Micro–Nano Water Film Enabled High-Performance Interfacial Solar Evaporation
Corresponding Author: Shaoan Cheng
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 214
Abstract
Interfacial solar evaporation holds great promise to address the freshwater shortage. However, most interfacial solar evaporators are always filled with water throughout the evaporation process, thus bringing unavoidable heat loss. Herein, we propose a novel interfacial evaporation structure based on the micro–nano water film, which demonstrates significantly improved evaporation performance, as experimentally verified by polypyrrole- and polydopamine-coated polydimethylsiloxane sponge. The 2D evaporator based on the as-prepared sponge realizes an enhanced evaporation rate of 2.18 kg m−2 h−1 under 1 sun by fine-tuning the interfacial micro–nano water film. Then, a homemade device with an enhanced condensation function is engineered for outdoor clean water production. Throughout a continuous test for 40 days, this device demonstrates a high water production rate (WPR) of 15.9–19.4 kg kW−1 h−1 m−2. Based on the outdoor outcomes, we further establish a multi-objective model to assess the global WPR. It is predicted that a 1 m2 device can produce at most 7.8 kg of clean water per day, which could meet the daily drinking water needs of 3 people. Finally, this technology could greatly alleviate the current water and energy crisis through further large-scale applications.
Highlights:
1 Micro–nano water film enhanced interfacial solar evaporator enables a high evaporation rate of 2.18 kg m−2 h−1 under 1 sun.
2 An outdoor device with an enhanced condensation design demonstrates a high water production rate of 15.9–19.4 kg kW−1 h−1 m−2.
3 A multi-objective predictive model is established to assess outdoor water production performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment. Science 333(6043), 712–717 (2011). https://doi.org/10.1126/science.1200488
- M. Gao, L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12(3), 841–864 (2019). https://doi.org/10.1039/C8EE01146J
- C. Xu, M. Gao, X. Yu, J. Zhang, Y. Cheng et al., Fibrous aerogels with tunable superwettability for high-performance solar-driven interfacial evaporation. Nano-Micro Lett. 15(1), 64 (2023). https://doi.org/10.1007/s40820-023-01034-4
- B. Yu, Y. Wang, Y. Zhang, Z. Zhang, Self-supporting nanoporous copper film with high porosity and broadband light absorption for efficient solar steam generation. Nano-Micro Lett. 15(1), 94 (2023). https://doi.org/10.1007/s40820-023-01063-z
- P. Tao, G. Ni, C. Song, W. Shang, J. Wu et al., Solar-driven interfacial evaporation. Nat. Energy 3(12), 1031–1041 (2018). https://doi.org/10.1038/s41560-018-0260-7
- C. Chen, Y. Kuang, L. Hu, Challenges and oportunities for solar evaporation. Joule 3(3), 683–718 (2019). https://doi.org/10.1016/j.joule.2018.12.023
- F. Wu, S. Qiang, X.-D. Zhu, W. Jiao, L. Liu et al., Fibrous MXene aerogels with tunable pore structures for high-efficiency desalination of contaminated seawater. Nano-Micro Lett. 15(1), 71 (2023). https://doi.org/10.1007/s40820-023-01030-8
- Z. Wang, J. Gao, J. Zhou, J. Gong, L. Shang et al., Engineering metal-phenolic networks for solar desalination with directional salt crystallization. Adv. Mater. 35(1), 2209015 (2023). https://doi.org/10.1002/adma.202209015
- T.A. Cooper, S.H. Zandavi, G.W. Ni, Y. Tsurimaki, Y. Huang et al., Contactless steam generation and superheating under one sun illumination. Nat. Commun. 9(1), 5086 (2018). https://doi.org/10.1038/s41467-018-07494-2
- Z. Yu, R. Gu, Y. Tian, P. Xie, B. Jin et al., Enhanced interfacial solar evaporation through formation of micro-meniscuses and microdroplets to reduce evaporation enthalpy. Adv. Funct. Mater. 32, 2108586 (2022). https://doi.org/10.1002/adfm.202108586
- Z. Yu, R. Gu, Y. Zhang, S. Guo, S. Cheng et al., High-flux flowing interfacial water evaporation under multiple heating sources enabled by a biohybrid hydrogel. Nano Energy 98, 107287 (2022). https://doi.org/10.1016/j.nanoen.2022.107287
- J. Li, X. Wang, Z. Lin, N. Xu, X. Li et al., Over 10 kg m-2 h-1 evaporation rate enabled by a 3D interconnected porous carbon foam. Joule 4(4), 928–937 (2020). https://doi.org/10.1016/j.joule.2020.02.014
- X. Zhou, F. Zhao, Y. Guo, Y. Zhang, G. Yu, A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 11(8), 1985–1992 (2018). https://doi.org/10.1039/C8EE00567B
- J.J. Koh, G.J.H. Lim, S. Chakraborty, Y. Zhang, S. Liu et al., Robust, 3D-printed hydratable plastics for effective solar desalination. Nano Energy 79, 105436 (2021). https://doi.org/10.1016/j.nanoen.2020.105436
- Z. Yu, S. Li, Y. Chen, X. Zhang, J. Chu et al., Intensifying the co-production of vapor and salts by a one-way brine-flowing structure driven by solar irradiation or waste heat. Desalination 539, 115942 (2022). https://doi.org/10.1016/j.desal.2022.115942
- Z. Yu, S. Cheng, C. Li, L. Li, J. Yang, Highly efficient solar vapor generator enabled by a 3D hierarchical structure constructed with hydrophilic carbon felt for desalination and wastewater treatment. ACS Appl. Mater. Interfaces 11(35), 32038–32045 (2019). https://doi.org/10.1021/ACSami.9b08480
- Y. Shi, R. Li, Y. Jin, S. Zhuo, L. Shi et al., A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2(6), 1171–1186 (2018). https://doi.org/10.1016/j.joule.2018.03.013
- Y. Shi, C. Zhang, R. Li, S. Zhuo, Y. Jin et al., Solar evaporator with controlled salt precipitation for zero liquid discharge desalination. Environ. Sci. Technol. 52(20), 11822–11830 (2018). https://doi.org/10.1021/ACS.est.8b03300
- X. Liu, F. Chen, Y. Li, H. Jiang, D.D. Mishra et al., 3D hydrogel evaporator with vertical radiant vessels breaking the trade-off between thermal localization and salt resistance for solar desalination of high-salinity. Adv. Mater. 34(36), 2203137 (2022). https://doi.org/10.1002/adma.202203137
- Y. Guo, L.S. de Vasconcelos, N. Manohar, J. Geng, K.P. Johnston et al., Highly elastic interconnected porous hydrogels through self-assembled templating for solar water purification. Angew. Chem. Int. Ed. 61(3), e202114074 (2022). https://doi.org/10.1002/anie.202114074
- Y. Guo, X. Zhao, F. Zhao, Z. Jiao, X. Zhou et al., Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy Environ. Sci. 13(7), 2087–2095 (2020). https://doi.org/10.1039/D0EE00399A
- Q. Zhao, J. Liu, Z. Wu, X. Xu, H. Ma et al., Robust PEDOT:PSS-based hydrogel for highly efficient interfacial solar water purification. Chem. Eng. J. 442, 136284 (2022). https://doi.org/10.1016/j.cej.2022.136284
- Q. Zhao, Z. Wu, X. Xu, R. Yang, H. Ma et al., Design of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate-polyacrylamide dual network hydrogel for long-term stable, highly efficient solar steam generation. Sep. Purif. Technol. 300, 121889 (2022). https://doi.org/10.1016/j.seppur.2022.121889
- Q. Lu, W. Shi, H. Yang, X. Wang, Nanoconfined water-molecule channels for high-yield solar vapor generation under weaker sunlight. Adv. Mater. 32(42), 2001544 (2020). https://doi.org/10.1002/adma.202001544
- Z. Dong, C. Zhang, H. Peng, J. Gong, Q. Zhao, Modular design of solar-thermal nanofluidics for advanced desalination membranes. J. Mater. Chem. A 8(46), 24493–24500 (2020). https://doi.org/10.1039/D0TA09471D
- Z.J. Zhang, J. Ma, D. Liu, D. Liu, Y. Han et al., Localized interfacial activation effect within interconnected porous photothermal matrix to promote solar-driven water evaporation. J. Mater. Chem. A 10(19), 10548–10556 (2022). https://doi.org/10.1039/D2TA00838F
- L. Li, N. He, B. Jiang, K. Yu, Q. Zhang et al., Highly salt-resistant 3D hydrogel evaporator for continuous solar desalination via localized crystallization. Adv. Funct. Mater. 31(43), 2104380 (2021). https://doi.org/10.1002/adfm.202104380
- Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired Mxene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14(1), 10 (2021). https://doi.org/10.1007/s40820-021-00748-7
- Y. Xu, C. Tang, J. Ma, D. Liu, D. Qi et al., Low-tortuosity water microchannels boosting energy utilization for high water flux solar distillation. Environ. Sci. Technol. 54(8), 5150–5158 (2020). https://doi.org/10.1021/ACS.est.9b06072
- C. Tian, J. Liu, R. Ruan, X. Tian, X. Lai et al., Sandwich photothermal membrane with confined hierarchical carbon cells enabling high-efficiency solar steam generation. Small 16(23), 2000573 (2020). https://doi.org/10.1002/smll.202000573
- H. Liang, Q. Liao, N. Chen, Y. Liang, G. Lv et al., Thermal efficiency of solar steam generation approaching 100% through capillary water transport. Angew. Chem. Int. Ed. 58, 19041–19046 (2019). https://doi.org/10.1002/anie.201911457
- W. Liu, Z. Chen, G. Zhou, Y. Sun, H.R. Lee et al., 3D porous sponge-inspired electrode for stretchable lithium-ion batteries. Adv. Mater. 28(18), 3578–3583 (2016). https://doi.org/10.1002/adma.201505299
- M. Chen, L. Zhang, S. Duan, S. Jing, H. Jiang et al., Highly stretchable conductors integrated with a conductive carbon nanotube/graphene network and 3D porous poly(dimethylsiloxane). Adv. Funct. Mater. 24(47), 7548–7556 (2014). https://doi.org/10.1002/adfm.201401886
- F.-T. Zhang, L. Xu, J.-H. Chen, B. Zhao, X.-Z. Fu et al., Electroless deposition metals on poly(dimethylsiloxane) with strong adhesion as flexible and stretchable conductive materials. ACS Appl. Mater. Interfaces 10(2), 2075–2082 (2018). https://doi.org/10.1021/ACSami.7b15726
- Z. Yu, Y. Li, R. Gu, J. Song, S. Cheng et al., Polymeric solid wastes for efficient and stable solar desalination and the outdoor clean water production performance prediction. Sep. Purif. Technol. 301, 121938 (2022). https://doi.org/10.1016/j.seppur.2022.121938
- X. Li, G. Ni, T. Cooper, N. Xu, J. Li et al., Measuring conversion efficiency of solar vapor generation. Joule 3(8), 1798–1803 (2019). https://doi.org/10.1016/j.joule.2019.06.009
- S. Cheng, Z. Yu, Z. Lin, L. Li, Y. Li et al., A lotus leaf like vertical hierarchical solar vapor generator for stable and efficient evaporation of high-salinity brine. Chem. Eng. J. 401, 126108 (2020). https://doi.org/10.1016/j.cej.2020.126108
- H.-Y. Zhao, J. Huang, J. Zhou, L.-F. Chen, C. Wang et al., Biomimetic design of macroporous 3D truss materials for efficient interfacial solar steam generation. ACS Nano 16(3), 3554–3362 (2022). https://doi.org/10.1021/ACSnano.1c10184
- N. Nishiyama, T. Yokoyama, Water film thickness in unsaturated porous media: Effect of pore size, pore solution chemistry, and mineral type. Water Resour. Res. 57(6), e2020WR029257 (2021). https://doi.org/10.1029/2020WR029257
- S. Li, P. Xiao, W. Zhou, Y. Liang, S.-W. Kuo et al., Bioinspired nanostructured superwetting thin-films in a self-supported form enabled “miniature umbrella” for weather monitoring and water rescue. Nano-Micro Lett. 14(1), 32 (2021). https://doi.org/10.1007/s40820-021-00775-4
- H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/Mxene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14(1), 63 (2022). https://doi.org/10.1007/s40820-022-00812-w
- F. Sun, T.-T. Li, X. Zhang, B.-C. Shiu, Y. Zhang et al., In situ growth polydopamine decorated polypropylen melt-blown membrane for highly efficient oil/water separation. Chemosphere 254, 126873 (2020). https://doi.org/10.1016/j.chemosphere.2020.126873
- T.S. Sileika, H.-D. Kim, P. Maniak, P.B. Messersmith, Antibacterial performance of polydopamine-modified polymer surfaces containing passive and active components. ACS Appl. Mater. Interfaces 3(12), 4602–4610 (2011). https://doi.org/10.1021/am200978h
- Y. Liu, K. Ai, L. Lu, Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 114(9), 5057–5115 (2014). https://doi.org/10.1021/cr400407a
- S. Guo, Y. Zhang, H. Qu, M. Li, S. Zhang et al., Repurposing face mask waste to construct floating photothermal evaporator for autonomous solar ocean farming. EcoMat 4(2), e12179 (2022). https://doi.org/10.1002/eom2.12179
- S. Zhang, Y. Yuan, W. Zhang, F. Song, J. Li et al., A bioinspired solar evaporator for continuous and efficient desalination by salt dilution and secretion. J. Mater. Chem. A 9(33), 17985–17993 (2021). https://doi.org/10.1039/D1TA05092C
- F. Nawaz, Y. Yang, S. Zhao, M. Sheng, C. Pan et al., Innovative salt-blocking technologies of photothermal materials in solar-driven interfacial desalination. J. Mater. Chem. A 9(30), 16233–16254 (2021). https://doi.org/10.1039/D1TA03610F
- M. Sheng, Y. Yang, X. Bin, S. Zhao, C. Pan et al., Recent advanced self-propelling salt-blocking technologies for passive solar-driven interfacial evaporation desalination systems. Nano Energy 89, 106468 (2021). https://doi.org/10.1016/j.nanoen.2021.106468
- Y. Yang, H. Feng, W. Que, Y. Qiu, Y. Li et al., A diode-like scalable asymmetric solar evaporator with ultra-high salt resistance. Adv. Funct. Mater. 33(6), 2210972 (2023). https://doi.org/10.1002/adfm.202210972
- Z. Wei, Y. Wang, C. Cai, Y. Zhang, S. Guo et al., Dual-network liquid metal hydrogel with integrated solar-driven evaporation, multi-sensory applications, and electricity generation via enhanced light absorption and bénard-marangoni effect. Adv. Funct. Mater. 32(41), 2206287 (2022). https://doi.org/10.1002/adfm.202206287
- W. Zhou, C. Zhou, C. Deng, L. Chen, X. Zeng et al., High-performance freshwater harvesting system by coupling solar desalination and fog collection with hierarchical porous microneedle arrays. Adv. Funct. Mater. 32(28), 2113264 (2022). https://doi.org/10.1002/adfm.202113264
- C. Zhang, Y. Shi, L. Shi, H. Li, R. Li et al., Designing a next generation solar crystallizer for real seawater brine treatment with zero liquid discharge. Nat. Commun. 12(1), 998 (2021). https://doi.org/10.1038/s41467-021-21124-4
- M. Fujiwara, K. Takahashi, K. Takagi, Improvement of condensation step of water vapor in solar desalination of seawater and the development of three-ply membrane system. Desalination 508, 115051 (2021). https://doi.org/10.1016/j.desal.2021.115051
- W. Han, J. Gao, J. Yu, R. Wang, Z. Xu, Efficient and low-cost solar desalination device with enhanced condensation on nail arrays. Desalination 544, 116132 (2022). https://doi.org/10.1016/j.desal.2022.116132
- C. Zhang, Y. Shi, W. Wang, H. Li, R. Li et al., Distinct stage-wise environmental energy harvesting behaviors within solar-driven interfacial water evaporation coupled with convective airflow. Nano Energy 107, 108142 (2023). https://doi.org/10.1016/j.nanoen.2022.108142
- P. Zhang, Q. Liao, H. Yao, H. Cheng, Y. Huang et al., Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun. J. Mater. Chem. A 6(31), 15303–15309 (2018). https://doi.org/10.1039/C8TA05412F
References
M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment. Science 333(6043), 712–717 (2011). https://doi.org/10.1126/science.1200488
M. Gao, L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12(3), 841–864 (2019). https://doi.org/10.1039/C8EE01146J
C. Xu, M. Gao, X. Yu, J. Zhang, Y. Cheng et al., Fibrous aerogels with tunable superwettability for high-performance solar-driven interfacial evaporation. Nano-Micro Lett. 15(1), 64 (2023). https://doi.org/10.1007/s40820-023-01034-4
B. Yu, Y. Wang, Y. Zhang, Z. Zhang, Self-supporting nanoporous copper film with high porosity and broadband light absorption for efficient solar steam generation. Nano-Micro Lett. 15(1), 94 (2023). https://doi.org/10.1007/s40820-023-01063-z
P. Tao, G. Ni, C. Song, W. Shang, J. Wu et al., Solar-driven interfacial evaporation. Nat. Energy 3(12), 1031–1041 (2018). https://doi.org/10.1038/s41560-018-0260-7
C. Chen, Y. Kuang, L. Hu, Challenges and oportunities for solar evaporation. Joule 3(3), 683–718 (2019). https://doi.org/10.1016/j.joule.2018.12.023
F. Wu, S. Qiang, X.-D. Zhu, W. Jiao, L. Liu et al., Fibrous MXene aerogels with tunable pore structures for high-efficiency desalination of contaminated seawater. Nano-Micro Lett. 15(1), 71 (2023). https://doi.org/10.1007/s40820-023-01030-8
Z. Wang, J. Gao, J. Zhou, J. Gong, L. Shang et al., Engineering metal-phenolic networks for solar desalination with directional salt crystallization. Adv. Mater. 35(1), 2209015 (2023). https://doi.org/10.1002/adma.202209015
T.A. Cooper, S.H. Zandavi, G.W. Ni, Y. Tsurimaki, Y. Huang et al., Contactless steam generation and superheating under one sun illumination. Nat. Commun. 9(1), 5086 (2018). https://doi.org/10.1038/s41467-018-07494-2
Z. Yu, R. Gu, Y. Tian, P. Xie, B. Jin et al., Enhanced interfacial solar evaporation through formation of micro-meniscuses and microdroplets to reduce evaporation enthalpy. Adv. Funct. Mater. 32, 2108586 (2022). https://doi.org/10.1002/adfm.202108586
Z. Yu, R. Gu, Y. Zhang, S. Guo, S. Cheng et al., High-flux flowing interfacial water evaporation under multiple heating sources enabled by a biohybrid hydrogel. Nano Energy 98, 107287 (2022). https://doi.org/10.1016/j.nanoen.2022.107287
J. Li, X. Wang, Z. Lin, N. Xu, X. Li et al., Over 10 kg m-2 h-1 evaporation rate enabled by a 3D interconnected porous carbon foam. Joule 4(4), 928–937 (2020). https://doi.org/10.1016/j.joule.2020.02.014
X. Zhou, F. Zhao, Y. Guo, Y. Zhang, G. Yu, A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 11(8), 1985–1992 (2018). https://doi.org/10.1039/C8EE00567B
J.J. Koh, G.J.H. Lim, S. Chakraborty, Y. Zhang, S. Liu et al., Robust, 3D-printed hydratable plastics for effective solar desalination. Nano Energy 79, 105436 (2021). https://doi.org/10.1016/j.nanoen.2020.105436
Z. Yu, S. Li, Y. Chen, X. Zhang, J. Chu et al., Intensifying the co-production of vapor and salts by a one-way brine-flowing structure driven by solar irradiation or waste heat. Desalination 539, 115942 (2022). https://doi.org/10.1016/j.desal.2022.115942
Z. Yu, S. Cheng, C. Li, L. Li, J. Yang, Highly efficient solar vapor generator enabled by a 3D hierarchical structure constructed with hydrophilic carbon felt for desalination and wastewater treatment. ACS Appl. Mater. Interfaces 11(35), 32038–32045 (2019). https://doi.org/10.1021/ACSami.9b08480
Y. Shi, R. Li, Y. Jin, S. Zhuo, L. Shi et al., A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2(6), 1171–1186 (2018). https://doi.org/10.1016/j.joule.2018.03.013
Y. Shi, C. Zhang, R. Li, S. Zhuo, Y. Jin et al., Solar evaporator with controlled salt precipitation for zero liquid discharge desalination. Environ. Sci. Technol. 52(20), 11822–11830 (2018). https://doi.org/10.1021/ACS.est.8b03300
X. Liu, F. Chen, Y. Li, H. Jiang, D.D. Mishra et al., 3D hydrogel evaporator with vertical radiant vessels breaking the trade-off between thermal localization and salt resistance for solar desalination of high-salinity. Adv. Mater. 34(36), 2203137 (2022). https://doi.org/10.1002/adma.202203137
Y. Guo, L.S. de Vasconcelos, N. Manohar, J. Geng, K.P. Johnston et al., Highly elastic interconnected porous hydrogels through self-assembled templating for solar water purification. Angew. Chem. Int. Ed. 61(3), e202114074 (2022). https://doi.org/10.1002/anie.202114074
Y. Guo, X. Zhao, F. Zhao, Z. Jiao, X. Zhou et al., Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy Environ. Sci. 13(7), 2087–2095 (2020). https://doi.org/10.1039/D0EE00399A
Q. Zhao, J. Liu, Z. Wu, X. Xu, H. Ma et al., Robust PEDOT:PSS-based hydrogel for highly efficient interfacial solar water purification. Chem. Eng. J. 442, 136284 (2022). https://doi.org/10.1016/j.cej.2022.136284
Q. Zhao, Z. Wu, X. Xu, R. Yang, H. Ma et al., Design of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate-polyacrylamide dual network hydrogel for long-term stable, highly efficient solar steam generation. Sep. Purif. Technol. 300, 121889 (2022). https://doi.org/10.1016/j.seppur.2022.121889
Q. Lu, W. Shi, H. Yang, X. Wang, Nanoconfined water-molecule channels for high-yield solar vapor generation under weaker sunlight. Adv. Mater. 32(42), 2001544 (2020). https://doi.org/10.1002/adma.202001544
Z. Dong, C. Zhang, H. Peng, J. Gong, Q. Zhao, Modular design of solar-thermal nanofluidics for advanced desalination membranes. J. Mater. Chem. A 8(46), 24493–24500 (2020). https://doi.org/10.1039/D0TA09471D
Z.J. Zhang, J. Ma, D. Liu, D. Liu, Y. Han et al., Localized interfacial activation effect within interconnected porous photothermal matrix to promote solar-driven water evaporation. J. Mater. Chem. A 10(19), 10548–10556 (2022). https://doi.org/10.1039/D2TA00838F
L. Li, N. He, B. Jiang, K. Yu, Q. Zhang et al., Highly salt-resistant 3D hydrogel evaporator for continuous solar desalination via localized crystallization. Adv. Funct. Mater. 31(43), 2104380 (2021). https://doi.org/10.1002/adfm.202104380
Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired Mxene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14(1), 10 (2021). https://doi.org/10.1007/s40820-021-00748-7
Y. Xu, C. Tang, J. Ma, D. Liu, D. Qi et al., Low-tortuosity water microchannels boosting energy utilization for high water flux solar distillation. Environ. Sci. Technol. 54(8), 5150–5158 (2020). https://doi.org/10.1021/ACS.est.9b06072
C. Tian, J. Liu, R. Ruan, X. Tian, X. Lai et al., Sandwich photothermal membrane with confined hierarchical carbon cells enabling high-efficiency solar steam generation. Small 16(23), 2000573 (2020). https://doi.org/10.1002/smll.202000573
H. Liang, Q. Liao, N. Chen, Y. Liang, G. Lv et al., Thermal efficiency of solar steam generation approaching 100% through capillary water transport. Angew. Chem. Int. Ed. 58, 19041–19046 (2019). https://doi.org/10.1002/anie.201911457
W. Liu, Z. Chen, G. Zhou, Y. Sun, H.R. Lee et al., 3D porous sponge-inspired electrode for stretchable lithium-ion batteries. Adv. Mater. 28(18), 3578–3583 (2016). https://doi.org/10.1002/adma.201505299
M. Chen, L. Zhang, S. Duan, S. Jing, H. Jiang et al., Highly stretchable conductors integrated with a conductive carbon nanotube/graphene network and 3D porous poly(dimethylsiloxane). Adv. Funct. Mater. 24(47), 7548–7556 (2014). https://doi.org/10.1002/adfm.201401886
F.-T. Zhang, L. Xu, J.-H. Chen, B. Zhao, X.-Z. Fu et al., Electroless deposition metals on poly(dimethylsiloxane) with strong adhesion as flexible and stretchable conductive materials. ACS Appl. Mater. Interfaces 10(2), 2075–2082 (2018). https://doi.org/10.1021/ACSami.7b15726
Z. Yu, Y. Li, R. Gu, J. Song, S. Cheng et al., Polymeric solid wastes for efficient and stable solar desalination and the outdoor clean water production performance prediction. Sep. Purif. Technol. 301, 121938 (2022). https://doi.org/10.1016/j.seppur.2022.121938
X. Li, G. Ni, T. Cooper, N. Xu, J. Li et al., Measuring conversion efficiency of solar vapor generation. Joule 3(8), 1798–1803 (2019). https://doi.org/10.1016/j.joule.2019.06.009
S. Cheng, Z. Yu, Z. Lin, L. Li, Y. Li et al., A lotus leaf like vertical hierarchical solar vapor generator for stable and efficient evaporation of high-salinity brine. Chem. Eng. J. 401, 126108 (2020). https://doi.org/10.1016/j.cej.2020.126108
H.-Y. Zhao, J. Huang, J. Zhou, L.-F. Chen, C. Wang et al., Biomimetic design of macroporous 3D truss materials for efficient interfacial solar steam generation. ACS Nano 16(3), 3554–3362 (2022). https://doi.org/10.1021/ACSnano.1c10184
N. Nishiyama, T. Yokoyama, Water film thickness in unsaturated porous media: Effect of pore size, pore solution chemistry, and mineral type. Water Resour. Res. 57(6), e2020WR029257 (2021). https://doi.org/10.1029/2020WR029257
S. Li, P. Xiao, W. Zhou, Y. Liang, S.-W. Kuo et al., Bioinspired nanostructured superwetting thin-films in a self-supported form enabled “miniature umbrella” for weather monitoring and water rescue. Nano-Micro Lett. 14(1), 32 (2021). https://doi.org/10.1007/s40820-021-00775-4
H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/Mxene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14(1), 63 (2022). https://doi.org/10.1007/s40820-022-00812-w
F. Sun, T.-T. Li, X. Zhang, B.-C. Shiu, Y. Zhang et al., In situ growth polydopamine decorated polypropylen melt-blown membrane for highly efficient oil/water separation. Chemosphere 254, 126873 (2020). https://doi.org/10.1016/j.chemosphere.2020.126873
T.S. Sileika, H.-D. Kim, P. Maniak, P.B. Messersmith, Antibacterial performance of polydopamine-modified polymer surfaces containing passive and active components. ACS Appl. Mater. Interfaces 3(12), 4602–4610 (2011). https://doi.org/10.1021/am200978h
Y. Liu, K. Ai, L. Lu, Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 114(9), 5057–5115 (2014). https://doi.org/10.1021/cr400407a
S. Guo, Y. Zhang, H. Qu, M. Li, S. Zhang et al., Repurposing face mask waste to construct floating photothermal evaporator for autonomous solar ocean farming. EcoMat 4(2), e12179 (2022). https://doi.org/10.1002/eom2.12179
S. Zhang, Y. Yuan, W. Zhang, F. Song, J. Li et al., A bioinspired solar evaporator for continuous and efficient desalination by salt dilution and secretion. J. Mater. Chem. A 9(33), 17985–17993 (2021). https://doi.org/10.1039/D1TA05092C
F. Nawaz, Y. Yang, S. Zhao, M. Sheng, C. Pan et al., Innovative salt-blocking technologies of photothermal materials in solar-driven interfacial desalination. J. Mater. Chem. A 9(30), 16233–16254 (2021). https://doi.org/10.1039/D1TA03610F
M. Sheng, Y. Yang, X. Bin, S. Zhao, C. Pan et al., Recent advanced self-propelling salt-blocking technologies for passive solar-driven interfacial evaporation desalination systems. Nano Energy 89, 106468 (2021). https://doi.org/10.1016/j.nanoen.2021.106468
Y. Yang, H. Feng, W. Que, Y. Qiu, Y. Li et al., A diode-like scalable asymmetric solar evaporator with ultra-high salt resistance. Adv. Funct. Mater. 33(6), 2210972 (2023). https://doi.org/10.1002/adfm.202210972
Z. Wei, Y. Wang, C. Cai, Y. Zhang, S. Guo et al., Dual-network liquid metal hydrogel with integrated solar-driven evaporation, multi-sensory applications, and electricity generation via enhanced light absorption and bénard-marangoni effect. Adv. Funct. Mater. 32(41), 2206287 (2022). https://doi.org/10.1002/adfm.202206287
W. Zhou, C. Zhou, C. Deng, L. Chen, X. Zeng et al., High-performance freshwater harvesting system by coupling solar desalination and fog collection with hierarchical porous microneedle arrays. Adv. Funct. Mater. 32(28), 2113264 (2022). https://doi.org/10.1002/adfm.202113264
C. Zhang, Y. Shi, L. Shi, H. Li, R. Li et al., Designing a next generation solar crystallizer for real seawater brine treatment with zero liquid discharge. Nat. Commun. 12(1), 998 (2021). https://doi.org/10.1038/s41467-021-21124-4
M. Fujiwara, K. Takahashi, K. Takagi, Improvement of condensation step of water vapor in solar desalination of seawater and the development of three-ply membrane system. Desalination 508, 115051 (2021). https://doi.org/10.1016/j.desal.2021.115051
W. Han, J. Gao, J. Yu, R. Wang, Z. Xu, Efficient and low-cost solar desalination device with enhanced condensation on nail arrays. Desalination 544, 116132 (2022). https://doi.org/10.1016/j.desal.2022.116132
C. Zhang, Y. Shi, W. Wang, H. Li, R. Li et al., Distinct stage-wise environmental energy harvesting behaviors within solar-driven interfacial water evaporation coupled with convective airflow. Nano Energy 107, 108142 (2023). https://doi.org/10.1016/j.nanoen.2022.108142
P. Zhang, Q. Liao, H. Yao, H. Cheng, Y. Huang et al., Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun. J. Mater. Chem. A 6(31), 15303–15309 (2018). https://doi.org/10.1039/C8TA05412F