High-Quality Epitaxial N Doped Graphene on SiC with Tunable Interfacial Interactions via Electron/Ion Bridges for Stable Lithium-Ion Storage
Corresponding Author: Jiahai Wang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 202
Abstract
Tailoring the interfacial interaction in SiC-based anode materials is crucial to the accomplishment of higher energy capacities and longer cycle lives for lithium-ion storage. In this paper, atomic-scale tunable interfacial interaction is achieved by epitaxial growth of high-quality N doped graphene (NG) on SiC (NG@SiC). This well-designed NG@SiC heterojunction demonstrates an intrinsic electric field with intensive interfacial interaction, making it an ideal prototype to thoroughly understand the configurations of electron/ion bridges and the mechanisms of interatomic electron migration. Both density functional theory (DFT) analysis and electrochemical kinetic analysis reveal that these intriguing electron/ion bridges can control and tailor the interfacial interaction via the interfacial coupled chemical bonds, enhancing the interfacial charge transfer kinetics and preventing pulverization/aggregation. As a proof-of-concept study, this well-designed NG@SiC anode shows good reversible capacity (1197.5 mAh g−1 after 200 cycles at 0.1 A g−1) and cycling durability with 76.6% capacity retention at 447.8 mAh g−1 after 1000 cycles at 10.0 A g−1. As expected, the lithium-ion full cell (LiFePO4/C//NG@SiC) shows superior rate capability and cycling stability. This interfacial interaction tailoring strategy via epitaxial growth method provides new opportunities for traditional SiC-based anodes to achieve high-performance lithium-ion storage and beyond.
Highlights:
1 The intimate NG@SiC heterostructure has been constructed via a direct thermal decomposition method.
2 The NG@SiC heterostructure anode delivers enhanced capacity and cycling stability both in the half-cell and in the full cell.
3 DFT analysis reveals that this NG@SiC anode possesses lower lithium-ion adsorption energy and higher charge and discharge rates.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Jiang, P. Mu, H. Zhang, T. Dong, B. Tang et al., An endotenon sheath-inspired double-network binder enables superior cycling performance of silicon electrodes. Nano-Micro Lett. 14, 87 (2022). https://doi.org/10.1007/s40820-022-00833-5
- Y. Zhou, D. Yan, H. Xu, J. Feng, X. Jiang et al., Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy 12, 528–537 (2015). https://doi.org/10.1016/j.nanoen.2015.01.019
- J. Zhong, T. Wang, L. Wang, L. Peng, S. Fu et al., A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity. Nano-Micro Lett. 14, 50 (2022). https://doi.org/10.1007/s40820-022-00790-z
- Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
- J. Lu, Y. Zhang, X. Gong, L. Li, S. Pang et al., High-yield synthesis of ultrathin silicon nanosheets by physical grinding enables robust lithium-ion storage. Chem. Eng. J. 446, 137022 (2022). https://doi.org/10.1016/j.cej.2022.137022
- T.K. Bijoy, J. Karthikeyan, P. Murugan, Exploring the mechanism of spontaneous and lithium-assisted graphitic phase formation in SiC nanocrystallites of a high capacity li-ion battery anode. J. Phys. Chem. C 121, 15106 (2017). https://doi.org/10.1021/acs.jpcc.7b04489
- C. Sun, Y.-J. Wang, H. Gu, H. Fan, G. Yang et al., Interfacial coupled design of epitaxial Graphene@SiC Schottky junction with built-in electric field for high-performance anodes of lithium ion batteries. Nano Energy 77, 105092 (2020). https://doi.org/10.1016/j.nanoen.2020.105092
- Y. Xiang, L. Xu, L. Yang, Y. Ye, Z. Ge et al., Natural stibnite for lithium-/sodium-ion batteries: carbon dots evoked high initial coulombic efciency. Nano-Micro Lett. 14, 136 (2022). https://doi.org/10.1007/s40820-022-00873-x
- S. Park, J. Sung, S. Chae, J. Hong, T. Lee et al., Scalable synthesis of hollow β-SiC/Si anodes via selective thermal oxidation for lithium-ion batteries. ACS Nano 14, 11548 (2020). https://doi.org/10.1021/acsnano.0c04013
- D.T. Ngo, H.T.T. Le, X.-M. Pham, C.-N. Park, C.-J. Park, Facile synthesis of Si@SiC composite as an anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 32790 (2017). https://doi.org/10.1021/acsami.7b10658
- X. Wang, K.M. Liew, Density functional study of interaction of lithium with pristine and stone-wales-defective single-walled silicon carbide nanotubes. J. Phys. Chem. C 116, 26888 (2012). https://doi.org/10.1021/jp3076047
- Y. Yang, J.-G. Ren, X. Wang, Y.-S. Chui, Q.-H. Wu et al., Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries. Nanoscale 5, 8689 (2013). https://doi.org/10.1039/C3NR02788K
- K. Lin, X. Xu, X. Qin, M. Liu, L. Zhao et al., Commercially viable hybrid Li-ion/metal batteries with high energy density realized by symbiotic anode and prelithiated cathode. Nano-Micro Lett. 14, 149 (2022). https://doi.org/10.1007/s40820-022-00899-1
- X.D. Huang, F. Zhang, X.F. Gan, Q.A. Huang, J.Z. Yang et al., Electrochemical characteristics of amorphous silicon carbide film as a lithium-ion battery anode. RSC Adv. 8, 5189 (2018). https://doi.org/10.1039/C7RA12463E
- W. He, H. Xu, Z. Chen, J. Long, J. Zhang et al., Regulating the solvation structure of Li+ enables chemical prelithiation of silicon-based anodes toward high-energy lithiumion batteries. Nano-Micro Lett. 15, 107 (2023). https://doi.org/10.1007/s40820-023-01068-8
- T. Sri Devi Kumari, D. Jeyakumar, T. Prem Kumar, Nano silicon carbide: a new lithium-insertion anode material on the horizon. RSC Adv. 3, 15028 (2013)
- H. Li, H. Yu, X. Zhang, G. Guo, J. Hu et al., Bowl-like 3C-SiC nanoshells encapsulated in hollow graphitic carbon spheres for high-rate lithium-ion batteries. Chem. Mater. 28, 1179 (2016). https://doi.org/10.1021/acs.chemmater.5b04750
- A.L. Lipson, S. Chattopadhyay, H.J. Karmel, T.T. Fister, J.D. Emery et al., Enhanced lithiation of doped 6H silicon carbide (0001) via high temperature vacuum growth of epitaxial graphene. J. Phys. Chem. C 116, 20949 (2012). https://doi.org/10.1021/jp307220y
- C. Sun, Y.-J. Wang, D. Liu, B. Fang, W. Yan et al., Tailoring interfacial interaction in GaN@NG heterojunction via electron/ion bridges for enhanced lithium-ion storage performance. Chem. Eng. J. 453, 139603 (2023). https://doi.org/10.1016/j.cej.2022.139603
- Z.Y. Al Balushi, K. Wang, R.K. Ghosh, R.A. Vila, S.M. Eichfeld et al., Two-dimensional gallium nitride realized via graphene encapsulation. Nat. Mater. 15, 1166 (2016). https://doi.org/10.1038/nmat4742
- K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab et al., A roadmap for graphene. Nature 490, 192 (2012). https://doi.org/10.1038/nature11458
- C. Sun, F. Chen, X. Tang, D.D. Zhang, K. Zheng et al., Simultaneous interfacial interaction and built-in electric field regulation of GaZnON@NG for high-performance lithium-ion storage. Nano Energy 99, 107369 (2022). https://doi.org/10.1016/j.nanoen.2022.107369
- S. Wang, X. Yuan, X. Bi, X. Wang, Q. Huang, Observation of the retarded transportation of a photogenerated hole on epitaxial graphene. Phys. Chem. Chem. Phys. 17, 23711 (2015). https://doi.org/10.1039/C5CP03569D
- J. Röhrl, M. Hundhausen, K.V. Emtsev, T. Seyller, R. Graupner et al., Raman spectra of epitaxial graphene on SiC(0001). Appl. Phys. Lett. 92, 201918 (2008). https://doi.org/10.1063/1.2929746
- C. Hu, H. Liu, Y. Liu, J.-F. Chen, Y. Li et al., Graphdiyne with tunable activity towards hydrogen evolution reaction. Nano Energy 63, 103874 (2019). https://doi.org/10.1016/j.nanoen.2019.103874
- C. Sun, M. Yang, T. Wang, Y. Shao, Y. Wu et al., Stable and reversible lithium storage with high pseudocapacitance in GaN nanowires. ACS Appl. Mater. Interfaces 10, 2574 (2018). https://doi.org/10.1021/acsami.7b16416
- J. Yang, X. Zeng, L. Chen, W. Yuan, Photocatalytic water splitting to hydrogen production of reduced graphene oxide/SiC under visible light. Appl. Phys. Lett. 102, 083101 (2013). https://doi.org/10.1063/1.4792695
- C. Sun, X. Tang, Z. Yin, D. Liu, Y. Wang et al., Self-supported GaN nanowires with cation-defects, lattice distortion, and abundant active sites for high-rate lithium-ion storage. Nano Energy 68, 104376 (2020). https://doi.org/10.1016/j.nanoen.2019.104376
- Y. Wen, T.E. Rufford, X. Chen, N. Li, M. Lyu et al., Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 38, 368 (2017). https://doi.org/10.1016/j.nanoen.2017.06.009
- L. Sun, B. Wang, Y. Wang, A novel silicon carbide nanosheet for high-performance humidity sensor. Adv. Mater. Interfaces 5, 1701300 (2018). https://doi.org/10.1002/admi.201701300
- H. Shang, Z. Zuo, H. Zheng, K. Li, Z. Tu et al., N-doped graphdiyne for high-performance electrochemical electrodes. Nano Energy 44, 144 (2018). https://doi.org/10.1016/j.nanoen.2017.11.072
- K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg et al., Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8, 203 (2009). https://doi.org/10.1038/nmat2382
- L. Zhao, R. He, K.T. Rim, T. Schiros, K.S. Kim et al., Visualizing individual nitrogen dopants in monolayer graphene. Science 333, 999 (2011). https://doi.org/10.1126/science.1208759
- T. Luo, X. Chen, P. Wang, C. Li, B. Cao et al., Laser Irradiation-Induced SiC@graphene sub-microspheres: a bioinspired core-shell structure for enhanced tribology properties. Adv. Mater. Interfaces 5, 1700839 (2018). https://doi.org/10.1002/admi.201700839
- L. Liu, Y.M. Yiu, T.K. Sham, L. Zhang, Y. Zhang, Electronic structures and optical properties of 6H- and 3C-SiC microstructures and nanostructures from X-ray absorption fine structures, X-ray excited optical luminescence, and theoretical studies. J. Phys. Chem. C 114, 6966 (2010). https://doi.org/10.1021/jp100277s
- Y. Baba, T. Sekiguchi, I. Shimoyama, K.G. Nath, Structures of sub-monolayered silicon carbide films. Appl. Surf. Sci. 237, 176 (2004). https://doi.org/10.1016/j.apsusc.2004.06.092
- V.Y. Aristov, G. Urbanik, K. Kummer, D.V. Vyalikh, O.V. Molodtsova et al., Graphene synthesis on cubic sic/si wafers. perspectives for mass production of graphene-based electronic devices. Nano Lett. 10, 992 (2010). https://doi.org/10.1021/nl904115h
- Y.K. Chang, H.H. Hsieh, W.F. Pong, M.H. Tsai, T.E. Dann et al., X-ray absorption of Si–C–N thin films: A comparison between crystalline and amorphous phases. J. Appl. Phys. 86, 5609 (1999). https://doi.org/10.1063/1.371568
- Y. Fang, Y. Xue, Y. Li, H. Yu, L. Hui et al., Graphdiyne interface engineering: highly active and selective ammonia synthesis. Angew. Chem. Int. Ed. 59, 13021 (2020). https://doi.org/10.1002/anie.202004213
- C. Sun, F. Ma, L. Cai, A. Wang, Y. Wu et al., Metal-free ternary BCN nanosheets with synergetic effect of band gap engineering and magnetic properties. Sci. Rep. 7, 6617 (2017). https://doi.org/10.1073/pnas.1817881116
- C. Sun, M. Yang, T. Wang, Y. Shao, Y. Wu et al., Graphene-oxide-assisted synthesis of GaN nanosheets as a new anode material for lithium-ion battery. ACS Appl. Mater. Interfaces 9, 26631 (2017). https://doi.org/10.1021/acsami.7b07277
- F. Chen, C. Sun, S. Robertson, S. Chen, Y. Zhu et al., Unlocking robust lithium storage performance in high 1T-phase purity MoS2 constructed by Mg intercalation. Nano Energy 104, 107894 (2022). https://doi.org/10.1016/j.nanoen.2022.107894
- Z. Li, K. Gao, Y. Han, S. Ding, Y. Cui et al., Atomic insights of electronic states engineering of GaN nanowires by Cu cation substitution for highly efficient lithium ion battery. J. Energy Chem. 67, 46 (2022). https://doi.org/10.1016/j.jechem.2021.09.007
- M. Yang, C. Sun, T. Wang, F. Chen, M. Sun et al., Graphene-oxide-assisted synthesis of Ga2O3 nanosheets/reduced graphene oxide nanocomposites anodes for advanced alkali-ion batteries. ACS Appl. Energy Mater. 1, 4708 (2018). https://doi.org/10.1021/acsaem.8b00826
- B. Li, R. Qi, J. Zai, F. Du, C. Xue et al., Silica wastes to high-performance lithium storage materials: a rational designed Al2O3 coating assisted magnesiothermic process. Small 12, 5281 (2016). https://doi.org/10.1002/smll.201601914
- C. Wang, Y. Li, K. Ostrikov, Y. Yang, W. Zhang, Synthesis of SiC decorated carbonaceous nanorods and its hierarchical composites Si@SiC@C for high-performance lithium ion batteries. J. Alloys Compd. 646, 966 (2015). https://doi.org/10.1016/j.jallcom.2015.06.177
- J. Yang, Y.-X. Wang, S.-L. Chou, R. Zhang, Y. Xu et al., Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy 18, 133 (2015). https://doi.org/10.1016/j.nanoen.2015.09.016
- T. Yoon, T. Bok, C. Kim, Y. Na, S. Park et al., Mesoporous silicon hollow nanocubes derived from metal–organic framework template for advanced lithium-ion battery anode. ACS Nano 11, 4808 (2017). https://doi.org/10.1021/acsnano.7b01185
- Q. Peng, Y. Lie, Z. Tang, C. Sun, J. Li et al., Electron density modulation of GaN nanowires by manganese incorporation for highly high-rate Lithium-ion storage. Electrochim. Acta 350, 136380 (2020). https://doi.org/10.1016/j.electacta.2020.136380
- K. Xie, J. Wang, S. Yu, P. Wang, C. Sun, Tunable electronic properties of free-standing Fe-doped GaN nanowires as high-capacity anode of lithium-ion batteries. Arab. J. Chem. 14, 103161 (2021). https://doi.org/10.1016/j.arabjc.2021.103161
- S. Lou, X. Cheng, Y. Zhao, A. Lushington, J. Gao et al., Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: Understanding from the structural and pseudocapacitive insights on achieving high rate capability. Nano Energy 34, 15 (2017). https://doi.org/10.1016/j.nanoen.2017.01.058
- H. He, Q. Gan, H. Wang, G.-L. Xu, X. Zhang et al., Structure-dependent performance of TiO2/C as anode material for Na-ion batteries. Nano Energy 44, 217 (2018). https://doi.org/10.1016/j.nanoen.2017.11.077
- Y. Han, C. Sun, K. Gao, S. Ding, Z. Miao et al., Heterovalent oxynitride GaZnON nanowire as novel flexible anode for lithium-ion storage. Electrochim. Acta 408, 139931 (2022). https://doi.org/10.1016/j.electacta.2022.139931
- G. Ali, J.-H. Lee, S.H. Oh, H.-G. Jung, K.Y. Chung, Elucidating the reaction mechanism of SnF2@C nanocomposite as a high-capacity anode material for Na-ion batteries. Nano Energy 42, 106 (2017). https://doi.org/10.1016/j.nanoen.2017.10.036
- K. Gao, Z. Miao, Y. Han, D. Li, W. Sun et al., One-step method synthesis of cobalt-doped GeZn1.7ON1.8 p for enhanced lithium-ion storage performance. Electrochim. Acta 442, 141876 (2023). https://doi.org/10.1016/j.electacta.2023.141876
- F. Ma, S. Guan, D. Liu, Z. Liu, Y. Qiu, C. Sun, Y.J. Wang, Ge-doped quaternary metallic oxynitrides GaZnON: The high-performance anode material for lithium-ion batteries. J. Alloys Compd. 940, 168777 (2023). https://doi.org/10.1016/j.jallcom.2023.168777
- S. Wang, C. Sun, Y. Shao, Y. Wu, L. Zhang et al., Self-supporting GaN nanowires/graphite paper: novel high-performance flexible supercapacitor electrodes. Small 13, 1603330 (2017). https://doi.org/10.1002/smll.201603330
- T. Wang, C. Sun, M. Yang, G. Zhao, S. Wang et al., Phase-transformation engineering in MoS2 on carbon cloth as flexible binder-free anode for enhancing lithium storage. J. Alloys Compd. 716, 112 (2017). https://doi.org/10.1016/j.jallcom.2017.05.071
- Z. Li, S. Ding, J. Yin, M. Zhang, C. Sun et al., Morphology-dependent electrochemical performance of VS4 for rechargeable magnesium battery and its magnesiation/demagnesiation mechanism. J. Power Sources 451, 227815 (2020). https://doi.org/10.1016/j.jpowsour.2020.227815
- T. Wang, C. Sun, M. Yang, L. Zhang, Y. Shao et al., Enhanced reversible lithium ion storage in stable 1T@2H WS2 nanosheet arrays anchored on carbon fiber. Electrochim. Acta 259, 1 (2018). https://doi.org/10.1016/j.electacta.2017.10.154
References
M. Jiang, P. Mu, H. Zhang, T. Dong, B. Tang et al., An endotenon sheath-inspired double-network binder enables superior cycling performance of silicon electrodes. Nano-Micro Lett. 14, 87 (2022). https://doi.org/10.1007/s40820-022-00833-5
Y. Zhou, D. Yan, H. Xu, J. Feng, X. Jiang et al., Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy 12, 528–537 (2015). https://doi.org/10.1016/j.nanoen.2015.01.019
J. Zhong, T. Wang, L. Wang, L. Peng, S. Fu et al., A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity. Nano-Micro Lett. 14, 50 (2022). https://doi.org/10.1007/s40820-022-00790-z
Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
J. Lu, Y. Zhang, X. Gong, L. Li, S. Pang et al., High-yield synthesis of ultrathin silicon nanosheets by physical grinding enables robust lithium-ion storage. Chem. Eng. J. 446, 137022 (2022). https://doi.org/10.1016/j.cej.2022.137022
T.K. Bijoy, J. Karthikeyan, P. Murugan, Exploring the mechanism of spontaneous and lithium-assisted graphitic phase formation in SiC nanocrystallites of a high capacity li-ion battery anode. J. Phys. Chem. C 121, 15106 (2017). https://doi.org/10.1021/acs.jpcc.7b04489
C. Sun, Y.-J. Wang, H. Gu, H. Fan, G. Yang et al., Interfacial coupled design of epitaxial Graphene@SiC Schottky junction with built-in electric field for high-performance anodes of lithium ion batteries. Nano Energy 77, 105092 (2020). https://doi.org/10.1016/j.nanoen.2020.105092
Y. Xiang, L. Xu, L. Yang, Y. Ye, Z. Ge et al., Natural stibnite for lithium-/sodium-ion batteries: carbon dots evoked high initial coulombic efciency. Nano-Micro Lett. 14, 136 (2022). https://doi.org/10.1007/s40820-022-00873-x
S. Park, J. Sung, S. Chae, J. Hong, T. Lee et al., Scalable synthesis of hollow β-SiC/Si anodes via selective thermal oxidation for lithium-ion batteries. ACS Nano 14, 11548 (2020). https://doi.org/10.1021/acsnano.0c04013
D.T. Ngo, H.T.T. Le, X.-M. Pham, C.-N. Park, C.-J. Park, Facile synthesis of Si@SiC composite as an anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 32790 (2017). https://doi.org/10.1021/acsami.7b10658
X. Wang, K.M. Liew, Density functional study of interaction of lithium with pristine and stone-wales-defective single-walled silicon carbide nanotubes. J. Phys. Chem. C 116, 26888 (2012). https://doi.org/10.1021/jp3076047
Y. Yang, J.-G. Ren, X. Wang, Y.-S. Chui, Q.-H. Wu et al., Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries. Nanoscale 5, 8689 (2013). https://doi.org/10.1039/C3NR02788K
K. Lin, X. Xu, X. Qin, M. Liu, L. Zhao et al., Commercially viable hybrid Li-ion/metal batteries with high energy density realized by symbiotic anode and prelithiated cathode. Nano-Micro Lett. 14, 149 (2022). https://doi.org/10.1007/s40820-022-00899-1
X.D. Huang, F. Zhang, X.F. Gan, Q.A. Huang, J.Z. Yang et al., Electrochemical characteristics of amorphous silicon carbide film as a lithium-ion battery anode. RSC Adv. 8, 5189 (2018). https://doi.org/10.1039/C7RA12463E
W. He, H. Xu, Z. Chen, J. Long, J. Zhang et al., Regulating the solvation structure of Li+ enables chemical prelithiation of silicon-based anodes toward high-energy lithiumion batteries. Nano-Micro Lett. 15, 107 (2023). https://doi.org/10.1007/s40820-023-01068-8
T. Sri Devi Kumari, D. Jeyakumar, T. Prem Kumar, Nano silicon carbide: a new lithium-insertion anode material on the horizon. RSC Adv. 3, 15028 (2013)
H. Li, H. Yu, X. Zhang, G. Guo, J. Hu et al., Bowl-like 3C-SiC nanoshells encapsulated in hollow graphitic carbon spheres for high-rate lithium-ion batteries. Chem. Mater. 28, 1179 (2016). https://doi.org/10.1021/acs.chemmater.5b04750
A.L. Lipson, S. Chattopadhyay, H.J. Karmel, T.T. Fister, J.D. Emery et al., Enhanced lithiation of doped 6H silicon carbide (0001) via high temperature vacuum growth of epitaxial graphene. J. Phys. Chem. C 116, 20949 (2012). https://doi.org/10.1021/jp307220y
C. Sun, Y.-J. Wang, D. Liu, B. Fang, W. Yan et al., Tailoring interfacial interaction in GaN@NG heterojunction via electron/ion bridges for enhanced lithium-ion storage performance. Chem. Eng. J. 453, 139603 (2023). https://doi.org/10.1016/j.cej.2022.139603
Z.Y. Al Balushi, K. Wang, R.K. Ghosh, R.A. Vila, S.M. Eichfeld et al., Two-dimensional gallium nitride realized via graphene encapsulation. Nat. Mater. 15, 1166 (2016). https://doi.org/10.1038/nmat4742
K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab et al., A roadmap for graphene. Nature 490, 192 (2012). https://doi.org/10.1038/nature11458
C. Sun, F. Chen, X. Tang, D.D. Zhang, K. Zheng et al., Simultaneous interfacial interaction and built-in electric field regulation of GaZnON@NG for high-performance lithium-ion storage. Nano Energy 99, 107369 (2022). https://doi.org/10.1016/j.nanoen.2022.107369
S. Wang, X. Yuan, X. Bi, X. Wang, Q. Huang, Observation of the retarded transportation of a photogenerated hole on epitaxial graphene. Phys. Chem. Chem. Phys. 17, 23711 (2015). https://doi.org/10.1039/C5CP03569D
J. Röhrl, M. Hundhausen, K.V. Emtsev, T. Seyller, R. Graupner et al., Raman spectra of epitaxial graphene on SiC(0001). Appl. Phys. Lett. 92, 201918 (2008). https://doi.org/10.1063/1.2929746
C. Hu, H. Liu, Y. Liu, J.-F. Chen, Y. Li et al., Graphdiyne with tunable activity towards hydrogen evolution reaction. Nano Energy 63, 103874 (2019). https://doi.org/10.1016/j.nanoen.2019.103874
C. Sun, M. Yang, T. Wang, Y. Shao, Y. Wu et al., Stable and reversible lithium storage with high pseudocapacitance in GaN nanowires. ACS Appl. Mater. Interfaces 10, 2574 (2018). https://doi.org/10.1021/acsami.7b16416
J. Yang, X. Zeng, L. Chen, W. Yuan, Photocatalytic water splitting to hydrogen production of reduced graphene oxide/SiC under visible light. Appl. Phys. Lett. 102, 083101 (2013). https://doi.org/10.1063/1.4792695
C. Sun, X. Tang, Z. Yin, D. Liu, Y. Wang et al., Self-supported GaN nanowires with cation-defects, lattice distortion, and abundant active sites for high-rate lithium-ion storage. Nano Energy 68, 104376 (2020). https://doi.org/10.1016/j.nanoen.2019.104376
Y. Wen, T.E. Rufford, X. Chen, N. Li, M. Lyu et al., Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 38, 368 (2017). https://doi.org/10.1016/j.nanoen.2017.06.009
L. Sun, B. Wang, Y. Wang, A novel silicon carbide nanosheet for high-performance humidity sensor. Adv. Mater. Interfaces 5, 1701300 (2018). https://doi.org/10.1002/admi.201701300
H. Shang, Z. Zuo, H. Zheng, K. Li, Z. Tu et al., N-doped graphdiyne for high-performance electrochemical electrodes. Nano Energy 44, 144 (2018). https://doi.org/10.1016/j.nanoen.2017.11.072
K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg et al., Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8, 203 (2009). https://doi.org/10.1038/nmat2382
L. Zhao, R. He, K.T. Rim, T. Schiros, K.S. Kim et al., Visualizing individual nitrogen dopants in monolayer graphene. Science 333, 999 (2011). https://doi.org/10.1126/science.1208759
T. Luo, X. Chen, P. Wang, C. Li, B. Cao et al., Laser Irradiation-Induced SiC@graphene sub-microspheres: a bioinspired core-shell structure for enhanced tribology properties. Adv. Mater. Interfaces 5, 1700839 (2018). https://doi.org/10.1002/admi.201700839
L. Liu, Y.M. Yiu, T.K. Sham, L. Zhang, Y. Zhang, Electronic structures and optical properties of 6H- and 3C-SiC microstructures and nanostructures from X-ray absorption fine structures, X-ray excited optical luminescence, and theoretical studies. J. Phys. Chem. C 114, 6966 (2010). https://doi.org/10.1021/jp100277s
Y. Baba, T. Sekiguchi, I. Shimoyama, K.G. Nath, Structures of sub-monolayered silicon carbide films. Appl. Surf. Sci. 237, 176 (2004). https://doi.org/10.1016/j.apsusc.2004.06.092
V.Y. Aristov, G. Urbanik, K. Kummer, D.V. Vyalikh, O.V. Molodtsova et al., Graphene synthesis on cubic sic/si wafers. perspectives for mass production of graphene-based electronic devices. Nano Lett. 10, 992 (2010). https://doi.org/10.1021/nl904115h
Y.K. Chang, H.H. Hsieh, W.F. Pong, M.H. Tsai, T.E. Dann et al., X-ray absorption of Si–C–N thin films: A comparison between crystalline and amorphous phases. J. Appl. Phys. 86, 5609 (1999). https://doi.org/10.1063/1.371568
Y. Fang, Y. Xue, Y. Li, H. Yu, L. Hui et al., Graphdiyne interface engineering: highly active and selective ammonia synthesis. Angew. Chem. Int. Ed. 59, 13021 (2020). https://doi.org/10.1002/anie.202004213
C. Sun, F. Ma, L. Cai, A. Wang, Y. Wu et al., Metal-free ternary BCN nanosheets with synergetic effect of band gap engineering and magnetic properties. Sci. Rep. 7, 6617 (2017). https://doi.org/10.1073/pnas.1817881116
C. Sun, M. Yang, T. Wang, Y. Shao, Y. Wu et al., Graphene-oxide-assisted synthesis of GaN nanosheets as a new anode material for lithium-ion battery. ACS Appl. Mater. Interfaces 9, 26631 (2017). https://doi.org/10.1021/acsami.7b07277
F. Chen, C. Sun, S. Robertson, S. Chen, Y. Zhu et al., Unlocking robust lithium storage performance in high 1T-phase purity MoS2 constructed by Mg intercalation. Nano Energy 104, 107894 (2022). https://doi.org/10.1016/j.nanoen.2022.107894
Z. Li, K. Gao, Y. Han, S. Ding, Y. Cui et al., Atomic insights of electronic states engineering of GaN nanowires by Cu cation substitution for highly efficient lithium ion battery. J. Energy Chem. 67, 46 (2022). https://doi.org/10.1016/j.jechem.2021.09.007
M. Yang, C. Sun, T. Wang, F. Chen, M. Sun et al., Graphene-oxide-assisted synthesis of Ga2O3 nanosheets/reduced graphene oxide nanocomposites anodes for advanced alkali-ion batteries. ACS Appl. Energy Mater. 1, 4708 (2018). https://doi.org/10.1021/acsaem.8b00826
B. Li, R. Qi, J. Zai, F. Du, C. Xue et al., Silica wastes to high-performance lithium storage materials: a rational designed Al2O3 coating assisted magnesiothermic process. Small 12, 5281 (2016). https://doi.org/10.1002/smll.201601914
C. Wang, Y. Li, K. Ostrikov, Y. Yang, W. Zhang, Synthesis of SiC decorated carbonaceous nanorods and its hierarchical composites Si@SiC@C for high-performance lithium ion batteries. J. Alloys Compd. 646, 966 (2015). https://doi.org/10.1016/j.jallcom.2015.06.177
J. Yang, Y.-X. Wang, S.-L. Chou, R. Zhang, Y. Xu et al., Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy 18, 133 (2015). https://doi.org/10.1016/j.nanoen.2015.09.016
T. Yoon, T. Bok, C. Kim, Y. Na, S. Park et al., Mesoporous silicon hollow nanocubes derived from metal–organic framework template for advanced lithium-ion battery anode. ACS Nano 11, 4808 (2017). https://doi.org/10.1021/acsnano.7b01185
Q. Peng, Y. Lie, Z. Tang, C. Sun, J. Li et al., Electron density modulation of GaN nanowires by manganese incorporation for highly high-rate Lithium-ion storage. Electrochim. Acta 350, 136380 (2020). https://doi.org/10.1016/j.electacta.2020.136380
K. Xie, J. Wang, S. Yu, P. Wang, C. Sun, Tunable electronic properties of free-standing Fe-doped GaN nanowires as high-capacity anode of lithium-ion batteries. Arab. J. Chem. 14, 103161 (2021). https://doi.org/10.1016/j.arabjc.2021.103161
S. Lou, X. Cheng, Y. Zhao, A. Lushington, J. Gao et al., Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: Understanding from the structural and pseudocapacitive insights on achieving high rate capability. Nano Energy 34, 15 (2017). https://doi.org/10.1016/j.nanoen.2017.01.058
H. He, Q. Gan, H. Wang, G.-L. Xu, X. Zhang et al., Structure-dependent performance of TiO2/C as anode material for Na-ion batteries. Nano Energy 44, 217 (2018). https://doi.org/10.1016/j.nanoen.2017.11.077
Y. Han, C. Sun, K. Gao, S. Ding, Z. Miao et al., Heterovalent oxynitride GaZnON nanowire as novel flexible anode for lithium-ion storage. Electrochim. Acta 408, 139931 (2022). https://doi.org/10.1016/j.electacta.2022.139931
G. Ali, J.-H. Lee, S.H. Oh, H.-G. Jung, K.Y. Chung, Elucidating the reaction mechanism of SnF2@C nanocomposite as a high-capacity anode material for Na-ion batteries. Nano Energy 42, 106 (2017). https://doi.org/10.1016/j.nanoen.2017.10.036
K. Gao, Z. Miao, Y. Han, D. Li, W. Sun et al., One-step method synthesis of cobalt-doped GeZn1.7ON1.8 p for enhanced lithium-ion storage performance. Electrochim. Acta 442, 141876 (2023). https://doi.org/10.1016/j.electacta.2023.141876
F. Ma, S. Guan, D. Liu, Z. Liu, Y. Qiu, C. Sun, Y.J. Wang, Ge-doped quaternary metallic oxynitrides GaZnON: The high-performance anode material for lithium-ion batteries. J. Alloys Compd. 940, 168777 (2023). https://doi.org/10.1016/j.jallcom.2023.168777
S. Wang, C. Sun, Y. Shao, Y. Wu, L. Zhang et al., Self-supporting GaN nanowires/graphite paper: novel high-performance flexible supercapacitor electrodes. Small 13, 1603330 (2017). https://doi.org/10.1002/smll.201603330
T. Wang, C. Sun, M. Yang, G. Zhao, S. Wang et al., Phase-transformation engineering in MoS2 on carbon cloth as flexible binder-free anode for enhancing lithium storage. J. Alloys Compd. 716, 112 (2017). https://doi.org/10.1016/j.jallcom.2017.05.071
Z. Li, S. Ding, J. Yin, M. Zhang, C. Sun et al., Morphology-dependent electrochemical performance of VS4 for rechargeable magnesium battery and its magnesiation/demagnesiation mechanism. J. Power Sources 451, 227815 (2020). https://doi.org/10.1016/j.jpowsour.2020.227815
T. Wang, C. Sun, M. Yang, L. Zhang, Y. Shao et al., Enhanced reversible lithium ion storage in stable 1T@2H WS2 nanosheet arrays anchored on carbon fiber. Electrochim. Acta 259, 1 (2018). https://doi.org/10.1016/j.electacta.2017.10.154