Bioorthogonal Engineered Virus-Like Nanoparticles for Efficient Gene Therapy
Corresponding Author: Wan‑Liang Lu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 197
Abstract
Gene therapy offers potentially transformative strategies for major human diseases. However, one of the key challenges in gene therapy is developing an effective strategy that could deliver genes into the specific tissue. Here, we report a novel virus-like nanoparticle, the bioorthgonal engineered virus-like recombinant biosome (reBiosome), for efficient gene therapies of cancer and inflammatory diseases. The mutant virus-like biosome (mBiosome) is first prepared by site-specific codon mutation for displaying 4-azido-L-phenylalanine on vesicular stomatitis virus glycoprotein of eBiosome at a rational site, and the reBiosome is then prepared by clicking weak acid-responsive hydrophilic polymer onto the mBiosome via bioorthogonal chemistry. The results show that the reBiosome exhibits reduced virus-like immunogenicity, prolonged blood circulation time and enhanced gene delivery efficiency to weakly acidic foci (like tumor and arthritic tissue). Furthermore, reBiosome demonstrates robust therapeutic efficacy in breast cancer and arthritis by delivering gene editing and silencing systems, respectively. In conclusion, this study develops a universal, safe and efficient platform for gene therapies for cancer and inflammatory diseases.
Highlights:
1 A virus-like nanoparticle (reBiosome) was developed via site-specific codon mutation for displaying unnatural amino acid (Azi) on virus envelope protein at a rational site, followed by conjugating weak acid-responsive polyethylene glycol polymer on Azi via bioorthogonal chemistry.
2 The reBiosome exhibited reduced virus-like immunogenicity, prolonged blood circulation and enhanced delivery to weakly acidic disease foci.
3 The reBiosome enabled efficient delivery of gene editing and gene silencing system, demonstrating remarkable therapeutic efficacy in breast cancer and arthritis, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.B. Kaufmann, H. Buning, A. Galy, A. Schambach, M. Grez, Gene therapy on the move. EMBO Mol. Med. 5(11), 1642–1661 (2013). https://doi.org/10.1002/emmm.201202287
- H. Yin, R.L. Kanasty, A.A. Eltoukhy, A.J. Vegas, J.R. Dorkin et al., Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15(8), 541–555 (2014). https://doi.org/10.1038/nrg3763
- J.T. Bulcha, Y. Wang, H. Ma, P.W.L. Tai, G. Gao, Viral vector platforms within the gene therapy landscape. Signal Transduct. Target Ther. 6(1), 53 (2021). https://doi.org/10.1038/s41392-021-00487-6
- J. Duan, C. Bao, Y. Xie, H. Guo, Y. Liu et al., Targeted core-shell nanops for precise ctcf gene insert in treatment of metastatic breast cancer. Bioact. Mater. 11, 1–14 (2022). https://doi.org/10.1016/j.bioactmat.2021.10.007
- D. Witzigmann, J.A. Kulkarni, J. Leung, S. Chen, P.R. Cullis et al., Lipid nanop technology for therapeutic gene regulation in the liver. Adv. Drug Deliv. Rev. 159, 344–363 (2020). https://doi.org/10.1016/j.addr.2020.06.026
- M.S. Sands, Aav-mediated liver-directed gene therapy. Methods Mol. Biol. 807, 141–157 (2011). https://doi.org/10.1007/978-1-61779-370-7_6
- S. Nooraei, H. Bahrulolum, Z.S. Hoseini, C. Katalani, A. Hajizade et al., Virus-like ps: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnol. 19(1), 59 (2021). https://doi.org/10.1186/s12951-021-00806-7
- J.L. Mejia-Mendez, R. Vazquez-Duhalt, L.R. Hernandez, E. Sanchez-Arreola, H. Bach, Virus-like ps: fundamentals and biomedical applications. Int. J. Mol. Sci. 23(15), 8579 (2022). https://doi.org/10.3390/ijms23158579
- D. Stuart, P. Gouet, Viral envelope glycoproteins swing into action. Structure 3(7), 645–648 (1995). https://doi.org/10.1016/S0969-2126(01)00199-X
- P.C. Roberts, T. Kipperman, R.W. Compans, Vesicular stomatitis virus g protein acquires ph-independent fusion activity during transport in a polarized endometrial cell line. J. Virol. 73(12), 10447–10457 (1999). https://doi.org/10.1128/JVI.73.12.10447-10457.1999
- M. Bostina, H. Levy, D.J. Filman, J.M. Hogle, Poliovirus rna is released from the capsid near a twofold symmetry axis. J. Virol. 85(2), 776–783 (2011). https://doi.org/10.1128/jvi.00531-10
- J.R. Schnell, J.J. Chou, Structure and mechanism of the m2 proton channel of influenza a virus. Nature 451(7178), 591–595 (2008). https://doi.org/10.1038/nature06531
- Y. Barenholz, Doxil(r)–the first fda-approved nano-drug: Lessons learned. J. Control. Release 160(2), 117–134 (2012). https://doi.org/10.1016/j.jconrel.2012.03.020
- M.C. Pinder, N.K. Ibrahim, Nanop albumin-bound paclitaxel for treatment of metastatic breast cancer. Drugs Today 42(9), 599–604 (2006). https://doi.org/10.1358/dot.2006.42.9.1009902
- Z. Zhou, Y. Liu, X. Jiang, C. Zheng, W. Luo et al., Metformin modified chitosan as a multi-functional adjuvant to enhance cisplatin-based tumor chemotherapy efficacy. Int. J. Biol. Macromol. 224, 797–809 (2023). https://doi.org/10.1016/j.ijbiomac.2022.10.167
- Z. Zhou, Y. Liu, W. Song, X. Jiang, Z. Deng et al., Metabolic reprogramming mediated pd-l1 depression and hypoxia reversion to reactivate tumor therapy. J. Control. Release 352, 793–812 (2022). https://doi.org/10.1016/j.jconrel.2022.11.004
- S.A. Smith, L.I. Selby, A.P.R. Johnston, G.K. Such, The endosomal escape of nanops: toward more efficient cellular delivery. Bioconjug. Chem. 30(2), 263–272 (2019). https://doi.org/10.1021/acs.bioconjchem.8b00732
- Q. Zhang, G. Kuang, W. Li, J. Wang, H. Ren et al., Stimuli-responsive gene delivery nanocarriers for cancer therapy. Nano-Micro Lett. 15(1), 44 (2023). https://doi.org/10.1007/s40820-023-01018-4
- B. Schwarz, M. Uchida, T. Douglas, Biomedical and catalytic opportunities of virus-like ps in nanotechnology. Adv. Virus Res. 97, 1–60 (2017). https://doi.org/10.1016/bs.aivir.2016.09.002
- M.F. Bachmann, G.T. Jennings, Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10(11), 787–796 (2010). https://doi.org/10.1038/nri2868
- A. Gutierrez-Guerrero, F.L. Cosset, E. Verhoeyen, Lentiviral vector pseudotypes: precious tools to improve gene modification of hematopoietic cells for research and gene therapy. Viruses 12(9), 1016 (2020). https://doi.org/10.3390/v12091016
- M. Segel, B. Lash, J. Song, A. Ladha, C.C. Liu et al., Mammalian retrovirus-like protein peg10 packages its own mrna and can be pseudotyped for mrna delivery. Science 373(6557), 882–889 (2021). https://doi.org/10.1126/science.abg6155
- D. Finkelshtein, A. Werman, D. Novick, S. Barak, M. Rubinstein, Ldl receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc. Natl. Acad. Sci. USA 110(18), 7306–7311 (2013). https://doi.org/10.1073/pnas.1214441110
- J. Nikolic, L. Belot, H. Raux, P. Legrand, Y. Gaudin, Structural basis for the recognition of ldl-receptor family members by vsv glycoprotein. Nat. Commun. 9(1), 1029 (2018). https://doi.org/10.1038/s41467-018-03432-4
- H.K. Johannsdottir, R. Mancini, J. Kartenbeck, L. Amato, A. Helenius, Host cell factors and functions involved in vesicular stomatitis virus entry. J. Virol. 83(1), 440–453 (2009). https://doi.org/10.1128/JVI.01864-08
- S.S. Strickler, A.V. Gribenko, A.V. Gribenko, T.R. Keiffer, J. Tomlinson et al., Protein stability and surface electrostatics: a charged relationship. Biochemistry 45(9), 2761–2766 (2006). https://doi.org/10.1021/bi0600143
- H.X. Zhou, X. Pang, Electrostatic interactions in protein structure, folding, binding, and condensation. Chem. Rev. 118(4), 1691–1741 (2018). https://doi.org/10.1021/acs.chemrev.7b00305
- R. Alsallaq, H.X. Zhou, Electrostatic rate enhancement and transient complex of protein-protein association. Proteins 71(1), 320–335 (2008). https://doi.org/10.1002/prot.21679
- R. Alsallaq, H.X. Zhou, Prediction of protein-protein association rates from a transition-state theory. Structure 15(2), 215–224 (2007). https://doi.org/10.1016/j.str.2007.01.005
- L. Belot, M. Ouldali, S. Roche, P. Legrand, Y. Gaudin et al., Crystal structure of mokola virus glycoprotein in its post-fusion conformation. PLoS Pathog. 16(3), e1008383 (2020). https://doi.org/10.1371/journal.ppat.1008383
- S. Roche, F.A. Rey, Y. Gaudin, S. Bressanelli, Structure of the prefusion form of the vesicular stomatitis virus glycoprotein g. Science 315(5813), 843–848 (2007). https://doi.org/10.1126/science.1135710
- N.J. DePolo, J.D. Reed, P.L. Sheridan, K. Townsend, S.L. Sauter et al., Vsv-g pseudotyped lentiviral vector ps produced in human cells are inactivated by human serum. Mol. Ther. 2(3), 218–222 (2000). https://doi.org/10.1006/mthe.2000.0116
- V. Appay, S.L. Rowland-Jones, Rantes: a versatile and controversial chemokine. Trends Immunol. 22(2), 83–87 (2001). https://doi.org/10.1016/s1471-4906(00)01812-3
- B. Moser, I. Clark-Lewis, R. Zwahlen, M. Baggiolini, Neutrophil-activating properties of the melanoma growth-stimulatory activity. J. Exp. Med. 171(5), 1797–1802 (1990). https://doi.org/10.1084/jem.171.5.1797
- J.H. Dufour, M. Dziejman, M.T. Liu, J.H. Leung, T.E. Lane et al., Ifn-gamma-inducible protein 10 (IP-10; CXCl10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J. Immunol. 168(7), 3195–3204 (2002). https://doi.org/10.4049/jimmunol.168.7.3195
- M.W. Carr, S.J. Roth, E. Luther, S.S. Rose, T.A. Springer, Monocyte chemoattractant protein-1 acts as a t-lymphocyte chemoattractant. Proc. Natl. Acad. Sci. USA 91(9), 3652–3656 (1994). https://doi.org/10.1073/pnas.91.9.3652
- M.G. Katze, Y. He, M. Gale, Viruses and interferon: a fight for supremacy. Nat. Rev. Immunol. 2(9), 675–687 (2002). https://doi.org/10.1038/nri888
- M.H. Orzalli, A. Smith, K.A. Jurado, A. Iwasaki, J.A. Garlick et al., An antiviral branch of the il-1 signaling pathway restricts immune-evasive virus replication. Mol. Cell. 71(5), 825–840 (2018). https://doi.org/10.1016/j.molcel.2018.07.009
- J.M. Rojas, M. Avia, V. Martín, N. Sevilla, Il-10: A multifunctional cytokine in viral infections. J. Immunol. Res. 2017, 6104054 (2017). https://doi.org/10.1155/2017/6104054
- T. Komastu, D.D. Ireland, C.S. Reiss, Il-12 and viral infections. Cytokine Growth Factor Rev. 9(3–4), 277–285 (1998). https://doi.org/10.1016/s1359-6101(98)00017-3
- S.R. Paludan, S.C. Mogensen, Virus-cell interactions regulating induction of tumor necrosis factor alpha production in macrophages infected with herpes simplex virus. J. Virol. 75(21), 10170–10178 (2001). https://doi.org/10.1128/JVI.75.21.10170-10178.2001
- D.H. Barouch, S. Santra, K. Tenner-Racz, P. Racz, M.J. Kuroda et al., Potent Cd4+ T cell responses elicited by a bicistronic HIV-1 DNA vaccine expressing GP120 and GM-CSF. J. Immunol. 168(2), 562–568 (2002). https://doi.org/10.4049/jimmunol.168.2.562
- J.S. Suk, Q. Xu, N. Kim, J. Hanes, L.M. Ensign, Pegylation as a strategy for improving nanop-based drug and gene delivery. Adv. Drug Deliv. Rev. 99(Pt A), 28–51 (2016). https://doi.org/10.1016/j.addr.2015.09.012
- J.C. Garcia-Canaveras, L. Chen, J.D. Rabinowitz, The tumor metabolic microenvironment: lessons from lactate. Cancer Res. 79(13), 3155–3162 (2019). https://doi.org/10.1158/0008-5472.Can-18-3726
- C. Bao, J. Duan, Y. Xie, Y. Liu, P. Li et al., A novel oncogenic enhancer of estrogen receptor-positive breast cancer. Mol. Ther. Nucleic Acids 29, 836–851 (2022). https://doi.org/10.1016/j.omtn.2022.08.029
- H. Matsuno, K. Yudoh, R. Katayama, F. Nakazawa, M. Uzuki et al., The role of tnf-alpha in the pathogenesis of inflammation and joint destruction in rheumatoid arthritis (RA): a study using a human ra/scid mouse chimera. Rheumatology 41(3), 329–337 (2002). https://doi.org/10.1093/rheumatology/41.3.329
- K.M. Pietrosimone, M. Jin, B. Poston, P. Liu, Collagen-induced arthritis: a model for murine autoimmune arthritis. Bio Protoc. 5(20), 1626 (2015). https://doi.org/10.21769/bioprotoc.1626
- D.D. Brand, K.A. Latham, E.F. Rosloniec, Collagen-induced arthritis. Nat. Protoc. 2(5), 1269–1275 (2007). https://doi.org/10.1038/nprot.2007.173
References
K.B. Kaufmann, H. Buning, A. Galy, A. Schambach, M. Grez, Gene therapy on the move. EMBO Mol. Med. 5(11), 1642–1661 (2013). https://doi.org/10.1002/emmm.201202287
H. Yin, R.L. Kanasty, A.A. Eltoukhy, A.J. Vegas, J.R. Dorkin et al., Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15(8), 541–555 (2014). https://doi.org/10.1038/nrg3763
J.T. Bulcha, Y. Wang, H. Ma, P.W.L. Tai, G. Gao, Viral vector platforms within the gene therapy landscape. Signal Transduct. Target Ther. 6(1), 53 (2021). https://doi.org/10.1038/s41392-021-00487-6
J. Duan, C. Bao, Y. Xie, H. Guo, Y. Liu et al., Targeted core-shell nanops for precise ctcf gene insert in treatment of metastatic breast cancer. Bioact. Mater. 11, 1–14 (2022). https://doi.org/10.1016/j.bioactmat.2021.10.007
D. Witzigmann, J.A. Kulkarni, J. Leung, S. Chen, P.R. Cullis et al., Lipid nanop technology for therapeutic gene regulation in the liver. Adv. Drug Deliv. Rev. 159, 344–363 (2020). https://doi.org/10.1016/j.addr.2020.06.026
M.S. Sands, Aav-mediated liver-directed gene therapy. Methods Mol. Biol. 807, 141–157 (2011). https://doi.org/10.1007/978-1-61779-370-7_6
S. Nooraei, H. Bahrulolum, Z.S. Hoseini, C. Katalani, A. Hajizade et al., Virus-like ps: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnol. 19(1), 59 (2021). https://doi.org/10.1186/s12951-021-00806-7
J.L. Mejia-Mendez, R. Vazquez-Duhalt, L.R. Hernandez, E. Sanchez-Arreola, H. Bach, Virus-like ps: fundamentals and biomedical applications. Int. J. Mol. Sci. 23(15), 8579 (2022). https://doi.org/10.3390/ijms23158579
D. Stuart, P. Gouet, Viral envelope glycoproteins swing into action. Structure 3(7), 645–648 (1995). https://doi.org/10.1016/S0969-2126(01)00199-X
P.C. Roberts, T. Kipperman, R.W. Compans, Vesicular stomatitis virus g protein acquires ph-independent fusion activity during transport in a polarized endometrial cell line. J. Virol. 73(12), 10447–10457 (1999). https://doi.org/10.1128/JVI.73.12.10447-10457.1999
M. Bostina, H. Levy, D.J. Filman, J.M. Hogle, Poliovirus rna is released from the capsid near a twofold symmetry axis. J. Virol. 85(2), 776–783 (2011). https://doi.org/10.1128/jvi.00531-10
J.R. Schnell, J.J. Chou, Structure and mechanism of the m2 proton channel of influenza a virus. Nature 451(7178), 591–595 (2008). https://doi.org/10.1038/nature06531
Y. Barenholz, Doxil(r)–the first fda-approved nano-drug: Lessons learned. J. Control. Release 160(2), 117–134 (2012). https://doi.org/10.1016/j.jconrel.2012.03.020
M.C. Pinder, N.K. Ibrahim, Nanop albumin-bound paclitaxel for treatment of metastatic breast cancer. Drugs Today 42(9), 599–604 (2006). https://doi.org/10.1358/dot.2006.42.9.1009902
Z. Zhou, Y. Liu, X. Jiang, C. Zheng, W. Luo et al., Metformin modified chitosan as a multi-functional adjuvant to enhance cisplatin-based tumor chemotherapy efficacy. Int. J. Biol. Macromol. 224, 797–809 (2023). https://doi.org/10.1016/j.ijbiomac.2022.10.167
Z. Zhou, Y. Liu, W. Song, X. Jiang, Z. Deng et al., Metabolic reprogramming mediated pd-l1 depression and hypoxia reversion to reactivate tumor therapy. J. Control. Release 352, 793–812 (2022). https://doi.org/10.1016/j.jconrel.2022.11.004
S.A. Smith, L.I. Selby, A.P.R. Johnston, G.K. Such, The endosomal escape of nanops: toward more efficient cellular delivery. Bioconjug. Chem. 30(2), 263–272 (2019). https://doi.org/10.1021/acs.bioconjchem.8b00732
Q. Zhang, G. Kuang, W. Li, J. Wang, H. Ren et al., Stimuli-responsive gene delivery nanocarriers for cancer therapy. Nano-Micro Lett. 15(1), 44 (2023). https://doi.org/10.1007/s40820-023-01018-4
B. Schwarz, M. Uchida, T. Douglas, Biomedical and catalytic opportunities of virus-like ps in nanotechnology. Adv. Virus Res. 97, 1–60 (2017). https://doi.org/10.1016/bs.aivir.2016.09.002
M.F. Bachmann, G.T. Jennings, Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10(11), 787–796 (2010). https://doi.org/10.1038/nri2868
A. Gutierrez-Guerrero, F.L. Cosset, E. Verhoeyen, Lentiviral vector pseudotypes: precious tools to improve gene modification of hematopoietic cells for research and gene therapy. Viruses 12(9), 1016 (2020). https://doi.org/10.3390/v12091016
M. Segel, B. Lash, J. Song, A. Ladha, C.C. Liu et al., Mammalian retrovirus-like protein peg10 packages its own mrna and can be pseudotyped for mrna delivery. Science 373(6557), 882–889 (2021). https://doi.org/10.1126/science.abg6155
D. Finkelshtein, A. Werman, D. Novick, S. Barak, M. Rubinstein, Ldl receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc. Natl. Acad. Sci. USA 110(18), 7306–7311 (2013). https://doi.org/10.1073/pnas.1214441110
J. Nikolic, L. Belot, H. Raux, P. Legrand, Y. Gaudin, Structural basis for the recognition of ldl-receptor family members by vsv glycoprotein. Nat. Commun. 9(1), 1029 (2018). https://doi.org/10.1038/s41467-018-03432-4
H.K. Johannsdottir, R. Mancini, J. Kartenbeck, L. Amato, A. Helenius, Host cell factors and functions involved in vesicular stomatitis virus entry. J. Virol. 83(1), 440–453 (2009). https://doi.org/10.1128/JVI.01864-08
S.S. Strickler, A.V. Gribenko, A.V. Gribenko, T.R. Keiffer, J. Tomlinson et al., Protein stability and surface electrostatics: a charged relationship. Biochemistry 45(9), 2761–2766 (2006). https://doi.org/10.1021/bi0600143
H.X. Zhou, X. Pang, Electrostatic interactions in protein structure, folding, binding, and condensation. Chem. Rev. 118(4), 1691–1741 (2018). https://doi.org/10.1021/acs.chemrev.7b00305
R. Alsallaq, H.X. Zhou, Electrostatic rate enhancement and transient complex of protein-protein association. Proteins 71(1), 320–335 (2008). https://doi.org/10.1002/prot.21679
R. Alsallaq, H.X. Zhou, Prediction of protein-protein association rates from a transition-state theory. Structure 15(2), 215–224 (2007). https://doi.org/10.1016/j.str.2007.01.005
L. Belot, M. Ouldali, S. Roche, P. Legrand, Y. Gaudin et al., Crystal structure of mokola virus glycoprotein in its post-fusion conformation. PLoS Pathog. 16(3), e1008383 (2020). https://doi.org/10.1371/journal.ppat.1008383
S. Roche, F.A. Rey, Y. Gaudin, S. Bressanelli, Structure of the prefusion form of the vesicular stomatitis virus glycoprotein g. Science 315(5813), 843–848 (2007). https://doi.org/10.1126/science.1135710
N.J. DePolo, J.D. Reed, P.L. Sheridan, K. Townsend, S.L. Sauter et al., Vsv-g pseudotyped lentiviral vector ps produced in human cells are inactivated by human serum. Mol. Ther. 2(3), 218–222 (2000). https://doi.org/10.1006/mthe.2000.0116
V. Appay, S.L. Rowland-Jones, Rantes: a versatile and controversial chemokine. Trends Immunol. 22(2), 83–87 (2001). https://doi.org/10.1016/s1471-4906(00)01812-3
B. Moser, I. Clark-Lewis, R. Zwahlen, M. Baggiolini, Neutrophil-activating properties of the melanoma growth-stimulatory activity. J. Exp. Med. 171(5), 1797–1802 (1990). https://doi.org/10.1084/jem.171.5.1797
J.H. Dufour, M. Dziejman, M.T. Liu, J.H. Leung, T.E. Lane et al., Ifn-gamma-inducible protein 10 (IP-10; CXCl10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J. Immunol. 168(7), 3195–3204 (2002). https://doi.org/10.4049/jimmunol.168.7.3195
M.W. Carr, S.J. Roth, E. Luther, S.S. Rose, T.A. Springer, Monocyte chemoattractant protein-1 acts as a t-lymphocyte chemoattractant. Proc. Natl. Acad. Sci. USA 91(9), 3652–3656 (1994). https://doi.org/10.1073/pnas.91.9.3652
M.G. Katze, Y. He, M. Gale, Viruses and interferon: a fight for supremacy. Nat. Rev. Immunol. 2(9), 675–687 (2002). https://doi.org/10.1038/nri888
M.H. Orzalli, A. Smith, K.A. Jurado, A. Iwasaki, J.A. Garlick et al., An antiviral branch of the il-1 signaling pathway restricts immune-evasive virus replication. Mol. Cell. 71(5), 825–840 (2018). https://doi.org/10.1016/j.molcel.2018.07.009
J.M. Rojas, M. Avia, V. Martín, N. Sevilla, Il-10: A multifunctional cytokine in viral infections. J. Immunol. Res. 2017, 6104054 (2017). https://doi.org/10.1155/2017/6104054
T. Komastu, D.D. Ireland, C.S. Reiss, Il-12 and viral infections. Cytokine Growth Factor Rev. 9(3–4), 277–285 (1998). https://doi.org/10.1016/s1359-6101(98)00017-3
S.R. Paludan, S.C. Mogensen, Virus-cell interactions regulating induction of tumor necrosis factor alpha production in macrophages infected with herpes simplex virus. J. Virol. 75(21), 10170–10178 (2001). https://doi.org/10.1128/JVI.75.21.10170-10178.2001
D.H. Barouch, S. Santra, K. Tenner-Racz, P. Racz, M.J. Kuroda et al., Potent Cd4+ T cell responses elicited by a bicistronic HIV-1 DNA vaccine expressing GP120 and GM-CSF. J. Immunol. 168(2), 562–568 (2002). https://doi.org/10.4049/jimmunol.168.2.562
J.S. Suk, Q. Xu, N. Kim, J. Hanes, L.M. Ensign, Pegylation as a strategy for improving nanop-based drug and gene delivery. Adv. Drug Deliv. Rev. 99(Pt A), 28–51 (2016). https://doi.org/10.1016/j.addr.2015.09.012
J.C. Garcia-Canaveras, L. Chen, J.D. Rabinowitz, The tumor metabolic microenvironment: lessons from lactate. Cancer Res. 79(13), 3155–3162 (2019). https://doi.org/10.1158/0008-5472.Can-18-3726
C. Bao, J. Duan, Y. Xie, Y. Liu, P. Li et al., A novel oncogenic enhancer of estrogen receptor-positive breast cancer. Mol. Ther. Nucleic Acids 29, 836–851 (2022). https://doi.org/10.1016/j.omtn.2022.08.029
H. Matsuno, K. Yudoh, R. Katayama, F. Nakazawa, M. Uzuki et al., The role of tnf-alpha in the pathogenesis of inflammation and joint destruction in rheumatoid arthritis (RA): a study using a human ra/scid mouse chimera. Rheumatology 41(3), 329–337 (2002). https://doi.org/10.1093/rheumatology/41.3.329
K.M. Pietrosimone, M. Jin, B. Poston, P. Liu, Collagen-induced arthritis: a model for murine autoimmune arthritis. Bio Protoc. 5(20), 1626 (2015). https://doi.org/10.21769/bioprotoc.1626
D.D. Brand, K.A. Latham, E.F. Rosloniec, Collagen-induced arthritis. Nat. Protoc. 2(5), 1269–1275 (2007). https://doi.org/10.1038/nprot.2007.173