Precise Detection, Control and Synthesis of Chiral Compounds at Single-Molecule Resolution
Corresponding Author: Xuefeng Guo
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 211
Abstract
Chirality, as the symmetric breaking of molecules, plays an essential role in physical, chemical and especially biological processes, which highlights the accurate distinction among heterochiralities as well as the precise preparation for homochirality. To this end, the well-designed structure-specific recognizer and catalysis reactor are necessitated, respectively. However, each kind of target molecules requires a custom-made chiral partner and the dynamic disorder of spatial-orientation distribution of molecules at the ensemble level leads to an inefficient protocol. In this perspective article, we developed a universal strategy capable of realizing the chirality detection and control by the external symmetry breaking based on the alignment of the molecular frame to external stimuli. Specifically, in combination with the discussion about the relationship among the chirality (molecule), spin (electron) and polarization (photon), i.e., the three natural symmetry breaking, single-molecule junctions were proposed to achieve a single-molecule/event-resolved detection and synthesis. The fixation of the molecular orientation and the CMOS-compatibility provide an efficient interface to achieve the external input of symmetry breaking. This perspective is believed to offer more efficient applications in accurate chirality detection and precise asymmetric synthesis via the close collaboration of chemists, physicists, materials scientists, and engineers.
Highlights:
1 Single-molecule electrical detection, especially the single-molecule junction setup, enables the precise detection and spatial operability of anchored molecules.
2 The transition among asymmetric characteristics (i.e., molecular chirality, photonic polarization and electronic spin) is proposed as a universal methodology to realize the detection, control and synthesis of chirality.
3 Exploring the origin of symmetry breaking contributes to the development of a general reliable strategy for asymmetric synthesis.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Bailey, A. Chrysostomou, J.H. Hough, T.M. Gledhill, A. Mccall et al., Circular polarization in star-formation regions: implications for biomolecular homochirality. Science 281, 672–674 (1998). https://doi.org/10.1126/science.281.5377.672
- W. Fub, A. Chrysostomou, J.H. Hough, T.M. Gledhill, A. Mccall et al., Does life originate from a single molecule? Chirality 21, 299–304 (2009). https://doi.org/10.1002/chir.20576
- D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal et al., Observation of unconventional quantum spin textures in topological insulators. Science 323, 919–922 (2009). https://doi.org/10.1126/science.1167733
- Y.H. Kim, Y. Zhai, H. Lu, X. Pan, C. Xiao et al., Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021). https://doi.org/10.1126/science.abf5291
- V. Sharma, M. Crne, J.O. Park, M. Srinivasarao, Structural origin of circularly polarized iridescence in jeweled beetles. Science 325, 449–451 (2009). https://doi.org/10.1126/science.1172051
- B. Gohler, V. Hamelbeck, T.Z. Markus, M. Kettner, G.F. Hanne et al., Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331, 894–897 (2011). https://doi.org/10.1126/science.1199339
- R. Naaman, Y. Paltiel, D.H. Waldeck, Chiral molecules and the electron spin. Nat. Rev. Chem. 3, 250–260 (2019). https://doi.org/10.1038/s41570-019-0087-1
- J.R. Brandt, F. Salerno, M.J. Fuchter, The added value of small-molecule chirality in technological applications. Nat. Rev. Chem. 1, 0045 (2017). https://doi.org/10.1038/s41570-017-0045
- R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt et al., Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999). https://doi.org/10.1038/45502
- J.M. Kikkawa, D.D. Awschalom, All-optical magnetic resonance in semiconductors. Science 287, 473–476 (2000). https://doi.org/10.1126/science.287.5452.473
- Y. Li, C. Yang, X. Guo, Single-molecule electrical detection: a promising route toward the fundamental limits of chemistry and life science. Acc. Chem. Res. 53, 159–169 (2020). https://doi.org/10.1021/acs.accounts.9b00347
- E. Barkai, Y.J. Jung, R. Silbey, Theory of single-molecule spectroscopy: beyond the ensemble average. Annu. Rev. Phys. Chem. 55, 457–507 (2004). https://doi.org/10.1146/annurev.physchem.55.111803.143246
- H.P. Lu, L.Y. Xun, X.S. Xie, Single-molecule enzymatic dynamics. Science 282, 1877–1882 (1998). https://doi.org/10.1126/science.282.5395.1877
- M.J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006). https://doi.org/10.1038/nmeth929
- A.B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M.O. McAnally et al., Single-molecule chemistry with surface- and tip-enhanced raman spectroscopy. Chem. Rev. 117, 7583–7613 (2017). https://doi.org/10.1021/acs.chemrev.6b00552
- I. Heller, T.P. Hoekstra, G.A. King, E.J.G. Peterman, G.J.L. Wuite, Optical tweezers analysis of DNA–protein complexes. Chem. Rev. 114, 3087–3119 (2014). https://doi.org/10.1021/cr4003006
- A.M. Armani, R.P. Kulkarni, S.E. Fraser, R.C. Flagan, K.J. Vahala, Label-free, single-molecule detection with optical microcavities. Science 317, 783–787 (2007). https://doi.org/10.1126/science.1145002
- D. Deamer, M. Akeson, D. Branton, Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518–524 (2016). https://doi.org/10.1038/nbt.3423
- N. Xin, J. Guan, C. Zhou, X. Chen, C. Gu et al., Concepts in the design and engineering of single-molecule electronic devices. Nat. Rev. Phys. 1, 211–230 (2019). https://doi.org/10.1038/s42254-019-0022-x
- D. Xiang, X. Wang, C. Jia, T. Lee, X. Guo, Molecular-scale electronics: from concept to function. Chem. Rev. 116, 4318–4440 (2016). https://doi.org/10.1021/acs.chemrev.5b00680
- S. Verbrugge, Z. Lansky, E.J.G. Peterman, Kinesin’s step dissected with single-motor FRET. Proc. Natl. Acad. Sci. U.S.A. 106, 17741–17746 (2009). https://doi.org/10.1073/pnas.0905177106
- E.L. Florin, V.T. Moy, H.E. Gaub, Adhesion forces between individual ligand-receptor pairs. Science 264, 415–417 (1994). https://doi.org/10.1126/science.8153628
- C.M. Liu, K. Kubo, E. Wang, K. Han, F. Yang et al., Single polymer growth dynamics. Science 358, 352–355 (2017). https://doi.org/10.1126/science.aan6837
- B. Xu, N. Tao, Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003). https://doi.org/10.1126/science.1087481
- M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, Conductance of a molecular junction. Science 278, 252–254 (1997). https://doi.org/10.1126/science.278.5336.252
- W. Liang, M.P. Shores, M. Bockrath, J.R. Long, H. Park, Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002). https://doi.org/10.1038/nature00790
- S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J. Brédas et al., Single-electron transistor of a single organic molecule with access to several redox states. Nature 425, 698–701 (2003). https://doi.org/10.1038/nature02010
- C. Jia, B. Ma, N. Xin, X. Guo, Carbon electrode–molecule junctions: a reliable platform for molecular electronics. Acc. Chem. Res. 48, 2565–2575 (2015). https://doi.org/10.1021/acs.accounts.5b00133
- J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish et al., Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002). https://doi.org/10.1038/nature00791
- Y. Cao, S. Dong, S. Liu, L. He, L. Gan et al., Building high-throughput molecular junctions using indented graphene point contacts. Angew. Chem. Int. Ed. 51, 12228–12232 (2012). https://doi.org/10.1002/anie.201205607
- Y. Wu, Y. Xiao, X. Wang, X. Li, Y. Wang, Chirality discrimination at the single molecule level by using a cationic supermolecule quasi-gated organic field effect transistor. ACS Sens. 4, 2009–2017 (2019). https://doi.org/10.1021/acssensors.9b00270
- K. Salikolimi, V.K. Praveen, A.A. Sudhakar, K. Yamada, N. Nishizawa Horimoto et al., Helical supramolecular polymers with rationally designed binding sites for chiral guest recognition. Nat. Commun. 11, 2311 (2020). https://doi.org/10.1038/s41467-020-16127-6
- S. Das, S. Xu, T. Ben, S. Qiu, Chiral recognition and separation by chirality-enriched metal–organic frameworks. Angew. Chem. Int. Ed. 57, 8629–8633 (2018). https://doi.org/10.1002/anie.201804383
- B. Li, X. Yang, X. Wu, Z. Luo, C. Zhong et al., Enantioselective recognition for carboxylic acids by novel chiral macrocyclic polyamides derived from l-/d-tartaric acid. Supramol. Chem. 18, 507–513 (2007). https://doi.org/10.1080/10610270600808141
- Y. Okamoto, E. Yashima, Polysaccharide derivatives for chromatographic separation of enantiomers. Angew. Chem. Int. Ed. 37, 1020–1043 (1998). https://doi.org/10.1002/(SICI)1521-3773(19980504)37:8
- J. Labuta, S. Ishihara, T. Šikorský, Z. Futera, A. Shundo et al., NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers. Nat. Commun. 4, 2188 (2013). https://doi.org/10.1038/ncomms3188
- L. Zhang, G. Wang, C. Xiong, L. Zheng, J. He et al., Chirality detection of amino acid enantiomers by organic electrochemical transistor. Biosens. Bioelectron. 105, 121–128 (2018). https://doi.org/10.1016/j.bios.2018.01.035
- M. Rekharsky, Y. Inoue, Chiral recognition thermodynamics of beta-cyclodextrin: the thermodynamic origin of enantioselectivity and the enthalpy–entropy compensation effect. J. Am. Chem. Soc. 122, 4418–4435 (2000). https://doi.org/10.1021/ja9921118
- Y. Okamoto, T. Ikai, Chiral HPLC for efficient resolution of enantiomers. Chem. Soc. Rev. 37, 2593–2608 (2008). https://doi.org/10.1039/B808881K
- I. Kreituss, J.W. Bode, Flow chemistry and polymer-supported pseudoenantiomeric acylating agents enable parallel kinetic resolution of chiral saturated N-heterocycles. Nat. Chem. 9, 446–452 (2017). https://doi.org/10.1038/nchem.2681
- M.B. Steffensen, D. Rotem, H. Bayley, Single-molecule analysis of chirality in a multicomponent reaction network. Nat. Chem. 6, 603–607 (2014). https://doi.org/10.1038/nchem.1949
- W. Jia, C. Hu, Y. Wang, Y. Liu, L. Wang et al., Identification of single-molecule catecholamine enantiomers using a programmable nanopore. ACS Nano 16, 6615–6624 (2022). https://doi.org/10.1021/acsnano.2c01017
- A. Aviram, M.A. Ratner, Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974). https://doi.org/10.1016/0009-2614(74)85031-1
- N. Xin, J. Wang, C. Jia, Z. Liu, X. Zhang et al., Stereoelectronic effect-induced conductance switching in aromatic chain single-molecule junctions. Nano Lett. 17, 856–861 (2017). https://doi.org/10.1021/acs.nanolett.6b04139
- T.A. Su, M. Neupane, M.L. Steigerwald, L. Venkataraman, C. Nuckolls, Chemical principles of single-molecule electronics. Nat. Rev. Mater. 1, 16002 (2016). https://doi.org/10.1038/natrevmats.2016.2
- Z. Liu, X. Li, H. Masai, X. Huang, S. Tsuda et al., A single-molecule electrical approach for amino acid detection and chirality recognition. Sci. Adv. 7, eabe4365 (2021). https://doi.org/10.1126/sciadv.abe4365
- T. Nishino, Y. Umezawa, Single-molecule chiral recognition on a surface by chiral molecular tips. Anal. Chem. 80, 6968–6973 (2008). https://doi.org/10.1021/ac800818f
- D.F.J. Arago, A.J. Fresnel, On the action of rays of polarized light upon each other. Ann. Chim. Phys. 2, 288–304 (1819)
- R.H. Silliman, Fresnel and the emergence of physics as a discipline. Hist. Stud. Phys. Sci. 4, 137–162 (1974). https://doi.org/10.2307/27757329
- R. Hassey, E.J. Swain, N.I. Hammer, D. Venkataraman, M.D. Barnes, Probing the chiroptical response of a single molecule. Science 314, 1437–1439 (2006). https://doi.org/10.1126/science.1134231
- F.S. Richardson, J.P. Riehl, Circularly polarized luminescence spectroscopy. Chem. Rev. 77, 773–792 (1977). https://doi.org/10.1021/cr60310a001
- J.P. Riehl, F.S. Richardson, Circularly polarized luminescence spectroscopy. Chem. Rev. 86, 1–16 (1986). https://doi.org/10.1021/cr00071a001
- Z. Fan, A.O. Govorov, Chiral nanocrystals: plasmonic spectra and circular dichroism. Nano Lett. 12, 3283–3289 (2012). https://doi.org/10.1021/nl3013715
- F. Biedermann, W.M. Nau, Noncovalent chirality sensing ensembles for the detection and reaction monitoring of amino acids, peptides, proteins, and aromatic drugs. Angew. Chem. Int. Ed. 53, 5694–5699 (2014). https://doi.org/10.1002/anie.201400718
- K. Rijeesh, P.K. Hashim, S. Noro, N. Tamaoki, Dynamic induction of enantiomeric excess from a prochiral azobenzene dimer under circularly polarized light. Chem. Sci. 6, 973–980 (2015). https://doi.org/10.1039/C4SC01993H
- P.K. Hashim, N. Tamaoki, Enantioselective photochromism under circularly polarized light. ChemPhotoChem 3, 347–355 (2019). https://doi.org/10.1002/cptc.201900068
- H.K. Bisoyi, Q. Li, Light-directing chiral liquid crystal nanostructures: from 1D to 3D. Acc. Chem. Res. 47, 3184–3195 (2014). https://doi.org/10.1021/ar500249k
- P.K. Hashim, R. Thomas, N. Tamaoki, Induction of molecular chirality by circularly polarized light in cyclic azobenzene with a photoswitchable benzene rotor. Chem. Eur. J. 17, 7304–7312 (2011). https://doi.org/10.1002/chem.201003526
- N.P.M. Huck, W.F. Jager, B. de Lange, B.L. Feringa, Dynamic control and amplification of molecular chirality by circular polarized light. Science 273, 1686–1688 (1996). https://doi.org/10.1126/science.273.5282.1686
- K.S. Burnham, G.B. Schuster, Transfer of chirality from circularly polarized light to a bulk material property: propagation of photoresolution by a liquid crystal transition. J. Am. Chem. Soc. 121, 10245–10246 (1999). https://doi.org/10.1021/ja9923033
- G. Iftime, F.L. Labarthet, A. Natansohn, P. Rochon, Control of chirality of an azobenzene liquid crystalline polymer with circularly polarized light. J. Am. Chem. Soc. 122, 12646–21265 (2000). https://doi.org/10.1021/ja001244m
- J. Li, G.B. Schuster, K.-S. Cheon, M.M. Green, J.V. Selinger, Switching a helical polymer between mirror images using circularly polarized light. J. Am. Chem. Soc. 122, 2603–2612 (2000). https://doi.org/10.1021/ja993290w
- D.K. Hore, A.L. Natansohn, P.L. Rochon, The characterization of photoinduced chirality in a liquid-crystalline azo polymer on irradiation with circularly polarized light. J. Phys. Chem. B 107, 2506–2518 (2003). https://doi.org/10.1021/jp0271209
- A.B. Kanj, J. Bürck, N. Vankova, C. Li, D. Mutruc et al., Chirality remote control in nanoporous materials by circularly polarized light. J. Am. Chem. Soc. 143, 7059–7068 (2021). https://doi.org/10.1021/jacs.1c01693
- J. Kim, J. Lee, W.Y. Kim, H. Kim, S. Lee et al., Induction and control of supramolecular chirality by light in self-assembled helical nanostructures. Nat. Commun. 6, 6959 (2015). https://doi.org/10.1038/ncomms7959
- J.M. Ribó, J. Crusats, F. Sagués, J. Claret, R. Rubires, Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 292, 206–2066 (2001). https://doi.org/10.1126/science.1060835
- J. Sun, Y. Li, F. Yan, C. Liu, Y. Sang et al., Control over the emerging chirality in supramolecular gels and solutions by chiral microvortices in milliseconds. Nat. Commun. 9, 2599 (2018). https://doi.org/10.1038/s41467-018-05017-7
- G.L.J.A. Rikken, E. Raupach, Enantioselective magnetochiral photochemistry. Nature 405, 932–935 (2000). https://doi.org/10.1038/35016043
- N. Micali, H. Engelkamp, P.G. van Rhee, P.C.M. Christianen, L. Monsù Scolaro et al., Selection of supramolecular chirality by application of rotational and magnetic forces. Nat. Chem. 4, 201–207 (2012). https://doi.org/10.1038/nchem.1264
- Y. Xu, G. Yang, H. Xia, G. Zou, Q. Zhang et al., Enantioselective synthesis of helical polydiacetylene by application of linearly polarized light and magnetic field. Nat. Commun. 5, 5050 (2014). https://doi.org/10.1038/ncomms6050
- J. Hu, Y. Xie, H. Zhang, C. He, Q. Zhang et al., Chiral induction, modulation and locking in porphyrin based supramolecular assemblies with circularly polarized light. Chem. Commun. 55, 4953–4956 (2019). https://doi.org/10.1039/C9CC01613A
- Y. Tang, A.E. Cohen, Optical chirality and its interaction with matter. Phys. Rev. Lett. 104, 163901 (2010). https://doi.org/10.1103/PhysRevLett.104.163901
- J. Gersten, K. Kaasbjerg, A. Nitzan, Induced spin filtering in electron transmission through chiral molecular layers adsorbed on metals with strong spin-orbit coupling. J. Chem. Phys. 139, 114111 (2013). https://doi.org/10.1063/1.4820907
- S. Shaik, H. Chen, D. Janardanan, Exchange-enhanced reactivity in bond activation by metal–oxo enzymes and synthetic reagents. Nat. Chem. 3, 19–27 (2010). https://doi.org/10.1038/nchem.943
- K. Ray, S.P. Ananthavel, D.H. Waldeck, R. Naaman, Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 283, 814–816 (1999). https://doi.org/10.1126/science.283.5403.814
- S. Alwan, Y. Dubi, Spinterface origin for the chirality-induced spin-selectivity effect. J. Am. Chem. Soc. 143, 14235–14241 (2021). https://doi.org/10.1021/jacs.1c05637
- A.C. Aragones, E. Medina, M. Ferrer-Huerta, N. Gimeno, M. Teixidó et al., Measuring the spin-polarization power of a single chiral molecule. Small 13, 1602519 (2017). https://doi.org/10.1002/smll.201602519
- C. Yang, Y. Li, S. Zhou, Y. Guo, C. Jia et al., Real-time monitoring of reaction stereochemistry through single-molecule observations of chirality-induced spin selectivity. Nat. Chem. 15, 972–979 (2023). https://doi.org/10.1038/s41557-023-01212-2
- K. Banerjee-Ghosh, O.B. Dor, F. Tassinari, E. Capua, S. Yochelis et al., Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. Science 360, 1331–1334 (2018). https://doi.org/10.1126/science.aar4265
- S. Shaik, H. Hirao, D. Kumar, Reactivity of high-valent iron-oxo species in enzymes and synthetic reagents: a tale of many states. Acc. Chem. Res. 40, 532–542 (2007). https://doi.org/10.1021/ar600042c
- W. Mtangi, F. Tassinari, K. Vankayala, A.V. Jentzsch, B. Adelizzi et al., Control of electrons’ spin eliminates hydrogen peroxide formation during water splitting. J. Am. Chem. Soc. 139, 2794–2798 (2017). https://doi.org/10.1021/jacs.6b12971
- G.D. Harzmann, R. Frisenda, H.S.J. van der Zant, M. Mayor, Single-molecule spin switch based on voltage-triggered distortion of the coordination sphere. Angew. Chem. Int. Ed. 54, 13425–13430 (2015). https://doi.org/10.1002/anie.201505447
- L. Meng, N. Xin, J. Wang, J. Xu, S. Ren et al., Atomically precise engineering of single-molecule stereoelectronic effect. Angew. Chem. Int. Ed. 60, 12274–12278 (2021). https://doi.org/10.1002/anie.202100168
- W.D. Piñeros, T. Tlusty, Spontaneous chiral symmetry breaking in a random driven chemical system. Nat. Commun. 13, 2244 (2022). https://doi.org/10.1038/s41467-022-29952-8
References
J. Bailey, A. Chrysostomou, J.H. Hough, T.M. Gledhill, A. Mccall et al., Circular polarization in star-formation regions: implications for biomolecular homochirality. Science 281, 672–674 (1998). https://doi.org/10.1126/science.281.5377.672
W. Fub, A. Chrysostomou, J.H. Hough, T.M. Gledhill, A. Mccall et al., Does life originate from a single molecule? Chirality 21, 299–304 (2009). https://doi.org/10.1002/chir.20576
D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal et al., Observation of unconventional quantum spin textures in topological insulators. Science 323, 919–922 (2009). https://doi.org/10.1126/science.1167733
Y.H. Kim, Y. Zhai, H. Lu, X. Pan, C. Xiao et al., Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021). https://doi.org/10.1126/science.abf5291
V. Sharma, M. Crne, J.O. Park, M. Srinivasarao, Structural origin of circularly polarized iridescence in jeweled beetles. Science 325, 449–451 (2009). https://doi.org/10.1126/science.1172051
B. Gohler, V. Hamelbeck, T.Z. Markus, M. Kettner, G.F. Hanne et al., Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331, 894–897 (2011). https://doi.org/10.1126/science.1199339
R. Naaman, Y. Paltiel, D.H. Waldeck, Chiral molecules and the electron spin. Nat. Rev. Chem. 3, 250–260 (2019). https://doi.org/10.1038/s41570-019-0087-1
J.R. Brandt, F. Salerno, M.J. Fuchter, The added value of small-molecule chirality in technological applications. Nat. Rev. Chem. 1, 0045 (2017). https://doi.org/10.1038/s41570-017-0045
R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt et al., Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999). https://doi.org/10.1038/45502
J.M. Kikkawa, D.D. Awschalom, All-optical magnetic resonance in semiconductors. Science 287, 473–476 (2000). https://doi.org/10.1126/science.287.5452.473
Y. Li, C. Yang, X. Guo, Single-molecule electrical detection: a promising route toward the fundamental limits of chemistry and life science. Acc. Chem. Res. 53, 159–169 (2020). https://doi.org/10.1021/acs.accounts.9b00347
E. Barkai, Y.J. Jung, R. Silbey, Theory of single-molecule spectroscopy: beyond the ensemble average. Annu. Rev. Phys. Chem. 55, 457–507 (2004). https://doi.org/10.1146/annurev.physchem.55.111803.143246
H.P. Lu, L.Y. Xun, X.S. Xie, Single-molecule enzymatic dynamics. Science 282, 1877–1882 (1998). https://doi.org/10.1126/science.282.5395.1877
M.J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006). https://doi.org/10.1038/nmeth929
A.B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M.O. McAnally et al., Single-molecule chemistry with surface- and tip-enhanced raman spectroscopy. Chem. Rev. 117, 7583–7613 (2017). https://doi.org/10.1021/acs.chemrev.6b00552
I. Heller, T.P. Hoekstra, G.A. King, E.J.G. Peterman, G.J.L. Wuite, Optical tweezers analysis of DNA–protein complexes. Chem. Rev. 114, 3087–3119 (2014). https://doi.org/10.1021/cr4003006
A.M. Armani, R.P. Kulkarni, S.E. Fraser, R.C. Flagan, K.J. Vahala, Label-free, single-molecule detection with optical microcavities. Science 317, 783–787 (2007). https://doi.org/10.1126/science.1145002
D. Deamer, M. Akeson, D. Branton, Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518–524 (2016). https://doi.org/10.1038/nbt.3423
N. Xin, J. Guan, C. Zhou, X. Chen, C. Gu et al., Concepts in the design and engineering of single-molecule electronic devices. Nat. Rev. Phys. 1, 211–230 (2019). https://doi.org/10.1038/s42254-019-0022-x
D. Xiang, X. Wang, C. Jia, T. Lee, X. Guo, Molecular-scale electronics: from concept to function. Chem. Rev. 116, 4318–4440 (2016). https://doi.org/10.1021/acs.chemrev.5b00680
S. Verbrugge, Z. Lansky, E.J.G. Peterman, Kinesin’s step dissected with single-motor FRET. Proc. Natl. Acad. Sci. U.S.A. 106, 17741–17746 (2009). https://doi.org/10.1073/pnas.0905177106
E.L. Florin, V.T. Moy, H.E. Gaub, Adhesion forces between individual ligand-receptor pairs. Science 264, 415–417 (1994). https://doi.org/10.1126/science.8153628
C.M. Liu, K. Kubo, E. Wang, K. Han, F. Yang et al., Single polymer growth dynamics. Science 358, 352–355 (2017). https://doi.org/10.1126/science.aan6837
B. Xu, N. Tao, Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003). https://doi.org/10.1126/science.1087481
M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, Conductance of a molecular junction. Science 278, 252–254 (1997). https://doi.org/10.1126/science.278.5336.252
W. Liang, M.P. Shores, M. Bockrath, J.R. Long, H. Park, Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002). https://doi.org/10.1038/nature00790
S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J. Brédas et al., Single-electron transistor of a single organic molecule with access to several redox states. Nature 425, 698–701 (2003). https://doi.org/10.1038/nature02010
C. Jia, B. Ma, N. Xin, X. Guo, Carbon electrode–molecule junctions: a reliable platform for molecular electronics. Acc. Chem. Res. 48, 2565–2575 (2015). https://doi.org/10.1021/acs.accounts.5b00133
J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish et al., Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002). https://doi.org/10.1038/nature00791
Y. Cao, S. Dong, S. Liu, L. He, L. Gan et al., Building high-throughput molecular junctions using indented graphene point contacts. Angew. Chem. Int. Ed. 51, 12228–12232 (2012). https://doi.org/10.1002/anie.201205607
Y. Wu, Y. Xiao, X. Wang, X. Li, Y. Wang, Chirality discrimination at the single molecule level by using a cationic supermolecule quasi-gated organic field effect transistor. ACS Sens. 4, 2009–2017 (2019). https://doi.org/10.1021/acssensors.9b00270
K. Salikolimi, V.K. Praveen, A.A. Sudhakar, K. Yamada, N. Nishizawa Horimoto et al., Helical supramolecular polymers with rationally designed binding sites for chiral guest recognition. Nat. Commun. 11, 2311 (2020). https://doi.org/10.1038/s41467-020-16127-6
S. Das, S. Xu, T. Ben, S. Qiu, Chiral recognition and separation by chirality-enriched metal–organic frameworks. Angew. Chem. Int. Ed. 57, 8629–8633 (2018). https://doi.org/10.1002/anie.201804383
B. Li, X. Yang, X. Wu, Z. Luo, C. Zhong et al., Enantioselective recognition for carboxylic acids by novel chiral macrocyclic polyamides derived from l-/d-tartaric acid. Supramol. Chem. 18, 507–513 (2007). https://doi.org/10.1080/10610270600808141
Y. Okamoto, E. Yashima, Polysaccharide derivatives for chromatographic separation of enantiomers. Angew. Chem. Int. Ed. 37, 1020–1043 (1998). https://doi.org/10.1002/(SICI)1521-3773(19980504)37:8
J. Labuta, S. Ishihara, T. Šikorský, Z. Futera, A. Shundo et al., NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers. Nat. Commun. 4, 2188 (2013). https://doi.org/10.1038/ncomms3188
L. Zhang, G. Wang, C. Xiong, L. Zheng, J. He et al., Chirality detection of amino acid enantiomers by organic electrochemical transistor. Biosens. Bioelectron. 105, 121–128 (2018). https://doi.org/10.1016/j.bios.2018.01.035
M. Rekharsky, Y. Inoue, Chiral recognition thermodynamics of beta-cyclodextrin: the thermodynamic origin of enantioselectivity and the enthalpy–entropy compensation effect. J. Am. Chem. Soc. 122, 4418–4435 (2000). https://doi.org/10.1021/ja9921118
Y. Okamoto, T. Ikai, Chiral HPLC for efficient resolution of enantiomers. Chem. Soc. Rev. 37, 2593–2608 (2008). https://doi.org/10.1039/B808881K
I. Kreituss, J.W. Bode, Flow chemistry and polymer-supported pseudoenantiomeric acylating agents enable parallel kinetic resolution of chiral saturated N-heterocycles. Nat. Chem. 9, 446–452 (2017). https://doi.org/10.1038/nchem.2681
M.B. Steffensen, D. Rotem, H. Bayley, Single-molecule analysis of chirality in a multicomponent reaction network. Nat. Chem. 6, 603–607 (2014). https://doi.org/10.1038/nchem.1949
W. Jia, C. Hu, Y. Wang, Y. Liu, L. Wang et al., Identification of single-molecule catecholamine enantiomers using a programmable nanopore. ACS Nano 16, 6615–6624 (2022). https://doi.org/10.1021/acsnano.2c01017
A. Aviram, M.A. Ratner, Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974). https://doi.org/10.1016/0009-2614(74)85031-1
N. Xin, J. Wang, C. Jia, Z. Liu, X. Zhang et al., Stereoelectronic effect-induced conductance switching in aromatic chain single-molecule junctions. Nano Lett. 17, 856–861 (2017). https://doi.org/10.1021/acs.nanolett.6b04139
T.A. Su, M. Neupane, M.L. Steigerwald, L. Venkataraman, C. Nuckolls, Chemical principles of single-molecule electronics. Nat. Rev. Mater. 1, 16002 (2016). https://doi.org/10.1038/natrevmats.2016.2
Z. Liu, X. Li, H. Masai, X. Huang, S. Tsuda et al., A single-molecule electrical approach for amino acid detection and chirality recognition. Sci. Adv. 7, eabe4365 (2021). https://doi.org/10.1126/sciadv.abe4365
T. Nishino, Y. Umezawa, Single-molecule chiral recognition on a surface by chiral molecular tips. Anal. Chem. 80, 6968–6973 (2008). https://doi.org/10.1021/ac800818f
D.F.J. Arago, A.J. Fresnel, On the action of rays of polarized light upon each other. Ann. Chim. Phys. 2, 288–304 (1819)
R.H. Silliman, Fresnel and the emergence of physics as a discipline. Hist. Stud. Phys. Sci. 4, 137–162 (1974). https://doi.org/10.2307/27757329
R. Hassey, E.J. Swain, N.I. Hammer, D. Venkataraman, M.D. Barnes, Probing the chiroptical response of a single molecule. Science 314, 1437–1439 (2006). https://doi.org/10.1126/science.1134231
F.S. Richardson, J.P. Riehl, Circularly polarized luminescence spectroscopy. Chem. Rev. 77, 773–792 (1977). https://doi.org/10.1021/cr60310a001
J.P. Riehl, F.S. Richardson, Circularly polarized luminescence spectroscopy. Chem. Rev. 86, 1–16 (1986). https://doi.org/10.1021/cr00071a001
Z. Fan, A.O. Govorov, Chiral nanocrystals: plasmonic spectra and circular dichroism. Nano Lett. 12, 3283–3289 (2012). https://doi.org/10.1021/nl3013715
F. Biedermann, W.M. Nau, Noncovalent chirality sensing ensembles for the detection and reaction monitoring of amino acids, peptides, proteins, and aromatic drugs. Angew. Chem. Int. Ed. 53, 5694–5699 (2014). https://doi.org/10.1002/anie.201400718
K. Rijeesh, P.K. Hashim, S. Noro, N. Tamaoki, Dynamic induction of enantiomeric excess from a prochiral azobenzene dimer under circularly polarized light. Chem. Sci. 6, 973–980 (2015). https://doi.org/10.1039/C4SC01993H
P.K. Hashim, N. Tamaoki, Enantioselective photochromism under circularly polarized light. ChemPhotoChem 3, 347–355 (2019). https://doi.org/10.1002/cptc.201900068
H.K. Bisoyi, Q. Li, Light-directing chiral liquid crystal nanostructures: from 1D to 3D. Acc. Chem. Res. 47, 3184–3195 (2014). https://doi.org/10.1021/ar500249k
P.K. Hashim, R. Thomas, N. Tamaoki, Induction of molecular chirality by circularly polarized light in cyclic azobenzene with a photoswitchable benzene rotor. Chem. Eur. J. 17, 7304–7312 (2011). https://doi.org/10.1002/chem.201003526
N.P.M. Huck, W.F. Jager, B. de Lange, B.L. Feringa, Dynamic control and amplification of molecular chirality by circular polarized light. Science 273, 1686–1688 (1996). https://doi.org/10.1126/science.273.5282.1686
K.S. Burnham, G.B. Schuster, Transfer of chirality from circularly polarized light to a bulk material property: propagation of photoresolution by a liquid crystal transition. J. Am. Chem. Soc. 121, 10245–10246 (1999). https://doi.org/10.1021/ja9923033
G. Iftime, F.L. Labarthet, A. Natansohn, P. Rochon, Control of chirality of an azobenzene liquid crystalline polymer with circularly polarized light. J. Am. Chem. Soc. 122, 12646–21265 (2000). https://doi.org/10.1021/ja001244m
J. Li, G.B. Schuster, K.-S. Cheon, M.M. Green, J.V. Selinger, Switching a helical polymer between mirror images using circularly polarized light. J. Am. Chem. Soc. 122, 2603–2612 (2000). https://doi.org/10.1021/ja993290w
D.K. Hore, A.L. Natansohn, P.L. Rochon, The characterization of photoinduced chirality in a liquid-crystalline azo polymer on irradiation with circularly polarized light. J. Phys. Chem. B 107, 2506–2518 (2003). https://doi.org/10.1021/jp0271209
A.B. Kanj, J. Bürck, N. Vankova, C. Li, D. Mutruc et al., Chirality remote control in nanoporous materials by circularly polarized light. J. Am. Chem. Soc. 143, 7059–7068 (2021). https://doi.org/10.1021/jacs.1c01693
J. Kim, J. Lee, W.Y. Kim, H. Kim, S. Lee et al., Induction and control of supramolecular chirality by light in self-assembled helical nanostructures. Nat. Commun. 6, 6959 (2015). https://doi.org/10.1038/ncomms7959
J.M. Ribó, J. Crusats, F. Sagués, J. Claret, R. Rubires, Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 292, 206–2066 (2001). https://doi.org/10.1126/science.1060835
J. Sun, Y. Li, F. Yan, C. Liu, Y. Sang et al., Control over the emerging chirality in supramolecular gels and solutions by chiral microvortices in milliseconds. Nat. Commun. 9, 2599 (2018). https://doi.org/10.1038/s41467-018-05017-7
G.L.J.A. Rikken, E. Raupach, Enantioselective magnetochiral photochemistry. Nature 405, 932–935 (2000). https://doi.org/10.1038/35016043
N. Micali, H. Engelkamp, P.G. van Rhee, P.C.M. Christianen, L. Monsù Scolaro et al., Selection of supramolecular chirality by application of rotational and magnetic forces. Nat. Chem. 4, 201–207 (2012). https://doi.org/10.1038/nchem.1264
Y. Xu, G. Yang, H. Xia, G. Zou, Q. Zhang et al., Enantioselective synthesis of helical polydiacetylene by application of linearly polarized light and magnetic field. Nat. Commun. 5, 5050 (2014). https://doi.org/10.1038/ncomms6050
J. Hu, Y. Xie, H. Zhang, C. He, Q. Zhang et al., Chiral induction, modulation and locking in porphyrin based supramolecular assemblies with circularly polarized light. Chem. Commun. 55, 4953–4956 (2019). https://doi.org/10.1039/C9CC01613A
Y. Tang, A.E. Cohen, Optical chirality and its interaction with matter. Phys. Rev. Lett. 104, 163901 (2010). https://doi.org/10.1103/PhysRevLett.104.163901
J. Gersten, K. Kaasbjerg, A. Nitzan, Induced spin filtering in electron transmission through chiral molecular layers adsorbed on metals with strong spin-orbit coupling. J. Chem. Phys. 139, 114111 (2013). https://doi.org/10.1063/1.4820907
S. Shaik, H. Chen, D. Janardanan, Exchange-enhanced reactivity in bond activation by metal–oxo enzymes and synthetic reagents. Nat. Chem. 3, 19–27 (2010). https://doi.org/10.1038/nchem.943
K. Ray, S.P. Ananthavel, D.H. Waldeck, R. Naaman, Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 283, 814–816 (1999). https://doi.org/10.1126/science.283.5403.814
S. Alwan, Y. Dubi, Spinterface origin for the chirality-induced spin-selectivity effect. J. Am. Chem. Soc. 143, 14235–14241 (2021). https://doi.org/10.1021/jacs.1c05637
A.C. Aragones, E. Medina, M. Ferrer-Huerta, N. Gimeno, M. Teixidó et al., Measuring the spin-polarization power of a single chiral molecule. Small 13, 1602519 (2017). https://doi.org/10.1002/smll.201602519
C. Yang, Y. Li, S. Zhou, Y. Guo, C. Jia et al., Real-time monitoring of reaction stereochemistry through single-molecule observations of chirality-induced spin selectivity. Nat. Chem. 15, 972–979 (2023). https://doi.org/10.1038/s41557-023-01212-2
K. Banerjee-Ghosh, O.B. Dor, F. Tassinari, E. Capua, S. Yochelis et al., Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. Science 360, 1331–1334 (2018). https://doi.org/10.1126/science.aar4265
S. Shaik, H. Hirao, D. Kumar, Reactivity of high-valent iron-oxo species in enzymes and synthetic reagents: a tale of many states. Acc. Chem. Res. 40, 532–542 (2007). https://doi.org/10.1021/ar600042c
W. Mtangi, F. Tassinari, K. Vankayala, A.V. Jentzsch, B. Adelizzi et al., Control of electrons’ spin eliminates hydrogen peroxide formation during water splitting. J. Am. Chem. Soc. 139, 2794–2798 (2017). https://doi.org/10.1021/jacs.6b12971
G.D. Harzmann, R. Frisenda, H.S.J. van der Zant, M. Mayor, Single-molecule spin switch based on voltage-triggered distortion of the coordination sphere. Angew. Chem. Int. Ed. 54, 13425–13430 (2015). https://doi.org/10.1002/anie.201505447
L. Meng, N. Xin, J. Wang, J. Xu, S. Ren et al., Atomically precise engineering of single-molecule stereoelectronic effect. Angew. Chem. Int. Ed. 60, 12274–12278 (2021). https://doi.org/10.1002/anie.202100168
W.D. Piñeros, T. Tlusty, Spontaneous chiral symmetry breaking in a random driven chemical system. Nat. Commun. 13, 2244 (2022). https://doi.org/10.1038/s41467-022-29952-8