Electrochemical Fabrication of rGO-embedded Ag-TiO2 Nanoring/Nanotube Arrays for Plasmonic Solar Water Splitting
Corresponding Author: Lixia Sang
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 97
Abstract
Effective utilization of hot electrons generated from the decay of surface plasmon resonance in metal nanoparticles is conductive to improve solar water splitting efficiency. Herein, Ag nanoparticles and reduced graphene oxide (rGO) co-decorated hierarchical TiO2 nanoring/nanotube arrays (TiO2 R/T) were facilely fabricated by using two-step electrochemical anodization, electrodeposition, and photoreduction methods. Comparative studies were conducted to elucidate the effects of rGO and Ag on the morphology, photoresponse, charge transfer, and photoelectric properties of TiO2. Firstly, scanning electron microscope images confirm that the Ag nanoparticles adhered on TiO2 R/T and TiO2 R/T-rGO have similar diameter of 20 nm except for TiO2 R-rGO/T. Then, the UV–Vis DRS and scatter spectra reveal that the optical property of the Ag-TiO2 R/T-rGO ternary composite is enhanced, ascribing to the visible light absorption of plasmonic Ag nanoparticles and the weakening effect of rGO on light scattering. Meanwhile, intensity-modulated photocurrent spectroscopy and photoluminescence spectra demonstrate that rGO can promote the hot electrons transfer from Ag nanoparticles to Ti substrate, reducing the photogenerated electron–hole recombination. Finally, Ag-TiO2 R/T-rGO photoanode exhibits high photocurrent density (0.98 mA cm−2) and photovoltage (0.90 V), and the stable H2 evolution rate of 413 μL h−1 cm−2 within 1.5 h under AM 1.5 which exceeds by 1.30 times than that of pristine TiO2 R/T. In line with the above results, this work provides a reliable route synergizing rGO with plasmonic metal nanoparticles for photocatalysis, in which, rGO presents a broad absorption spectrum and effective photogenerated electrons transfer.
Highlights:
1 Reduced graphene oxide (rGO) in electrode can weaken the light scattering of plasmonic Ag nanoparticles and promote the hot electrons transfer from Ag nanoparticles to Ti substrate.
2 A route synergizing rGO with plasmonic Ag on TiO2 for plasmonic solar water splitting was provided.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.Y. Park, L.R. Baker, G.A. Somorjai, Role of hot electrons and metal-oxide interfaces in surface chemistry and catalytic reactions. Chem. Rev. 115(8), 2781–2817 (2015). https://doi.org/10.1021/cr400311p
- Z.C. Lian, W.C. Wang, S.N. Xiao, X. Li, Y.Y. Cui et al., Plasmonic silver quantum dots coupled with hierarchical TiO2 nanotube arrays photoelectrodes for efficient visible-light photoelectrocatalytic hydrogen evolution. Sci. Rep. 5, 10461 (2015). https://doi.org/10.1038/srep10461
- B.Y. Chen, X. Chen, R.Y. Li, W.Q. Fan, F.F. Wang, B.D. Mao, W.D. Shi, Flame reduced TiO2 nanorod arrays with Ag nanoparticle decoration for efficient solar water splitting. Ind. Eng. Chem. Res. 58, 4818–4827 (2019). https://doi.org/10.1021/acs.iecr.8b06171
- K. Mohammadi, A. Moshaii, M. Azimzadehirani, Z.S. Pourbakhsh, Photoelectrochemical activity of Ag loaded TiO2 nanotube arrays produced by sequential chemical bath deposition for water splitting. Mater. Sci. Eng. 30(2), 1878–1884 (2019). https://doi.org/10.1007/s10854-018-0460-8
- L.X. Sang, H. Ge, B.W. Sun, Probing plasmonic Ag nanoparticles on TiO2 nanotube arrays electrode for efficient solar water splitting. Int. J. Hydrog. Energy 44(30), 15787–15794 (2018). https://doi.org/10.1016/j.ijhydene.2018.09.094
- X.C. Ma, Y. Dai, L. Yu, B.B. Huang, Interface Schottky barrier engineering via strain in metal-semiconductor composites. Nanoscale 8(3), 1352–1359 (2015). https://doi.org/10.1039/C5NR05583K
- J.B. Khurgin, Hot carriers generated by plasmons: where are they generated and where do they go from there? Faraday Discuss. 214, 35–58 (2019). https://doi.org/10.1039/C8FD00200B
- M.Y. Pan, Q. Li, M. Qiu, Hot electrons in metallic micro/nano-structures. Physics 45(12), 781–789 (2016)
- X.L. Gou, Y.L. Cheng, B. Liu, B.J. Yang, X.B. Yan, Fabrication and photocatalytic properties of TiO2/reduced graphene oxide/Ag nanocomposites with UV/Vis response. Eur. J. Inorg. Chem. 2015(13), 2222–2228 (2015). https://doi.org/10.1002/ejic.201403238
- B. Ramireddy, T.K. Saji, K. Heejun, J.J. Myung, M.M. Filipe, H.P. Jong, H.K. Dong, Plasmon-sensitized graphene/TiO2 inverse opal nanostructures with enhanced charge collection efficiency for water splitting. ACS Appl. Mater. Interfaces 9(8), 7075–7083 (2017). https://doi.org/10.1021/acsami.6b14618
- S. Bai, J. Jiang, Q. Zhang, Y.J. Xiong, Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 44(10), 2893–2939 (2015). https://doi.org/10.1039/C5CS00064E
- F.L. Shi, J. He, B.Y. Zhang, J.H. Peng, Y.L. Ma et al., Plasmonic-enhanced oxygen reduction reaction of silver/graphene electrocatalysts. Nano Lett. 19(2), 1371–1378 (2019). https://doi.org/10.1021/acs.nanolett.8b05053
- G.C. Xie, L.M. Guan, L.J. Zhang, B.D. Guo, A.S. Batool et al., Interaction-dependent interfacial charge-transfer behavior in solar water-splitting systems. Nano Lett. 19(2), 1234–1241 (2019). https://doi.org/10.1021/acs.nanolett.8b04768
- Z.L. Ren, J. Wen, W. Liu, X.P. Jiang, Y.H. Dong et al., Rational design of layered SnS2 on ultralight graphene fiber fabrics as binder-free anodes for enhanced practical capacity of sodium-ion batteries. Nano-Micro Lett. 11(1), 66 (2019). https://doi.org/10.1007/s40820-019-0297-6
- Q.Q. Lang, Y.H. Chen, T.L. Huang, L.N. Yang, S.X. Zhang, L.J. Wu, J.R. Chen, S. Bai, Graphene “bridge” in transferring hot electrons from plasmonic Ag nanocubes to TiO2 nanosheets for enhanced visible light photocatalytic hydrogen evolution. Appl. Catal. B 220, 182–190 (2017). https://doi.org/10.1016/j.apcatb.2017.08.045
- W.Y. Gao, M.Q. Wang, C.X. Ran, X. Yao, H.H. Yang, J. Liu, D.L. He, J.B. Bai, One-pot synthesis of Ag/r-GO/TiO2 nanocomposites with high solar absorption and enhanced anti-recombination in Photocatalytic applications. Nanoscale 6(10), 5498–5508 (2014). https://doi.org/10.1039/c3nr05466g
- P. Wang, L. Han, C.Z. Zhu, Y.M. Zhai, S.J. Dong, Aqueous-phase synthesis of Ag-TiO2-reduced graphene oxide and Pt-TiO2-reduced graphene oxide hybrid nanostructures and their catalytic properties. Nano Res. 4(11), 1153–1162 (2011). https://doi.org/10.1007/s12274-011-0165-2
- K.C. Hsu, D.H. Chen, Highly sensitive, uniform, and reusable surface-enhanced Raman scattering substrate with TiO2 interlayer between Ag nanoparticles and reduced graphene oxide. ACS Appl. Mater. Interfaces 7(49), 27571–27579 (2015). https://doi.org/10.1021/acsami.5b08792
- E. Vasilaki, I. Georgaki, D. Vernardou, M. Vamvakaki, N. Katsarakis, Ag-loaded TiO2/reduced graphene oxide nanocomposites for enhanced visible-light photocatalytic activity. Appl. Surf. Sci. 353, 865–872 (2015). https://doi.org/10.1016/j.apsusc.2015.07.056
- K.H. Leong, L.C. Sim, D. Bahnemann, M. Jang, S. Ibrahim, P. Saravanan, Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis. APL Mater. 3(10), 104503 (2015). https://doi.org/10.1063/1.4926454
- W.L. Ong, M. Gao, G.W. Ho, Hybrid organic PVDF-inorganic M-rGO-TiO2 (M = Ag, Pt) nanocomposites for multifunctional volatile organic compound sensing and photocatalytic degradation-H2 production. Nanoscale 5(22), 11283–11290 (2013). https://doi.org/10.1039/c3nr03276k
- M. Nasrollahzadeh, M. Atarod, B. Jaleh, M. Gandomirouzbahani, In situ green synthesis of Ag nanoparticles on graphene oxide/TiO2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol, congo red and methylene blue. Ceram. Int. 42(7), 8587–8596 (2016). https://doi.org/10.1016/j.ceramint.2016.02.088
- B. Pant, P.S. Saud, M. Park, S.J. Park, H.Y. Kim, General one-pot strategy to prepare Ag-TiO2 decorated reduced graphene oxide nanocomposites for chemical and biological disinfectant. J. Alloys Compd. 671, 51–59 (2016). https://doi.org/10.1016/j.jallcom.2016.02.067
- H.W. Tian, C.X. Wan, X. Xue, X.Y. Hu, X.Y. Wang, Effective electron transfer pathway of the ternary TiO2/RGO/Ag nanocomposite with enhanced photocatalytic activity under visible light. Catalysts 7(5), 156 (2017). https://doi.org/10.3390/catal7050156
- Y.H. Liu, Z. Yi, L.Y. Yang, Y.T. Wang, Y.W. Wu, C.C. Li, J. Lu, Hydrothermal synthesis of 3D urchin-like Ag/TiO2/reduced graphene oxide composites and its enhanced photocatalytic performance. J. Nanopart. Res. 18(9), 283 (2016). https://doi.org/10.1007/s11051-016-3596-6
- Y.H. Tang, S.L. Luo, Y.R. Teng, C.B. Liu, X.L. Xu, X.L. Zhang, L. Chen, Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays. J. Hazard. Mater. 241, 323–330 (2012). https://doi.org/10.1016/j.jhazmat.2012.09.050
- Y. Wang, Y.H. Tang, Y. Chen, Y. Li, X.N. Liu, S.L. Luo, C.B. Liu, Reduced graphene oxide-based photocatalysts containing Ag nanoparticles on a TiO2 nanotube array. J. Mater. Sci. 48(18), 6203–6211 (2013). https://doi.org/10.1007/978-3-642-44913-0
- P. Shahini, A.A. Ashkarran, TiO2 nanofibers assembled on graphene-silver platform as a visible-light photo and bio-active nanostructure. Ceram. Int. 43(12), 8655–8663 (2017). https://doi.org/10.1016/j.ceramint.2017.03.189
- Z.Y. Wang, Z.X. Low, X.K. Zeng, B. Su, Y.C. Yin et al., Vertically-heterostructured TiO2-Ag-rGO ternary nanocomposite constructed with 001 facetted TiO2 nanosheets for enhanced Pt-free hydrogen production. Int. J. Hydrog. Energy 43(3), 1508–1515 (2017). https://doi.org/10.1016/j.ijhydene.2017.11.053
- L.X. Sang, Y.B. Zhao, Y.C. Niu, G.M. Bai, TiO2 with controlled nanoring/nanotube hierarchical structure: multiabsorption oscillating peaks and photoelectrochemical properties. Appl. Surf. Sci. 430, 496–504 (2017). https://doi.org/10.1016/j.apsusc.2017.04.216
- S. Li, Y.S. Lin, Y.Y. Wei, H.Q. Hu, Preparation of graphene by UV light irradiation. J. Qingdao Univ. Sci. Technol. 37(6), 631–636 (2016)
- S. Wang, Z.-S. Wu, S.H. Zheng, F. Zhou, C.L. Sun, H.-M. Cheng, X.H. Bao, Scalable fabrication of photochemically reduced graphene-based monolithic micro-supercapacitors with superior energy and power densities. ACS Nano 11(4), 4283–4291 (2017). https://doi.org/10.1021/acsnano.7b01390
- Z.Y. Zhao, Theoretical study of Pt cocatalyst loading on anatase TiO2 (101) surface: from surface doping to interface forming. J. Phys. Chem. C 118(42), 24591–24602 (2014). https://doi.org/10.1021/jp508074e
- L. Sun, J. Li, C.L. Wang, S.F. Li, Y.K. Lai, H.B. Chen, C.J. Lin, Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity. J. Hazard. Mater. 171(1–3), 1045–1050 (2009). https://doi.org/10.1016/j.jhazmat.2009.06.115
- T.R. Wu, H.L. Shen, L. Sun, B. Cheng, B. Liu, J.C. Shen, Facile synthesis of Ag interlayer doped graphene by chemical vapor deposition using polystyrene as solid carbon source. ACS Appl. Mater. Interfaces 4(4), 2041–2047 (2012). https://doi.org/10.1021/am300014c
- Q. Zhang, S.Y. Ye, X.M. Chen, X.L. Song, L.Q. Li, X. Huang, Photocatalytic degradation of ethylene using titanium dioxide nanotube arrays with Ag and reduced graphene oxide irradiated by γ-ray radiolysis. Appl. Catal. B 203, 673–683 (2017). https://doi.org/10.1016/j.apcatb.2016.10.034
- Y.M. Liu, C.L. Hou, T.F. Jiao, J.W. Song, X. Zhang et al., Self-assembled Ag NP-Containing nanocomposites constructed by electrospinning as efficient dye photocatalyst materials for wastewater treatment. Nanomaterials 8(1), 35 (2018). https://doi.org/10.3390/nano8010035
- C.G. He, Z.X. Liu, Y. Lu, L.P. Huang, Y.K. Yang, Graphene-supported silver nanoparticles with high activities toward chemical catalytic reduction of methylene blue and electrocatalytic oxidation of hydrazine. Int. J. Electrochem. Sci. 11(11), 9566–9574 (2016). https://doi.org/10.20964/2016.11.72
- J.X. Low, S.Q. Qiu, D.F. Xu, C.J. Jiang, B. Cheng, Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO2 nanotube arrays for photocatalytic CO2 reduction. Appl. Surf. Sci. 434, 423–432 (2017). https://doi.org/10.1016/j.apsusc.2017.10.194
- L. Lin, M. Chen, H.Y. Qin, X.G. Peng, Ag nanocrystals with nearly ideal optical quality: synthesis, growth mechanism, and characterizations. J. Am. Chem. Soc. 140(50), 17734–17742 (2018). https://doi.org/10.1021/jacs.8b10793
- G.H. Liu, K. Du, J.L. Xu, G. Chen, M.Y. Gu, C.P. Yang, K.Y. Wang, H. Jakobsen, Plasmon-dominated photoelectrodes for solar water splitting. J. Mater. Chem. 5(9), 4233–4253 (2017). https://doi.org/10.1039/C6TA10471A
- Y.Y. Cai, J.G. Liu, L.J. Tauzin, D. Huang, E. Sung et al., Photoluminescence of gold nanorods: purcell effect enhanced emission from hot carriers. ACS Nano 12(2), 976–985 (2018). https://doi.org/10.1021/acsnano.7b07402
- Y.Y. Cai, E. Sung, R.M. Zhang, L.J. Tauzin, J.G. Liu et al., Anti-Stokes emission from hot carriers in gold nanorods. Nano Lett. 19(2), 1067–1073 (2019). https://doi.org/10.1021/acs.nanolett.8b04359
- Y.Y. Duan, J.M. Luo, S.C. Zhou, X.Y. Mao, M.W. Shah et al., TiO2-supported Ag nanoclusters with enhanced visible light activity for the photocatalytic removal of NO. Appl. Catal. B 234, 206–212 (2018). https://doi.org/10.1016/j.apcatb.2018.04.041
- J.X. Li, L.X. Yang, S.L. Luo, B.B. Chen, J. Li et al., Polycyclic aromatic hydrocarbon detection by electrochemiluminescence generating Ag/TiO2 nanotubes. Anal. Chem. 82(17), 7357–7361 (2010). https://doi.org/10.1021/ac101392f
- Y. Yu, K.D. Wijesekara, X.X. Xi, K.A. Willets, Quantifying wavelength-dependent plasmonic hot carrier energy distributions at metal/semiconductor interfaces. ACS Nano 13(3), 3629–3637 (2019). https://doi.org/10.1021/acsnano.9b00219
- A.G. Marinopoulos, L. Reining, A. Rubio, V. Olevano, Ab initio study of the optical absorption and wave-vector-dependent dielectric response of graphite. Phys. Rev. B 69(24), 245419 (2004). https://doi.org/10.1103/PhysRevB.69.245419
- H.Z. Wang, Y.Y. Gao, J. Liu, X.Y. Li, M.W. Ji et al., Efficient plasmonic Au/CdSe nanodumbbell for photoelectrochemical hydrogen generation beyond visible region. Adv. Energy Mater. 9(15), 1803889 (2019). https://doi.org/10.1002/aenm.201803889
- C.H. Liu, F. Wang, J. Zhang, K. Wang, Y.Y. Qiu, Q. Liang, Z.D. Chen, Efficient photoelectrochemical water splitting by g-C3N4/TiO2 nanotube array heterostructures. Nano-Micro Lett. 10(2), 37 (2018). https://doi.org/10.1007/s40820-018-0192-6
- H. Zhang, G. Wang, D. Chen, X.J. Lv, J.H. Li, Tuning photoelectrochemical performances of Ag-TiO2 nanocomposites via reduction/oxidation of Ag. Chem. Mater. 20(20), 6543–6549 (2008). https://doi.org/10.1021/cm801796q
- B.H. Lee, S. Park, M. Kim, A.K. Sinha, S.C. Lee et al., Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 18(6), 620–629 (2019). https://doi.org/10.1038/s41563-019-0344-1
- T.F. Yeh, F.-F. Chan, C.-T. Hsieh, H. Teng, Graphite oxide with different oxygenated levels for hydrogen and oxygen production from water under illumination: the band positions of graphite oxide. J. Phys. Chem. C 115(45), 22587–22597 (2011). https://doi.org/10.1021/jp204856c
- T.F. Yeh, J.M. Syu, C. Cheng, T.H. Chang, H. Teng, Graphite oxide as a photocatalyst for hydrogen production from water. Adv. Funct. Mater. 20(14), 2255–2262 (2010). https://doi.org/10.1002/adfm.201000274
- Q. Chen, Z.X. Yu, F. Li, Y. Yang, Y. Pan, Y.X. Peng, X. Yang, G.Y. Zeng, A novel photocatalytic membrane decorated with rGO-Ag-TiO2 for dye degradation and oil-water emulsion separation. J. Chem. Technol. Biotechnol. 93(3), 761–775 (2017). https://doi.org/10.1002/jctb.5426
- W. Zhao, J. Zhang, F.X. Zhu, F.H. Mu, L.L. Zhang et al., Study the photocatalytic mechanism of the novel Ag/p-Ag2O/n-BiVO4 plasmonic photocatalyst for the simultaneous removal of BPA and chromium (VI). Chem. Eng. J. 361, 1352–1362 (2019). https://doi.org/10.1016/j.cej.2018.12.181
- S. Akel, R. Dillert, N.O. Balayeva, R. Boughaled, J. Koch, M.E. Azzouzi, D.W. Bahnemann, Ag/Ag2O as a co-catalyst in TiO2 photocatalysis: effect of the co-catalyst/photocatalyst mass ratio. Catalysts 8(12), 647 (2018). https://doi.org/10.3390/catal8120647
References
J.Y. Park, L.R. Baker, G.A. Somorjai, Role of hot electrons and metal-oxide interfaces in surface chemistry and catalytic reactions. Chem. Rev. 115(8), 2781–2817 (2015). https://doi.org/10.1021/cr400311p
Z.C. Lian, W.C. Wang, S.N. Xiao, X. Li, Y.Y. Cui et al., Plasmonic silver quantum dots coupled with hierarchical TiO2 nanotube arrays photoelectrodes for efficient visible-light photoelectrocatalytic hydrogen evolution. Sci. Rep. 5, 10461 (2015). https://doi.org/10.1038/srep10461
B.Y. Chen, X. Chen, R.Y. Li, W.Q. Fan, F.F. Wang, B.D. Mao, W.D. Shi, Flame reduced TiO2 nanorod arrays with Ag nanoparticle decoration for efficient solar water splitting. Ind. Eng. Chem. Res. 58, 4818–4827 (2019). https://doi.org/10.1021/acs.iecr.8b06171
K. Mohammadi, A. Moshaii, M. Azimzadehirani, Z.S. Pourbakhsh, Photoelectrochemical activity of Ag loaded TiO2 nanotube arrays produced by sequential chemical bath deposition for water splitting. Mater. Sci. Eng. 30(2), 1878–1884 (2019). https://doi.org/10.1007/s10854-018-0460-8
L.X. Sang, H. Ge, B.W. Sun, Probing plasmonic Ag nanoparticles on TiO2 nanotube arrays electrode for efficient solar water splitting. Int. J. Hydrog. Energy 44(30), 15787–15794 (2018). https://doi.org/10.1016/j.ijhydene.2018.09.094
X.C. Ma, Y. Dai, L. Yu, B.B. Huang, Interface Schottky barrier engineering via strain in metal-semiconductor composites. Nanoscale 8(3), 1352–1359 (2015). https://doi.org/10.1039/C5NR05583K
J.B. Khurgin, Hot carriers generated by plasmons: where are they generated and where do they go from there? Faraday Discuss. 214, 35–58 (2019). https://doi.org/10.1039/C8FD00200B
M.Y. Pan, Q. Li, M. Qiu, Hot electrons in metallic micro/nano-structures. Physics 45(12), 781–789 (2016)
X.L. Gou, Y.L. Cheng, B. Liu, B.J. Yang, X.B. Yan, Fabrication and photocatalytic properties of TiO2/reduced graphene oxide/Ag nanocomposites with UV/Vis response. Eur. J. Inorg. Chem. 2015(13), 2222–2228 (2015). https://doi.org/10.1002/ejic.201403238
B. Ramireddy, T.K. Saji, K. Heejun, J.J. Myung, M.M. Filipe, H.P. Jong, H.K. Dong, Plasmon-sensitized graphene/TiO2 inverse opal nanostructures with enhanced charge collection efficiency for water splitting. ACS Appl. Mater. Interfaces 9(8), 7075–7083 (2017). https://doi.org/10.1021/acsami.6b14618
S. Bai, J. Jiang, Q. Zhang, Y.J. Xiong, Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 44(10), 2893–2939 (2015). https://doi.org/10.1039/C5CS00064E
F.L. Shi, J. He, B.Y. Zhang, J.H. Peng, Y.L. Ma et al., Plasmonic-enhanced oxygen reduction reaction of silver/graphene electrocatalysts. Nano Lett. 19(2), 1371–1378 (2019). https://doi.org/10.1021/acs.nanolett.8b05053
G.C. Xie, L.M. Guan, L.J. Zhang, B.D. Guo, A.S. Batool et al., Interaction-dependent interfacial charge-transfer behavior in solar water-splitting systems. Nano Lett. 19(2), 1234–1241 (2019). https://doi.org/10.1021/acs.nanolett.8b04768
Z.L. Ren, J. Wen, W. Liu, X.P. Jiang, Y.H. Dong et al., Rational design of layered SnS2 on ultralight graphene fiber fabrics as binder-free anodes for enhanced practical capacity of sodium-ion batteries. Nano-Micro Lett. 11(1), 66 (2019). https://doi.org/10.1007/s40820-019-0297-6
Q.Q. Lang, Y.H. Chen, T.L. Huang, L.N. Yang, S.X. Zhang, L.J. Wu, J.R. Chen, S. Bai, Graphene “bridge” in transferring hot electrons from plasmonic Ag nanocubes to TiO2 nanosheets for enhanced visible light photocatalytic hydrogen evolution. Appl. Catal. B 220, 182–190 (2017). https://doi.org/10.1016/j.apcatb.2017.08.045
W.Y. Gao, M.Q. Wang, C.X. Ran, X. Yao, H.H. Yang, J. Liu, D.L. He, J.B. Bai, One-pot synthesis of Ag/r-GO/TiO2 nanocomposites with high solar absorption and enhanced anti-recombination in Photocatalytic applications. Nanoscale 6(10), 5498–5508 (2014). https://doi.org/10.1039/c3nr05466g
P. Wang, L. Han, C.Z. Zhu, Y.M. Zhai, S.J. Dong, Aqueous-phase synthesis of Ag-TiO2-reduced graphene oxide and Pt-TiO2-reduced graphene oxide hybrid nanostructures and their catalytic properties. Nano Res. 4(11), 1153–1162 (2011). https://doi.org/10.1007/s12274-011-0165-2
K.C. Hsu, D.H. Chen, Highly sensitive, uniform, and reusable surface-enhanced Raman scattering substrate with TiO2 interlayer between Ag nanoparticles and reduced graphene oxide. ACS Appl. Mater. Interfaces 7(49), 27571–27579 (2015). https://doi.org/10.1021/acsami.5b08792
E. Vasilaki, I. Georgaki, D. Vernardou, M. Vamvakaki, N. Katsarakis, Ag-loaded TiO2/reduced graphene oxide nanocomposites for enhanced visible-light photocatalytic activity. Appl. Surf. Sci. 353, 865–872 (2015). https://doi.org/10.1016/j.apsusc.2015.07.056
K.H. Leong, L.C. Sim, D. Bahnemann, M. Jang, S. Ibrahim, P. Saravanan, Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis. APL Mater. 3(10), 104503 (2015). https://doi.org/10.1063/1.4926454
W.L. Ong, M. Gao, G.W. Ho, Hybrid organic PVDF-inorganic M-rGO-TiO2 (M = Ag, Pt) nanocomposites for multifunctional volatile organic compound sensing and photocatalytic degradation-H2 production. Nanoscale 5(22), 11283–11290 (2013). https://doi.org/10.1039/c3nr03276k
M. Nasrollahzadeh, M. Atarod, B. Jaleh, M. Gandomirouzbahani, In situ green synthesis of Ag nanoparticles on graphene oxide/TiO2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol, congo red and methylene blue. Ceram. Int. 42(7), 8587–8596 (2016). https://doi.org/10.1016/j.ceramint.2016.02.088
B. Pant, P.S. Saud, M. Park, S.J. Park, H.Y. Kim, General one-pot strategy to prepare Ag-TiO2 decorated reduced graphene oxide nanocomposites for chemical and biological disinfectant. J. Alloys Compd. 671, 51–59 (2016). https://doi.org/10.1016/j.jallcom.2016.02.067
H.W. Tian, C.X. Wan, X. Xue, X.Y. Hu, X.Y. Wang, Effective electron transfer pathway of the ternary TiO2/RGO/Ag nanocomposite with enhanced photocatalytic activity under visible light. Catalysts 7(5), 156 (2017). https://doi.org/10.3390/catal7050156
Y.H. Liu, Z. Yi, L.Y. Yang, Y.T. Wang, Y.W. Wu, C.C. Li, J. Lu, Hydrothermal synthesis of 3D urchin-like Ag/TiO2/reduced graphene oxide composites and its enhanced photocatalytic performance. J. Nanopart. Res. 18(9), 283 (2016). https://doi.org/10.1007/s11051-016-3596-6
Y.H. Tang, S.L. Luo, Y.R. Teng, C.B. Liu, X.L. Xu, X.L. Zhang, L. Chen, Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays. J. Hazard. Mater. 241, 323–330 (2012). https://doi.org/10.1016/j.jhazmat.2012.09.050
Y. Wang, Y.H. Tang, Y. Chen, Y. Li, X.N. Liu, S.L. Luo, C.B. Liu, Reduced graphene oxide-based photocatalysts containing Ag nanoparticles on a TiO2 nanotube array. J. Mater. Sci. 48(18), 6203–6211 (2013). https://doi.org/10.1007/978-3-642-44913-0
P. Shahini, A.A. Ashkarran, TiO2 nanofibers assembled on graphene-silver platform as a visible-light photo and bio-active nanostructure. Ceram. Int. 43(12), 8655–8663 (2017). https://doi.org/10.1016/j.ceramint.2017.03.189
Z.Y. Wang, Z.X. Low, X.K. Zeng, B. Su, Y.C. Yin et al., Vertically-heterostructured TiO2-Ag-rGO ternary nanocomposite constructed with 001 facetted TiO2 nanosheets for enhanced Pt-free hydrogen production. Int. J. Hydrog. Energy 43(3), 1508–1515 (2017). https://doi.org/10.1016/j.ijhydene.2017.11.053
L.X. Sang, Y.B. Zhao, Y.C. Niu, G.M. Bai, TiO2 with controlled nanoring/nanotube hierarchical structure: multiabsorption oscillating peaks and photoelectrochemical properties. Appl. Surf. Sci. 430, 496–504 (2017). https://doi.org/10.1016/j.apsusc.2017.04.216
S. Li, Y.S. Lin, Y.Y. Wei, H.Q. Hu, Preparation of graphene by UV light irradiation. J. Qingdao Univ. Sci. Technol. 37(6), 631–636 (2016)
S. Wang, Z.-S. Wu, S.H. Zheng, F. Zhou, C.L. Sun, H.-M. Cheng, X.H. Bao, Scalable fabrication of photochemically reduced graphene-based monolithic micro-supercapacitors with superior energy and power densities. ACS Nano 11(4), 4283–4291 (2017). https://doi.org/10.1021/acsnano.7b01390
Z.Y. Zhao, Theoretical study of Pt cocatalyst loading on anatase TiO2 (101) surface: from surface doping to interface forming. J. Phys. Chem. C 118(42), 24591–24602 (2014). https://doi.org/10.1021/jp508074e
L. Sun, J. Li, C.L. Wang, S.F. Li, Y.K. Lai, H.B. Chen, C.J. Lin, Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity. J. Hazard. Mater. 171(1–3), 1045–1050 (2009). https://doi.org/10.1016/j.jhazmat.2009.06.115
T.R. Wu, H.L. Shen, L. Sun, B. Cheng, B. Liu, J.C. Shen, Facile synthesis of Ag interlayer doped graphene by chemical vapor deposition using polystyrene as solid carbon source. ACS Appl. Mater. Interfaces 4(4), 2041–2047 (2012). https://doi.org/10.1021/am300014c
Q. Zhang, S.Y. Ye, X.M. Chen, X.L. Song, L.Q. Li, X. Huang, Photocatalytic degradation of ethylene using titanium dioxide nanotube arrays with Ag and reduced graphene oxide irradiated by γ-ray radiolysis. Appl. Catal. B 203, 673–683 (2017). https://doi.org/10.1016/j.apcatb.2016.10.034
Y.M. Liu, C.L. Hou, T.F. Jiao, J.W. Song, X. Zhang et al., Self-assembled Ag NP-Containing nanocomposites constructed by electrospinning as efficient dye photocatalyst materials for wastewater treatment. Nanomaterials 8(1), 35 (2018). https://doi.org/10.3390/nano8010035
C.G. He, Z.X. Liu, Y. Lu, L.P. Huang, Y.K. Yang, Graphene-supported silver nanoparticles with high activities toward chemical catalytic reduction of methylene blue and electrocatalytic oxidation of hydrazine. Int. J. Electrochem. Sci. 11(11), 9566–9574 (2016). https://doi.org/10.20964/2016.11.72
J.X. Low, S.Q. Qiu, D.F. Xu, C.J. Jiang, B. Cheng, Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO2 nanotube arrays for photocatalytic CO2 reduction. Appl. Surf. Sci. 434, 423–432 (2017). https://doi.org/10.1016/j.apsusc.2017.10.194
L. Lin, M. Chen, H.Y. Qin, X.G. Peng, Ag nanocrystals with nearly ideal optical quality: synthesis, growth mechanism, and characterizations. J. Am. Chem. Soc. 140(50), 17734–17742 (2018). https://doi.org/10.1021/jacs.8b10793
G.H. Liu, K. Du, J.L. Xu, G. Chen, M.Y. Gu, C.P. Yang, K.Y. Wang, H. Jakobsen, Plasmon-dominated photoelectrodes for solar water splitting. J. Mater. Chem. 5(9), 4233–4253 (2017). https://doi.org/10.1039/C6TA10471A
Y.Y. Cai, J.G. Liu, L.J. Tauzin, D. Huang, E. Sung et al., Photoluminescence of gold nanorods: purcell effect enhanced emission from hot carriers. ACS Nano 12(2), 976–985 (2018). https://doi.org/10.1021/acsnano.7b07402
Y.Y. Cai, E. Sung, R.M. Zhang, L.J. Tauzin, J.G. Liu et al., Anti-Stokes emission from hot carriers in gold nanorods. Nano Lett. 19(2), 1067–1073 (2019). https://doi.org/10.1021/acs.nanolett.8b04359
Y.Y. Duan, J.M. Luo, S.C. Zhou, X.Y. Mao, M.W. Shah et al., TiO2-supported Ag nanoclusters with enhanced visible light activity for the photocatalytic removal of NO. Appl. Catal. B 234, 206–212 (2018). https://doi.org/10.1016/j.apcatb.2018.04.041
J.X. Li, L.X. Yang, S.L. Luo, B.B. Chen, J. Li et al., Polycyclic aromatic hydrocarbon detection by electrochemiluminescence generating Ag/TiO2 nanotubes. Anal. Chem. 82(17), 7357–7361 (2010). https://doi.org/10.1021/ac101392f
Y. Yu, K.D. Wijesekara, X.X. Xi, K.A. Willets, Quantifying wavelength-dependent plasmonic hot carrier energy distributions at metal/semiconductor interfaces. ACS Nano 13(3), 3629–3637 (2019). https://doi.org/10.1021/acsnano.9b00219
A.G. Marinopoulos, L. Reining, A. Rubio, V. Olevano, Ab initio study of the optical absorption and wave-vector-dependent dielectric response of graphite. Phys. Rev. B 69(24), 245419 (2004). https://doi.org/10.1103/PhysRevB.69.245419
H.Z. Wang, Y.Y. Gao, J. Liu, X.Y. Li, M.W. Ji et al., Efficient plasmonic Au/CdSe nanodumbbell for photoelectrochemical hydrogen generation beyond visible region. Adv. Energy Mater. 9(15), 1803889 (2019). https://doi.org/10.1002/aenm.201803889
C.H. Liu, F. Wang, J. Zhang, K. Wang, Y.Y. Qiu, Q. Liang, Z.D. Chen, Efficient photoelectrochemical water splitting by g-C3N4/TiO2 nanotube array heterostructures. Nano-Micro Lett. 10(2), 37 (2018). https://doi.org/10.1007/s40820-018-0192-6
H. Zhang, G. Wang, D. Chen, X.J. Lv, J.H. Li, Tuning photoelectrochemical performances of Ag-TiO2 nanocomposites via reduction/oxidation of Ag. Chem. Mater. 20(20), 6543–6549 (2008). https://doi.org/10.1021/cm801796q
B.H. Lee, S. Park, M. Kim, A.K. Sinha, S.C. Lee et al., Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 18(6), 620–629 (2019). https://doi.org/10.1038/s41563-019-0344-1
T.F. Yeh, F.-F. Chan, C.-T. Hsieh, H. Teng, Graphite oxide with different oxygenated levels for hydrogen and oxygen production from water under illumination: the band positions of graphite oxide. J. Phys. Chem. C 115(45), 22587–22597 (2011). https://doi.org/10.1021/jp204856c
T.F. Yeh, J.M. Syu, C. Cheng, T.H. Chang, H. Teng, Graphite oxide as a photocatalyst for hydrogen production from water. Adv. Funct. Mater. 20(14), 2255–2262 (2010). https://doi.org/10.1002/adfm.201000274
Q. Chen, Z.X. Yu, F. Li, Y. Yang, Y. Pan, Y.X. Peng, X. Yang, G.Y. Zeng, A novel photocatalytic membrane decorated with rGO-Ag-TiO2 for dye degradation and oil-water emulsion separation. J. Chem. Technol. Biotechnol. 93(3), 761–775 (2017). https://doi.org/10.1002/jctb.5426
W. Zhao, J. Zhang, F.X. Zhu, F.H. Mu, L.L. Zhang et al., Study the photocatalytic mechanism of the novel Ag/p-Ag2O/n-BiVO4 plasmonic photocatalyst for the simultaneous removal of BPA and chromium (VI). Chem. Eng. J. 361, 1352–1362 (2019). https://doi.org/10.1016/j.cej.2018.12.181
S. Akel, R. Dillert, N.O. Balayeva, R. Boughaled, J. Koch, M.E. Azzouzi, D.W. Bahnemann, Ag/Ag2O as a co-catalyst in TiO2 photocatalysis: effect of the co-catalyst/photocatalyst mass ratio. Catalysts 8(12), 647 (2018). https://doi.org/10.3390/catal8120647