Recent Progress in Interfacial Dipole Engineering for Perovskite Solar Cells
Corresponding Author: Mingzhen Liu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 173
Abstract
Design and modification of interfaces have been the main strategies in developing perovskite solar cells (PSCs). Among the interfacial treatments, dipole molecules have emerged as a practical approach to improve the efficiency and stability of PSCs due to their unique and versatile abilities to control the interfacial properties. Despite extensive applications in conventional semiconductors, working principles and design of interfacial dipoles in the performance/stability enhancement of PSCs are lacking an insightful elucidation. In this review, we first discuss the fundamental properties of electric dipoles and the specific roles of interfacial dipoles in PSCs. Then we systematically summarize the recent progress of dipole materials in several key interfaces to achieve efficient and stable PSCs. In addition to such discussions, we also dive into reliable analytical techniques to support the characterization of interfacial dipoles in PSCs. Finally, we highlight future directions and potential avenues for research in the development of dipolar materials through tailored molecular designs. Our review sheds light on the importance of continued efforts in this exciting emerging field, which holds great potential for the development of high-performance and stable PSCs as commercially demanded.
Highlights:
1 The fundamental properties of electric dipoles and their specific roles in perovskite solar cells are discussed.
2 Research progress of interfacial dipoles in perovskite solar cells is summarized.
3 Challenges of deterministic characterization of electric dipoles and future perspectives are highlighted.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590(7847), 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu et al., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13(9), 897–903 (2014). https://doi.org/10.1038/nmat4014
- M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013). https://doi.org/10.1038/nature12509
- Y. Hou, E. Aydin, M. De Bastiani, C. Xiao, F.H. Isikgor et al., Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367(6482), 1135 (2020). https://doi.org/10.1126/science.aaz3691
- J. Park, J. Kim, H.-S. Yun, M.J. Paik, E. Noh et al., Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023). https://doi.org/10.1038/s41586-023-05825-y
- Y. Wang, Y. Zhang, P. Zhang, W. Zhang, High intrinsic carrier mobility and photon absorption in the perovskite CH3NH3PbI3. Phys. Chem. Chem. Phys. 17(17), 11516–11520 (2015). https://doi.org/10.1039/c5cp00448a
- Z. Li, Y. Zhao, X. Wang, Y. Sun, Z. Zhao et al., Cost analysis of perovskite tandem photovoltaics. Joule 2(8), 1559–1572 (2018). https://doi.org/10.1016/j.joule.2018.05.001
- L.A. Zafoschnig, S. Nold, J.C. Goldschmidt, The race for lowest costs of electricity production: techno-economic analysis of silicon, perovskite and tandem solar cells. IEEE J. Photovol. 10(6), 1632–1641 (2020). https://doi.org/10.1109/jphotov.2020.3024739
- D. Luo, R. Su, W. Zhang, Q. Gong, R. Zhu, Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5(1), 44–60 (2019). https://doi.org/10.1038/s41578-019-0151-y
- X. Zhou, W. Qi, J. Li, J. Cheng, Y. Li et al., Toward efficient and stable perovskite solar cells: choosing appropriate passivator to specific defects. Solar RRL 4(10), 2000308 (2020). https://doi.org/10.1002/solr.202000308
- E. Aydin, M. De Bastiani, S. De Wolf, Defect and contact passivation for perovskite solar cells. Adv. Mater. 31(25), e1900428 (2019). https://doi.org/10.1002/adma.201900428
- C. Luo, Y. Zhao, X. Wang, F. Gao, Q. Zhao, Self-induced type-i band alignment at surface grain boundaries for highly efficient and stable perovskite solar cells. Adv. Mater. 33(40), e2103231 (2021). https://doi.org/10.1002/adma.202103231
- M.M. Tavakoli, W. Tress, J.V. Milic, D. Kubicki, L. Emsley et al., Addition of adamantylammonium iodide to hole transport layers enables highly efficient and electroluminescent perovskite solar cells. Energy Environ. Sci. 11(11), 3310–3320 (2018). https://doi.org/10.1039/c8ee02404a
- J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M.C.M. van de Sanden et al., Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3. Prog. Photovol. 16(6), 461–466 (2008). https://doi.org/10.1002/pip.823
- G. Dingemans, N.M. Terlinden, D. Pierreux, H.B. Profijt, M.C.M. van de Sanden et al., Influence of the oxidant on the chemical and field-effect passivation of si by ALD Al2O3. Electrochem. Solid State Lett. 14(1), H1–H4 (2011). https://doi.org/10.1149/1.3501970
- J. Schmidt, F. Werner, B. Veith, D. Zielke, S. Steingrube et al., Advances in the surface passivation of silicon solar cells. Energy Procedia 15, 30–39 (2012). https://doi.org/10.1016/j.egypro.2012.02.004
- Z. Zhang, L. Qiao, K. Meng, R. Long, G. Chen et al., Rationalization of passivation strategies toward high-performance perovskite solar cells. Chem. Soc. Rev. 52(1), 163–195 (2023). https://doi.org/10.1039/d2cs00217e
- F. Wang, Y. Zhang, M. Yang, D. Han, L. Yang et al., Interface dipole induced field-effect passivation for achieving 21.7% efficiency and stable perovskite solar cells. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202008052
- Z. He, C. Zhong, X. Huang, W.Y. Wong, H. Wu et al., Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv. Mater. 23(40), 4636–4643 (2011). https://doi.org/10.1002/adma.201103006
- Z. He, C. Zhong, S. Su, M. Xu, H. Wu et al., Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photon. 6(9), 591–595 (2012). https://doi.org/10.1038/nphoton.2012.190
- C.C. Chueh, C.Z. Li, A.K.Y. Jen, Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ. Sci. 8(4), 1160–1189 (2015). https://doi.org/10.1039/c4ee03824j
- S. Bi, X. Leng, Y. Li, Z. Zheng, X. Zhang et al., Interfacial modification in organic and perovskite solar cells. Adv. Mater. 31(45), e1805708 (2019). https://doi.org/10.1002/adma.201805708
- Z. Yang, B.H. Babu, S. Wu, T. Liu, S. Fang et al., Review on practical interface engineering of perovskite solar cells: from efficiency to stability. Solar RRL 4(2), 1900257 (2019). https://doi.org/10.1002/solr.201900257
- A.N. Cho, N.G. Park, Impact of interfacial layers in perovskite solar cells. Chemsuschem 10(19), 3687–3704 (2017). https://doi.org/10.1002/cssc.201701095
- Z.W. Gao, Y. Wang, W.C.H. Choy, Buried interface modification in perovskite solar cells: a materials perspective. Adv. Energy Mater. 12(20), 2104030 (2022). https://doi.org/10.1002/aenm.202104030
- X. Yang, D. Luo, Y. Xiang, L. Zhao, M. Anaya et al., Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 33(7), e2006435 (2021). https://doi.org/10.1002/adma.202006435
- S. Chen, Y. Deng, H. Gu, S. Xu, S. Wang et al., Trapping lead in perovskite solar modules with abundant and low-cost cation-exchange resins. Nat. Energy (2020). https://doi.org/10.1038/s41560-020-00716-2
- Y. Yang, C. Liu, Y. Ding, Z. Arain, S. Wang et al., Eliminating charge accumulation via interfacial dipole for efficient and stable perovskite solar cells. ACS Appl. Mater. Interfaces 11(38), 34964–34972 (2019). https://doi.org/10.1021/acsami.9b11229
- K.-G. Lim, S. Ahn, T.-W. Lee, Energy level alignment of dipolar interface layer in organic and hybrid perovskite solar cells. J. Mater. Chem. C 6(12), 2915–2924 (2018). https://doi.org/10.1039/c8tc00166a
- T. Yajima, Y. Hikita, M. Minohara, C. Bell, J.A. Mundy et al., Controlling band alignments by artificial interface dipoles at perovskite heterointerfaces. Nat. Commun. 6, 6759 (2015). https://doi.org/10.1038/ncomms7759
- Y. Qiu, J. Liang, Z. Zhang, Z. Deng, H. Xu et al., Tuning the interfacial dipole moment of spacer cations for charge extraction in efficient and ultrastable perovskite solar cells. J. Phys. Chem. C 125(2), 1256–1268 (2021). https://doi.org/10.1021/acs.jpcc.0c09606
- W. Li, T. Pohl, J.M. Rost, S.T. Rittenhouse, H.R. Sadeghpour et al., A homonuclear molecule with a permanent electric dipole moment. Science 334(6059), 1110–1114 (2011). https://doi.org/10.1126/science.1211255
- A. Nethercot Jr., Molecular dipole moments and electronegativity. Chem. Phys. Lett. 59(2), 346–350 (1978). https://doi.org/10.1016/0009-2614(78)89109-X
- C.-L. Chiang, S.-M. Tseng, C.-T. Chen, C.-P. Hsu, C.-F. Shu, Influence of molecular dipoles on the photoluminescence and electroluminescence of dipolar spirobifluorenes. Adv. Funct. Mater. 18(2), 248–257 (2008). https://doi.org/10.1002/adfm.200700154
- A. Kahn, N. Koch, W. Gao, Electronic structure and electrical properties of interfaces between metals and π-conjugated molecular films. J. Polym. Sci. Part B Polym. Phys. 41(21), 2529–2548 (2003)
- S. Braun, W.R. Salaneck, M. Fahlman, Energy-level alignment at organic/metal and organic/organic interfaces. Adv. Mater. 21(14–15), 1450–1472 (2009). https://doi.org/10.1002/adma.200802893
- R. Steim, F.R. Kogler, C.J. Brabec, Interface materials for organic solar cells. J. Mater. Chem. 20(13), 2499–2512 (2010). https://doi.org/10.1039/b921624c
- J.P.C. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner et al., Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8(10), 2928–2934 (2015). https://doi.org/10.1039/c5ee02608c
- W. Kong, W. Li, C. Liu, H. Liu, J. Miao et al., Organic monomolecular layers enable energy-level matching for efficient hole transporting layer free inverted perovskite solar cells. ACS Nano 13(2), 1625–1634 (2019). https://doi.org/10.1021/acsnano.8b07627
- A. Kahn, Fermi level, work function and vacuum level. Mater. Horizons 3(1), 7–10 (2016). https://doi.org/10.1039/c5mh00160a
- D. Cahen, A. Kahn, Electron energetics at surfaces and interfaces: concepts and experiments. Adv. Mater. 15(4), 271–277 (2003). https://doi.org/10.1002/adma.200390065
- B. de Boer, A. Hadipour, M.M. Mandoc, T. van Woudenbergh, P.W.M. Blom, Tuning of metal work functions with self-assembled monolayers. Adv. Mater. 17(5), 621–625 (2005). https://doi.org/10.1002/adma.200401216
- P.R. Brown, D. Kim, R.R. Lunt, N. Zhao, M.G. Bawendi et al., Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 8(6), 5863–5872 (2014). https://doi.org/10.1021/nn500897c
- G.-H. Kim, F.P. García de Arquer, Y.J. Yoon, X. Lan, M. Liu et al., High-efficiency colloidal quantum dot photovoltaics via robust self-assembled monolayers. Nano Lett. 15(11), 7691–7696 (2015). https://doi.org/10.1021/acs.nanolett.5b03677
- D.A. Kara, K. Kara, G. Oylumluoglu, M.Z. Yigit, M. Can et al., Enhanced device efficiency and long-term stability via boronic acid-based self-assembled monolayer modification of indium tin oxide in a planar perovskite solar cell. ACS Appl. Mater. Interfaces 10(35), 30000–30007 (2018). https://doi.org/10.1021/acsami.8b10445
- L. Liu, A. Mei, T. Liu, P. Jiang, Y. Sheng et al., Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. J. Am. Chem. Soc. 137(5), 1790–1793 (2015). https://doi.org/10.1021/ja5125594
- K. Choi, H. Choi, J. Min, T. Kim, D. Kim et al., A short review on interface engineering of perovskite solar cells: a self-assembled monolayer and its roles. Sol RRL (2019). https://doi.org/10.1002/solr.201900251
- J. Gong, M. Adnani, B.T. Jones, Y. Xin, S. Wang et al., Nanoscale encapsulation of hybrid perovskites using hybrid atomic layer deposition. J. Phys. Chem. Lett. 13(18), 4082–4089 (2022). https://doi.org/10.1021/acs.jpclett.2c00862
- J. Gong, Y. Cui, F. Li, M. Liu, Progress in surface modification of SnO2 electron transport layers for stable perovskite solar cells. Small Sci. 5, 2200108 (2023). https://doi.org/10.1002/smsc.202200108
- S. Lacher, Y. Matsuo, E. Nakamura, Molecular and supramolecular control of the work function of an inorganic electrode with self-assembled monolayer of umbrella-shaped fullerene derivatives. J. Am. Chem. Soc. 133(42), 16997–17004 (2011). https://doi.org/10.1021/ja2067675
- G. Heimel, F. Rissner, E. Zojer, Modeling the electronic properties of π-conjugated self-assembled monolayers. Adv. Mater. 22(23), 2494–2513 (2010). https://doi.org/10.1002/adma.200903855
- J. Shi, X. Xu, D. Li, Q. Meng, Interfaces in perovskite solar cells. Small 11(21), 2472–2486 (2015). https://doi.org/10.1002/smll.201403534
- I. Mora-Sero, How do perovskite solar cells work? Joule 2(4), 585–587 (2018). https://doi.org/10.1016/j.joule.2018.03.020
- T. Leijtens, G.E. Eperon, A.J. Barker, G. Grancini, W. Zhang et al., Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells. Energy Environ. Sci. 9(11), 3472–3481 (2016). https://doi.org/10.1039/c6ee01729k
- W.-T. Wang, P. Chen, C.-H. Chiang, T.-F. Guo, C.-G. Wu et al., Synergistic reinforcement of built-in electric fields for highly efficient and stable perovskite photovoltaics. Adv. Funct. Mater. 30(19), 1909755 (2020). https://doi.org/10.1002/adfm.201909755
- P. Caprioglio, M. Stolterfoht, C.M. Wolff, T. Unold, B. Rech et al., On the relation between the open-circuit voltage and quasi-fermi level splitting in efficient perovskite solar cells. Adv. Energy Mater. 9(33), 1901631 (2019). https://doi.org/10.1002/aenm.201901631
- G.C. Xing, N. Mathews, S.Y. Sun, S.S. Lim, Y.M. Lam et al., Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013). https://doi.org/10.1126/science.1243167
- E. Edri, S. Kirmayer, S. Mukhopadhyay, K. Gartsman, G. Hodes et al., Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3-xClx perovskite solar cells. Nat. Commun. 5, 3461 (2014). https://doi.org/10.1038/ncomms4461
- W.A. Laban, L. Etgar, Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ. Sci. 6(11), 3249–3253 (2013). https://doi.org/10.1039/c3ee42282h
- K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall et al., Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy Environ. Sci. 9(3), 962–970 (2016). https://doi.org/10.1039/c5ee03435c
- Y. Yang, M.J. Yang, Z. Li, R. Crisp, K. Zhu et al., Comparison of recombination dynamics in CH3NH3PbBr3 and CH3NH3PbI3 perovskite films: Influence of exciton binding energy. J. Phys. Chem. Lett. 6(23), 4688–4692 (2015). https://doi.org/10.1021/acs.jpclett.5b02290
- S. Wang, T. Sakurai, W. Wen, Y. Qi, Energy level alignment at interfaces in metal halide perovskite solar cells. Adv. Mater. Interfaces 5(22), 1800260 (2018). https://doi.org/10.1002/admi.201800260
- J.P. Correa-Baena, W. Tress, K. Domanski, E.H. Anaraki, S.H. Turren-Cruz et al., Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells. Energy Environ. Sci. 10(5), 1207–1212 (2017). https://doi.org/10.1039/c7ee00421d
- N.-G. Park, H. Segawa, Research direction toward theoretical efficiency in perovskite solar cells. ACS Photon. 5(8), 2970–2977 (2018). https://doi.org/10.1021/acsphotonics.8b00124
- W.E.I. Sha, X. Ren, L. Chen, W.C.H. Choy, The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett. 106(22), 221104 (2015). https://doi.org/10.1063/1.4922150
- R. Wang, T. Huang, J. Xue, J. Tong, K. Zhu et al., Prospects for metal halide perovskite-based tandem solar cells. Nat. Photon. 15(6), 411–425 (2021). https://doi.org/10.1038/s41566-021-00809-8
- L. Chen, G. Zheng, G. Yao, P. Zhang, S. Dai et al., Lead-free perovskite narrow-bandgap oxide semiconductors of rare-earth manganates. ACS Omega 5(15), 8766–8776 (2020). https://doi.org/10.1021/acsomega.0c00138
- M. Zhang, Q. Chen, R. Xue, Y. Zhan, C. Wang et al., Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nat. Commun. 10(1), 4593 (2019). https://doi.org/10.1038/s41467-019-12613-8
- P. Schulz, D. Cahen, A. Kahn, Halide perovskites: Is it all about the interfaces? Chem. Rev. 119(5), 3349–3417 (2019). https://doi.org/10.1021/acs.chemrev.8b00558
- Z. Ni, C. Bao, Y. Liu, Q. Jiang, W.-Q. Wu et al., Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367(6484), 1352 (2020). https://doi.org/10.1126/science.aba0893
- J. Kim, A. Ho-Baillie, S.J. Huang, Review of novel passivation techniques for efficient and stable perovskite solar cells. Solar RRL 3(4), 1800302 (2019). https://doi.org/10.1002/solr.201800302
- S. Akin, N. Arora, S.M. Zakeeruddin, M. Gratzel, R.H. Friend et al., New strategies for defect passivation in high-efficiency perovskite solar cells. Adv. Energy Mater. 10(13), 1903090 (2020). https://doi.org/10.1002/aenm.201903090
- G. Wang, C. Wang, Y. Gao, S. Wen, R.C. MacKenzie et al., Passivation agent with dipole moment for surface modification towards efficient and stable perovskite solar cells. J. Energy Chem. 64, 55–61 (2022). https://doi.org/10.1016/j.jechem.2021.04.023
- D. Menzel, A. Al-Ashouri, A. Tejada, I. Levine, J.A. Guerra et al., Field effect passivation in perovskite solar cells by a lif interlayer. Adv. Energy Mater. 12(30), 2201109 (2022). https://doi.org/10.1002/aenm.202201109
- L. Liang, H. Luo, J. Hu, H. Li, P. Gao, Efficient perovskite solar cells by reducing interface-mediated recombination: A bulky amine approach. Adv. Energy Mater. 10(14), 2000197 (2020). https://doi.org/10.1002/aenm.202000197
- T.Y. Yang, G. Gregori, N. Pellet, M. Gratzel, J. Maier, The significance of ion conduction in a hybrid organic-inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. Int. Ed. 54(27), 7905–7910 (2015). https://doi.org/10.1002/anie.201500014
- S. van Reenen, M. Kemerink, H.J. Snaith, Modeling anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 6(19), 3808–3814 (2015). https://doi.org/10.1021/acs.jpclett.5b01645
- B. Hu, J. Zhang, Z. Guo, L. Lu, P. Li et al., Manipulating ion migration and interfacial carrier dynamics via amino acid treatment in planar perovskite solar cells. ACS Appl. Mater. Interfaces 14(13), 15840–15848 (2022). https://doi.org/10.1021/acsami.2c01640
- H. Liu, Z.Y. Lu, W.H. Zhang, J.T. Wang, Z.L. Lu et al., Anchoring vertical dipole to enable efficient charge extraction for high-performance perovskite solar cells. Adv. Sci. 9(29), 2203640 (2022). https://doi.org/10.1002/advs.202203640
- T. Leijtens, G.E. Eperon, N.K. Noel, S.N. Habisreutinger, A. Petrozza et al., Stability of metal halide perovskite solar cells. Adv. Energy Mater. 5(20), 1500963 (2015). https://doi.org/10.1002/aenm.201500963
- D.H. Sin, S.B. Jo, S.G. Lee, H. Ko, M. Kim et al., Enhancing the durability and carrier selectivity of perovskite solar cells using a blend interlayer. ACS Appl. Mater. Interfaces 9(21), 18103–18112 (2017). https://doi.org/10.1021/acsami.7b02349
- S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas et al., Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14(10), 5561–5568 (2014). https://doi.org/10.1021/nl501982b
- W.T. Deng, X.X. Liang, P.S. Kubiak, P.J. Cameron, Molecular interlayers in hybrid perovskite solar cells. Adv. Energy Mater. 8(1), 1701544 (2018). https://doi.org/10.1002/aenm.201701544
- Y.H. Li, E.L. Lim, H.B. Xie, J. Song, T.F. Kong et al., Hydrophobic fluorinated conjugated polymer as a multifunctional interlayer for high-performance perovskite solar cells. ACS Photonics 8(11), 3185–3192 (2021). https://doi.org/10.1021/acsphotonics.1c00939
- X.X. Gao, D.J. Xue, D. Gao, Q.W. Han, Q.Q. Ge et al., High-mobility hydrophobic conjugated polymer as effective interlayer for air-stable efficient perovskite solar cells. Solar RRL 3(1), 1800232 (2019). https://doi.org/10.1002/solr.201800232
- F. Ali, C. Roldan-Carmona, M. Sohail, M.K. Nazeeruddin, Applications of self-assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability. Adv. Energy Mater. 10(48), 2002989 (2020). https://doi.org/10.1002/aenm.202002989
- Y.H. Li, H.B. Xie, E.L. Lim, A. Hagfeldt, D.Q. Bi, Recent progress of critical interface engineering for highly efficient and stable perovskite solar cells. Adv. Energy Mater. 12(5), 2102730 (2022). https://doi.org/10.1002/aenm.202102730
- C.-C. Chueh, C.-Z. Li, A.K.-Y. Jen, Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ. Sci. 8(4), 1160–1189 (2015). https://doi.org/10.1039/c4ee03824j
- L. Huang, Z. Hu, J. Xu, X. Sun, Y. Du et al., Efficient electron-transport layer-free planar perovskite solar cells via recycling the FTO/glass substrates from degraded devices. Solar Energy Mater. Solar Cells 152, 118–124 (2016). https://doi.org/10.1016/j.solmat.2016.03.035
- C. Huang, P. Lin, N. Fu, C. Liu, B. Xu et al., Facile fabrication of highly efficient etl-free perovskite solar cells with 20% efficiency by defect passivation and interface engineering. Chem. Commun. 55(19), 2777–2780 (2019). https://doi.org/10.1039/c9cc00312f
- W.-Q. Wu, J.-F. Liao, J.-X. Zhong, Y.-F. Xu, L. Wang et al., Suppressing interfacial charge recombiNation in electron-transport-layer-free perovskite solar cells to give an efficiency exceeding 21%. Angew. Chem. Int. Ed. 59(47), 20980–20987 (2020)
- S. Huang, Q. Dong, Y. Shi, L. Duan, L. Wang, RbF modified fto electrode enable energy -level matching for efficient electron transport layer -free perovskite solar cells. Chem. Engin. J. 394, 125024 (2020). https://doi.org/10.1016/j.cej.2020.125024
- H. Ishii, K. Sugiyama, E. Ito, K. Seki, Energy level alignment and interfacial electronic structures at organic metal and organic organic interfaces. Adv. Mater. 11(8), 605 (1999)
- J. Wang, S. Fu, L. Huang, Y. Lu, X. Liu et al., Heterojunction engineering and ideal factor optimization toward efficient minp perovskite solar cells. Adv. Energy Mater. 11(48), 2102724 (2021). https://doi.org/10.1002/aenm.202102724
- F. Sadegh, E. Akman, D. Prochowicz, M.M. Tavakoli, P. Yadav et al., Facile NAF treatment achieves 20% efficient etl-free perovskite solar cells. ACS Appl. Mater. Interfaces 14(34), 38631–38641 (2022). https://doi.org/10.1021/acsami.2c06110
- F. Wang, M. Yang, Y. Zhang, J. Du, D. Han et al., Constructing m-TiO2/a-WOX hybrid electron transport layer to boost interfacial charge transfer for efficient perovskite solar cells. Chem. Eng. J. 402, 126303 (2020)
- S. Khodabakhsh, B.M. Sanderson, J. Nelson, T.S. Jones, Using self-assembling dipole molecules to improve charge collection in molecular solar cells. Adv. Funct. Mater. 16(1), 95–100 (2006). https://doi.org/10.1002/adfm.200500207
- J. Zhang, Y. Sun, H. Yu, Reducing energy loss via adjusting the anode work function and perovskite layer morphology for the efficient and stable hole transporting layer-free perovskite solar cells. Chem. Engin. J. 431, 133948 (2022). https://doi.org/10.1016/j.cej.2021.133948
- A. Al-Ashouri, A. Magomedov, M. Ross, M. Jost, M. Talaikis et al., Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12(11), 3356–3369 (2019). https://doi.org/10.1039/c9ee02268f
- W. Jiang, F. Li, M. Li, F. Qi, F.R. Lin et al., Pi-expanded carbazoles as hole-selective self-assembled monolayers for high-performance perovskite solar cells. Angew. Chem. Int. Ed. 61(51), e202213560 (2022). https://doi.org/10.1002/anie.202213560
- A. Al-Ashouri, A. Magomedov, M. Roß, M. Jošt, M. Talaikis et al., Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12(11), 3356–3369 (2019). https://doi.org/10.1039/c9ee02268f
- A. Al-Ashouri, E. Kohnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with > 29% efficiency by enhanced hole extraction. Science 370(6522), 1300 (2020). https://doi.org/10.1126/science.abd4016
- J. Wang, Z. Yu, D.D. Astridge, Z. Ni, L. Zhao et al., Carbazole-based hole transport polymer for methylammonium-free tin–lead perovskite solar cells with enhanced efficiency and stability. ACS Energy Lett. 7(10), 3353–3361 (2022). https://doi.org/10.1021/acsenergylett.2c01578
- N.K. Noel, A. Abate, S.D. Stranks, E.S. Parrott, V.M. Burlakov et al., Enhanced photoluminescence and solar cell performance via lewis base passivation of organic inorganic lead halide perovskites. ACS Nano 8(10), 9815–9821 (2014). https://doi.org/10.1021/nn5036476
- M. Acik, I.K. Park, R.E. Koritala, G. Lee, R.A. Rosenberg, Oxygen-induced defects at the lead halide perovskite/graphene oxide interfaces. J. Mater. Chem. A 6(4), 1423–1442 (2018). https://doi.org/10.1039/c7ta10010h
- Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J.M. Pringle et al., Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 3(15), 8139–8147 (2015). https://doi.org/10.1039/c5ta00358j
- J. Zhao, X. Zheng, Y. Deng, T. Li, Y. Shao et al., Is cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? Energy Environ. Sci. 9(12), 3650–3656 (2016). https://doi.org/10.1039/c6ee02980a
- A. Guerrero, J. You, C. Aranda, Y.S. Kang, G. Garcia-Belmonte et al., Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano 10(1), 218–224 (2016). https://doi.org/10.1021/acsnano.5b03687
- J. Wang, J. Li, Y. Zhou, C. Yu, Y. Hua et al., Tuning an electrode work function using organometallic complexes in inverted perovskite solar cells. J. Am. Chem. Soc. 143(20), 7759–7768 (2021). https://doi.org/10.1021/jacs.1c02118
- D. Qu, T. Guo, J. Zhang, Z. Deng, Z. Zhang et al., PCBM/Ag interface dipole management in inverted perovskite solar cells. Appl. Phys. Lett. 119(14), 143902 (2021)
- S. Xiong, M. Yuan, J. Yang, J. Song, X. Guo et al., Engineering of the back contact between pcbm and metal electrode for planar perovskite solar cells with enhanced efficiency and stability. Adv. Opt. Mater. 7(19), 1900542 (2019). https://doi.org/10.1002/adom.201900542
- H.L. Wang, H.C. Liu, W.P. Li, L.Q. Zhu, H.N. Chen, Inorganic perovskite solar cells based on carbon electrodes. Nano Energy 77, 105160 (2020). https://doi.org/10.1016/j.nanoen.2020.105160
- P. Pradid, K. Sanglee, N. Thongprong, S. Chuangchote, Carbon electrodes in perovskite photovoltaics. Materials 14(20), 5989 (2021). https://doi.org/10.3390/ma14205989
- Q. Luo, H. Ma, Q.Z. Hou, Y.X. Li, J. Ren et al., All-carbon-electrode-based endurable flexible perovskite solar cells. Adv. Funct. Mater. 28(11), 1706777 (2018). https://doi.org/10.1002/adfm.201706777
- Z. Yan, D. Wang, Y. Jing, X. Wang, H. Zhang et al., Surface dipole affords high-performance carbon-based cspbi2br perovskite solar cells. Chem. Engin. J. 433, 134611 (2022). https://doi.org/10.1016/j.cej.2022.134611
- J. Duan, M. Wang, Y. Wang, J. Zhang, Q. Guo et al., Effect of side-group-regulated dipolar passivating molecules on CsPbBr3 perovskite solar cells. ACS Energy Lett. 6(6), 2336–2342 (2021). https://doi.org/10.1021/acsenergylett.1c01060
- X.Y. Yang, D.Y. Luo, Y.R. Xiang, L.C. Zhao, M. Anaya et al., Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 33(7), 2006435 (2021). https://doi.org/10.1002/adma.202006435
- Q. Jiang, Y. Zhao, X.W. Zhang, X.L. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13(7), 460 (2019). https://doi.org/10.1038/s41566-019-0398-2
- W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347(6221), 522–525 (2015). https://doi.org/10.1126/science.aaa0472
- X. Li, D. Bi, C. Yi, J.-D. Decoppet, J. Luo et al., A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353(6294), 58–62 (2016). https://doi.org/10.1126/science.aaf8060
- R. Azmi, W.T. Hadmojo, S. Sinaga, C.-L. Lee, S.C. Yoon et al., High-efficiency low-temperature ZnO based perovskite solar cells based on highly polar, nonwetting self-assembled molecular layers. Adv. Energy Mater. 8(5), 1701683 (2018). https://doi.org/10.1002/aenm.201701683
- K. Choi, J. Lee, H.I. Kim, C.W. Park, G.-W. Kim et al., Thermally stable, planar hybrid perovskite solar cells with high efficiency. Energy Environ. Sci. 11(11), 3238–3247 (2018). https://doi.org/10.1039/c8ee02242a
- Q. Wang, C.C. Chueh, T. Zhao, J. Cheng, M. Eslamian et al., Effects of self-assembled monolayer modification of nickel oxide nanops layer on the performance and application of inverted perovskite solar cells. Chemsuschem 10(19), 3794–3803 (2017). https://doi.org/10.1002/cssc.201701262
- J.F. Butscher, S. Intorp, J. Kress, Q. An, Y.J. Hofstetter et al., Enhancing the open-circuit voltage of perovskite solar cells by embedding molecular dipoles within their hole-blocking layer. ACS Appl. Mater. Interfaces 12(3), 3572–3579 (2020). https://doi.org/10.1021/acsami.9b18757
- Y. Hu, Z. Yang, X. Cui, P. Zeng, F. Li et al., Construction of charge transport channels at the NiOx/perovskite interface through moderate dipoles toward highly efficient inverted solar cells. ACS Appl. Mater. Interfaces 14(11), 13431–13439 (2022). https://doi.org/10.1021/acsami.2c01625
- L. Li, Y. Wang, X. Wang, R. Lin, X. Luo et al., Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7(8), 708–717 (2022). https://doi.org/10.1038/s41560-022-01045-2
- F. Ansari, E. Shirzadi, M. Salavati-Niasari, T. LaGrange, K. Nonomura et al., Passivation mechanism exploiting surface dipoles affords high-performance perovskite solar cells. J. Am. Chem. Soc. 142(26), 11428–11433 (2020). https://doi.org/10.1021/jacs.0c01704
- S.J. Sung, J. Im, G. Kim, C.S. Moon, J.J. Yoo et al., Molecular engineering for function-tailored interface modifier in high-performance perovskite solar cells. Adv. Energy Mater. 12(27), 2200758 (2022). https://doi.org/10.1002/aenm.202200758
- G.M. Kim, H. Sato, Y. Ohkura, A. Ishii, T. Miyasaka, Phenethylamine-based interfacial dipole engineering for high voc triple-cation perovskite solar cells. Adv. Energy Mater. 12(1), 2102856 (2021). https://doi.org/10.1002/aenm.202102856
- C. Deibel, T. Strobel, V. Dyakonov, Origin of the efficient polaron-pair dissociation in polymer-fullerene blends. Phys. Rev. Lett. 103(3), 036402 (2009). https://doi.org/10.1103/PhysRevLett.103.036402
- V.D. Mihailetchi, L.J. Koster, J.C. Hummelen, P.W. Blom, Photocurrent generation in polymer-fullerene bulk heterojunctions. Phys. Rev. Lett. 93(21), 216601 (2004). https://doi.org/10.1103/PhysRevLett.93.216601
- Y. Yuan, T.J. Reece, P. Sharma, S. Poddar, S. Ducharme et al., Efficiency enhancement in organic solar cells with ferroelectric polymers. Nat. Mater. 10(4), 296–302 (2011). https://doi.org/10.1038/nmat2951
- J.-H. Lee, J. Kim, G. Kim, D. Shin, S.Y. Jeong et al., Introducing paired electric dipole layers for efficient and reproducible perovskite solar cells. Energy Environ. Sci. 11(7), 1742–1751 (2018). https://doi.org/10.1039/c8ee00162f
- S. Hu, K. Otsuka, R. Murdey, T. Nakamura, M.A. Truong et al., Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells. Energy Environ. Sci. 15(5), 2096–2107 (2022). https://doi.org/10.1039/d2ee00288d
- X. Crispin, V. Geskin, A. Crispin, J. Cornil, R. Lazzaroni et al., Characterization of the interface dipole at organic/metal interfaces. J. Am. Chem. Soc. 124(27), 8131–8141 (2002). https://doi.org/10.1021/ja025673r
- I. Avilov, V. Geskin, J. Cornil, Quantum-chemical characterization of the origin of dipole formation at molecular organic/organic interfaces. Adv. Funct. Mater. 19(4), 624–633 (2009). https://doi.org/10.1002/adfm.200800632
- C. Feng, X.J. Wang, Z.C. He, Y. Cao, Formation mechanism of pfn dipole interlayer in organic solar cells. Solar RRL 5(4), 2000753 (2021). https://doi.org/10.1002/solr.202000753
- M. Xiao, T. Lu, T. Lin, J.S. Andre, Z. Chen, Understanding molecular structures of buried interfaces in halide perovskite photovoltaic devices nondestructively with sub-monolayer sensitivity using sum frequency generation vibrational spectroscopy. Adv. Energy Mater. 10(26), 1903053 (2019). https://doi.org/10.1002/aenm.201903053
- X. Lu, C. Zhang, N. Ulrich, M. Xiao, Y.H. Ma et al., Studying polymer surfaces and interfaces with sum frequency generation vibrational spectroscopy. Anal. Chem. 89(1), 466–489 (2017). https://doi.org/10.1021/acs.analchem.6b04320
- F.M. Geiger, Second harmonic generation, sum frequency generation, and χ (3): dissecting environmental interfaces with a nonlinear optical swiss army knife. Ann. Rev. Phys. Chem. 60, 61–83 (2009). https://doi.org/10.1146/annurev.physchem.59.032607.093651
- Z. Chen, Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy. Prog. Polym. Sci. 35(11), 1376–1402 (2010). https://doi.org/10.1016/j.progpolymsci.2010.07.003
- E.C. Yan, L. Fu, Z. Wang, W. Liu, Biological macromolecules at interfaces probed by chiral vibrational sum frequency generation spectroscopy. Chem. Rev. 114(17), 8471–8498 (2014). https://doi.org/10.1021/cr4006044
- A.J. Moad, G.J. Simpson, A unified treatment of selection rules and symmetry relations for sum-frequency and second harmonic spectroscopies. J. Phys. Chem. B 108(11), 3548–3562 (2004). https://doi.org/10.1021/jp035362i
- X. Zhuang, P. Miranda, D. Kim, Y. Shen, Mapping molecular orientation and conformation at interfaces by surface nonlinear optics. Phys. Rev. B 59(19), 12632 (1999). https://doi.org/10.1103/PhysRevB.59.12632
- M. Xiao, S. Joglekar, X. Zhang, J. Jasensky, J. Ma et al., Effect of interfacial molecular orientation on power conversion efficiency of perovskite solar cells. J. Am. Chem. Soc. 139(9), 3378–3386 (2017). https://doi.org/10.1021/jacs.6b10651
- M.M. Nahid, E. Gann, L. Thomsen, C.R. McNeill, Nexafs spectroscopy of conjugated polymers. Eur. Polym. J. 81, 532–554 (2016). https://doi.org/10.1016/j.eurpolymj.2016.01.017
- A. Braun, F.E. Huggins, N. Shah, Y. Chen, S. Wirick et al., Advantages of soft X-ray absorption over TEM-EELS for solid carbon studies-a comparative study on diesel soot with EELS and NEXAFS. Carbon 43(1), 117–124 (2005). https://doi.org/10.1016/j.carbon.2004.08.029
- P. Guttmann, C. Bittencourt, S. Rehbein, P. Umek, X. Ke et al., Nanoscale spectroscopy with polarized X-rays by NEXAFS-TXM. Nat. Photonics 6(1), 25–29 (2012). https://doi.org/10.1038/nphoton.2011.268
- S.D. Perera, S.G. Urquhart, Systematic investigation of pi-pi interactions in near-edge X-ray fine structure (NEXAFS) spectroscopy of paracyclophanes. J. Phys. Chem. A 121(26), 4907–4913 (2017). https://doi.org/10.1021/acs.jpca.7b03823
- W.E.S. Unger, A. Lippitz, C. Woll, W. Heckmann, X-ray absorption spectroscopy (NEXAFS) of polymer surfaces. Fresenius J. Anal. Chem. 358(1–2), 89–92 (1997). https://doi.org/10.1007/s002160050352
- A.H. Pan, A. Xie, S. Hou, X. Yin et al., Surface molecular doping of all-inorganic perovskite using zethrenes molecules. Nano Res. 12(1), 77–84 (2019). https://doi.org/10.1007/s12274-018-2183-9
- R. Giridharagopal, P.A. Cox, D.S. Ginger, Functional scanning probe imaging of nanostructured solar energy materials. Acc. Chem. Res. 49(9), 1769–1776 (2016). https://doi.org/10.1021/acs.accounts.6b00255
- W. Melitz, J. Shen, A.C. Kummel, S. Lee, Kelvin probe force microscopy and its application. Surface Sci. Rep. 66(1), 1–27 (2011). https://doi.org/10.1016/j.surfrep.2010.10.001
- Y. Liu, Z. Page, S. Ferdous, F. Liu, P. Kim et al., Dual functional zwitterionic fullerene interlayer for efficient inverted polymer solar cells. Adv. Energy Mater. 5(14), 1500405 (2015). https://doi.org/10.1002/aenm.201500405
- C.S. Jiang, M. Yang, Y. Zhou, B. To, S.U. Nanayakkara et al., Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential. Nat. Commun. 6, 8397 (2015). https://doi.org/10.1038/ncomms9397
- S. Tan, T. Huang, I. Yavuz, R. Wang, T.W. Yoon et al., Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 605(7909), 268–273 (2022). https://doi.org/10.1038/s41586-022-04604-5
- S. Olthof, The impact of uv photoelectron spectroscopy on the field of organic optoelectronics—a retrospective. Adv. Opt. Mater. 9(14), 2100227 (2021). https://doi.org/10.1002/adom.202100227
- W.-S. Tseng, J.-S. Hung, Z.-Y. Jian, J.-Z. Huang, J.-B. Yang et al., The effects of interfacial dipole caused by annealing-free al-doped niox in efficient perovskite solar cells. Sol. Energy 233, 345–352 (2022). https://doi.org/10.1016/j.solener.2021.12.073
- L. Canil, T. Cramer, B. Fraboni, D. Ricciarelli, D. Meggiolaro et al., Tuning halide perovskite energy levels. Energy Environ. Sci. 14(3), 1429–1438 (2021). https://doi.org/10.1039/d0ee02216k
- J.M. Howard, E.M. Tennyson, B.R.A. Neves, M.S. Leite, Machine learning for perovskites’ reap-rest-recovery cycle. Joule 3(2), 325–337 (2019). https://doi.org/10.1016/j.joule.2018.11.010
- J. Li, B. Pradhan, S. Gaur, J. Thomas, Predictions and strategies learned from machine learning to develop high-performing perovskite solar cells. Adv. Energy Mater. 9(46), 1901891 (2019). https://doi.org/10.1002/aenm.201901891
- F. Li, J. Yuan, X. Ling, L. Huang, N. Rujisamphan et al., Metallophthalocyanine-based molecular dipole layer as a universal and versatile approach to realize efficient and stable perovskite solar cells. ACS Appl. Mater. Interfaces 10(49), 42397–42405 (2018). https://doi.org/10.1021/acsami.8b15870
References
J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590(7847), 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu et al., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13(9), 897–903 (2014). https://doi.org/10.1038/nmat4014
M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013). https://doi.org/10.1038/nature12509
Y. Hou, E. Aydin, M. De Bastiani, C. Xiao, F.H. Isikgor et al., Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367(6482), 1135 (2020). https://doi.org/10.1126/science.aaz3691
J. Park, J. Kim, H.-S. Yun, M.J. Paik, E. Noh et al., Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023). https://doi.org/10.1038/s41586-023-05825-y
Y. Wang, Y. Zhang, P. Zhang, W. Zhang, High intrinsic carrier mobility and photon absorption in the perovskite CH3NH3PbI3. Phys. Chem. Chem. Phys. 17(17), 11516–11520 (2015). https://doi.org/10.1039/c5cp00448a
Z. Li, Y. Zhao, X. Wang, Y. Sun, Z. Zhao et al., Cost analysis of perovskite tandem photovoltaics. Joule 2(8), 1559–1572 (2018). https://doi.org/10.1016/j.joule.2018.05.001
L.A. Zafoschnig, S. Nold, J.C. Goldschmidt, The race for lowest costs of electricity production: techno-economic analysis of silicon, perovskite and tandem solar cells. IEEE J. Photovol. 10(6), 1632–1641 (2020). https://doi.org/10.1109/jphotov.2020.3024739
D. Luo, R. Su, W. Zhang, Q. Gong, R. Zhu, Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5(1), 44–60 (2019). https://doi.org/10.1038/s41578-019-0151-y
X. Zhou, W. Qi, J. Li, J. Cheng, Y. Li et al., Toward efficient and stable perovskite solar cells: choosing appropriate passivator to specific defects. Solar RRL 4(10), 2000308 (2020). https://doi.org/10.1002/solr.202000308
E. Aydin, M. De Bastiani, S. De Wolf, Defect and contact passivation for perovskite solar cells. Adv. Mater. 31(25), e1900428 (2019). https://doi.org/10.1002/adma.201900428
C. Luo, Y. Zhao, X. Wang, F. Gao, Q. Zhao, Self-induced type-i band alignment at surface grain boundaries for highly efficient and stable perovskite solar cells. Adv. Mater. 33(40), e2103231 (2021). https://doi.org/10.1002/adma.202103231
M.M. Tavakoli, W. Tress, J.V. Milic, D. Kubicki, L. Emsley et al., Addition of adamantylammonium iodide to hole transport layers enables highly efficient and electroluminescent perovskite solar cells. Energy Environ. Sci. 11(11), 3310–3320 (2018). https://doi.org/10.1039/c8ee02404a
J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M.C.M. van de Sanden et al., Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3. Prog. Photovol. 16(6), 461–466 (2008). https://doi.org/10.1002/pip.823
G. Dingemans, N.M. Terlinden, D. Pierreux, H.B. Profijt, M.C.M. van de Sanden et al., Influence of the oxidant on the chemical and field-effect passivation of si by ALD Al2O3. Electrochem. Solid State Lett. 14(1), H1–H4 (2011). https://doi.org/10.1149/1.3501970
J. Schmidt, F. Werner, B. Veith, D. Zielke, S. Steingrube et al., Advances in the surface passivation of silicon solar cells. Energy Procedia 15, 30–39 (2012). https://doi.org/10.1016/j.egypro.2012.02.004
Z. Zhang, L. Qiao, K. Meng, R. Long, G. Chen et al., Rationalization of passivation strategies toward high-performance perovskite solar cells. Chem. Soc. Rev. 52(1), 163–195 (2023). https://doi.org/10.1039/d2cs00217e
F. Wang, Y. Zhang, M. Yang, D. Han, L. Yang et al., Interface dipole induced field-effect passivation for achieving 21.7% efficiency and stable perovskite solar cells. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202008052
Z. He, C. Zhong, X. Huang, W.Y. Wong, H. Wu et al., Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv. Mater. 23(40), 4636–4643 (2011). https://doi.org/10.1002/adma.201103006
Z. He, C. Zhong, S. Su, M. Xu, H. Wu et al., Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photon. 6(9), 591–595 (2012). https://doi.org/10.1038/nphoton.2012.190
C.C. Chueh, C.Z. Li, A.K.Y. Jen, Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ. Sci. 8(4), 1160–1189 (2015). https://doi.org/10.1039/c4ee03824j
S. Bi, X. Leng, Y. Li, Z. Zheng, X. Zhang et al., Interfacial modification in organic and perovskite solar cells. Adv. Mater. 31(45), e1805708 (2019). https://doi.org/10.1002/adma.201805708
Z. Yang, B.H. Babu, S. Wu, T. Liu, S. Fang et al., Review on practical interface engineering of perovskite solar cells: from efficiency to stability. Solar RRL 4(2), 1900257 (2019). https://doi.org/10.1002/solr.201900257
A.N. Cho, N.G. Park, Impact of interfacial layers in perovskite solar cells. Chemsuschem 10(19), 3687–3704 (2017). https://doi.org/10.1002/cssc.201701095
Z.W. Gao, Y. Wang, W.C.H. Choy, Buried interface modification in perovskite solar cells: a materials perspective. Adv. Energy Mater. 12(20), 2104030 (2022). https://doi.org/10.1002/aenm.202104030
X. Yang, D. Luo, Y. Xiang, L. Zhao, M. Anaya et al., Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 33(7), e2006435 (2021). https://doi.org/10.1002/adma.202006435
S. Chen, Y. Deng, H. Gu, S. Xu, S. Wang et al., Trapping lead in perovskite solar modules with abundant and low-cost cation-exchange resins. Nat. Energy (2020). https://doi.org/10.1038/s41560-020-00716-2
Y. Yang, C. Liu, Y. Ding, Z. Arain, S. Wang et al., Eliminating charge accumulation via interfacial dipole for efficient and stable perovskite solar cells. ACS Appl. Mater. Interfaces 11(38), 34964–34972 (2019). https://doi.org/10.1021/acsami.9b11229
K.-G. Lim, S. Ahn, T.-W. Lee, Energy level alignment of dipolar interface layer in organic and hybrid perovskite solar cells. J. Mater. Chem. C 6(12), 2915–2924 (2018). https://doi.org/10.1039/c8tc00166a
T. Yajima, Y. Hikita, M. Minohara, C. Bell, J.A. Mundy et al., Controlling band alignments by artificial interface dipoles at perovskite heterointerfaces. Nat. Commun. 6, 6759 (2015). https://doi.org/10.1038/ncomms7759
Y. Qiu, J. Liang, Z. Zhang, Z. Deng, H. Xu et al., Tuning the interfacial dipole moment of spacer cations for charge extraction in efficient and ultrastable perovskite solar cells. J. Phys. Chem. C 125(2), 1256–1268 (2021). https://doi.org/10.1021/acs.jpcc.0c09606
W. Li, T. Pohl, J.M. Rost, S.T. Rittenhouse, H.R. Sadeghpour et al., A homonuclear molecule with a permanent electric dipole moment. Science 334(6059), 1110–1114 (2011). https://doi.org/10.1126/science.1211255
A. Nethercot Jr., Molecular dipole moments and electronegativity. Chem. Phys. Lett. 59(2), 346–350 (1978). https://doi.org/10.1016/0009-2614(78)89109-X
C.-L. Chiang, S.-M. Tseng, C.-T. Chen, C.-P. Hsu, C.-F. Shu, Influence of molecular dipoles on the photoluminescence and electroluminescence of dipolar spirobifluorenes. Adv. Funct. Mater. 18(2), 248–257 (2008). https://doi.org/10.1002/adfm.200700154
A. Kahn, N. Koch, W. Gao, Electronic structure and electrical properties of interfaces between metals and π-conjugated molecular films. J. Polym. Sci. Part B Polym. Phys. 41(21), 2529–2548 (2003)
S. Braun, W.R. Salaneck, M. Fahlman, Energy-level alignment at organic/metal and organic/organic interfaces. Adv. Mater. 21(14–15), 1450–1472 (2009). https://doi.org/10.1002/adma.200802893
R. Steim, F.R. Kogler, C.J. Brabec, Interface materials for organic solar cells. J. Mater. Chem. 20(13), 2499–2512 (2010). https://doi.org/10.1039/b921624c
J.P.C. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner et al., Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8(10), 2928–2934 (2015). https://doi.org/10.1039/c5ee02608c
W. Kong, W. Li, C. Liu, H. Liu, J. Miao et al., Organic monomolecular layers enable energy-level matching for efficient hole transporting layer free inverted perovskite solar cells. ACS Nano 13(2), 1625–1634 (2019). https://doi.org/10.1021/acsnano.8b07627
A. Kahn, Fermi level, work function and vacuum level. Mater. Horizons 3(1), 7–10 (2016). https://doi.org/10.1039/c5mh00160a
D. Cahen, A. Kahn, Electron energetics at surfaces and interfaces: concepts and experiments. Adv. Mater. 15(4), 271–277 (2003). https://doi.org/10.1002/adma.200390065
B. de Boer, A. Hadipour, M.M. Mandoc, T. van Woudenbergh, P.W.M. Blom, Tuning of metal work functions with self-assembled monolayers. Adv. Mater. 17(5), 621–625 (2005). https://doi.org/10.1002/adma.200401216
P.R. Brown, D. Kim, R.R. Lunt, N. Zhao, M.G. Bawendi et al., Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 8(6), 5863–5872 (2014). https://doi.org/10.1021/nn500897c
G.-H. Kim, F.P. García de Arquer, Y.J. Yoon, X. Lan, M. Liu et al., High-efficiency colloidal quantum dot photovoltaics via robust self-assembled monolayers. Nano Lett. 15(11), 7691–7696 (2015). https://doi.org/10.1021/acs.nanolett.5b03677
D.A. Kara, K. Kara, G. Oylumluoglu, M.Z. Yigit, M. Can et al., Enhanced device efficiency and long-term stability via boronic acid-based self-assembled monolayer modification of indium tin oxide in a planar perovskite solar cell. ACS Appl. Mater. Interfaces 10(35), 30000–30007 (2018). https://doi.org/10.1021/acsami.8b10445
L. Liu, A. Mei, T. Liu, P. Jiang, Y. Sheng et al., Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. J. Am. Chem. Soc. 137(5), 1790–1793 (2015). https://doi.org/10.1021/ja5125594
K. Choi, H. Choi, J. Min, T. Kim, D. Kim et al., A short review on interface engineering of perovskite solar cells: a self-assembled monolayer and its roles. Sol RRL (2019). https://doi.org/10.1002/solr.201900251
J. Gong, M. Adnani, B.T. Jones, Y. Xin, S. Wang et al., Nanoscale encapsulation of hybrid perovskites using hybrid atomic layer deposition. J. Phys. Chem. Lett. 13(18), 4082–4089 (2022). https://doi.org/10.1021/acs.jpclett.2c00862
J. Gong, Y. Cui, F. Li, M. Liu, Progress in surface modification of SnO2 electron transport layers for stable perovskite solar cells. Small Sci. 5, 2200108 (2023). https://doi.org/10.1002/smsc.202200108
S. Lacher, Y. Matsuo, E. Nakamura, Molecular and supramolecular control of the work function of an inorganic electrode with self-assembled monolayer of umbrella-shaped fullerene derivatives. J. Am. Chem. Soc. 133(42), 16997–17004 (2011). https://doi.org/10.1021/ja2067675
G. Heimel, F. Rissner, E. Zojer, Modeling the electronic properties of π-conjugated self-assembled monolayers. Adv. Mater. 22(23), 2494–2513 (2010). https://doi.org/10.1002/adma.200903855
J. Shi, X. Xu, D. Li, Q. Meng, Interfaces in perovskite solar cells. Small 11(21), 2472–2486 (2015). https://doi.org/10.1002/smll.201403534
I. Mora-Sero, How do perovskite solar cells work? Joule 2(4), 585–587 (2018). https://doi.org/10.1016/j.joule.2018.03.020
T. Leijtens, G.E. Eperon, A.J. Barker, G. Grancini, W. Zhang et al., Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells. Energy Environ. Sci. 9(11), 3472–3481 (2016). https://doi.org/10.1039/c6ee01729k
W.-T. Wang, P. Chen, C.-H. Chiang, T.-F. Guo, C.-G. Wu et al., Synergistic reinforcement of built-in electric fields for highly efficient and stable perovskite photovoltaics. Adv. Funct. Mater. 30(19), 1909755 (2020). https://doi.org/10.1002/adfm.201909755
P. Caprioglio, M. Stolterfoht, C.M. Wolff, T. Unold, B. Rech et al., On the relation between the open-circuit voltage and quasi-fermi level splitting in efficient perovskite solar cells. Adv. Energy Mater. 9(33), 1901631 (2019). https://doi.org/10.1002/aenm.201901631
G.C. Xing, N. Mathews, S.Y. Sun, S.S. Lim, Y.M. Lam et al., Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013). https://doi.org/10.1126/science.1243167
E. Edri, S. Kirmayer, S. Mukhopadhyay, K. Gartsman, G. Hodes et al., Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3-xClx perovskite solar cells. Nat. Commun. 5, 3461 (2014). https://doi.org/10.1038/ncomms4461
W.A. Laban, L. Etgar, Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ. Sci. 6(11), 3249–3253 (2013). https://doi.org/10.1039/c3ee42282h
K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall et al., Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy Environ. Sci. 9(3), 962–970 (2016). https://doi.org/10.1039/c5ee03435c
Y. Yang, M.J. Yang, Z. Li, R. Crisp, K. Zhu et al., Comparison of recombination dynamics in CH3NH3PbBr3 and CH3NH3PbI3 perovskite films: Influence of exciton binding energy. J. Phys. Chem. Lett. 6(23), 4688–4692 (2015). https://doi.org/10.1021/acs.jpclett.5b02290
S. Wang, T. Sakurai, W. Wen, Y. Qi, Energy level alignment at interfaces in metal halide perovskite solar cells. Adv. Mater. Interfaces 5(22), 1800260 (2018). https://doi.org/10.1002/admi.201800260
J.P. Correa-Baena, W. Tress, K. Domanski, E.H. Anaraki, S.H. Turren-Cruz et al., Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells. Energy Environ. Sci. 10(5), 1207–1212 (2017). https://doi.org/10.1039/c7ee00421d
N.-G. Park, H. Segawa, Research direction toward theoretical efficiency in perovskite solar cells. ACS Photon. 5(8), 2970–2977 (2018). https://doi.org/10.1021/acsphotonics.8b00124
W.E.I. Sha, X. Ren, L. Chen, W.C.H. Choy, The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett. 106(22), 221104 (2015). https://doi.org/10.1063/1.4922150
R. Wang, T. Huang, J. Xue, J. Tong, K. Zhu et al., Prospects for metal halide perovskite-based tandem solar cells. Nat. Photon. 15(6), 411–425 (2021). https://doi.org/10.1038/s41566-021-00809-8
L. Chen, G. Zheng, G. Yao, P. Zhang, S. Dai et al., Lead-free perovskite narrow-bandgap oxide semiconductors of rare-earth manganates. ACS Omega 5(15), 8766–8776 (2020). https://doi.org/10.1021/acsomega.0c00138
M. Zhang, Q. Chen, R. Xue, Y. Zhan, C. Wang et al., Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nat. Commun. 10(1), 4593 (2019). https://doi.org/10.1038/s41467-019-12613-8
P. Schulz, D. Cahen, A. Kahn, Halide perovskites: Is it all about the interfaces? Chem. Rev. 119(5), 3349–3417 (2019). https://doi.org/10.1021/acs.chemrev.8b00558
Z. Ni, C. Bao, Y. Liu, Q. Jiang, W.-Q. Wu et al., Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367(6484), 1352 (2020). https://doi.org/10.1126/science.aba0893
J. Kim, A. Ho-Baillie, S.J. Huang, Review of novel passivation techniques for efficient and stable perovskite solar cells. Solar RRL 3(4), 1800302 (2019). https://doi.org/10.1002/solr.201800302
S. Akin, N. Arora, S.M. Zakeeruddin, M. Gratzel, R.H. Friend et al., New strategies for defect passivation in high-efficiency perovskite solar cells. Adv. Energy Mater. 10(13), 1903090 (2020). https://doi.org/10.1002/aenm.201903090
G. Wang, C. Wang, Y. Gao, S. Wen, R.C. MacKenzie et al., Passivation agent with dipole moment for surface modification towards efficient and stable perovskite solar cells. J. Energy Chem. 64, 55–61 (2022). https://doi.org/10.1016/j.jechem.2021.04.023
D. Menzel, A. Al-Ashouri, A. Tejada, I. Levine, J.A. Guerra et al., Field effect passivation in perovskite solar cells by a lif interlayer. Adv. Energy Mater. 12(30), 2201109 (2022). https://doi.org/10.1002/aenm.202201109
L. Liang, H. Luo, J. Hu, H. Li, P. Gao, Efficient perovskite solar cells by reducing interface-mediated recombination: A bulky amine approach. Adv. Energy Mater. 10(14), 2000197 (2020). https://doi.org/10.1002/aenm.202000197
T.Y. Yang, G. Gregori, N. Pellet, M. Gratzel, J. Maier, The significance of ion conduction in a hybrid organic-inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. Int. Ed. 54(27), 7905–7910 (2015). https://doi.org/10.1002/anie.201500014
S. van Reenen, M. Kemerink, H.J. Snaith, Modeling anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 6(19), 3808–3814 (2015). https://doi.org/10.1021/acs.jpclett.5b01645
B. Hu, J. Zhang, Z. Guo, L. Lu, P. Li et al., Manipulating ion migration and interfacial carrier dynamics via amino acid treatment in planar perovskite solar cells. ACS Appl. Mater. Interfaces 14(13), 15840–15848 (2022). https://doi.org/10.1021/acsami.2c01640
H. Liu, Z.Y. Lu, W.H. Zhang, J.T. Wang, Z.L. Lu et al., Anchoring vertical dipole to enable efficient charge extraction for high-performance perovskite solar cells. Adv. Sci. 9(29), 2203640 (2022). https://doi.org/10.1002/advs.202203640
T. Leijtens, G.E. Eperon, N.K. Noel, S.N. Habisreutinger, A. Petrozza et al., Stability of metal halide perovskite solar cells. Adv. Energy Mater. 5(20), 1500963 (2015). https://doi.org/10.1002/aenm.201500963
D.H. Sin, S.B. Jo, S.G. Lee, H. Ko, M. Kim et al., Enhancing the durability and carrier selectivity of perovskite solar cells using a blend interlayer. ACS Appl. Mater. Interfaces 9(21), 18103–18112 (2017). https://doi.org/10.1021/acsami.7b02349
S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas et al., Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14(10), 5561–5568 (2014). https://doi.org/10.1021/nl501982b
W.T. Deng, X.X. Liang, P.S. Kubiak, P.J. Cameron, Molecular interlayers in hybrid perovskite solar cells. Adv. Energy Mater. 8(1), 1701544 (2018). https://doi.org/10.1002/aenm.201701544
Y.H. Li, E.L. Lim, H.B. Xie, J. Song, T.F. Kong et al., Hydrophobic fluorinated conjugated polymer as a multifunctional interlayer for high-performance perovskite solar cells. ACS Photonics 8(11), 3185–3192 (2021). https://doi.org/10.1021/acsphotonics.1c00939
X.X. Gao, D.J. Xue, D. Gao, Q.W. Han, Q.Q. Ge et al., High-mobility hydrophobic conjugated polymer as effective interlayer for air-stable efficient perovskite solar cells. Solar RRL 3(1), 1800232 (2019). https://doi.org/10.1002/solr.201800232
F. Ali, C. Roldan-Carmona, M. Sohail, M.K. Nazeeruddin, Applications of self-assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability. Adv. Energy Mater. 10(48), 2002989 (2020). https://doi.org/10.1002/aenm.202002989
Y.H. Li, H.B. Xie, E.L. Lim, A. Hagfeldt, D.Q. Bi, Recent progress of critical interface engineering for highly efficient and stable perovskite solar cells. Adv. Energy Mater. 12(5), 2102730 (2022). https://doi.org/10.1002/aenm.202102730
C.-C. Chueh, C.-Z. Li, A.K.-Y. Jen, Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ. Sci. 8(4), 1160–1189 (2015). https://doi.org/10.1039/c4ee03824j
L. Huang, Z. Hu, J. Xu, X. Sun, Y. Du et al., Efficient electron-transport layer-free planar perovskite solar cells via recycling the FTO/glass substrates from degraded devices. Solar Energy Mater. Solar Cells 152, 118–124 (2016). https://doi.org/10.1016/j.solmat.2016.03.035
C. Huang, P. Lin, N. Fu, C. Liu, B. Xu et al., Facile fabrication of highly efficient etl-free perovskite solar cells with 20% efficiency by defect passivation and interface engineering. Chem. Commun. 55(19), 2777–2780 (2019). https://doi.org/10.1039/c9cc00312f
W.-Q. Wu, J.-F. Liao, J.-X. Zhong, Y.-F. Xu, L. Wang et al., Suppressing interfacial charge recombiNation in electron-transport-layer-free perovskite solar cells to give an efficiency exceeding 21%. Angew. Chem. Int. Ed. 59(47), 20980–20987 (2020)
S. Huang, Q. Dong, Y. Shi, L. Duan, L. Wang, RbF modified fto electrode enable energy -level matching for efficient electron transport layer -free perovskite solar cells. Chem. Engin. J. 394, 125024 (2020). https://doi.org/10.1016/j.cej.2020.125024
H. Ishii, K. Sugiyama, E. Ito, K. Seki, Energy level alignment and interfacial electronic structures at organic metal and organic organic interfaces. Adv. Mater. 11(8), 605 (1999)
J. Wang, S. Fu, L. Huang, Y. Lu, X. Liu et al., Heterojunction engineering and ideal factor optimization toward efficient minp perovskite solar cells. Adv. Energy Mater. 11(48), 2102724 (2021). https://doi.org/10.1002/aenm.202102724
F. Sadegh, E. Akman, D. Prochowicz, M.M. Tavakoli, P. Yadav et al., Facile NAF treatment achieves 20% efficient etl-free perovskite solar cells. ACS Appl. Mater. Interfaces 14(34), 38631–38641 (2022). https://doi.org/10.1021/acsami.2c06110
F. Wang, M. Yang, Y. Zhang, J. Du, D. Han et al., Constructing m-TiO2/a-WOX hybrid electron transport layer to boost interfacial charge transfer for efficient perovskite solar cells. Chem. Eng. J. 402, 126303 (2020)
S. Khodabakhsh, B.M. Sanderson, J. Nelson, T.S. Jones, Using self-assembling dipole molecules to improve charge collection in molecular solar cells. Adv. Funct. Mater. 16(1), 95–100 (2006). https://doi.org/10.1002/adfm.200500207
J. Zhang, Y. Sun, H. Yu, Reducing energy loss via adjusting the anode work function and perovskite layer morphology for the efficient and stable hole transporting layer-free perovskite solar cells. Chem. Engin. J. 431, 133948 (2022). https://doi.org/10.1016/j.cej.2021.133948
A. Al-Ashouri, A. Magomedov, M. Ross, M. Jost, M. Talaikis et al., Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12(11), 3356–3369 (2019). https://doi.org/10.1039/c9ee02268f
W. Jiang, F. Li, M. Li, F. Qi, F.R. Lin et al., Pi-expanded carbazoles as hole-selective self-assembled monolayers for high-performance perovskite solar cells. Angew. Chem. Int. Ed. 61(51), e202213560 (2022). https://doi.org/10.1002/anie.202213560
A. Al-Ashouri, A. Magomedov, M. Roß, M. Jošt, M. Talaikis et al., Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12(11), 3356–3369 (2019). https://doi.org/10.1039/c9ee02268f
A. Al-Ashouri, E. Kohnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with > 29% efficiency by enhanced hole extraction. Science 370(6522), 1300 (2020). https://doi.org/10.1126/science.abd4016
J. Wang, Z. Yu, D.D. Astridge, Z. Ni, L. Zhao et al., Carbazole-based hole transport polymer for methylammonium-free tin–lead perovskite solar cells with enhanced efficiency and stability. ACS Energy Lett. 7(10), 3353–3361 (2022). https://doi.org/10.1021/acsenergylett.2c01578
N.K. Noel, A. Abate, S.D. Stranks, E.S. Parrott, V.M. Burlakov et al., Enhanced photoluminescence and solar cell performance via lewis base passivation of organic inorganic lead halide perovskites. ACS Nano 8(10), 9815–9821 (2014). https://doi.org/10.1021/nn5036476
M. Acik, I.K. Park, R.E. Koritala, G. Lee, R.A. Rosenberg, Oxygen-induced defects at the lead halide perovskite/graphene oxide interfaces. J. Mater. Chem. A 6(4), 1423–1442 (2018). https://doi.org/10.1039/c7ta10010h
Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J.M. Pringle et al., Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 3(15), 8139–8147 (2015). https://doi.org/10.1039/c5ta00358j
J. Zhao, X. Zheng, Y. Deng, T. Li, Y. Shao et al., Is cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? Energy Environ. Sci. 9(12), 3650–3656 (2016). https://doi.org/10.1039/c6ee02980a
A. Guerrero, J. You, C. Aranda, Y.S. Kang, G. Garcia-Belmonte et al., Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano 10(1), 218–224 (2016). https://doi.org/10.1021/acsnano.5b03687
J. Wang, J. Li, Y. Zhou, C. Yu, Y. Hua et al., Tuning an electrode work function using organometallic complexes in inverted perovskite solar cells. J. Am. Chem. Soc. 143(20), 7759–7768 (2021). https://doi.org/10.1021/jacs.1c02118
D. Qu, T. Guo, J. Zhang, Z. Deng, Z. Zhang et al., PCBM/Ag interface dipole management in inverted perovskite solar cells. Appl. Phys. Lett. 119(14), 143902 (2021)
S. Xiong, M. Yuan, J. Yang, J. Song, X. Guo et al., Engineering of the back contact between pcbm and metal electrode for planar perovskite solar cells with enhanced efficiency and stability. Adv. Opt. Mater. 7(19), 1900542 (2019). https://doi.org/10.1002/adom.201900542
H.L. Wang, H.C. Liu, W.P. Li, L.Q. Zhu, H.N. Chen, Inorganic perovskite solar cells based on carbon electrodes. Nano Energy 77, 105160 (2020). https://doi.org/10.1016/j.nanoen.2020.105160
P. Pradid, K. Sanglee, N. Thongprong, S. Chuangchote, Carbon electrodes in perovskite photovoltaics. Materials 14(20), 5989 (2021). https://doi.org/10.3390/ma14205989
Q. Luo, H. Ma, Q.Z. Hou, Y.X. Li, J. Ren et al., All-carbon-electrode-based endurable flexible perovskite solar cells. Adv. Funct. Mater. 28(11), 1706777 (2018). https://doi.org/10.1002/adfm.201706777
Z. Yan, D. Wang, Y. Jing, X. Wang, H. Zhang et al., Surface dipole affords high-performance carbon-based cspbi2br perovskite solar cells. Chem. Engin. J. 433, 134611 (2022). https://doi.org/10.1016/j.cej.2022.134611
J. Duan, M. Wang, Y. Wang, J. Zhang, Q. Guo et al., Effect of side-group-regulated dipolar passivating molecules on CsPbBr3 perovskite solar cells. ACS Energy Lett. 6(6), 2336–2342 (2021). https://doi.org/10.1021/acsenergylett.1c01060
X.Y. Yang, D.Y. Luo, Y.R. Xiang, L.C. Zhao, M. Anaya et al., Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 33(7), 2006435 (2021). https://doi.org/10.1002/adma.202006435
Q. Jiang, Y. Zhao, X.W. Zhang, X.L. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13(7), 460 (2019). https://doi.org/10.1038/s41566-019-0398-2
W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347(6221), 522–525 (2015). https://doi.org/10.1126/science.aaa0472
X. Li, D. Bi, C. Yi, J.-D. Decoppet, J. Luo et al., A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353(6294), 58–62 (2016). https://doi.org/10.1126/science.aaf8060
R. Azmi, W.T. Hadmojo, S. Sinaga, C.-L. Lee, S.C. Yoon et al., High-efficiency low-temperature ZnO based perovskite solar cells based on highly polar, nonwetting self-assembled molecular layers. Adv. Energy Mater. 8(5), 1701683 (2018). https://doi.org/10.1002/aenm.201701683
K. Choi, J. Lee, H.I. Kim, C.W. Park, G.-W. Kim et al., Thermally stable, planar hybrid perovskite solar cells with high efficiency. Energy Environ. Sci. 11(11), 3238–3247 (2018). https://doi.org/10.1039/c8ee02242a
Q. Wang, C.C. Chueh, T. Zhao, J. Cheng, M. Eslamian et al., Effects of self-assembled monolayer modification of nickel oxide nanops layer on the performance and application of inverted perovskite solar cells. Chemsuschem 10(19), 3794–3803 (2017). https://doi.org/10.1002/cssc.201701262
J.F. Butscher, S. Intorp, J. Kress, Q. An, Y.J. Hofstetter et al., Enhancing the open-circuit voltage of perovskite solar cells by embedding molecular dipoles within their hole-blocking layer. ACS Appl. Mater. Interfaces 12(3), 3572–3579 (2020). https://doi.org/10.1021/acsami.9b18757
Y. Hu, Z. Yang, X. Cui, P. Zeng, F. Li et al., Construction of charge transport channels at the NiOx/perovskite interface through moderate dipoles toward highly efficient inverted solar cells. ACS Appl. Mater. Interfaces 14(11), 13431–13439 (2022). https://doi.org/10.1021/acsami.2c01625
L. Li, Y. Wang, X. Wang, R. Lin, X. Luo et al., Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7(8), 708–717 (2022). https://doi.org/10.1038/s41560-022-01045-2
F. Ansari, E. Shirzadi, M. Salavati-Niasari, T. LaGrange, K. Nonomura et al., Passivation mechanism exploiting surface dipoles affords high-performance perovskite solar cells. J. Am. Chem. Soc. 142(26), 11428–11433 (2020). https://doi.org/10.1021/jacs.0c01704
S.J. Sung, J. Im, G. Kim, C.S. Moon, J.J. Yoo et al., Molecular engineering for function-tailored interface modifier in high-performance perovskite solar cells. Adv. Energy Mater. 12(27), 2200758 (2022). https://doi.org/10.1002/aenm.202200758
G.M. Kim, H. Sato, Y. Ohkura, A. Ishii, T. Miyasaka, Phenethylamine-based interfacial dipole engineering for high voc triple-cation perovskite solar cells. Adv. Energy Mater. 12(1), 2102856 (2021). https://doi.org/10.1002/aenm.202102856
C. Deibel, T. Strobel, V. Dyakonov, Origin of the efficient polaron-pair dissociation in polymer-fullerene blends. Phys. Rev. Lett. 103(3), 036402 (2009). https://doi.org/10.1103/PhysRevLett.103.036402
V.D. Mihailetchi, L.J. Koster, J.C. Hummelen, P.W. Blom, Photocurrent generation in polymer-fullerene bulk heterojunctions. Phys. Rev. Lett. 93(21), 216601 (2004). https://doi.org/10.1103/PhysRevLett.93.216601
Y. Yuan, T.J. Reece, P. Sharma, S. Poddar, S. Ducharme et al., Efficiency enhancement in organic solar cells with ferroelectric polymers. Nat. Mater. 10(4), 296–302 (2011). https://doi.org/10.1038/nmat2951
J.-H. Lee, J. Kim, G. Kim, D. Shin, S.Y. Jeong et al., Introducing paired electric dipole layers for efficient and reproducible perovskite solar cells. Energy Environ. Sci. 11(7), 1742–1751 (2018). https://doi.org/10.1039/c8ee00162f
S. Hu, K. Otsuka, R. Murdey, T. Nakamura, M.A. Truong et al., Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells. Energy Environ. Sci. 15(5), 2096–2107 (2022). https://doi.org/10.1039/d2ee00288d
X. Crispin, V. Geskin, A. Crispin, J. Cornil, R. Lazzaroni et al., Characterization of the interface dipole at organic/metal interfaces. J. Am. Chem. Soc. 124(27), 8131–8141 (2002). https://doi.org/10.1021/ja025673r
I. Avilov, V. Geskin, J. Cornil, Quantum-chemical characterization of the origin of dipole formation at molecular organic/organic interfaces. Adv. Funct. Mater. 19(4), 624–633 (2009). https://doi.org/10.1002/adfm.200800632
C. Feng, X.J. Wang, Z.C. He, Y. Cao, Formation mechanism of pfn dipole interlayer in organic solar cells. Solar RRL 5(4), 2000753 (2021). https://doi.org/10.1002/solr.202000753
M. Xiao, T. Lu, T. Lin, J.S. Andre, Z. Chen, Understanding molecular structures of buried interfaces in halide perovskite photovoltaic devices nondestructively with sub-monolayer sensitivity using sum frequency generation vibrational spectroscopy. Adv. Energy Mater. 10(26), 1903053 (2019). https://doi.org/10.1002/aenm.201903053
X. Lu, C. Zhang, N. Ulrich, M. Xiao, Y.H. Ma et al., Studying polymer surfaces and interfaces with sum frequency generation vibrational spectroscopy. Anal. Chem. 89(1), 466–489 (2017). https://doi.org/10.1021/acs.analchem.6b04320
F.M. Geiger, Second harmonic generation, sum frequency generation, and χ (3): dissecting environmental interfaces with a nonlinear optical swiss army knife. Ann. Rev. Phys. Chem. 60, 61–83 (2009). https://doi.org/10.1146/annurev.physchem.59.032607.093651
Z. Chen, Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy. Prog. Polym. Sci. 35(11), 1376–1402 (2010). https://doi.org/10.1016/j.progpolymsci.2010.07.003
E.C. Yan, L. Fu, Z. Wang, W. Liu, Biological macromolecules at interfaces probed by chiral vibrational sum frequency generation spectroscopy. Chem. Rev. 114(17), 8471–8498 (2014). https://doi.org/10.1021/cr4006044
A.J. Moad, G.J. Simpson, A unified treatment of selection rules and symmetry relations for sum-frequency and second harmonic spectroscopies. J. Phys. Chem. B 108(11), 3548–3562 (2004). https://doi.org/10.1021/jp035362i
X. Zhuang, P. Miranda, D. Kim, Y. Shen, Mapping molecular orientation and conformation at interfaces by surface nonlinear optics. Phys. Rev. B 59(19), 12632 (1999). https://doi.org/10.1103/PhysRevB.59.12632
M. Xiao, S. Joglekar, X. Zhang, J. Jasensky, J. Ma et al., Effect of interfacial molecular orientation on power conversion efficiency of perovskite solar cells. J. Am. Chem. Soc. 139(9), 3378–3386 (2017). https://doi.org/10.1021/jacs.6b10651
M.M. Nahid, E. Gann, L. Thomsen, C.R. McNeill, Nexafs spectroscopy of conjugated polymers. Eur. Polym. J. 81, 532–554 (2016). https://doi.org/10.1016/j.eurpolymj.2016.01.017
A. Braun, F.E. Huggins, N. Shah, Y. Chen, S. Wirick et al., Advantages of soft X-ray absorption over TEM-EELS for solid carbon studies-a comparative study on diesel soot with EELS and NEXAFS. Carbon 43(1), 117–124 (2005). https://doi.org/10.1016/j.carbon.2004.08.029
P. Guttmann, C. Bittencourt, S. Rehbein, P. Umek, X. Ke et al., Nanoscale spectroscopy with polarized X-rays by NEXAFS-TXM. Nat. Photonics 6(1), 25–29 (2012). https://doi.org/10.1038/nphoton.2011.268
S.D. Perera, S.G. Urquhart, Systematic investigation of pi-pi interactions in near-edge X-ray fine structure (NEXAFS) spectroscopy of paracyclophanes. J. Phys. Chem. A 121(26), 4907–4913 (2017). https://doi.org/10.1021/acs.jpca.7b03823
W.E.S. Unger, A. Lippitz, C. Woll, W. Heckmann, X-ray absorption spectroscopy (NEXAFS) of polymer surfaces. Fresenius J. Anal. Chem. 358(1–2), 89–92 (1997). https://doi.org/10.1007/s002160050352
A.H. Pan, A. Xie, S. Hou, X. Yin et al., Surface molecular doping of all-inorganic perovskite using zethrenes molecules. Nano Res. 12(1), 77–84 (2019). https://doi.org/10.1007/s12274-018-2183-9
R. Giridharagopal, P.A. Cox, D.S. Ginger, Functional scanning probe imaging of nanostructured solar energy materials. Acc. Chem. Res. 49(9), 1769–1776 (2016). https://doi.org/10.1021/acs.accounts.6b00255
W. Melitz, J. Shen, A.C. Kummel, S. Lee, Kelvin probe force microscopy and its application. Surface Sci. Rep. 66(1), 1–27 (2011). https://doi.org/10.1016/j.surfrep.2010.10.001
Y. Liu, Z. Page, S. Ferdous, F. Liu, P. Kim et al., Dual functional zwitterionic fullerene interlayer for efficient inverted polymer solar cells. Adv. Energy Mater. 5(14), 1500405 (2015). https://doi.org/10.1002/aenm.201500405
C.S. Jiang, M. Yang, Y. Zhou, B. To, S.U. Nanayakkara et al., Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential. Nat. Commun. 6, 8397 (2015). https://doi.org/10.1038/ncomms9397
S. Tan, T. Huang, I. Yavuz, R. Wang, T.W. Yoon et al., Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 605(7909), 268–273 (2022). https://doi.org/10.1038/s41586-022-04604-5
S. Olthof, The impact of uv photoelectron spectroscopy on the field of organic optoelectronics—a retrospective. Adv. Opt. Mater. 9(14), 2100227 (2021). https://doi.org/10.1002/adom.202100227
W.-S. Tseng, J.-S. Hung, Z.-Y. Jian, J.-Z. Huang, J.-B. Yang et al., The effects of interfacial dipole caused by annealing-free al-doped niox in efficient perovskite solar cells. Sol. Energy 233, 345–352 (2022). https://doi.org/10.1016/j.solener.2021.12.073
L. Canil, T. Cramer, B. Fraboni, D. Ricciarelli, D. Meggiolaro et al., Tuning halide perovskite energy levels. Energy Environ. Sci. 14(3), 1429–1438 (2021). https://doi.org/10.1039/d0ee02216k
J.M. Howard, E.M. Tennyson, B.R.A. Neves, M.S. Leite, Machine learning for perovskites’ reap-rest-recovery cycle. Joule 3(2), 325–337 (2019). https://doi.org/10.1016/j.joule.2018.11.010
J. Li, B. Pradhan, S. Gaur, J. Thomas, Predictions and strategies learned from machine learning to develop high-performing perovskite solar cells. Adv. Energy Mater. 9(46), 1901891 (2019). https://doi.org/10.1002/aenm.201901891
F. Li, J. Yuan, X. Ling, L. Huang, N. Rujisamphan et al., Metallophthalocyanine-based molecular dipole layer as a universal and versatile approach to realize efficient and stable perovskite solar cells. ACS Appl. Mater. Interfaces 10(49), 42397–42405 (2018). https://doi.org/10.1021/acsami.8b15870