K2Ti6O13 Nanoparticle-Loaded Porous rGO Crumples for Supercapacitors
Corresponding Author: Hee Dong Jang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 10
Abstract
One-dimensional alkali metal titanates containing potassium, sodium, and lithium are of great concern owing to their high ion mobility and high specific surface area. When those titanates are combined with conductive materials such as graphene, carbon nanotube, and carbon nanofiber, they are able to be employed as efficient electrode materials for supercapacitors. Potassium hexa-titanate (K2Ti6O13, KTO), in particular, has shown superior electrochemical properties compared to other alkali metal titanates because of their large lattice parameters induced by the large radius of potassium ions. Here, we present porous rGO crumples (PGC) decorated with KTO nanoparticles (NPs) for application to supercapacitors. The KTO NP/PGC composites were synthesized by aerosol spray pyrolysis and post-heat treatment. KTO NPs less than 10 nm in diameter were loaded onto PGCs ranging from 3 to 5 µm. Enhanced porous structure of the composites was obtained by the activation of rGO by adding an excessive amount of KOH to the composites. The KTO NP/PGC composite electrodes fabricated at the GO/KOH/TiO2 ratio of 1:3:0.25 showed the highest performance (275 F g−1) in capacitance with different KOH concentrations and cycling stability (83%) after 2000 cycles at a current density of 1 A g−1.
Highlights
1 K2Ti6O13 nanoparticle (KTO NP)-loaded porous reduced graphene oxide crumples (PGCs) were fabricated.
2 The specific capacitance was improved due to the synergy effect between KTO and PGC.
3 The KTO NP/PGC composites can be promising electrode materials for supercapacitors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Burke, Ultracapacitors: why, how, and where is the technology. J. Power Sources 91(1), 37–50 (2000). https://doi.org/10.1016/S0378-7753(00)00485-7
- MathSciNet
- P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). https://doi.org/10.1038/nmat2297
- M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4269 (2004). https://doi.org/10.1021/cr020730k
- J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321(5889), 651–652 (2008). https://doi.org/10.1126/science.1158736
- C.G. Liu, Z.N. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10(12), 4863–4868 (2010). https://doi.org/10.1021/nl102661q
- B.G. Choi, M. Yang, W.H. Hong, J.W. Choi, Y.S. Huh, 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6(5), 4020–4028 (2012). https://doi.org/10.1021/nn3003345
- C.S. Wang, Y. Xi, M.J. Wang, C.S. Zhang, X. Wang et al., Carbon-modified Na2Ti3O7·2H2O nanobelts as redox active materials for high-performance supercapacitor. Nano Energy 28, 115–123 (2016). https://doi.org/10.1016/j.nanoen.2016.08.021
- Y.F. Zhao, H.T. Zhang, A. Liu, Y.Z. Jiao, J.J. Shim, S.J. Zhang, Fabrication of nanoarchitectured TiO2(B)@C/rGO electrode for 4 V quasi-solid-state nanohybrid supercapacitors. Electrochim. Acta 258, 343–352 (2017). https://doi.org/10.1016/j.electacta.2017.11.060
- W.N. Xu, J. Wan, W.C. Huo, Q. Yang, Y.R. Li, C.L. Zhang, X. Gu, C.G. Hu, Sodium ions pre-intercalation stabilized tunnel structure of Na2Mn8O16 nanorods for supercapacitors with long cycle life. Chem. Eng. J. 354, 1050–1057 (2018). https://doi.org/10.1016/j.cej.2018.08.033
- R. Aswathy, Y. Munaiah, P. Ragupathy, Unveiling the charge storage mechanism of layered and tunnel structures of manganese oxides as electrodes for supercapacitors. J. Electrochem. Soc. 163(7), A1460–A1468 (2016). https://doi.org/10.1149/2.0091608jes
- S.Y. Dong, Z.F. Li, Z.Y. Xing, X.Y. Wu, X.L. Ji, X.G. Zhang, Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS Appl. Mater. Interfaces. 10(18), 15542–15547 (2018). https://doi.org/10.1021/acsami.7b15314
- Z. Yang, J.Y. Sun, Y.L. Xie, P. Kaur, J. Hernandez et al., Hydrogen plasma reduced potassium titanate as a high power and ultralong lifespan anode material for sodium-ion batteries. J. Mater. Chem. A 6(44), 22037–22042 (2018). https://doi.org/10.1039/c8ta02523a
- C.S. Zhang, Y. Xi, C.S. Wang, C.G. Hu, Z.Q. Liu et al., High-performance flexible supercapacitors based on C/Na2Ti5O11 nanocomposite electrode materials. J. Mater. Sci. 52(24), 13897–13908 (2017). https://doi.org/10.1007/s10853-017-1415-9
- C.S. Zhang, C.S. Wang, D.Z. Zhang, S.G. Dai, Y. Xi et al., Based on the stable tunnel structure of C@K2Ti6O13 hybrid compositions for supercapacitor. Electrochim. Acta 252, 498–506 (2017). https://doi.org/10.1016/j.electacta.2017.08.180
- Y. Qian, X.Y. Cai, C.Y. Zhang, H.F. Jiang, L.J. Zhou, B.S. Li, L.F. Lai, A free-standing Li4Ti5O12/graphene foam composite as anode material for Li-ion hybrid supercapacitor. Electrochim. Acta 258, 1311–1319 (2017). https://doi.org/10.1016/j.electacta.2017.11.188
- B.C. Luo, X.H. Wang, E.K. Tian, H.L. Gong, Q.C. Zhao et al., Dielectric enhancement in graphene/barium titanate nanocomposites. ACS Appl. Mater. Interfaces. 8(5), 3340–3348 (2016). https://doi.org/10.1021/acsami.5b11231
- R. Xue, J.W. Yan, L. Jiang, B.L. Yi, Fabrication of lithium titanate/graphene composites with high rate capability as electrode materials for hybrid electrochemical supercapacitors. Mater. Chem. Phys. 160, 375–382 (2015). https://doi.org/10.1016/j.matchemphys.2015.04.055
- R. Rajagopal, Y.S. Lee, K.S. Ryu, Synthesis and electrochemical analysis of Nb2O5–TiO2/H–rGO sandwich type layered architecture electrode for supercapacitor application. Chem. Eng. J. 325, 611–623 (2017). https://doi.org/10.1016/j.cej.2017.05.120
- T. Meng, F.Y. Yi, H.H. Cheng, J.N. Hao, D. Shu et al., Preparation of lithium titanate/reduced graphene oxide composites with three-dimensional “Fishnet-like” conductive structure via a gas-foaming method for high-rate lithium-ion batteries. ACS Appl. Mater. Interfaces. 9(49), 42883–42892 (2017). https://doi.org/10.1021/acsami.7b15525
- J.Y. Luo, H.D. Jang, J.X. Huang, Effect of sheet morphology on the scalability of graphene-based ultracapacitors. ACS Nano 7(2), 1464–1471 (2013). https://doi.org/10.1021/nn3052378
- J.Y. Luo, H.D. Jang, T. Sun, L. Xiao, Z. He et al., Compression and aggregation-resistant particles of crumpled soft sheets. ACS Nano 5(11), 8943–8949 (2011). https://doi.org/10.1021/nn203115u
- J.Y. Luo, X. Zhao, J.S. Wu, H.D. Jang, H.H. Kung, J.X. Huang, Crumpled graphene-encapsulated si nanoparticles for lithium ion battery anodes. J. Phys. Chem. Lett. 3(13), 1824–1829 (2012). https://doi.org/10.1021/jz3006892
- W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
- M.J.B. Hilda Cid-Dresdner, The crystal structure of potassium hexatitanate K2Ti6O13. Zeitschrift für Kristallographie-Crystalline Mater. 117, 411-430 (1962). https://doi.org/10.1524/zkri.1962.117.16.411
- A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006). https://doi.org/10.1103/Physrevlett.97.187401
- H.S. Park, M.H. Lee, R.Y. Hwang, O.K. Park, K. Jo, T. Lee, B.S. Kim, H.K. Song, Kinetically enhanced pseudocapacitance of conducting polymer doped with reduced graphene oxide through a miscible electron transfer interface. Nano Energy 3, 1–9 (2014). https://doi.org/10.1016/j.nanoen.2013.10.001
- S.Z. Huang, L.L. Zhang, J.L. Zhu, S.P. Jiang, P.K. Shen, Crumpled nitrogen- and boron-dual-self-doped graphene sheets as an extraordinary active anode material for lithium ion batteries. J. Mater. Chem. A 4(37), 14155–14162 (2016). https://doi.org/10.1039/C6TA05623G
- R. Kotz, M. Hahn, R. Gallay, Temperature behavior and impedance fundamentals of supercapacitors. J. Power Sources 154(2), 550–555 (2006). https://doi.org/10.1016/j.jpowsour.2005.10.048
- L. Gao, S. Chen, L.L. Zhang, X.L. Yang, High performance sodium ion hybrid supercapacitors based on Na2Ti3O7 nanosheet arrays. J. Alloy. Compd. 766, 284–290 (2018). https://doi.org/10.1016/j.jallcom.2018.06.288
- L.L. Xing, K.J. Huang, S.X. Cao, H. Pang, Chestnut shell-like Li4Ti5O12 hollow spheres for high-performance aqueous asymmetric supercapacitors. Chem. Eng. J. 332, 253–259 (2018). https://doi.org/10.1016/j.cej.2017.09.084
- P.Y. Ji, J. Wan, Y. Xi, Y.Z. Guan, C.S. Zhang et al., In situ growth of MnO@Na2Ti6O13 heterojunction nanowires for high performance supercapacitors. Nanotechnology (2019). https://doi.org/10.1088/1361-6528/ab0cd1
References
A. Burke, Ultracapacitors: why, how, and where is the technology. J. Power Sources 91(1), 37–50 (2000). https://doi.org/10.1016/S0378-7753(00)00485-7
MathSciNet
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). https://doi.org/10.1038/nmat2297
M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4269 (2004). https://doi.org/10.1021/cr020730k
J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321(5889), 651–652 (2008). https://doi.org/10.1126/science.1158736
C.G. Liu, Z.N. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10(12), 4863–4868 (2010). https://doi.org/10.1021/nl102661q
B.G. Choi, M. Yang, W.H. Hong, J.W. Choi, Y.S. Huh, 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6(5), 4020–4028 (2012). https://doi.org/10.1021/nn3003345
C.S. Wang, Y. Xi, M.J. Wang, C.S. Zhang, X. Wang et al., Carbon-modified Na2Ti3O7·2H2O nanobelts as redox active materials for high-performance supercapacitor. Nano Energy 28, 115–123 (2016). https://doi.org/10.1016/j.nanoen.2016.08.021
Y.F. Zhao, H.T. Zhang, A. Liu, Y.Z. Jiao, J.J. Shim, S.J. Zhang, Fabrication of nanoarchitectured TiO2(B)@C/rGO electrode for 4 V quasi-solid-state nanohybrid supercapacitors. Electrochim. Acta 258, 343–352 (2017). https://doi.org/10.1016/j.electacta.2017.11.060
W.N. Xu, J. Wan, W.C. Huo, Q. Yang, Y.R. Li, C.L. Zhang, X. Gu, C.G. Hu, Sodium ions pre-intercalation stabilized tunnel structure of Na2Mn8O16 nanorods for supercapacitors with long cycle life. Chem. Eng. J. 354, 1050–1057 (2018). https://doi.org/10.1016/j.cej.2018.08.033
R. Aswathy, Y. Munaiah, P. Ragupathy, Unveiling the charge storage mechanism of layered and tunnel structures of manganese oxides as electrodes for supercapacitors. J. Electrochem. Soc. 163(7), A1460–A1468 (2016). https://doi.org/10.1149/2.0091608jes
S.Y. Dong, Z.F. Li, Z.Y. Xing, X.Y. Wu, X.L. Ji, X.G. Zhang, Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS Appl. Mater. Interfaces. 10(18), 15542–15547 (2018). https://doi.org/10.1021/acsami.7b15314
Z. Yang, J.Y. Sun, Y.L. Xie, P. Kaur, J. Hernandez et al., Hydrogen plasma reduced potassium titanate as a high power and ultralong lifespan anode material for sodium-ion batteries. J. Mater. Chem. A 6(44), 22037–22042 (2018). https://doi.org/10.1039/c8ta02523a
C.S. Zhang, Y. Xi, C.S. Wang, C.G. Hu, Z.Q. Liu et al., High-performance flexible supercapacitors based on C/Na2Ti5O11 nanocomposite electrode materials. J. Mater. Sci. 52(24), 13897–13908 (2017). https://doi.org/10.1007/s10853-017-1415-9
C.S. Zhang, C.S. Wang, D.Z. Zhang, S.G. Dai, Y. Xi et al., Based on the stable tunnel structure of C@K2Ti6O13 hybrid compositions for supercapacitor. Electrochim. Acta 252, 498–506 (2017). https://doi.org/10.1016/j.electacta.2017.08.180
Y. Qian, X.Y. Cai, C.Y. Zhang, H.F. Jiang, L.J. Zhou, B.S. Li, L.F. Lai, A free-standing Li4Ti5O12/graphene foam composite as anode material for Li-ion hybrid supercapacitor. Electrochim. Acta 258, 1311–1319 (2017). https://doi.org/10.1016/j.electacta.2017.11.188
B.C. Luo, X.H. Wang, E.K. Tian, H.L. Gong, Q.C. Zhao et al., Dielectric enhancement in graphene/barium titanate nanocomposites. ACS Appl. Mater. Interfaces. 8(5), 3340–3348 (2016). https://doi.org/10.1021/acsami.5b11231
R. Xue, J.W. Yan, L. Jiang, B.L. Yi, Fabrication of lithium titanate/graphene composites with high rate capability as electrode materials for hybrid electrochemical supercapacitors. Mater. Chem. Phys. 160, 375–382 (2015). https://doi.org/10.1016/j.matchemphys.2015.04.055
R. Rajagopal, Y.S. Lee, K.S. Ryu, Synthesis and electrochemical analysis of Nb2O5–TiO2/H–rGO sandwich type layered architecture electrode for supercapacitor application. Chem. Eng. J. 325, 611–623 (2017). https://doi.org/10.1016/j.cej.2017.05.120
T. Meng, F.Y. Yi, H.H. Cheng, J.N. Hao, D. Shu et al., Preparation of lithium titanate/reduced graphene oxide composites with three-dimensional “Fishnet-like” conductive structure via a gas-foaming method for high-rate lithium-ion batteries. ACS Appl. Mater. Interfaces. 9(49), 42883–42892 (2017). https://doi.org/10.1021/acsami.7b15525
J.Y. Luo, H.D. Jang, J.X. Huang, Effect of sheet morphology on the scalability of graphene-based ultracapacitors. ACS Nano 7(2), 1464–1471 (2013). https://doi.org/10.1021/nn3052378
J.Y. Luo, H.D. Jang, T. Sun, L. Xiao, Z. He et al., Compression and aggregation-resistant particles of crumpled soft sheets. ACS Nano 5(11), 8943–8949 (2011). https://doi.org/10.1021/nn203115u
J.Y. Luo, X. Zhao, J.S. Wu, H.D. Jang, H.H. Kung, J.X. Huang, Crumpled graphene-encapsulated si nanoparticles for lithium ion battery anodes. J. Phys. Chem. Lett. 3(13), 1824–1829 (2012). https://doi.org/10.1021/jz3006892
W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
M.J.B. Hilda Cid-Dresdner, The crystal structure of potassium hexatitanate K2Ti6O13. Zeitschrift für Kristallographie-Crystalline Mater. 117, 411-430 (1962). https://doi.org/10.1524/zkri.1962.117.16.411
A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006). https://doi.org/10.1103/Physrevlett.97.187401
H.S. Park, M.H. Lee, R.Y. Hwang, O.K. Park, K. Jo, T. Lee, B.S. Kim, H.K. Song, Kinetically enhanced pseudocapacitance of conducting polymer doped with reduced graphene oxide through a miscible electron transfer interface. Nano Energy 3, 1–9 (2014). https://doi.org/10.1016/j.nanoen.2013.10.001
S.Z. Huang, L.L. Zhang, J.L. Zhu, S.P. Jiang, P.K. Shen, Crumpled nitrogen- and boron-dual-self-doped graphene sheets as an extraordinary active anode material for lithium ion batteries. J. Mater. Chem. A 4(37), 14155–14162 (2016). https://doi.org/10.1039/C6TA05623G
R. Kotz, M. Hahn, R. Gallay, Temperature behavior and impedance fundamentals of supercapacitors. J. Power Sources 154(2), 550–555 (2006). https://doi.org/10.1016/j.jpowsour.2005.10.048
L. Gao, S. Chen, L.L. Zhang, X.L. Yang, High performance sodium ion hybrid supercapacitors based on Na2Ti3O7 nanosheet arrays. J. Alloy. Compd. 766, 284–290 (2018). https://doi.org/10.1016/j.jallcom.2018.06.288
L.L. Xing, K.J. Huang, S.X. Cao, H. Pang, Chestnut shell-like Li4Ti5O12 hollow spheres for high-performance aqueous asymmetric supercapacitors. Chem. Eng. J. 332, 253–259 (2018). https://doi.org/10.1016/j.cej.2017.09.084
P.Y. Ji, J. Wan, Y. Xi, Y.Z. Guan, C.S. Zhang et al., In situ growth of MnO@Na2Ti6O13 heterojunction nanowires for high performance supercapacitors. Nanotechnology (2019). https://doi.org/10.1088/1361-6528/ab0cd1