Wan, G. Chen, Y. Fu, M. Wang, N. Matsuhisa, S. Pan et al., An artificial sensory neuron with tactile perceptual learning. Adv. Mater. 30, 1801291 (2018). https://doi.org/10.1002/adma.201801291
- S. Bai, S. Zhang, W. Zhou, D. Ma, Y. Ma, Laser-assisted reduction of highly conductive circuits based on copper nitrate for flexible printed sensors. Nano-Micro Lett. 9, 42 (2017). https://doi.org/10.1007/s40820-017-0139-3
- C.M. Boutry, Y. Kaizawa, B.C. Schroeder, A. Chortos, A. Legrand et al., A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electr. 1, 314 (2018). https://doi.org/10.1038/s41928-018-0071-7
- M. Amjadi, K.U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26, 1678–1698 (2016). https://doi.org/10.1002/adfm.201504755
- M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8, 5154–5163 (2014). https://doi.org/10.1021/nn501204t
- M. Hempel, D. Nezich, J. Kong, M. Hofmann, A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett. 12, 5714–5718 (2012). https://doi.org/10.1021/nl302959a
- T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi et al., A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6, 296 (2011). https://doi.org/10.1038/nnano.2011.36
- J. Kong, N. Jang, S. Kim, J. Kim, Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors. Carbon 77, 199–207 (2014). https://doi.org/10.1016/j.carbon.2014.05.022
- N. Lu, C. Lu, S. Yang, J. Rogers, Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater. 22, 4044–4050 (2012). https://doi.org/10.1002/adfm.201200498
- J. Oh, J. Yang, J. Kim, H. Park, S. Kwon et al., Pressure insensitive strain sensor with facile solution-based process for tactile sensing applications. ACS Nano 12, 7546–7553 (2018). https://doi.org/10.1021/acsnano.8b03488
- S. Wu, S. Peng, Z. Han, H. Zhu, C. Wang, Ultrasensitive and stretchable strain sensors based on mazelike vertical graphene network. ACS Appl. Mater. Interfaces 10, 36312–36322 (2018). https://doi.org/10.1021/acsami.8b15848
- T. Yang, X. Jiang, Y. Zhong, X. Zhao, S. Lin et al., A wearable and highly sensitive graphene strain sensor for precise home-based pulse wave monitoring. ACS Sens. 2, 967–974 (2017). https://doi.org/10.1021/acssensors.7b00230
- Y. Jiang, Z. Liu, N. Matsuhisa, D. Qi, W.R. Leow et al., Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors. Adv. Mater. 30, 1706589 (2018). https://doi.org/10.1002/adma.201706589
- F. Guo, X. Cui, K. Wang, J. Wei, Stretchable and compressible strain sensors based on carbon nanotube meshes. Nanoscale 8, 19352–19358 (2016). https://doi.org/10.1039/C6NR06804A
- M. Zhang, C. Wang, W. Qi, M. Jian, Y. Zhang, Sheath-core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors. ACS Appl. Mater. Interfaces 8, 20894–20899 (2016). https://doi.org/10.1021/acsami.6b06984
- C.S. Boland, U. Khan, G. Ryan, S. Barwich, R. Charifou et al., Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 354, 1257–1260 (2016). https://doi.org/10.1126/science.aag2879
- D. Son, J. Kang, O. Vardoulis, Y. Kim, N. Matsuhisa, J. Oh et al., An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 13, 1057–1065 (2018). https://doi.org/10.1038/s41565-018-0244-6
- C. Wang, X. Li, E. Gao, M. Jian, K. Xia et al., Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv. Mater. 28, 6640–6648 (2016). https://doi.org/10.1002/adma.201601572
- M. Wang, W. Wang, W.R. Leow, C. Wan, G. Chen et al., Enhancing the matrix addressing of flexible sensory arrays by a highly nonlinear threshold switch. Adv. Mater. 30, 1802516 (2018). https://doi.org/10.1002/adma.201802516
- C. Yan, J. Wang, W. Kang, M. Cui, X. Wang et al., Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors. Adv. Mater. 26, 2022–2027 (2014). https://doi.org/10.1002/adma.201304742
- X. Sun, J. Sun, T. Li, S. Zheng, C. Wang et al., Flexible tactile electronic skin sensor with 3D force detection based on porous CNTs/PDMS nanocomposites. Nano-Micro Lett. 11, 57 (2019). https://doi.org/10.1007/s40820-019-0288-7
- J. Lee, S. Kim, J. Lee, D. Yang, B.C. Park et al., A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale 6, 11932–11939 (2014). https://doi.org/10.1039/C4NR03295K
- L. Lu, X. Wei, Y. Zhang, G. Zheng, K. Dai et al., A flexible and self-formed sandwich structure strain sensor based on AgNW decorated electrospun fibrous mats with excellent sensing capability and good oxidation inhibition properties. J. Mater. Chem. C 5, 7035–7042 (2017). https://doi.org/10.1039/C7TC02429K
- D. Lipomi, M. Vosgueritchian, B. Tee, S. Hellstrom, J. Lee et al., Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6, 788–792 (2011). https://doi.org/10.1038/nnano.2011.184
- Y. Cheng, R. Wang, J. Sun, L. Gao, A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 27, 7365–7371 (2015). https://doi.org/10.1002/adma.201503558
- J. Ge, H. Yao, X. Wang, Y. Ye, J. Wang et al., Stretchable conductors based on silver nanowires: improved performance through a binary network design. Angew. Chem. Int. Ed. 125, 1698–1703 (2013). https://doi.org/10.1002/anie.201209596
- J. Muth, D. Vogt, R. Truby, Y. Menga, D. Kolesky et al., Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv. Mater. 26, 6307–6312 (2014). https://doi.org/10.1002/adma.201400334
- F. Michelis, L. Bodelot, Y. Bonnassieux, B. Lebental, Highly reproducible, hysteresis-free, flexible strain sensors by inkjet printing of carbon nanotubes. Carbon 95, 1020–1026 (2015). https://doi.org/10.1016/j.carbon.2015.08.103
- S. Zeng, D. Zhang, W. Huang, Z. Wang, S.G. Freire et al., Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds. Nat. Commun. 7, 11802 (2016). https://doi.org/10.1038/ncomms11802
- Y. Qiao, Y. Wang, H. Tian, M. Li, J. Jian et al., Multilayer graphene epidermal electronic skin. ACS Nano 12, 8839–8846 (2018). https://doi.org/10.1021/acsnano.8b02162
- E. Gilshteyn, S. Lin, V. Kondrashov, D. Kopylova, A. Tsapenko et al., A one-step method of hydrogel modification by single-walled carbon nanotubes for highly stretchable and transparent electronics. ACS Appl. Mater. Interfaces 10, 28069–28075 (2018). https://doi.org/10.1021/acsami.8b08409
- X. Liao, Q. Liao, X. Yan, Q. Liang, H. Si et al., Flexible and highly sensitive strain sensors fabricated by pencil drawn for wearable monitor. Adv. Funct. Mater. 25, 2395–2401 (2015). https://doi.org/10.1002/adfm.201500094
- X. Gui, J. Wei, K. Wang, A. Cao, H. Zhu et al., Carbon nanotube sponges. Adv. Mater. 22, 617–621 (2010). https://doi.org/10.1002/adma.200902986
- K. Ma, J. Rivera, G.J. Hirasaki, S.L. Biswal, Wettability control and patterning of PDMS using UV–ozone and water immersion. J. Colloid Interface Sci. 363, 371–378 (2011). https://doi.org/10.1016/j.jcis.2011.07.036
- S. Bhattacharya, A. Datta, J.M. Berg, S. Gangopadhyay, Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J. Microelectromech. Syst. 14, 590–597 (2005). https://doi.org/10.1109/JMEMS.2005.844746
- M. Kaempgen, G. Duesberg, S. Roth, Transparent carbon nanotube coatings. Appl. Surf. Sci. 252, 425–429 (2005). https://doi.org/10.1016/j.apsusc.2005.01.020
- Y. Li, H. Zhang, Y. Yao, T. Li, Y. Zhang et al., Transfer of vertically aligned carbon nanotube arrays onto flexible substrates for gecko-inspired dry adhesive application. RSC Adv. 5, 46749–46759 (2015). https://doi.org/10.1039/C5RA06206C
- C. Pint, Y. Xu, S. Moghazy, T. Cherukuri, N. Alvarez et al., Dry contact transfer printing of aligned carbon nanotube patterns and characterization of their optical properties for diameter distribution and alignment. ACS Nano 4, 1131–1145 (2010). https://doi.org/10.1021/nn9013356
- B. Liang, Z. Lin, W. Chen, Z. He, J. Zhong et al., Ultra-stretchable and highly sensitive strain sensor based on gradient structure carbon nanotubes. Nanoscale 10, 13599–13606 (2018). https://doi.org/10.1039/C8NR02528B
- J. Zhou, H. Yu, X. Xu, F. Han, G. Lubineau, Ultrasensitive, stretchable strain sensors based on fragmented carbon nanotube papers. ACS Appl. Mater. Interfaces 9, 4835–4842 (2017). https://doi.org/10.1021/acsami.6b15195
- M. Amjadi, Y.J. Yoon, I. Park, Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites. Nanotechnology 26, 375501 (2015). https://doi.org/10.1088/0957-4484/26/37/375501
- B. De Vivo, P. Lamberti, G. Spinelli, V. Tucci, Simulation and experimental characterization of polymer/carbon nanotubes composites for strain sensor applications. J. Appl. Phys. 116, 1899 (2014). https://doi.org/10.1063/1.4892098
- G. Cai, J. Wang, K. Qian, J. Chen, S. Li et al., Strain sensors: extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection. Adv. Sci. 4, 1600190 (2016). https://doi.org/10.1002/advs.201600190
- S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang et al., A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014). https://doi.org/10.1038/ncomms4132
- S. Han, M.K. Kim, B. Wang, D.S. Wie, S. Wang et al., Mechanically reinforced skin-electronics with networked nanocomposite elastomer. Adv. Mater. 28, 10257 (2016). https://doi.org/10.1002/adma.201603878
- H. Lee, T.K. Choi, Y.B. Lee, H.R. Cho, R. Ghaffari et al., A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566 (2016). https://doi.org/10.1038/nnano.2016.38
- T. Yang, W. Wang, H. Zhang, X. Li, J. Shi et al., Tactile sensing system based on arrays of graphene woven microfabrics: electromechanical behavior and electronic skin application. ACS Nano 9, 10867 (2015). https://doi.org/10.1021/acsnano.5b03851
- Y. Ma, N. Liu, L. Li, X. Hu, Z. Zou et al., A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 8, 1207 (2017). https://doi.org/10.1038/s41467-017-01136-9
- H.J. Kim, K. Sim, A. Thukral, C. Yu, Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors. Sci. Adv. 3, 1701114 (2017). https://doi.org/10.1126/sciadv.1701114
- D.J. Lipomi, J.A. Lee, M. Vosgueritchian, C.K. Tee, J.A. Bolander, Z. Bao, Electronic properties of transparent conductive films of PEDOT: PSS on stretchable substrates. Chem. Mater. 24, 373–382 (2012). https://doi.org/10.1021/cm203216m
References
Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo et al., Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano 11, 4507–4513 (2017). https://doi.org/10.1021/acsnano.6b08027
J. Shi, L. Wang, Z. Dai, L. Zhao, M. Du et al., Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small 14, 1800819 (2018). https://doi.org/10.1002/smll.201800819
C. Wan, G. Chen, Y. Fu, M. Wang, N. Matsuhisa, S. Pan et al., An artificial sensory neuron with tactile perceptual learning. Adv. Mater. 30, 1801291 (2018). https://doi.org/10.1002/adma.201801291
S. Bai, S. Zhang, W. Zhou, D. Ma, Y. Ma, Laser-assisted reduction of highly conductive circuits based on copper nitrate for flexible printed sensors. Nano-Micro Lett. 9, 42 (2017). https://doi.org/10.1007/s40820-017-0139-3
C.M. Boutry, Y. Kaizawa, B.C. Schroeder, A. Chortos, A. Legrand et al., A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electr. 1, 314 (2018). https://doi.org/10.1038/s41928-018-0071-7
M. Amjadi, K.U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26, 1678–1698 (2016). https://doi.org/10.1002/adfm.201504755
M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8, 5154–5163 (2014). https://doi.org/10.1021/nn501204t
M. Hempel, D. Nezich, J. Kong, M. Hofmann, A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett. 12, 5714–5718 (2012). https://doi.org/10.1021/nl302959a
T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi et al., A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6, 296 (2011). https://doi.org/10.1038/nnano.2011.36
J. Kong, N. Jang, S. Kim, J. Kim, Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors. Carbon 77, 199–207 (2014). https://doi.org/10.1016/j.carbon.2014.05.022
N. Lu, C. Lu, S. Yang, J. Rogers, Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater. 22, 4044–4050 (2012). https://doi.org/10.1002/adfm.201200498
J. Oh, J. Yang, J. Kim, H. Park, S. Kwon et al., Pressure insensitive strain sensor with facile solution-based process for tactile sensing applications. ACS Nano 12, 7546–7553 (2018). https://doi.org/10.1021/acsnano.8b03488
S. Wu, S. Peng, Z. Han, H. Zhu, C. Wang, Ultrasensitive and stretchable strain sensors based on mazelike vertical graphene network. ACS Appl. Mater. Interfaces 10, 36312–36322 (2018). https://doi.org/10.1021/acsami.8b15848
T. Yang, X. Jiang, Y. Zhong, X. Zhao, S. Lin et al., A wearable and highly sensitive graphene strain sensor for precise home-based pulse wave monitoring. ACS Sens. 2, 967–974 (2017). https://doi.org/10.1021/acssensors.7b00230
Y. Jiang, Z. Liu, N. Matsuhisa, D. Qi, W.R. Leow et al., Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors. Adv. Mater. 30, 1706589 (2018). https://doi.org/10.1002/adma.201706589
F. Guo, X. Cui, K. Wang, J. Wei, Stretchable and compressible strain sensors based on carbon nanotube meshes. Nanoscale 8, 19352–19358 (2016). https://doi.org/10.1039/C6NR06804A
M. Zhang, C. Wang, W. Qi, M. Jian, Y. Zhang, Sheath-core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors. ACS Appl. Mater. Interfaces 8, 20894–20899 (2016). https://doi.org/10.1021/acsami.6b06984
C.S. Boland, U. Khan, G. Ryan, S. Barwich, R. Charifou et al., Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 354, 1257–1260 (2016). https://doi.org/10.1126/science.aag2879
D. Son, J. Kang, O. Vardoulis, Y. Kim, N. Matsuhisa, J. Oh et al., An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 13, 1057–1065 (2018). https://doi.org/10.1038/s41565-018-0244-6
C. Wang, X. Li, E. Gao, M. Jian, K. Xia et al., Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv. Mater. 28, 6640–6648 (2016). https://doi.org/10.1002/adma.201601572
M. Wang, W. Wang, W.R. Leow, C. Wan, G. Chen et al., Enhancing the matrix addressing of flexible sensory arrays by a highly nonlinear threshold switch. Adv. Mater. 30, 1802516 (2018). https://doi.org/10.1002/adma.201802516
C. Yan, J. Wang, W. Kang, M. Cui, X. Wang et al., Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors. Adv. Mater. 26, 2022–2027 (2014). https://doi.org/10.1002/adma.201304742
X. Sun, J. Sun, T. Li, S. Zheng, C. Wang et al., Flexible tactile electronic skin sensor with 3D force detection based on porous CNTs/PDMS nanocomposites. Nano-Micro Lett. 11, 57 (2019). https://doi.org/10.1007/s40820-019-0288-7
J. Lee, S. Kim, J. Lee, D. Yang, B.C. Park et al., A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale 6, 11932–11939 (2014). https://doi.org/10.1039/C4NR03295K
L. Lu, X. Wei, Y. Zhang, G. Zheng, K. Dai et al., A flexible and self-formed sandwich structure strain sensor based on AgNW decorated electrospun fibrous mats with excellent sensing capability and good oxidation inhibition properties. J. Mater. Chem. C 5, 7035–7042 (2017). https://doi.org/10.1039/C7TC02429K
D. Lipomi, M. Vosgueritchian, B. Tee, S. Hellstrom, J. Lee et al., Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6, 788–792 (2011). https://doi.org/10.1038/nnano.2011.184
Y. Cheng, R. Wang, J. Sun, L. Gao, A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 27, 7365–7371 (2015). https://doi.org/10.1002/adma.201503558
J. Ge, H. Yao, X. Wang, Y. Ye, J. Wang et al., Stretchable conductors based on silver nanowires: improved performance through a binary network design. Angew. Chem. Int. Ed. 125, 1698–1703 (2013). https://doi.org/10.1002/anie.201209596
J. Muth, D. Vogt, R. Truby, Y. Menga, D. Kolesky et al., Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv. Mater. 26, 6307–6312 (2014). https://doi.org/10.1002/adma.201400334
F. Michelis, L. Bodelot, Y. Bonnassieux, B. Lebental, Highly reproducible, hysteresis-free, flexible strain sensors by inkjet printing of carbon nanotubes. Carbon 95, 1020–1026 (2015). https://doi.org/10.1016/j.carbon.2015.08.103
S. Zeng, D. Zhang, W. Huang, Z. Wang, S.G. Freire et al., Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds. Nat. Commun. 7, 11802 (2016). https://doi.org/10.1038/ncomms11802
Y. Qiao, Y. Wang, H. Tian, M. Li, J. Jian et al., Multilayer graphene epidermal electronic skin. ACS Nano 12, 8839–8846 (2018). https://doi.org/10.1021/acsnano.8b02162
E. Gilshteyn, S. Lin, V. Kondrashov, D. Kopylova, A. Tsapenko et al., A one-step method of hydrogel modification by single-walled carbon nanotubes for highly stretchable and transparent electronics. ACS Appl. Mater. Interfaces 10, 28069–28075 (2018). https://doi.org/10.1021/acsami.8b08409
X. Liao, Q. Liao, X. Yan, Q. Liang, H. Si et al., Flexible and highly sensitive strain sensors fabricated by pencil drawn for wearable monitor. Adv. Funct. Mater. 25, 2395–2401 (2015). https://doi.org/10.1002/adfm.201500094
X. Gui, J. Wei, K. Wang, A. Cao, H. Zhu et al., Carbon nanotube sponges. Adv. Mater. 22, 617–621 (2010). https://doi.org/10.1002/adma.200902986
K. Ma, J. Rivera, G.J. Hirasaki, S.L. Biswal, Wettability control and patterning of PDMS using UV–ozone and water immersion. J. Colloid Interface Sci. 363, 371–378 (2011). https://doi.org/10.1016/j.jcis.2011.07.036
S. Bhattacharya, A. Datta, J.M. Berg, S. Gangopadhyay, Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J. Microelectromech. Syst. 14, 590–597 (2005). https://doi.org/10.1109/JMEMS.2005.844746
M. Kaempgen, G. Duesberg, S. Roth, Transparent carbon nanotube coatings. Appl. Surf. Sci. 252, 425–429 (2005). https://doi.org/10.1016/j.apsusc.2005.01.020
Y. Li, H. Zhang, Y. Yao, T. Li, Y. Zhang et al., Transfer of vertically aligned carbon nanotube arrays onto flexible substrates for gecko-inspired dry adhesive application. RSC Adv. 5, 46749–46759 (2015). https://doi.org/10.1039/C5RA06206C
C. Pint, Y. Xu, S. Moghazy, T. Cherukuri, N. Alvarez et al., Dry contact transfer printing of aligned carbon nanotube patterns and characterization of their optical properties for diameter distribution and alignment. ACS Nano 4, 1131–1145 (2010). https://doi.org/10.1021/nn9013356
B. Liang, Z. Lin, W. Chen, Z. He, J. Zhong et al., Ultra-stretchable and highly sensitive strain sensor based on gradient structure carbon nanotubes. Nanoscale 10, 13599–13606 (2018). https://doi.org/10.1039/C8NR02528B
J. Zhou, H. Yu, X. Xu, F. Han, G. Lubineau, Ultrasensitive, stretchable strain sensors based on fragmented carbon nanotube papers. ACS Appl. Mater. Interfaces 9, 4835–4842 (2017). https://doi.org/10.1021/acsami.6b15195
M. Amjadi, Y.J. Yoon, I. Park, Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites. Nanotechnology 26, 375501 (2015). https://doi.org/10.1088/0957-4484/26/37/375501
B. De Vivo, P. Lamberti, G. Spinelli, V. Tucci, Simulation and experimental characterization of polymer/carbon nanotubes composites for strain sensor applications. J. Appl. Phys. 116, 1899 (2014). https://doi.org/10.1063/1.4892098
G. Cai, J. Wang, K. Qian, J. Chen, S. Li et al., Strain sensors: extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection. Adv. Sci. 4, 1600190 (2016). https://doi.org/10.1002/advs.201600190
S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang et al., A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014). https://doi.org/10.1038/ncomms4132
S. Han, M.K. Kim, B. Wang, D.S. Wie, S. Wang et al., Mechanically reinforced skin-electronics with networked nanocomposite elastomer. Adv. Mater. 28, 10257 (2016). https://doi.org/10.1002/adma.201603878
H. Lee, T.K. Choi, Y.B. Lee, H.R. Cho, R. Ghaffari et al., A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566 (2016). https://doi.org/10.1038/nnano.2016.38
T. Yang, W. Wang, H. Zhang, X. Li, J. Shi et al., Tactile sensing system based on arrays of graphene woven microfabrics: electromechanical behavior and electronic skin application. ACS Nano 9, 10867 (2015). https://doi.org/10.1021/acsnano.5b03851
Y. Ma, N. Liu, L. Li, X. Hu, Z. Zou et al., A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 8, 1207 (2017). https://doi.org/10.1038/s41467-017-01136-9
H.J. Kim, K. Sim, A. Thukral, C. Yu, Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors. Sci. Adv. 3, 1701114 (2017). https://doi.org/10.1126/sciadv.1701114
D.J. Lipomi, J.A. Lee, M. Vosgueritchian, C.K. Tee, J.A. Bolander, Z. Bao, Electronic properties of transparent conductive films of PEDOT: PSS on stretchable substrates. Chem. Mater. 24, 373–382 (2012). https://doi.org/10.1021/cm203216m