Competitive Redox Chemistries in Vanadium Niobium Oxide for Ultrafast and Durable Lithium Storage
Corresponding Author: Xunhui Xiong
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 195
Abstract
Niobium pentoxide (Nb2O5) anodes have gained increasing attentions for high-power lithium-ion batteries owing to the outstanding rate capability and high safety. However, Nb2O5 anode suffers poor cycle stability even after modified and the unrevealed mechanisms have restricted the practical applications. Herein, the over-reduction of Nb5+ has been demonstrated to be the critical reason for the capacity loss for the first time. Besides, an effective competitive redox strategy has been developed to solve the rapid capacity decay of Nb2O5, which can be achieved by the incorporation of vanadium to form a new rutile VNbO4 anode. The highly reversible V3+/V2+ redox couple in VNbO4 can effectively inhibit the over-reduction of Nb5+. Besides, the electron migration from V3+ to Nb5+ can greatly increase the intrinsic electronic conductivity for VNbO4. As a result, VNbO4 anode delivers a high capacity of 206.1 mAh g−1 at 0.1 A g−1, as well as remarkable cycle performance with a retention of 93.4% after 2000 cycles at 1.0 A g−1. In addition, the assembled lithium-ion capacitor demonstrates a high energy density of 44 Wh kg−1 at 5.8 kW kg−1. In summary, our work provides a new insight into the design of ultra-fast and durable anodes.
Highlights:
1 The over-reduction from Nb5+ to Nb3+ in the lithiation process have been demonstrated to be the critical reason for the capacity decay of Nb2O5 for the first time.
2 A novel competitive redox strategy has been proposed to suppress the over-reduction of Nb5+ to Nb3+, which can be achieved by the incorporation of vanadium to form a new rutile VNbO4 anode.
3 The performance of VNbO4 anode designed in this study stands among the best in cycle stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Zeng, M. Li, D. El-Hady, W. Alshitari, A. Al-Bogami et al., Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. 9(27), 1900161 (2019). https://doi.org/10.1002/aenm.201900161
- X. Ma, C. Ji, X. Li, Y. Liu, X. Xiong, Red@black phosphorus core-shell heterostructure with superior air stability for high-rate and durable sodium-ion battery. Mater. Today 59, 36–45 (2022). https://doi.org/10.1016/j.mattod.2022.08.013
- S. Lee, J. Kim, J. Moon, K. Jung, J. Kim et al., A cooperative biphasic MoOx-MoPx promoter enables a fast-charging lithium-ion battery. Nat. Commun. 12(1), 39 (2021). https://doi.org/10.1038/s41467-020-20297-8
- W. Cai, Y. Yao, G. Zhu, C. Yan, L. Jiang et al., A review on energy chemistry of fast-charging anodes. Chem. Soc. Rev. 49(12), 3806–3833 (2020). https://doi.org/10.1039/c9cs00728h
- X. Ding, Q. Huang, X. Xiong, Research and application of fast-charging graphite anodes for lithium-ion batteries. Acta Phys. Chim. Sin. 38(11), 2204057 (2022). https://doi.org/10.3866/pku.Whxb202204057
- Y. Rangom, T. Duignan, X. Zhao, Lithium-ion transport behavior in thin-film graphite electrodes with sei layers formed at different current densities. ACS Appl. Mater. Interfaces 13(36), 42662–42669 (2021). https://doi.org/10.1021/acsami.1c09559
- Z. Su, S. Li, L. Ma, T. Liu, M. Li et al., Quenching-induced defects liberate the latent reversible capacity of lithium titanate anode. Adv. Mater. 35(5), 2208573 (2023). https://doi.org/10.1002/adma.202208573
- M. Fan, Z. Lin, P. Zhang, X. Ma, K. Wu et al., Synergistic effect of nitrogen and sulfur dual-doping endows TiO2 with exceptional sodium storage performance. Adv. Energy Mater. 11(6), 2003037 (2021). https://doi.org/10.1002/aenm.202003037
- Z. Hu, Q. He, Z. Liu, X. Liu, M. Qin et al., Facile formation of tetragonal-Nb2O5 microspheres for high-rate and stable lithium storage with high areal capacity. Sci. Bull. 65(14), 1154–1162 (2020). https://doi.org/10.1016/j.scib.2020.04.011
- X. Han, Q. Meng, X. Wan, B. Sun, Y. Zhang et al., Intercalation pseudocapacitive electrochemistry of Nb-based oxides for fast charging of lithium-ion batteries. Nano Energy 81, 105635 (2021). https://doi.org/10.1016/j.nanoen.2020.105635
- J. Meng, Q. He, L. Xu, X. Zhang, F. Liu et al., Identification of phase control of carbon-confined Nb2O5 nanops toward high-performance lithium storage. Adv. Energy Mater. 9(18), 1802695 (2019). https://doi.org/10.1002/aenm.201802695
- D. Chen, J. Wang, T. Chou, B. Zhao, M. El-Sayed et al., Unraveling the nature of anomalously fast energy storage in T-Nb2O5. J. Am. Chem. Soc. 139(20), 7071–7081 (2017). https://doi.org/10.1021/jacs.7b03141
- Z. Song, H. Li, W. Liu, H. Zhang, J. Yan et al., Ultrafast and stable Li-(de) intercalation in a large single crystal H-Nb2O5 anode via optimizing the homogeneity of electron and ion transport. Adv. Mater. 32(22), 2001001 (2020). https://doi.org/10.1002/adma.202001001
- Y. Tang, L. Yang, Y. Zhu, F. Zhang, H. Zhang, Fabrication of a highly stable Nb2O5@C/CNTs based anolyte for lithium slurry flow batteries. J. Mater. Chem. A 10(10), 5620–5630 (2022). https://doi.org/10.1039/d1ta10883b
- Y. Chen, Z. Pu, Y. Liu, Y. Shen, S. Liu et al., Enhancing the low-temperature performance in lithium ion batteries of Nb2O5 by combination of W doping and mxene addition. J. Power Sources 515, 230601 (2021). https://doi.org/10.1016/j.jpowsour.2021.230601
- S. Shen, S. Zhang, X. Cao, S. Deng, G. Pan et al., Popcorn-like niobium oxide with cloned hierarchical architecture as advanced anode for solid-state lithium ion batteries. Energy Storage Mater. 25, 695–701 (2020). https://doi.org/10.1016/j.ensm.2019.09.017
- Q. Wang, Z. Jia, L. Li, J. Wang, G. Xu et al., Coupling niobia nanorods with a multicomponent carbon network for high power lithium-ion batteries. ACS Appl. Mater. Interfaces 11(47), 44196–44203 (2019). https://doi.org/10.1021/acsami.9b14819
- B. Deng, T. Lei, W. Zhu, L. Xiao, J. Liu, In-plane assembled orthorhombic Nb2O5 nanorod films with high-rate Li+ intercalation for high-performance flexible Li-ion capacitors. Adv. Funct. Mater. 28(1), 1704330 (2018). https://doi.org/10.1002/adfm.201704330
- X. Ding, H. Huang, Q. Huang, B. Hu, X. Li et al., Doping sites modulation of T-Nb2O5 to achieve ultrafast lithium storage. J. Energy Chem. 77, 280–289 (2023). https://doi.org/10.1016/j.jechem.2022.10.049
- P. Jing, K. Liu, L. Soule, E. Wang, T. Li et al., Engineering the architecture and oxygen deficiency of T-Nb2O5-carbon-graphene composite for high-rate lithium-ion batteries. Nano Energy 89, 106398 (2021). https://doi.org/10.1016/j.nanoen.2021.106398
- F. Liu, X. Cheng, R. Xu, Y. Wu, Y. Jiang et al., Binding sulfur-doped Nb2O5 hollow nanospheres on sulfur-doped graphene networks for highly reversible sodium storage. Adv. Funct. Mater. 28(18), 1800394 (2018). https://doi.org/10.1002/adfm.201800394
- D. Luo, C. Ma, J. Hou, Z. Zhang, R. Feng et al., Integrating nanoreactor with O-Nb-C heterointerface design and defects engineering toward high-efficiency and longevous sodium ion battery. Adv. Energy Mater. 12(18), 2103716 (2022). https://doi.org/10.1002/aenm.202103716
- J. Lee, H. Kwak, S. Bak, G. Lee, S. Hong et al., New class of titanium niobium oxide for a Li-ion host: TiNbO4 with purely single-phase lithium intercalation. Chem. Mater. 34(2), 854–863 (2022). https://doi.org/10.1021/acs.chemmater.1c03960
- L. Yan, J. Shu, C. Li, X. Cheng, H. Zhu et al., W3Nb14O44 nanowires: ultrastable lithium storage anode materials for advanced rechargeable batteries. Energy Storage Mater. 16, 535–544 (2019). https://doi.org/10.1016/j.ensm.2018.09.008
- L. Meng, R. Guo, F. Li, Y. Ma, J. Peng et al., Facile synthesis of flock-like V2O3/C with improved electrochemical performance as an anode material for Li-ion batteries. Energy Tech. 8(3), 1900986 (2020). https://doi.org/10.1002/ente.201900986
- S. Ni, J. Liu, D. Chao, L. Mai, Vanadate-based materials for Li-ion batteries: the search for anodes for practical applications. Adv. Energy Mater. 9(14), 1803324 (2019). https://doi.org/10.1002/aenm.201803324
- M. Yu, X. Bian, S. Liu, C. Yuan, Y. Yang et al., 3D hollow porous spherical architecture packed by iron-borate amorphous nanops as high-performance anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 11(28), 25254–25263 (2019). https://doi.org/10.1021/acsami.9b06979
- Y. Zhang, C. Kang, W. Zhao, B. Sun, X. Xiao et al., Crystallographic engineering to reduce diffusion barrier for enhanced intercalation pseudocapacitance of TiNb2O7 in fast-charging batteries. Energy Storage Mater. 47, 178–186 (2022). https://doi.org/10.1016/j.ensm.2022.01.061
- D. Liang, Y. Lu, L. Hu, L. Wang, S. Liang et al., Mesoporous TiNb2O7 nanosheets anode with excellent rate capability and cycling performance in lithium ion half/full batteries. J. Power Sourc. 544, 231897 (2022). https://doi.org/10.1016/j.jpowsour.2022.231897
- L. Xu, C. Thompson, Mechanisms of the cyclic (de)lithiation of RuO2. J. Mater. Chem. A 8(41), 21872–21881 (2020). https://doi.org/10.1039/d0ta06428a
- L. Xu, C. Thompson, Electrochemically controlled reversible formation of organized channel arrays in nanoscale-thick RuO2 films: Implications for mechanically stable thin films and microfluidic devices. ACS Appl. Nano Mater. 4(12), 13700–13707 (2021). https://doi.org/10.1021/acsanm.1c03114
- L. Xu, M. Chon, B. Mills, C. Thompson, Mechanical stress and morphology evolution in RuO2 thin film electrodes during lithiation and delithiation. J. Power Sourc. 552, 232260 (2022). https://doi.org/10.1016/j.jpowsour.2022.232260
- X. Yan, T. Li, Y. Xiong, X. Ge, Synchronized ion and electron transfer in a blue T-Nb2O5-x with solid-solution-like process for fast and high volumetric charge storage. Energy Storage Mater. 36, 213–221 (2021). https://doi.org/10.1016/j.ensm.2020.12.031
- E. Lim, C. Jo, H. Kim, M. Kim, Y. Mun et al., Facile synthesis of Nb2O5@carbon core-shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors. ACS Nano 9(7), 7497–7505 (2015). https://doi.org/10.1021/acsnano.5b02601
- R. Sahoo, T. Lee, D. Pham, T. Luu, Y. Lee, Fast-charging high-energy battery-supercapacitor hybrid: anodic reduced graphene oxide-vanadium (IV) oxide sheet-on-sheet heterostructure. ACS Nano 13(9), 10776–10786 (2019). https://doi.org/10.1021/acsnano.9b05605
- Y. Zheng, Z. Yao, Z. Shadike, M. Lei, J. Liu et al., Defect-concentration-mediated T-Nb2O5 anodes for durable and fast-charging Li-ion batteries. Adv. Funct. Mater. 32(12), 2107060 (2022). https://doi.org/10.1002/adfm.202107060
- S. Li, Q. Xu, E. Uchaker, X. Cao, G. Cao, Comparison of amorphous, pseudohexagonal and orthorhombic Nb2O5 for high-rate lithium ion insertion. CrystEngComm 18(14), 2532–2540 (2016). https://doi.org/10.1039/c5ce02069g
- F. Kong, L. Lv, J. Wang, G. Jiao, S. Tao et al., Graphite modified AlNbO4 with enhanced lithium–ion storage behaviors and its electrochemical mechanism. Mater. Res. Bull. 97, 405–410 (2018). https://doi.org/10.1016/j.materresbull.2017.09.034
- X. Lou, R. Li, X. Zhu, L. Luo, Y. Chen et al., New anode material for lithium-ion batteries: aluminum niobate (AlNb11O29). ACS Appl. Mater. Interfaces 11(6), 6089–6096 (2019). https://doi.org/10.1021/acsami.8b20246
- X. Cai, H. Yan, R. Zheng, H. Yu, Z. Yang et al., Cu2Nb34O87 nanowires as a superior lithium storage host in advanced rechargeable batteries. Inorg. Chem. Front. 8(2), 444–451 (2021). https://doi.org/10.1039/d0qi01075h
- T. Wang, T. Ge, S. Shi, M. Wu, G. Yang, Synthesis of wolframite FeNbO4 nanorods as a novel anode material for improved lithium storage capability. J. Alloys Compd. 740, 7–15 (2018). https://doi.org/10.1016/j.jallcom.2017.12.369
- L. Yan, H. Lan, H. Yu, S. Qian, X. Cheng et al., Electrospun WNb12O33 nanowires: superior lithium storage capability and their working mechanism. J. Mater. Chem. A 5(19), 8972–8980 (2017). https://doi.org/10.1039/c7ta01784g
- H. Yu, X. Cheng, H. Zhu, R. Zheng, T. Liu et al., Deep insights into kinetics and structural evolution of nitrogen-doped carbon coated TiNb24O62 nanowires as high-performance lithium container. Nano Energy 54, 227–237 (2018). https://doi.org/10.1016/j.nanoen.2018.10.025
- Y. Yuan, H. Yu, X. Cheng, R. Zheng, T. Liu et al., Preparation of TiNb6O17 nanospheres as high-performance anode candidates for lithium-ion storage. Chem. Eng. J. 374, 937–946 (2019). https://doi.org/10.1016/j.cej.2019.05.225
- S. Qian, H. Yu, L. Yang, H. Zhu, X. Cheng et al., High-rate long-life pored nanoribbon VNb9O25 built by interconnected ultrafine nanops as anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 9(36), 30608–30616 (2017). https://doi.org/10.1021/acsami.7b07460
- G. Tang, L. Cao, P. Xiao, Y. Zhang, H. Liu, A novel high energy hybrid Li-ion capacitor with a three-dimensional hierarchical ternary nanostructure of hydrogen-treated TiO2 nanops/conductive polymer/carbon nanotubes anode and an activated carbon cathode. J. Power Sourc. 355, 1–7 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.053
- L. Chen, D. Tsai, J. Chen, Phenylphenol-derived carbon and antimony-coated carbon nanotubes as the electroactive materials of lithium–ion hybrid capacitors. ACS Appl. Mater. Interfaces 11(38), 34948–34956 (2019). https://doi.org/10.1021/acsami.9b10579
- Q. Wang, Z. Wen, J. Li, A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode. Adv. Funct. Mater. 16(16), 2141–2146 (2006). https://doi.org/10.1002/adfm.200500937
- H. Wang, C. Guan, X. Wang, H. Fan, A high energy and power Li–ion capacitor based on a TiO2 nanobelt array anode and a graphene hydrogel cathode. Small 11(12), 1470–1477 (2015). https://doi.org/10.1002/smll.201402620
- R. Bi, N. Xu, H. Ren, N. Yang, Y. Sun et al., A hollow multi-shelled structure for charge transport and active sites in lithium-ion capacitors. Angew. Chem. Int. Ed. 59(12), 4865–4868 (2020). https://doi.org/10.1002/anie.201914680
- X. Wang, L. Ge, C. Zheng, V. Augustyn, X. Ma et al., High-performance supercapacitors based on nanocomposites of Nb2O5 nanocrystals and carbon nanotubes. Adv. Energy Mater. 1(6), 1089–1093 (2011). https://doi.org/10.1002/aenm.201100332
- W. Xu, C. Yan, Y. Jian, A. Sumboja, P. Lee et al., Orthorhombic niobium oxide nanowires for next generation hybrid supercapacitor device. Nano Energy 11, 765–772 (2015). https://doi.org/10.1016/j.nanoen.2014.11.020
- L. Kong, C. Zhang, J. Wang, W. Qiao, L. Ling, Free-standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li–ion intercalation pseudocapacitor. ACS Nano 9(11), 11200–11208 (2015). https://doi.org/10.1021/acsnano.5b04737
- S. Li, T. Wang, W. Zhu, J. Lian, Y. Huang et al., Controllable synthesis of uniform mesoporous H-Nb2O5/rGO nanocomposites for advanced lithium ion hybrid supercapacitors. J. Mater. Chem. A 7(2), 693–703 (2019). https://doi.org/10.1039/c8ta10239b
References
X. Zeng, M. Li, D. El-Hady, W. Alshitari, A. Al-Bogami et al., Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. 9(27), 1900161 (2019). https://doi.org/10.1002/aenm.201900161
X. Ma, C. Ji, X. Li, Y. Liu, X. Xiong, Red@black phosphorus core-shell heterostructure with superior air stability for high-rate and durable sodium-ion battery. Mater. Today 59, 36–45 (2022). https://doi.org/10.1016/j.mattod.2022.08.013
S. Lee, J. Kim, J. Moon, K. Jung, J. Kim et al., A cooperative biphasic MoOx-MoPx promoter enables a fast-charging lithium-ion battery. Nat. Commun. 12(1), 39 (2021). https://doi.org/10.1038/s41467-020-20297-8
W. Cai, Y. Yao, G. Zhu, C. Yan, L. Jiang et al., A review on energy chemistry of fast-charging anodes. Chem. Soc. Rev. 49(12), 3806–3833 (2020). https://doi.org/10.1039/c9cs00728h
X. Ding, Q. Huang, X. Xiong, Research and application of fast-charging graphite anodes for lithium-ion batteries. Acta Phys. Chim. Sin. 38(11), 2204057 (2022). https://doi.org/10.3866/pku.Whxb202204057
Y. Rangom, T. Duignan, X. Zhao, Lithium-ion transport behavior in thin-film graphite electrodes with sei layers formed at different current densities. ACS Appl. Mater. Interfaces 13(36), 42662–42669 (2021). https://doi.org/10.1021/acsami.1c09559
Z. Su, S. Li, L. Ma, T. Liu, M. Li et al., Quenching-induced defects liberate the latent reversible capacity of lithium titanate anode. Adv. Mater. 35(5), 2208573 (2023). https://doi.org/10.1002/adma.202208573
M. Fan, Z. Lin, P. Zhang, X. Ma, K. Wu et al., Synergistic effect of nitrogen and sulfur dual-doping endows TiO2 with exceptional sodium storage performance. Adv. Energy Mater. 11(6), 2003037 (2021). https://doi.org/10.1002/aenm.202003037
Z. Hu, Q. He, Z. Liu, X. Liu, M. Qin et al., Facile formation of tetragonal-Nb2O5 microspheres for high-rate and stable lithium storage with high areal capacity. Sci. Bull. 65(14), 1154–1162 (2020). https://doi.org/10.1016/j.scib.2020.04.011
X. Han, Q. Meng, X. Wan, B. Sun, Y. Zhang et al., Intercalation pseudocapacitive electrochemistry of Nb-based oxides for fast charging of lithium-ion batteries. Nano Energy 81, 105635 (2021). https://doi.org/10.1016/j.nanoen.2020.105635
J. Meng, Q. He, L. Xu, X. Zhang, F. Liu et al., Identification of phase control of carbon-confined Nb2O5 nanops toward high-performance lithium storage. Adv. Energy Mater. 9(18), 1802695 (2019). https://doi.org/10.1002/aenm.201802695
D. Chen, J. Wang, T. Chou, B. Zhao, M. El-Sayed et al., Unraveling the nature of anomalously fast energy storage in T-Nb2O5. J. Am. Chem. Soc. 139(20), 7071–7081 (2017). https://doi.org/10.1021/jacs.7b03141
Z. Song, H. Li, W. Liu, H. Zhang, J. Yan et al., Ultrafast and stable Li-(de) intercalation in a large single crystal H-Nb2O5 anode via optimizing the homogeneity of electron and ion transport. Adv. Mater. 32(22), 2001001 (2020). https://doi.org/10.1002/adma.202001001
Y. Tang, L. Yang, Y. Zhu, F. Zhang, H. Zhang, Fabrication of a highly stable Nb2O5@C/CNTs based anolyte for lithium slurry flow batteries. J. Mater. Chem. A 10(10), 5620–5630 (2022). https://doi.org/10.1039/d1ta10883b
Y. Chen, Z. Pu, Y. Liu, Y. Shen, S. Liu et al., Enhancing the low-temperature performance in lithium ion batteries of Nb2O5 by combination of W doping and mxene addition. J. Power Sources 515, 230601 (2021). https://doi.org/10.1016/j.jpowsour.2021.230601
S. Shen, S. Zhang, X. Cao, S. Deng, G. Pan et al., Popcorn-like niobium oxide with cloned hierarchical architecture as advanced anode for solid-state lithium ion batteries. Energy Storage Mater. 25, 695–701 (2020). https://doi.org/10.1016/j.ensm.2019.09.017
Q. Wang, Z. Jia, L. Li, J. Wang, G. Xu et al., Coupling niobia nanorods with a multicomponent carbon network for high power lithium-ion batteries. ACS Appl. Mater. Interfaces 11(47), 44196–44203 (2019). https://doi.org/10.1021/acsami.9b14819
B. Deng, T. Lei, W. Zhu, L. Xiao, J. Liu, In-plane assembled orthorhombic Nb2O5 nanorod films with high-rate Li+ intercalation for high-performance flexible Li-ion capacitors. Adv. Funct. Mater. 28(1), 1704330 (2018). https://doi.org/10.1002/adfm.201704330
X. Ding, H. Huang, Q. Huang, B. Hu, X. Li et al., Doping sites modulation of T-Nb2O5 to achieve ultrafast lithium storage. J. Energy Chem. 77, 280–289 (2023). https://doi.org/10.1016/j.jechem.2022.10.049
P. Jing, K. Liu, L. Soule, E. Wang, T. Li et al., Engineering the architecture and oxygen deficiency of T-Nb2O5-carbon-graphene composite for high-rate lithium-ion batteries. Nano Energy 89, 106398 (2021). https://doi.org/10.1016/j.nanoen.2021.106398
F. Liu, X. Cheng, R. Xu, Y. Wu, Y. Jiang et al., Binding sulfur-doped Nb2O5 hollow nanospheres on sulfur-doped graphene networks for highly reversible sodium storage. Adv. Funct. Mater. 28(18), 1800394 (2018). https://doi.org/10.1002/adfm.201800394
D. Luo, C. Ma, J. Hou, Z. Zhang, R. Feng et al., Integrating nanoreactor with O-Nb-C heterointerface design and defects engineering toward high-efficiency and longevous sodium ion battery. Adv. Energy Mater. 12(18), 2103716 (2022). https://doi.org/10.1002/aenm.202103716
J. Lee, H. Kwak, S. Bak, G. Lee, S. Hong et al., New class of titanium niobium oxide for a Li-ion host: TiNbO4 with purely single-phase lithium intercalation. Chem. Mater. 34(2), 854–863 (2022). https://doi.org/10.1021/acs.chemmater.1c03960
L. Yan, J. Shu, C. Li, X. Cheng, H. Zhu et al., W3Nb14O44 nanowires: ultrastable lithium storage anode materials for advanced rechargeable batteries. Energy Storage Mater. 16, 535–544 (2019). https://doi.org/10.1016/j.ensm.2018.09.008
L. Meng, R. Guo, F. Li, Y. Ma, J. Peng et al., Facile synthesis of flock-like V2O3/C with improved electrochemical performance as an anode material for Li-ion batteries. Energy Tech. 8(3), 1900986 (2020). https://doi.org/10.1002/ente.201900986
S. Ni, J. Liu, D. Chao, L. Mai, Vanadate-based materials for Li-ion batteries: the search for anodes for practical applications. Adv. Energy Mater. 9(14), 1803324 (2019). https://doi.org/10.1002/aenm.201803324
M. Yu, X. Bian, S. Liu, C. Yuan, Y. Yang et al., 3D hollow porous spherical architecture packed by iron-borate amorphous nanops as high-performance anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 11(28), 25254–25263 (2019). https://doi.org/10.1021/acsami.9b06979
Y. Zhang, C. Kang, W. Zhao, B. Sun, X. Xiao et al., Crystallographic engineering to reduce diffusion barrier for enhanced intercalation pseudocapacitance of TiNb2O7 in fast-charging batteries. Energy Storage Mater. 47, 178–186 (2022). https://doi.org/10.1016/j.ensm.2022.01.061
D. Liang, Y. Lu, L. Hu, L. Wang, S. Liang et al., Mesoporous TiNb2O7 nanosheets anode with excellent rate capability and cycling performance in lithium ion half/full batteries. J. Power Sourc. 544, 231897 (2022). https://doi.org/10.1016/j.jpowsour.2022.231897
L. Xu, C. Thompson, Mechanisms of the cyclic (de)lithiation of RuO2. J. Mater. Chem. A 8(41), 21872–21881 (2020). https://doi.org/10.1039/d0ta06428a
L. Xu, C. Thompson, Electrochemically controlled reversible formation of organized channel arrays in nanoscale-thick RuO2 films: Implications for mechanically stable thin films and microfluidic devices. ACS Appl. Nano Mater. 4(12), 13700–13707 (2021). https://doi.org/10.1021/acsanm.1c03114
L. Xu, M. Chon, B. Mills, C. Thompson, Mechanical stress and morphology evolution in RuO2 thin film electrodes during lithiation and delithiation. J. Power Sourc. 552, 232260 (2022). https://doi.org/10.1016/j.jpowsour.2022.232260
X. Yan, T. Li, Y. Xiong, X. Ge, Synchronized ion and electron transfer in a blue T-Nb2O5-x with solid-solution-like process for fast and high volumetric charge storage. Energy Storage Mater. 36, 213–221 (2021). https://doi.org/10.1016/j.ensm.2020.12.031
E. Lim, C. Jo, H. Kim, M. Kim, Y. Mun et al., Facile synthesis of Nb2O5@carbon core-shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors. ACS Nano 9(7), 7497–7505 (2015). https://doi.org/10.1021/acsnano.5b02601
R. Sahoo, T. Lee, D. Pham, T. Luu, Y. Lee, Fast-charging high-energy battery-supercapacitor hybrid: anodic reduced graphene oxide-vanadium (IV) oxide sheet-on-sheet heterostructure. ACS Nano 13(9), 10776–10786 (2019). https://doi.org/10.1021/acsnano.9b05605
Y. Zheng, Z. Yao, Z. Shadike, M. Lei, J. Liu et al., Defect-concentration-mediated T-Nb2O5 anodes for durable and fast-charging Li-ion batteries. Adv. Funct. Mater. 32(12), 2107060 (2022). https://doi.org/10.1002/adfm.202107060
S. Li, Q. Xu, E. Uchaker, X. Cao, G. Cao, Comparison of amorphous, pseudohexagonal and orthorhombic Nb2O5 for high-rate lithium ion insertion. CrystEngComm 18(14), 2532–2540 (2016). https://doi.org/10.1039/c5ce02069g
F. Kong, L. Lv, J. Wang, G. Jiao, S. Tao et al., Graphite modified AlNbO4 with enhanced lithium–ion storage behaviors and its electrochemical mechanism. Mater. Res. Bull. 97, 405–410 (2018). https://doi.org/10.1016/j.materresbull.2017.09.034
X. Lou, R. Li, X. Zhu, L. Luo, Y. Chen et al., New anode material for lithium-ion batteries: aluminum niobate (AlNb11O29). ACS Appl. Mater. Interfaces 11(6), 6089–6096 (2019). https://doi.org/10.1021/acsami.8b20246
X. Cai, H. Yan, R. Zheng, H. Yu, Z. Yang et al., Cu2Nb34O87 nanowires as a superior lithium storage host in advanced rechargeable batteries. Inorg. Chem. Front. 8(2), 444–451 (2021). https://doi.org/10.1039/d0qi01075h
T. Wang, T. Ge, S. Shi, M. Wu, G. Yang, Synthesis of wolframite FeNbO4 nanorods as a novel anode material for improved lithium storage capability. J. Alloys Compd. 740, 7–15 (2018). https://doi.org/10.1016/j.jallcom.2017.12.369
L. Yan, H. Lan, H. Yu, S. Qian, X. Cheng et al., Electrospun WNb12O33 nanowires: superior lithium storage capability and their working mechanism. J. Mater. Chem. A 5(19), 8972–8980 (2017). https://doi.org/10.1039/c7ta01784g
H. Yu, X. Cheng, H. Zhu, R. Zheng, T. Liu et al., Deep insights into kinetics and structural evolution of nitrogen-doped carbon coated TiNb24O62 nanowires as high-performance lithium container. Nano Energy 54, 227–237 (2018). https://doi.org/10.1016/j.nanoen.2018.10.025
Y. Yuan, H. Yu, X. Cheng, R. Zheng, T. Liu et al., Preparation of TiNb6O17 nanospheres as high-performance anode candidates for lithium-ion storage. Chem. Eng. J. 374, 937–946 (2019). https://doi.org/10.1016/j.cej.2019.05.225
S. Qian, H. Yu, L. Yang, H. Zhu, X. Cheng et al., High-rate long-life pored nanoribbon VNb9O25 built by interconnected ultrafine nanops as anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 9(36), 30608–30616 (2017). https://doi.org/10.1021/acsami.7b07460
G. Tang, L. Cao, P. Xiao, Y. Zhang, H. Liu, A novel high energy hybrid Li-ion capacitor with a three-dimensional hierarchical ternary nanostructure of hydrogen-treated TiO2 nanops/conductive polymer/carbon nanotubes anode and an activated carbon cathode. J. Power Sourc. 355, 1–7 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.053
L. Chen, D. Tsai, J. Chen, Phenylphenol-derived carbon and antimony-coated carbon nanotubes as the electroactive materials of lithium–ion hybrid capacitors. ACS Appl. Mater. Interfaces 11(38), 34948–34956 (2019). https://doi.org/10.1021/acsami.9b10579
Q. Wang, Z. Wen, J. Li, A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode. Adv. Funct. Mater. 16(16), 2141–2146 (2006). https://doi.org/10.1002/adfm.200500937
H. Wang, C. Guan, X. Wang, H. Fan, A high energy and power Li–ion capacitor based on a TiO2 nanobelt array anode and a graphene hydrogel cathode. Small 11(12), 1470–1477 (2015). https://doi.org/10.1002/smll.201402620
R. Bi, N. Xu, H. Ren, N. Yang, Y. Sun et al., A hollow multi-shelled structure for charge transport and active sites in lithium-ion capacitors. Angew. Chem. Int. Ed. 59(12), 4865–4868 (2020). https://doi.org/10.1002/anie.201914680
X. Wang, L. Ge, C. Zheng, V. Augustyn, X. Ma et al., High-performance supercapacitors based on nanocomposites of Nb2O5 nanocrystals and carbon nanotubes. Adv. Energy Mater. 1(6), 1089–1093 (2011). https://doi.org/10.1002/aenm.201100332
W. Xu, C. Yan, Y. Jian, A. Sumboja, P. Lee et al., Orthorhombic niobium oxide nanowires for next generation hybrid supercapacitor device. Nano Energy 11, 765–772 (2015). https://doi.org/10.1016/j.nanoen.2014.11.020
L. Kong, C. Zhang, J. Wang, W. Qiao, L. Ling, Free-standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li–ion intercalation pseudocapacitor. ACS Nano 9(11), 11200–11208 (2015). https://doi.org/10.1021/acsnano.5b04737
S. Li, T. Wang, W. Zhu, J. Lian, Y. Huang et al., Controllable synthesis of uniform mesoporous H-Nb2O5/rGO nanocomposites for advanced lithium ion hybrid supercapacitors. J. Mater. Chem. A 7(2), 693–703 (2019). https://doi.org/10.1039/c8ta10239b