Ultrafine Vacancy-Rich Nb2O5 Semiconductors Confined in Carbon Nanosheets Boost Dielectric Polarization for High-Attenuation Microwave Absorption
Corresponding Author: Donghui Long
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 183
Abstract
The integration of nano-semiconductors into electromagnetic wave absorption materials is a highly desirable strategy for intensifying dielectric polarization loss; achieving high-attenuation microwave absorption and realizing in-depth comprehension of dielectric loss mechanisms remain challenges. Herein, ultrafine oxygen vacancy-rich Nb2O5 semiconductors are confined in carbon nanosheets (ov-Nb2O5/CNS) to boost dielectric polarization and achieve high attenuation. The polarization relaxation, electromagnetic response, and impedance matching of the ov-Nb2O5/CNS are significantly facilitated by the Nb2O5 semiconductors with rich oxygen vacancies, which consequently realizes an extremely high attenuation performance of − 80.8 dB (> 99.999999% wave absorption) at 2.76 mm. As a dielectric polarization center, abundant Nb2O5–carbon heterointerfaces can intensify interfacial polarization loss to strengthen dielectric polarization, and the presence of oxygen vacancies endows Nb2O5 semiconductors with abundant charge separation sites to reinforce electric dipole polarization. Moreover, the three-dimensional reconstruction of the absorber using microcomputer tomography technology provides insight into the intensification of the unique lamellar morphology regarding multiple reflection and scattering dissipation characteristics. Additionally, ov-Nb2O5/CNS demonstrates excellent application potential by curing into a microwave-absorbing, machinable, and heat-dissipating plate. This work provides insight into the dielectric polarization loss mechanisms of nano-semiconductor/carbon composites and inspires the design of high-performance microwave absorption materials.
Highlights:
1 Ultrafine oxygen-vacancy-rich Nb2O5 semiconductors have been incorporated into carbon nanosheets for high-attenuation microwave absorption (−80.8 dB, > 99.999999% wave absorption).
2 Nb2O5 semiconductors with abundant oxygen vacancies significantly facilitate polarization relaxation, electromagnetic response, dipole polarization, and interfacial polarization.
3 Multiple reflections and scattering dissipation are enhanced by the unique 2D lamellar morphology.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Lv, Z. Yang, H. Pan, R. Wu, Electromagnetic absorption materials: current progress and new frontiers. Prog. Mater. Sci. 127, 100946 (2022). https://doi.org/10.1016/j.pmatsci.2022.100946
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.-K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
- J. Cheng, H. Zhang, M. Ning, H. Raza, D. Zhang et al., Emerging materials and designs for low-and multi-band electromagnetic wave absorbers: the search for dielectric and magnetic synergy? Adv. Funct. Mater. 32(23), 2200123 (2022). https://doi.org/10.1002/adfm.202200123
- M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29(25), 1807398 (2019). https://doi.org/10.1002/adfm.201807398
- Z. Gao, A. Iqbal, T. Hassan, L. Zhang, H. Wu et al., Texture regulation of metal-organic frameworks, microwave absorption mechanism-oriented structural optimization and design perspectives. Adv. Sci. 9(35), 2204151 (2022). https://doi.org/10.1002/advs.202204151
- X. Zeng, X. Cheng, R. Yu, G.D. Stucky, Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 168, 606–623 (2020). https://doi.org/10.1016/j.carbon.2020.07.028
- T. Zhao, Z. Jia, Y. Zhang, G. Wu, Multiphase molybdenum carbide doped carbon hollow sphere engineering: the superiority of unique double-shell structure in microwave absorption. Small 19(6), 2206323 (2023). https://doi.org/10.1002/smll.202206323
- Z. Su, W. Zhang, J. Lu, L. Tian, S. Yi et al., Oxygen-vacancy-rich Fe3O4/carbon nanosheets enabling high-attenuation and broadband microwave absorption through the integration of interfacial polarization and charge-separation polarization. J. Mater. Chem. A 10(15), 8479–8490 (2022). https://doi.org/10.1039/D2TA00080F
- P. Miao, N. Qu, W. Chen, T. Wang, W. Zhao et al., A two-dimensional semiconductive Cu-S metal-organic framework for broadband microwave absorption. Chem. Eng. J. 454, 140445 (2023). https://doi.org/10.1016/j.cej.2022.140445
- H. Niu, X. Tu, S. Zhang, Y. Li, H. Wang et al., Engineered core-shell SiO2@Ti3C2Tx composites: towards ultra-thin electromagnetic wave absorption materials. Chem. Eng. J. 446, 137260 (2022). https://doi.org/10.1016/j.cej.2022.137260
- J. Tao, L. Xu, C. Pei, Y. Gu, Y. He et al., Catfish effect induced by anion sequential doping for microwave absorption. Adv. Funct. Mater. 33(8), 2211996 (2022). https://doi.org/10.1002/adfm.202211996
- Q. Hu, R. Yang, S. Yang, W. Huang, Z. Zeng et al., Metal-organic framework-derived core-shell nanospheres anchored on Fe-filled carbon nanotube sponge for strong wideband microwave absorption. ACS Appl. Mater. Interfaces 14(8), 10577–10587 (2022). https://doi.org/10.1021/acsami.1c25019
- Z. Gao, Z. Ma, D. Lan, Z. Zhao, L. Zhang et al., Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption. Adv. Funct. Mater. 32(18), 2112294 (2022). https://doi.org/10.1002/adfm.202112294
- Z. Su, S. Yi, W. Zhang, L. Tian, Y. Zhang et al., Magnetic-dielectric complementary Fe-Co-Ni alloy/carbon composites for high-attenuation C-band microwave absorption via carbothermal reduction of solid-solution precursor. Adv. Electron. Mater. (2022). https://doi.org/10.1002/aelm.202201159
- B. Li, Z. Ma, X. Zhang, J. Xu, Y. Chen et al., NiO/Ni heterojunction on N-doped hollow carbon sphere with balanced dielectric loss for efficient microwave absorption. Small 19(12), 2207197 (2023). https://doi.org/10.1002/smll.202207197
- A. Xie, X. Lin, C. Zhang, S. Cheng, W. Dong et al., Oxygen vacancy mediated polymerization of pyrrole on MoO3 to construct dielectric nanocomposites for electromagnetic waves absorption application. J. Alloy. Compd. 938, 168523 (2023). https://doi.org/10.1016/j.jallcom.2022.168523
- J. Liang, J. Chen, H. Shen, K. Hu, B. Zhao et al., Hollow porous bowl-like nitrogen/doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption. Chem. Mat. 33(5), 1789–1798 (2021). https://doi.org/10.1021/acs.chemmater.0c04734
- H. Zhang, N. Luo, T. Liu, F. Chen, Q. Fu, Light-weight, low-loading and large-sheet reduced graphene oxide for high-efficiency microwave absorber. Carbon 196, 1024–1034 (2022). https://doi.org/10.1016/j.carbon.2022.05.062
- J. Li, D. Zhou, P.-J. Wang, C. Du, W.-F. Liu et al., Recent progress in two-dimensional materials for microwave absorption applications. Chem. Eng. J. 425, 131558 (2021). https://doi.org/10.1016/j.cej.2021.131558
- Z. Zhang, Z. Cai, Z. Wang, Y. Peng, L. Xia et al., A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 13, 56 (2021). https://doi.org/10.1007/s40820-020-00582-3
- J. Yang, J. Wang, H. Li, Z. Wu, Y. Xing et al., MoS2/MXene aerogel with conformal heterogeneous interfaces tailored by atomic layer deposition for tunable microwave absorption. Adv. Sci. 9(7), 2101988 (2022). https://doi.org/10.1002/advs.202101988
- H. Hu, Y. Zheng, K. Ren, J. Wang, Y. Zhang et al., Position selective dielectric polarization enhancement in CNT based heterostructures for highly efficient microwave absorption. Nanoscale 13(4), 2324–2332 (2021). https://doi.org/10.1039/D0NR08245G
- Y. Wu, L. Chen, Y. Han, P. Liu, H. Xu et al., Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. 16, 7801–7809 (2023). https://doi.org/10.1007/s12274-023-5522-4
- R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13, 66 (2021). https://doi.org/10.1007/s40820-021-00597-4
- R. Xu, D. Xu, Z. Zeng, D. Liu, CoFe2O4/porous carbon nanosheet composites for broadband microwave absorption. Chem. Eng. J. 427, 130796 (2022). https://doi.org/10.1016/j.cej.2021.130796
- X.J. Zhang, J.Q. Zhu, P.G. Yin, A.P. Guo, A.P. Huang et al., Tunable high-performance microwave absorption of Co1–xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater. 28(49), 1800761 (2018). https://doi.org/10.1002/adfm.201800761
- H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 32(6), 2108194 (2022). https://doi.org/10.1002/adfm.202108194
- L. Wang, J. Lu, J. Zhang, J. Zhu, Facile preparation and high microwave absorption of flower-like carbon nanosheet aggregations embedded with ultrafine Mo2C. J. Colloid Interface Sci. 641, 729–736 (2023). https://doi.org/10.1016/j.jcis.2023.03.071
- H. Zhao, Y. Cheng, Z. Zhang, B. Zhang, C. Pei et al., Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties. Carbon 173, 501–511 (2021). https://doi.org/10.1016/j.carbon.2020.11.035
- B. Wen, H. Yang, Y. Lin, L. Ma, Y. Qiu et al., Synthesis of core-shell Co@S-doped carbon@mesoporous N-doped carbon nanosheets with a hierarchically porous structure for strong electromagnetic wave absorption. J. Mater. Chem. A 9(6), 3567–3575 (2021). https://doi.org/10.1039/D0TA09393A
- Y. Lian, B. Han, D. Liu, Y. Wang, H. Zhao et al., Solvent-free synthesis of ultrafine tungsten carbide nanops-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett. 12, 153 (2020). https://doi.org/10.1007/s40820-020-00491-5
- Y. Huang, W. Wang, X. Hou, K. Ran, D. He et al., Salt-templated synthesis of CuO/Carbon nanosheets for efficient microwave absorption. Appl. Surf. Sci. 598, 153779 (2022). https://doi.org/10.1016/j.apsusc.2022.153779
- X. Fu, B. Yang, W. Chen, Z. Li, H. Yan et al., Electromagnetic wave absorption performance of Ti2O3 and vacancy enhancement effective bandwidth. J. Mater. Sci. Technol. 76, 166–173 (2021). https://doi.org/10.1016/j.jmst.2020.11.001
- B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang et al., Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 29(28), 1901236 (2019). https://doi.org/10.1002/adfm.201901236
- F. Chu, S. Cheng, Z. Ye, F. Wu, H. Zhuang et al., In situ etching by released proton in aniline polymerization to form network VO2 doped polyaniline composites with variable infrared emissivity for electromagnetic absorption application. Adv. Comp. Hybrid Mater. 5(4), 2760–2771 (2022). https://doi.org/10.1007/s42114-022-00566-4
- J. Shi, Q. Zhuang, L. Wu, R. Guo, L. Huang et al., Molecular engineering guided dielectric resonance tuning in derived carbon materials. J. Mater. Chem. C 10(34), 12257–12265 (2022). https://doi.org/10.1039/D2TC02628G
- J.F. Huang, Y. Lei, T. Luo, J.M. Liu, Photocatalytic H2 production from water by metal-free dye-sensitized TiO2 semiconductors: the role and development process of organic sensitizers. Chemsuschem 13(22), 5863–5895 (2020). https://doi.org/10.1002/cssc.202001646
- L. Zhou, L. Zhu, T. Yang, X. Hou, Z. Du et al., Ultra-stable and durable piezoelectric nanogenerator with all-weather service capability based on N doped 4H-SiC nanohole arrays. Nano-Micro Lett. 14, 30 (2022). https://doi.org/10.1007/s40820-021-00779-0
- D. Zhang, Y. Xiong, J. Cheng, H. Raza, C. Hou et al., Construction of low-frequency and high-efficiency electromagnetic wave absorber enabled by texturing rod-like TiO2 on few-layer of WS2 nanosheets. Appl. Surf. Sci. 548, 149158 (2021). https://doi.org/10.1016/j.apsusc.2021.149158
- Q. Huang, M. Chen, Z. Su, L. Tian, Y. Zhang et al., Rational cooperativity of nanospace confinement and rapid catalysis via hollow carbon nanospheres@Nb-based inorganics for high-rate Li-S batteries. Chem. Eng. J. 411, 128504 (2021). https://doi.org/10.1016/j.cej.2021.128504
- X. Long, F. Li, L. Gao, Y. Hu, H. Hu et al., Heterojunction and oxygen vacancy modification of ZnO nanorod array photoanode for enhanced photoelectrochemical water splitting. Chemsuschem 11(23), 4094–4101 (2018). https://doi.org/10.1002/cssc.201801828
- S. Li, M. Dong, J. Yang, X. Cheng, X. Shen et al., Selective hydrogenation of 5-(hydroxymethyl) furfural to 5-methylfurfural over single atomic metals anchored on Nb2O5. Nat. Commun. 12(1), 584 (2021). https://doi.org/10.1038/s41467-020-20878-7
- S.S. Kim, S.B. Jo, K.I. Gueon, K.K. Choi, J.M. Kim et al., Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequencies. IEEE Trans. Magn. 27(6), 5462–5464 (1991). https://doi.org/10.1109/20.278872
- Y. Wang, D. Chen, X. Yin, P. Xu, F. Wu et al., Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber. ACS Appl. Mater. Interfaces 7(47), 26226–26234 (2015). https://doi.org/10.1021/acsami.5b08410
- M. Ling, F. Wu, P. Liu, Q. Zhang, B. Zhang, Fabrication of graphdiyne/graphene composite microsphere with wrinkled surface via ultrasonic spray compounding and its microwave absorption properties. Small 19(7), 2205925 (2023). https://doi.org/10.1002/smll.202205925
- Y. Zhan, L. Xia, H. Yang, N. Zhou, G. Ma et al., Tunable electromagnetic wave absorbing properties of carbon nanotubes/carbon fiber composites synthesized directly and rapidly via an innovative induction heating technique. Carbon 175, 101–111 (2021). https://doi.org/10.1016/j.carbon.2020.12.080
- T. Wang, Z. Liu, M. Lu, B. Wen, Q. Ouyang et al., Graphene-Fe3O4 nanohybrids: synthesis and excellent electromagnetic absorption properties. J. Appl. Phys. 113(2), 024314 (2013). https://doi.org/10.1063/1.4774243
- M. Yuan, B. Zhao, C. Yang, K. Pei, L. Wang et al., Remarkable magnetic exchange coupling via constructing Bi-magnetic interface for broadband lower-frequency microwave absorption. Adv. Funct. Mater. 32(33), 2203161 (2022). https://doi.org/10.1002/adfm.202203161
- P. Liu, Y. Wang, G. Zhang, Y. Huang, R. Zhang et al., Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction. Adv. Funct. Mater. 32(33), 2202588 (2022). https://doi.org/10.1002/adfm.202202588
- T. Gao, R. Zhao, Y. Li, Z. Zhu, C. Hu et al., Sub-nanometer Fe clusters confined in carbon nanocages for boosting dielectric polarization and broadband electromagnetic wave absorption. Adv. Funct. Mater. 32(31), 2204370 (2022). https://doi.org/10.1002/adfm.202204370
- M. Liu, R. Tian, H. Chen, S. Li, F. Huang et al., One-dimensional chain-like MnO@Co/C composites for high-efficient electromagnetic wave absorbent. J. Magn. Magn. Mater. 499, 166289 (2020). https://doi.org/10.1016/j.jmmm.2019.166289
- H. Yang, Z. Shen, H. Peng, Z. Xiong, C. Liu et al., 1D–3D mixed-dimensional MnO2@nanoporous carbon composites derived from Mn-metal organic framework with full-band ultra-strong microwave absorption response. Chem. Eng. J. 417, 128087 (2021). https://doi.org/10.1016/j.cej.2020.128087
- Y. Shu, T. Zhao, X. Li, L. Yang, S. Cao, Enhanced electromagnetic wave absorption properties integrating diverse loss mechanism of 3D porous Ni/NiO microspheres. J. Alloy. Compd. 897, 163227 (2022). https://doi.org/10.1016/j.jallcom.2021.163227
- W. Wang, H. Zhang, Y. Zhao, J. Wang, H. Zhao et al., A novel MOF-drived self-decomposition strategy for CoO@N/C-Co/Ni-NiCo2O4 multi-heterostructure composite as high-performance electromagnetic wave absorbing materials. Chem. Eng. J. 426, 131667 (2021). https://doi.org/10.1016/j.cej.2021.131667
- Q. Du, Q. Men, R. Li, Y. Cheng, B. Zhao et al., Electrostatic adsorption enables layer stacking thickness-dependent hollow Ti3C2Tx MXene bowls for superior electromagnetic wave absorption. Small 18(47), 2203609 (2022). https://doi.org/10.1002/smll.202203609
- B. Zhao, Y. Du, Z. Yan, L. Rao, G. Chen et al., Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption properties. Adv. Funct. Mater. 33(1), 2209924 (2023). https://doi.org/10.1002/adfm.202209924
References
H. Lv, Z. Yang, H. Pan, R. Wu, Electromagnetic absorption materials: current progress and new frontiers. Prog. Mater. Sci. 127, 100946 (2022). https://doi.org/10.1016/j.pmatsci.2022.100946
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.-K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
J. Cheng, H. Zhang, M. Ning, H. Raza, D. Zhang et al., Emerging materials and designs for low-and multi-band electromagnetic wave absorbers: the search for dielectric and magnetic synergy? Adv. Funct. Mater. 32(23), 2200123 (2022). https://doi.org/10.1002/adfm.202200123
M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29(25), 1807398 (2019). https://doi.org/10.1002/adfm.201807398
Z. Gao, A. Iqbal, T. Hassan, L. Zhang, H. Wu et al., Texture regulation of metal-organic frameworks, microwave absorption mechanism-oriented structural optimization and design perspectives. Adv. Sci. 9(35), 2204151 (2022). https://doi.org/10.1002/advs.202204151
X. Zeng, X. Cheng, R. Yu, G.D. Stucky, Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 168, 606–623 (2020). https://doi.org/10.1016/j.carbon.2020.07.028
T. Zhao, Z. Jia, Y. Zhang, G. Wu, Multiphase molybdenum carbide doped carbon hollow sphere engineering: the superiority of unique double-shell structure in microwave absorption. Small 19(6), 2206323 (2023). https://doi.org/10.1002/smll.202206323
Z. Su, W. Zhang, J. Lu, L. Tian, S. Yi et al., Oxygen-vacancy-rich Fe3O4/carbon nanosheets enabling high-attenuation and broadband microwave absorption through the integration of interfacial polarization and charge-separation polarization. J. Mater. Chem. A 10(15), 8479–8490 (2022). https://doi.org/10.1039/D2TA00080F
P. Miao, N. Qu, W. Chen, T. Wang, W. Zhao et al., A two-dimensional semiconductive Cu-S metal-organic framework for broadband microwave absorption. Chem. Eng. J. 454, 140445 (2023). https://doi.org/10.1016/j.cej.2022.140445
H. Niu, X. Tu, S. Zhang, Y. Li, H. Wang et al., Engineered core-shell SiO2@Ti3C2Tx composites: towards ultra-thin electromagnetic wave absorption materials. Chem. Eng. J. 446, 137260 (2022). https://doi.org/10.1016/j.cej.2022.137260
J. Tao, L. Xu, C. Pei, Y. Gu, Y. He et al., Catfish effect induced by anion sequential doping for microwave absorption. Adv. Funct. Mater. 33(8), 2211996 (2022). https://doi.org/10.1002/adfm.202211996
Q. Hu, R. Yang, S. Yang, W. Huang, Z. Zeng et al., Metal-organic framework-derived core-shell nanospheres anchored on Fe-filled carbon nanotube sponge for strong wideband microwave absorption. ACS Appl. Mater. Interfaces 14(8), 10577–10587 (2022). https://doi.org/10.1021/acsami.1c25019
Z. Gao, Z. Ma, D. Lan, Z. Zhao, L. Zhang et al., Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption. Adv. Funct. Mater. 32(18), 2112294 (2022). https://doi.org/10.1002/adfm.202112294
Z. Su, S. Yi, W. Zhang, L. Tian, Y. Zhang et al., Magnetic-dielectric complementary Fe-Co-Ni alloy/carbon composites for high-attenuation C-band microwave absorption via carbothermal reduction of solid-solution precursor. Adv. Electron. Mater. (2022). https://doi.org/10.1002/aelm.202201159
B. Li, Z. Ma, X. Zhang, J. Xu, Y. Chen et al., NiO/Ni heterojunction on N-doped hollow carbon sphere with balanced dielectric loss for efficient microwave absorption. Small 19(12), 2207197 (2023). https://doi.org/10.1002/smll.202207197
A. Xie, X. Lin, C. Zhang, S. Cheng, W. Dong et al., Oxygen vacancy mediated polymerization of pyrrole on MoO3 to construct dielectric nanocomposites for electromagnetic waves absorption application. J. Alloy. Compd. 938, 168523 (2023). https://doi.org/10.1016/j.jallcom.2022.168523
J. Liang, J. Chen, H. Shen, K. Hu, B. Zhao et al., Hollow porous bowl-like nitrogen/doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption. Chem. Mat. 33(5), 1789–1798 (2021). https://doi.org/10.1021/acs.chemmater.0c04734
H. Zhang, N. Luo, T. Liu, F. Chen, Q. Fu, Light-weight, low-loading and large-sheet reduced graphene oxide for high-efficiency microwave absorber. Carbon 196, 1024–1034 (2022). https://doi.org/10.1016/j.carbon.2022.05.062
J. Li, D. Zhou, P.-J. Wang, C. Du, W.-F. Liu et al., Recent progress in two-dimensional materials for microwave absorption applications. Chem. Eng. J. 425, 131558 (2021). https://doi.org/10.1016/j.cej.2021.131558
Z. Zhang, Z. Cai, Z. Wang, Y. Peng, L. Xia et al., A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 13, 56 (2021). https://doi.org/10.1007/s40820-020-00582-3
J. Yang, J. Wang, H. Li, Z. Wu, Y. Xing et al., MoS2/MXene aerogel with conformal heterogeneous interfaces tailored by atomic layer deposition for tunable microwave absorption. Adv. Sci. 9(7), 2101988 (2022). https://doi.org/10.1002/advs.202101988
H. Hu, Y. Zheng, K. Ren, J. Wang, Y. Zhang et al., Position selective dielectric polarization enhancement in CNT based heterostructures for highly efficient microwave absorption. Nanoscale 13(4), 2324–2332 (2021). https://doi.org/10.1039/D0NR08245G
Y. Wu, L. Chen, Y. Han, P. Liu, H. Xu et al., Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. 16, 7801–7809 (2023). https://doi.org/10.1007/s12274-023-5522-4
R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13, 66 (2021). https://doi.org/10.1007/s40820-021-00597-4
R. Xu, D. Xu, Z. Zeng, D. Liu, CoFe2O4/porous carbon nanosheet composites for broadband microwave absorption. Chem. Eng. J. 427, 130796 (2022). https://doi.org/10.1016/j.cej.2021.130796
X.J. Zhang, J.Q. Zhu, P.G. Yin, A.P. Guo, A.P. Huang et al., Tunable high-performance microwave absorption of Co1–xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater. 28(49), 1800761 (2018). https://doi.org/10.1002/adfm.201800761
H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 32(6), 2108194 (2022). https://doi.org/10.1002/adfm.202108194
L. Wang, J. Lu, J. Zhang, J. Zhu, Facile preparation and high microwave absorption of flower-like carbon nanosheet aggregations embedded with ultrafine Mo2C. J. Colloid Interface Sci. 641, 729–736 (2023). https://doi.org/10.1016/j.jcis.2023.03.071
H. Zhao, Y. Cheng, Z. Zhang, B. Zhang, C. Pei et al., Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties. Carbon 173, 501–511 (2021). https://doi.org/10.1016/j.carbon.2020.11.035
B. Wen, H. Yang, Y. Lin, L. Ma, Y. Qiu et al., Synthesis of core-shell Co@S-doped carbon@mesoporous N-doped carbon nanosheets with a hierarchically porous structure for strong electromagnetic wave absorption. J. Mater. Chem. A 9(6), 3567–3575 (2021). https://doi.org/10.1039/D0TA09393A
Y. Lian, B. Han, D. Liu, Y. Wang, H. Zhao et al., Solvent-free synthesis of ultrafine tungsten carbide nanops-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett. 12, 153 (2020). https://doi.org/10.1007/s40820-020-00491-5
Y. Huang, W. Wang, X. Hou, K. Ran, D. He et al., Salt-templated synthesis of CuO/Carbon nanosheets for efficient microwave absorption. Appl. Surf. Sci. 598, 153779 (2022). https://doi.org/10.1016/j.apsusc.2022.153779
X. Fu, B. Yang, W. Chen, Z. Li, H. Yan et al., Electromagnetic wave absorption performance of Ti2O3 and vacancy enhancement effective bandwidth. J. Mater. Sci. Technol. 76, 166–173 (2021). https://doi.org/10.1016/j.jmst.2020.11.001
B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang et al., Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 29(28), 1901236 (2019). https://doi.org/10.1002/adfm.201901236
F. Chu, S. Cheng, Z. Ye, F. Wu, H. Zhuang et al., In situ etching by released proton in aniline polymerization to form network VO2 doped polyaniline composites with variable infrared emissivity for electromagnetic absorption application. Adv. Comp. Hybrid Mater. 5(4), 2760–2771 (2022). https://doi.org/10.1007/s42114-022-00566-4
J. Shi, Q. Zhuang, L. Wu, R. Guo, L. Huang et al., Molecular engineering guided dielectric resonance tuning in derived carbon materials. J. Mater. Chem. C 10(34), 12257–12265 (2022). https://doi.org/10.1039/D2TC02628G
J.F. Huang, Y. Lei, T. Luo, J.M. Liu, Photocatalytic H2 production from water by metal-free dye-sensitized TiO2 semiconductors: the role and development process of organic sensitizers. Chemsuschem 13(22), 5863–5895 (2020). https://doi.org/10.1002/cssc.202001646
L. Zhou, L. Zhu, T. Yang, X. Hou, Z. Du et al., Ultra-stable and durable piezoelectric nanogenerator with all-weather service capability based on N doped 4H-SiC nanohole arrays. Nano-Micro Lett. 14, 30 (2022). https://doi.org/10.1007/s40820-021-00779-0
D. Zhang, Y. Xiong, J. Cheng, H. Raza, C. Hou et al., Construction of low-frequency and high-efficiency electromagnetic wave absorber enabled by texturing rod-like TiO2 on few-layer of WS2 nanosheets. Appl. Surf. Sci. 548, 149158 (2021). https://doi.org/10.1016/j.apsusc.2021.149158
Q. Huang, M. Chen, Z. Su, L. Tian, Y. Zhang et al., Rational cooperativity of nanospace confinement and rapid catalysis via hollow carbon nanospheres@Nb-based inorganics for high-rate Li-S batteries. Chem. Eng. J. 411, 128504 (2021). https://doi.org/10.1016/j.cej.2021.128504
X. Long, F. Li, L. Gao, Y. Hu, H. Hu et al., Heterojunction and oxygen vacancy modification of ZnO nanorod array photoanode for enhanced photoelectrochemical water splitting. Chemsuschem 11(23), 4094–4101 (2018). https://doi.org/10.1002/cssc.201801828
S. Li, M. Dong, J. Yang, X. Cheng, X. Shen et al., Selective hydrogenation of 5-(hydroxymethyl) furfural to 5-methylfurfural over single atomic metals anchored on Nb2O5. Nat. Commun. 12(1), 584 (2021). https://doi.org/10.1038/s41467-020-20878-7
S.S. Kim, S.B. Jo, K.I. Gueon, K.K. Choi, J.M. Kim et al., Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequencies. IEEE Trans. Magn. 27(6), 5462–5464 (1991). https://doi.org/10.1109/20.278872
Y. Wang, D. Chen, X. Yin, P. Xu, F. Wu et al., Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber. ACS Appl. Mater. Interfaces 7(47), 26226–26234 (2015). https://doi.org/10.1021/acsami.5b08410
M. Ling, F. Wu, P. Liu, Q. Zhang, B. Zhang, Fabrication of graphdiyne/graphene composite microsphere with wrinkled surface via ultrasonic spray compounding and its microwave absorption properties. Small 19(7), 2205925 (2023). https://doi.org/10.1002/smll.202205925
Y. Zhan, L. Xia, H. Yang, N. Zhou, G. Ma et al., Tunable electromagnetic wave absorbing properties of carbon nanotubes/carbon fiber composites synthesized directly and rapidly via an innovative induction heating technique. Carbon 175, 101–111 (2021). https://doi.org/10.1016/j.carbon.2020.12.080
T. Wang, Z. Liu, M. Lu, B. Wen, Q. Ouyang et al., Graphene-Fe3O4 nanohybrids: synthesis and excellent electromagnetic absorption properties. J. Appl. Phys. 113(2), 024314 (2013). https://doi.org/10.1063/1.4774243
M. Yuan, B. Zhao, C. Yang, K. Pei, L. Wang et al., Remarkable magnetic exchange coupling via constructing Bi-magnetic interface for broadband lower-frequency microwave absorption. Adv. Funct. Mater. 32(33), 2203161 (2022). https://doi.org/10.1002/adfm.202203161
P. Liu, Y. Wang, G. Zhang, Y. Huang, R. Zhang et al., Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction. Adv. Funct. Mater. 32(33), 2202588 (2022). https://doi.org/10.1002/adfm.202202588
T. Gao, R. Zhao, Y. Li, Z. Zhu, C. Hu et al., Sub-nanometer Fe clusters confined in carbon nanocages for boosting dielectric polarization and broadband electromagnetic wave absorption. Adv. Funct. Mater. 32(31), 2204370 (2022). https://doi.org/10.1002/adfm.202204370
M. Liu, R. Tian, H. Chen, S. Li, F. Huang et al., One-dimensional chain-like MnO@Co/C composites for high-efficient electromagnetic wave absorbent. J. Magn. Magn. Mater. 499, 166289 (2020). https://doi.org/10.1016/j.jmmm.2019.166289
H. Yang, Z. Shen, H. Peng, Z. Xiong, C. Liu et al., 1D–3D mixed-dimensional MnO2@nanoporous carbon composites derived from Mn-metal organic framework with full-band ultra-strong microwave absorption response. Chem. Eng. J. 417, 128087 (2021). https://doi.org/10.1016/j.cej.2020.128087
Y. Shu, T. Zhao, X. Li, L. Yang, S. Cao, Enhanced electromagnetic wave absorption properties integrating diverse loss mechanism of 3D porous Ni/NiO microspheres. J. Alloy. Compd. 897, 163227 (2022). https://doi.org/10.1016/j.jallcom.2021.163227
W. Wang, H. Zhang, Y. Zhao, J. Wang, H. Zhao et al., A novel MOF-drived self-decomposition strategy for CoO@N/C-Co/Ni-NiCo2O4 multi-heterostructure composite as high-performance electromagnetic wave absorbing materials. Chem. Eng. J. 426, 131667 (2021). https://doi.org/10.1016/j.cej.2021.131667
Q. Du, Q. Men, R. Li, Y. Cheng, B. Zhao et al., Electrostatic adsorption enables layer stacking thickness-dependent hollow Ti3C2Tx MXene bowls for superior electromagnetic wave absorption. Small 18(47), 2203609 (2022). https://doi.org/10.1002/smll.202203609
B. Zhao, Y. Du, Z. Yan, L. Rao, G. Chen et al., Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption properties. Adv. Funct. Mater. 33(1), 2209924 (2023). https://doi.org/10.1002/adfm.202209924