A Generalized Polymer Precursor Ink Design for 3D Printing of Functional Metal Oxides
Corresponding Author: Nanjia Zhou
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 180
Abstract
Three-dimensional-structured metal oxides have myriad applications for optoelectronic devices. Comparing to conventional lithography-based manufacturing methods which face significant challenges for 3D device architectures, additive manufacturing approaches such as direct ink writing offer convenient, on-demand manufacturing of 3D oxides with high resolutions down to sub-micrometer scales. However, the lack of a universal ink design strategy greatly limits the choices of printable oxides. Here, a universal, facile synthetic strategy is developed for direct ink writable polymer precursor inks based on metal-polymer coordination effect. Specifically, polyethyleneimine functionalized by ethylenediaminetetraacetic acid is employed as the polymer matrix for adsorbing targeted metal ions. Next, glucose is introduced as a crosslinker for endowing the polymer precursor inks with a thermosetting property required for 3D printing via the Maillard reaction. For demonstrations, binary (i.e., ZnO, CuO, In2O3, Ga2O3, TiO2, and Y2O3) and ternary metal oxides (i.e., BaTiO3 and SrTiO3) are printed into 3D architectures with sub-micrometer resolution by extruding the inks through ultrafine nozzles. Upon thermal crosslinking and pyrolysis, the 3D microarchitectures with woodpile geometries exhibit strong light-matter coupling in the mid-infrared region. The design strategy for printable inks opens a new pathway toward 3D-printed optoelectronic devices based on functional oxides.
Highlights:
1 A facile and generalized design strategy of polymer precursor inks was developed for direct ink writing of metal oxide into submicron 3D architectures.
2 The Maillard reaction between polyethyleneimine and glucose endows the 3D-printed precursors with the excellent shape fidelity during high-temperature pyrolysis.
3 As-printed 3D periodic dielectric structure with woodpile geometry shows a significant light-matter effect in mid-infrared region.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Yu, T.J. Marks, A. Facchetti, Metal oxides for optoelectronic applications. Nat. Mater. 15, 383–396 (2016). https://doi.org/10.1038/nmat4599
- E. Carlos, R. Branquinho, R. Martins, A. Kiazadeh, E. Fortunato, Recent progress in solution-based metal oxide resistive switching devices. Adv. Mater. 33, 2004328 (2021). https://doi.org/10.1002/adma.202004328
- C.R. Bowen, H.A. Kim, P.M. Weaver, S. Dunn, Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7, 25–44 (2014). https://doi.org/10.1039/C3EE42454E
- B. Zhang, Q. Zhang, P. He, Y. Ma, L. Shen et al., Efficient fabrication of ultralight YBa2Cu3O7−x superconductors with programmable shape and structure. Adv. Funct. Mater. 31, 2100680 (2021). https://doi.org/10.1002/adfm.202100680
- S.B. Ogale, Dilute doping, defects, and ferromagnetism in metal oxide systems. Adv. Mater. 22, 3125–3155 (2010). https://doi.org/10.1002/adma.200903891
- J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan et al., Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24, 5166–5180 (2012). https://doi.org/10.1002/adma.201202146
- D.G. Georgiadou, J. Semple, A.A. Sagade, H. Forstén, P. Rantakari et al., 100 Ghz zinc oxide schottky diodes processed from solution on a wafer scale. Nat. Electron. 3, 718–725 (2020). https://doi.org/10.1038/s41928-020-00484-7
- B. Wang, A. Thukral, Z. Xie, L. Liu, X. Zhang et al., Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat. Commun. 11, 2405 (2020). https://doi.org/10.1038/s41467-020-16268-8
- X. Chen, J.M. Lawrence, L.T. Wey, L. Schertel, Q. Jing et al., 3D-printed hierarchical pillar array electrodes for high-performance semi-artificial photosynthesis. Nat. Mater. 21, 811–818 (2022). https://doi.org/10.1038/s41563-022-01205-5
- R. Hensleigh, H. Cui, Z. Xu, J. Massman, D. Yao et al., Charge-programmed three-dimensional printing for multi-material electronic devices. Nat. Electron. 3, 216–224 (2020). https://doi.org/10.1038/s41928-020-0391-2
- H. Cui, D. Yao, R. Hensleigh, H. Lu, A. Calderon et al., Design and printing of proprioceptive three-dimensional architected robotic metamaterials. Science 376, 1287–1293 (2022). https://doi.org/10.1126/science.abn0090
- G. Zhao, Y. Ling, Y. Su, Z. Chen, C.J. Mathai et al., Laser-scribed conductive, photoactive transition metal oxide on soft elastomers for janus on-skin electronics and soft actuators. Sci. Adv. 8, eabp9734 (2022). https://doi.org/10.1126/sciadv.abp9734
- J.R. Greer, J. Park, Additive manufacturing of nano- and microarchitected materials. Nano Lett. 18, 2187–2188 (2018). https://doi.org/10.1021/acs.nanolett.8b00724
- A. Vyatskikh, R.C. Ng, B. Edwards, R.M. Briggs, J.R. Greer, Additive manufacturing of high-refractive-index, nanoarchitected titanium dioxide for 3D dielectric photonic crystals. Nano Lett. 20, 3513–3520 (2020). https://doi.org/10.1021/acs.nanolett.0c00454
- H. Cui, R. Hensleigh, D. Yao, D. Maurya, P. Kumar et al., Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nat. Mater. 18, 234–241 (2019). https://doi.org/10.1038/s41563-018-0268-1
- J.R. Greer, V.S. Deshpande, Three-dimensional architected materials and structures: design, fabrication, and mechanical behavior. MRS Bull. 44(10), 750–757 (2019). https://doi.org/10.1557/mrs.2019.232
- D.W. Yee, M.L. Lifson, B.W. Edwards, J.R. Greer, Additive manufacturing of 3d-architected multifunctional metal oxides. Adv. Mater. 31, 1901345 (2019). https://doi.org/10.1002/adma.201901345
- H. Chen, X. Min, Y. Hui, W. Qin, B. Zhang et al., Colloidal oxide nanop inks for micrometer-resolution additive manufacturing of three-dimensional gas sensors. Mater. Horiz. 9, 764–771 (2022). https://doi.org/10.1039/D1MH01021B
- W. Guo, Y. Liu, Y. Sun, Y. Wang, W. Qin et al., Vertical 3d printed forest-inspired hierarchical plasmonic superstructure for photocatalysis. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202100768
- K. Sun, T.S. Wei, B.Y. Ahn, J.Y. Seo, S.J. Dillon et al., 3d printing of interdigitated li-ion microbattery architectures. Adv. Mater. 25, 4539–4543 (2013). https://doi.org/10.1002/adma.201301036
- C.C. Yeh, H.W. Zan, O. Soppera, Solution-based micro- and nanoscale metal oxide structures formed by direct patterning for electro-optical applications. Adv. Mater. 30, e1800923 (2018). https://doi.org/10.1002/adma.201800923
- J.A. Lewis, B.Y. Ahn, Device fabrication: three-dimensional printed electronics. Nature 518, 42 (2015). https://doi.org/10.1038/518042a
- I. Cooperstein, S. Indukuri, A. Bouketov, U. Levy, S. Magdassi, 3d printing of micrometer-sized transparent ceramics with on-demand optical-gain properties. Adv. Mater. 32, 8 (2020). https://doi.org/10.1002/adma.202001675
- A. Vyatskikh, A. Kudo, S. Delalande, J.R. Greer, Additive manufacturing of polymer-derived titania for one-step solar water purification. Mater. Today Commun. 15, 288–293 (2018). https://doi.org/10.1016/j.mtcomm.2018.02.010
- D. Gailevičius, V. Padolskytė, L. Mikoliūnaitė, S. Šakirzanovas, S. Juodkazis et al., Additive-manufacturing of 3d glass-ceramics down to nanoscale resolution. Nanoscale Horiz. 4, 647–651 (2019). https://doi.org/10.1039/C8NH00293B
- J. Liu, Y. Liu, C. Deng, K. Yu, X. Fan et al., 3d printing nano-architected semiconductors based on versatile and customizable metal-bound composite photoresins. Adv. Mater. Technol. 7, 2101230 (2022). https://doi.org/10.1002/admt.202101230
- J. Winczewski, M. Herrera, C. Cabriel, I. Izeddin, S. Gabel et al., Additive manufacturing of 3d luminescent ZrO2:Eu3+ architectures. Adv. Opt. Mater. 10, 2102758 (2022). https://doi.org/10.1002/adom.202102758
- A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C.M. Portela et al., Additive manufacturing of 3d nano-architected metals. Nat. Commun. 9, 593 (2018). https://doi.org/10.1038/s41467-018-03071-9
- M.A. Saccone, R.A. Gallivan, K. Narita, D.W. Yee, J.R. Greer, Additive manufacturing of micro-architected metals via hydrogel infusion. Nature 612, 685–690 (2022). https://doi.org/10.1038/s41586-022-05433-2
- A. Scholz, L. Zimmermann, U. Gengenbach, L. Koker, Z. Chen et al., Hybrid low-voltage physical unclonable function based on inkjet-printed metal-oxide transistors. Nat. Commun. 11, 5543 (2020). https://doi.org/10.1038/s41467-020-19324-5
- G. Cai, P. Darmawan, X. Cheng, P.S. Lee, Inkjet printed large area multifunctional smart windows. Adv. Energy Mater. 7(14), 1602598 (2017). https://doi.org/10.1002/aenm.201602598
- T.S. Kim, Y. Lee, W. Xu, Y.H. Kim, M. Kim et al., Direct-printed nanoscale metal-oxide-wire electronics. Nano Energy 58, 437–446 (2019). https://doi.org/10.1016/j.nanoen.2019.01.052
- K. Lim, Y.M. Jo, J.W. Yoon, J.H. Lee, Metal oxide patterns of one-dimensional nanofibers: on-demand, direct-write fabrication, and application as a novel platform for gas detection. J. Mater. Chem. A 7, 24919–24928 (2019). https://doi.org/10.1039/c9ta09708b
- J.A. Lewis, Direct ink writing of 3d functional materials. Adv. Funct. Mater. 16, 2193–2204 (2006). https://doi.org/10.1002/adfm.200600434
- J.C. Conrad, J.A. Lewis, Structural evolution of colloidal gels during constricted microchannel flow. Langmuir 26, 6102–6107 (2010). https://doi.org/10.1021/la1000123
- E.B. Duoss, M. Twardowski, J.A. Lewis, Sol-gel inks for direct-write assembly of functional oxides. Adv. Mater. 19, 3485–3489 (2007). https://doi.org/10.1002/adma.200701372
- B.Y. Ahn, D.J. Lorang, E.B. Duoss, J.A. Lewis, Direct-write assembly of microperiodic planar and spanning ITO microelectrodes. Chem. Commun. 46, 7118–7120 (2010). https://doi.org/10.1039/c0cc01691h
- A.E. Danks, S.R. Hall, Z. Schnepp, The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 3, 91–112 (2016). https://doi.org/10.1039/c5mh00260e
- Q.X. Jia, T.M. McCleskey, A.K. Burrell, Y. Lin et al., Polymer-assisted deposition of metal-oxide films. Nat. Mater. 3, 529–532 (2004). https://doi.org/10.1038/nmat1163
- G.F. Zou, J. Zhao, H.M. Luo, T.M. McCleskey, A.K. Burrell et al., Polymer-assisted-deposition: a chemical solution route for a wide range of materials. Chem. Soc. Rev. 42, 439–449 (2013). https://doi.org/10.1039/c2cs35283d
- L. Yu, W. Li, C. Wei, Q. Yang, Y. Shao et al., 3D Printing of NiCoP/Ti3C2 MXene architectures for energy storage devices with high areal and volumetric energy density. Nano-Micro Lett. 12, 143 (2020). https://doi.org/10.1007/s40820-020-00483-5
- J. Cai, Z. Fan, J. Jin, Z. Shi, S. Dou et al., Expediting the electrochemical kinetics of 3D-printed sulfur cathodes for Li–S batteries with high rate capability and areal capacity. Nano Energy 75, 104970 (2020). https://doi.org/10.1016/j.nanoen.2020.104970
- L. Yu, Z. Fan, Y. Shao, Z. Tian, J. Sun et al., Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy Mater. 9, 1901839 (2019). https://doi.org/10.1002/aenm.201901839
- H. Ren, Y. Liu, L. Zhang, K. Liu, Synthesis, properties, and applications of large-scale two-dimensional materials by polymer-assisted deposition. J. Semicond. 40, 061003 (2019). https://doi.org/10.1088/1674-4926/40/6/061003
- X. Xu, J. Yang, W. Jonhson, Y. Wang, A. Suwardi et al., Additive manufacturing solidification methodologies for ink formulation. Addit. Manuf. 56, 102939 (2022). https://doi.org/10.1016/j.addma.2022.102939
- S.A. Idris, O.A. Mkhatresh, F. Heatley, Assignment of 1H NMR spectrum and investigation of oxidative degradation of poly(ethylenimine) using 1H and 13C 1-D and 2-D NMR. Polym. Int. 55, 1040–1048 (2006). https://doi.org/10.1002/pi.2049
- B. Gullon, M.I. Montenegro, A.I. Ruiz-Matute, A. Cardelle-Cobas, N. Corzo et al., Synthesis, optimization and structural characterization of a chitosan-glucose derivative obtained by the maillard reaction. Carbohydr. Polym. 137, 382–389 (2016). https://doi.org/10.1016/j.carbpol.2015.10.075
- Y. Xu, X. Huang, Y. Zhang, Z. Liu, J. Luo et al., A high bonding performance and antibacterial soybean meal adhesive with maillard reaction based cross-linked structure. Compos. B Eng. 227, 109403 (2021). https://doi.org/10.1016/j.compositesb.2021.109403
- L. Khadidja, C. Asma, B. Mahmoud, E. Meriem, Alginate/gelatin crosslinked system through maillard reaction: preparation, characterization and biological properties. Polym. Bull. 74, 4899–4919 (2017). https://doi.org/10.1007/s00289-017-1997-z
- T. Xu, Q. Wu, S. Chen, M. Deng, Preparation of polypropylene based hyperbranched absorbent fibers and the study of their adsorption of CO2. RSC Adv. 5, 32902–32908 (2015). https://doi.org/10.1039/C5RA02182K
- R.J.J. Jansen, H. van Bekkum, XPS of nitrogen-containing functional groups on activated carbon. Carbon 33, 1021–1027 (1995). https://doi.org/10.1016/0008-6223(95)00030-H
- C. Zhang, J. Su, H. Zhu, J. Xiong, X. Liu et al., The removal of heavy metal ions from aqueous solutions by amine functionalized cellulose pretreated with microwave-H2O2. RSC Adv. 7, 34182–34191 (2017). https://doi.org/10.1039/C7RA03056H
- H. He, X. Hou, B. Ma, L. Zhuang, C. Li et al., The oxidation of viscose fiber optimized by response surface methodology and its further amination with PEI for CO2 adsorption. Cellulose 23, 2539–2548 (2016). https://doi.org/10.1007/s10570-016-0955-5
- F. Ledl, E. Schleicher, New aspects of the maillard reaction in foods and in the human body. Angew. Chem. Int. Ed. 29, 565–594 (1990). https://doi.org/10.1002/anie.199005653
- C.N. Fredd, H.S. Fogler, Alternative stimulation fluids and their impact on carbonate acidizing. SPE J. 3, 34–41 (1998). https://doi.org/10.2118/31074-PA
- B.M. Jun, T.P.N. Nguyen, S.H. Ahn, I.C. Kim, Y.N. Kwon, The application of polyethyleneimine draw solution in a combined forward osmosis/nanofiltration system. J. Appl. Polym. Sci. 132, 42198 (2015). https://doi.org/10.1002/app.42198
- I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch et al., Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths. Opt. Lett. 35, 1094–1096 (2010). https://doi.org/10.1364/OL.35.001094
References
X. Yu, T.J. Marks, A. Facchetti, Metal oxides for optoelectronic applications. Nat. Mater. 15, 383–396 (2016). https://doi.org/10.1038/nmat4599
E. Carlos, R. Branquinho, R. Martins, A. Kiazadeh, E. Fortunato, Recent progress in solution-based metal oxide resistive switching devices. Adv. Mater. 33, 2004328 (2021). https://doi.org/10.1002/adma.202004328
C.R. Bowen, H.A. Kim, P.M. Weaver, S. Dunn, Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7, 25–44 (2014). https://doi.org/10.1039/C3EE42454E
B. Zhang, Q. Zhang, P. He, Y. Ma, L. Shen et al., Efficient fabrication of ultralight YBa2Cu3O7−x superconductors with programmable shape and structure. Adv. Funct. Mater. 31, 2100680 (2021). https://doi.org/10.1002/adfm.202100680
S.B. Ogale, Dilute doping, defects, and ferromagnetism in metal oxide systems. Adv. Mater. 22, 3125–3155 (2010). https://doi.org/10.1002/adma.200903891
J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan et al., Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24, 5166–5180 (2012). https://doi.org/10.1002/adma.201202146
D.G. Georgiadou, J. Semple, A.A. Sagade, H. Forstén, P. Rantakari et al., 100 Ghz zinc oxide schottky diodes processed from solution on a wafer scale. Nat. Electron. 3, 718–725 (2020). https://doi.org/10.1038/s41928-020-00484-7
B. Wang, A. Thukral, Z. Xie, L. Liu, X. Zhang et al., Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat. Commun. 11, 2405 (2020). https://doi.org/10.1038/s41467-020-16268-8
X. Chen, J.M. Lawrence, L.T. Wey, L. Schertel, Q. Jing et al., 3D-printed hierarchical pillar array electrodes for high-performance semi-artificial photosynthesis. Nat. Mater. 21, 811–818 (2022). https://doi.org/10.1038/s41563-022-01205-5
R. Hensleigh, H. Cui, Z. Xu, J. Massman, D. Yao et al., Charge-programmed three-dimensional printing for multi-material electronic devices. Nat. Electron. 3, 216–224 (2020). https://doi.org/10.1038/s41928-020-0391-2
H. Cui, D. Yao, R. Hensleigh, H. Lu, A. Calderon et al., Design and printing of proprioceptive three-dimensional architected robotic metamaterials. Science 376, 1287–1293 (2022). https://doi.org/10.1126/science.abn0090
G. Zhao, Y. Ling, Y. Su, Z. Chen, C.J. Mathai et al., Laser-scribed conductive, photoactive transition metal oxide on soft elastomers for janus on-skin electronics and soft actuators. Sci. Adv. 8, eabp9734 (2022). https://doi.org/10.1126/sciadv.abp9734
J.R. Greer, J. Park, Additive manufacturing of nano- and microarchitected materials. Nano Lett. 18, 2187–2188 (2018). https://doi.org/10.1021/acs.nanolett.8b00724
A. Vyatskikh, R.C. Ng, B. Edwards, R.M. Briggs, J.R. Greer, Additive manufacturing of high-refractive-index, nanoarchitected titanium dioxide for 3D dielectric photonic crystals. Nano Lett. 20, 3513–3520 (2020). https://doi.org/10.1021/acs.nanolett.0c00454
H. Cui, R. Hensleigh, D. Yao, D. Maurya, P. Kumar et al., Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nat. Mater. 18, 234–241 (2019). https://doi.org/10.1038/s41563-018-0268-1
J.R. Greer, V.S. Deshpande, Three-dimensional architected materials and structures: design, fabrication, and mechanical behavior. MRS Bull. 44(10), 750–757 (2019). https://doi.org/10.1557/mrs.2019.232
D.W. Yee, M.L. Lifson, B.W. Edwards, J.R. Greer, Additive manufacturing of 3d-architected multifunctional metal oxides. Adv. Mater. 31, 1901345 (2019). https://doi.org/10.1002/adma.201901345
H. Chen, X. Min, Y. Hui, W. Qin, B. Zhang et al., Colloidal oxide nanop inks for micrometer-resolution additive manufacturing of three-dimensional gas sensors. Mater. Horiz. 9, 764–771 (2022). https://doi.org/10.1039/D1MH01021B
W. Guo, Y. Liu, Y. Sun, Y. Wang, W. Qin et al., Vertical 3d printed forest-inspired hierarchical plasmonic superstructure for photocatalysis. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202100768
K. Sun, T.S. Wei, B.Y. Ahn, J.Y. Seo, S.J. Dillon et al., 3d printing of interdigitated li-ion microbattery architectures. Adv. Mater. 25, 4539–4543 (2013). https://doi.org/10.1002/adma.201301036
C.C. Yeh, H.W. Zan, O. Soppera, Solution-based micro- and nanoscale metal oxide structures formed by direct patterning for electro-optical applications. Adv. Mater. 30, e1800923 (2018). https://doi.org/10.1002/adma.201800923
J.A. Lewis, B.Y. Ahn, Device fabrication: three-dimensional printed electronics. Nature 518, 42 (2015). https://doi.org/10.1038/518042a
I. Cooperstein, S. Indukuri, A. Bouketov, U. Levy, S. Magdassi, 3d printing of micrometer-sized transparent ceramics with on-demand optical-gain properties. Adv. Mater. 32, 8 (2020). https://doi.org/10.1002/adma.202001675
A. Vyatskikh, A. Kudo, S. Delalande, J.R. Greer, Additive manufacturing of polymer-derived titania for one-step solar water purification. Mater. Today Commun. 15, 288–293 (2018). https://doi.org/10.1016/j.mtcomm.2018.02.010
D. Gailevičius, V. Padolskytė, L. Mikoliūnaitė, S. Šakirzanovas, S. Juodkazis et al., Additive-manufacturing of 3d glass-ceramics down to nanoscale resolution. Nanoscale Horiz. 4, 647–651 (2019). https://doi.org/10.1039/C8NH00293B
J. Liu, Y. Liu, C. Deng, K. Yu, X. Fan et al., 3d printing nano-architected semiconductors based on versatile and customizable metal-bound composite photoresins. Adv. Mater. Technol. 7, 2101230 (2022). https://doi.org/10.1002/admt.202101230
J. Winczewski, M. Herrera, C. Cabriel, I. Izeddin, S. Gabel et al., Additive manufacturing of 3d luminescent ZrO2:Eu3+ architectures. Adv. Opt. Mater. 10, 2102758 (2022). https://doi.org/10.1002/adom.202102758
A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C.M. Portela et al., Additive manufacturing of 3d nano-architected metals. Nat. Commun. 9, 593 (2018). https://doi.org/10.1038/s41467-018-03071-9
M.A. Saccone, R.A. Gallivan, K. Narita, D.W. Yee, J.R. Greer, Additive manufacturing of micro-architected metals via hydrogel infusion. Nature 612, 685–690 (2022). https://doi.org/10.1038/s41586-022-05433-2
A. Scholz, L. Zimmermann, U. Gengenbach, L. Koker, Z. Chen et al., Hybrid low-voltage physical unclonable function based on inkjet-printed metal-oxide transistors. Nat. Commun. 11, 5543 (2020). https://doi.org/10.1038/s41467-020-19324-5
G. Cai, P. Darmawan, X. Cheng, P.S. Lee, Inkjet printed large area multifunctional smart windows. Adv. Energy Mater. 7(14), 1602598 (2017). https://doi.org/10.1002/aenm.201602598
T.S. Kim, Y. Lee, W. Xu, Y.H. Kim, M. Kim et al., Direct-printed nanoscale metal-oxide-wire electronics. Nano Energy 58, 437–446 (2019). https://doi.org/10.1016/j.nanoen.2019.01.052
K. Lim, Y.M. Jo, J.W. Yoon, J.H. Lee, Metal oxide patterns of one-dimensional nanofibers: on-demand, direct-write fabrication, and application as a novel platform for gas detection. J. Mater. Chem. A 7, 24919–24928 (2019). https://doi.org/10.1039/c9ta09708b
J.A. Lewis, Direct ink writing of 3d functional materials. Adv. Funct. Mater. 16, 2193–2204 (2006). https://doi.org/10.1002/adfm.200600434
J.C. Conrad, J.A. Lewis, Structural evolution of colloidal gels during constricted microchannel flow. Langmuir 26, 6102–6107 (2010). https://doi.org/10.1021/la1000123
E.B. Duoss, M. Twardowski, J.A. Lewis, Sol-gel inks for direct-write assembly of functional oxides. Adv. Mater. 19, 3485–3489 (2007). https://doi.org/10.1002/adma.200701372
B.Y. Ahn, D.J. Lorang, E.B. Duoss, J.A. Lewis, Direct-write assembly of microperiodic planar and spanning ITO microelectrodes. Chem. Commun. 46, 7118–7120 (2010). https://doi.org/10.1039/c0cc01691h
A.E. Danks, S.R. Hall, Z. Schnepp, The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 3, 91–112 (2016). https://doi.org/10.1039/c5mh00260e
Q.X. Jia, T.M. McCleskey, A.K. Burrell, Y. Lin et al., Polymer-assisted deposition of metal-oxide films. Nat. Mater. 3, 529–532 (2004). https://doi.org/10.1038/nmat1163
G.F. Zou, J. Zhao, H.M. Luo, T.M. McCleskey, A.K. Burrell et al., Polymer-assisted-deposition: a chemical solution route for a wide range of materials. Chem. Soc. Rev. 42, 439–449 (2013). https://doi.org/10.1039/c2cs35283d
L. Yu, W. Li, C. Wei, Q. Yang, Y. Shao et al., 3D Printing of NiCoP/Ti3C2 MXene architectures for energy storage devices with high areal and volumetric energy density. Nano-Micro Lett. 12, 143 (2020). https://doi.org/10.1007/s40820-020-00483-5
J. Cai, Z. Fan, J. Jin, Z. Shi, S. Dou et al., Expediting the electrochemical kinetics of 3D-printed sulfur cathodes for Li–S batteries with high rate capability and areal capacity. Nano Energy 75, 104970 (2020). https://doi.org/10.1016/j.nanoen.2020.104970
L. Yu, Z. Fan, Y. Shao, Z. Tian, J. Sun et al., Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy Mater. 9, 1901839 (2019). https://doi.org/10.1002/aenm.201901839
H. Ren, Y. Liu, L. Zhang, K. Liu, Synthesis, properties, and applications of large-scale two-dimensional materials by polymer-assisted deposition. J. Semicond. 40, 061003 (2019). https://doi.org/10.1088/1674-4926/40/6/061003
X. Xu, J. Yang, W. Jonhson, Y. Wang, A. Suwardi et al., Additive manufacturing solidification methodologies for ink formulation. Addit. Manuf. 56, 102939 (2022). https://doi.org/10.1016/j.addma.2022.102939
S.A. Idris, O.A. Mkhatresh, F. Heatley, Assignment of 1H NMR spectrum and investigation of oxidative degradation of poly(ethylenimine) using 1H and 13C 1-D and 2-D NMR. Polym. Int. 55, 1040–1048 (2006). https://doi.org/10.1002/pi.2049
B. Gullon, M.I. Montenegro, A.I. Ruiz-Matute, A. Cardelle-Cobas, N. Corzo et al., Synthesis, optimization and structural characterization of a chitosan-glucose derivative obtained by the maillard reaction. Carbohydr. Polym. 137, 382–389 (2016). https://doi.org/10.1016/j.carbpol.2015.10.075
Y. Xu, X. Huang, Y. Zhang, Z. Liu, J. Luo et al., A high bonding performance and antibacterial soybean meal adhesive with maillard reaction based cross-linked structure. Compos. B Eng. 227, 109403 (2021). https://doi.org/10.1016/j.compositesb.2021.109403
L. Khadidja, C. Asma, B. Mahmoud, E. Meriem, Alginate/gelatin crosslinked system through maillard reaction: preparation, characterization and biological properties. Polym. Bull. 74, 4899–4919 (2017). https://doi.org/10.1007/s00289-017-1997-z
T. Xu, Q. Wu, S. Chen, M. Deng, Preparation of polypropylene based hyperbranched absorbent fibers and the study of their adsorption of CO2. RSC Adv. 5, 32902–32908 (2015). https://doi.org/10.1039/C5RA02182K
R.J.J. Jansen, H. van Bekkum, XPS of nitrogen-containing functional groups on activated carbon. Carbon 33, 1021–1027 (1995). https://doi.org/10.1016/0008-6223(95)00030-H
C. Zhang, J. Su, H. Zhu, J. Xiong, X. Liu et al., The removal of heavy metal ions from aqueous solutions by amine functionalized cellulose pretreated with microwave-H2O2. RSC Adv. 7, 34182–34191 (2017). https://doi.org/10.1039/C7RA03056H
H. He, X. Hou, B. Ma, L. Zhuang, C. Li et al., The oxidation of viscose fiber optimized by response surface methodology and its further amination with PEI for CO2 adsorption. Cellulose 23, 2539–2548 (2016). https://doi.org/10.1007/s10570-016-0955-5
F. Ledl, E. Schleicher, New aspects of the maillard reaction in foods and in the human body. Angew. Chem. Int. Ed. 29, 565–594 (1990). https://doi.org/10.1002/anie.199005653
C.N. Fredd, H.S. Fogler, Alternative stimulation fluids and their impact on carbonate acidizing. SPE J. 3, 34–41 (1998). https://doi.org/10.2118/31074-PA
B.M. Jun, T.P.N. Nguyen, S.H. Ahn, I.C. Kim, Y.N. Kwon, The application of polyethyleneimine draw solution in a combined forward osmosis/nanofiltration system. J. Appl. Polym. Sci. 132, 42198 (2015). https://doi.org/10.1002/app.42198
I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch et al., Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths. Opt. Lett. 35, 1094–1096 (2010). https://doi.org/10.1364/OL.35.001094