A Bilayer High-Temperature Dielectric Film with Superior Breakdown Strength and Energy Storage Density
Corresponding Author: Zhi‑Min Dang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 154
Abstract
The further electrification of various fields in production and daily life makes it a topic worthy of exploration to improve the performance of capacitors for a long time, including thin-film capacitors. The discharge energy density of thin-film capacitors that serves as one of the important types directly depends on electric field strength and the dielectric constant of the insulation material. However, it has long been a great challenge to improve the breakdown strength and dielectric constant simultaneously. Considering that boron nitride nanosheets (BNNS) possess superior insulation and thermal conductivity owing to wide band gap and 2-dimensional structure, a bilayer polymer film is prepared via coating BNNS by solution casting on surface of polyethylene terephthalate (PET) films. By revealing the bandgap and insulating behavior with UV absorption spectrum, leakage current, and finite element calculation, it is manifested that nanocoating contributes to enhance the bandgap of polymer films, thereby suppressing the charge injection by redirecting their transport from electrodes. Worthy to note that an ultrahigh breakdown field strength (~ 736 MV m−1), an excellent discharge energy density (~ 8.77 J cm−3) and a prominent charge–discharge efficiency (~ 96.51%) are achieved concurrently, which is ascribed to the contribution of BNNS ultrathin layer. In addition, the modified PET films also have superior comprehensive performance at high temperatures (~ 120 °C). The materials and methods here selected are easily accessible and facile, which are suitable for large-scale roll-to-roll process production, and are of certain significance to explore the methods about film modification suitable for commercial promotion.
Highlights:
1 A bilayer dielectric film is prepared via coating boron nitride nanosheets (BNNSs) by solution casting on the surface of polyethylene terephthalate (PET) film.
2 The BNNS layer acts as the efficient barrier layer to suppress the charge injection, thereby making the surface-modified PET films exhibit excellent breakdown strength and electrostatic energy storage performance.
3 The surface coating methods are accessible and suitable for large-scale roll-to-roll process production of dielectric films.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V.K. Prateek, R.K. Thakur, Gupta, recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 116, 4260–4317 (2016). https://doi.org/10.1021/acs.chemrev.5b00495
- B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin et al., A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–336 (2006). https://doi.org/10.1126/science.1127798
- Y.Y. Wang, S.R. Sun, X.L. Wu, H.F. Liang, W.L. Zhang, Status and opportunities of zinc ion hybrid capacitors: focus on carbon materials, current collectors, and separators. Nano-Micro Lett. 15, 78 (2023). https://doi.org/10.1007/s40820-023-01065-x
- L.T. Yang, X. Kong, F. Li, H. Hao, Z.X. Cheng et al., Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 102, 72–108 (2019). https://doi.org/10.1016/j.pmatsci.2018.12.005
- J.J. Liang, S.J. Wang, Z. Luo, J. Fu, J. Hu et al., Correlating the interfacial polar-phase structure to the local chemistry in ferroelectric polymer nanocomposites by combined scanning probe microscopy. Nano-Micro Lett. 15, 5 (2023). https://doi.org/10.1007/s40820-022-00978-3
- Q.K. Feng, Y.X. Zhang, D.F. Liu, Y.H. Song, L. Huang et al., Dielectric and energy storage properties of all-organic sandwich-structured films used for high-temperature film capacitors. Mater. Today Energy 29, 101132 (2022). https://doi.org/10.1016/j.mtener.2022.101132
- X.Y. Huang, B. Sun, Y.K. Zhu, S.T. Li, P.K. Jiang, High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog. Mater. Sci. 100, 187–225 (2019). https://doi.org/10.1016/j.pmatsci.2018.10.003
- J. Ho, T.R. Jow, S. Boggs, Historical introduction to capacitor technology. IEEE Electr. Insul. Mag. 26, 20–25 (2010). https://doi.org/10.1109/MEI.2010.5383924
- L. Zhu, Q. Wang, Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules 45, 2937–2954 (2012). https://doi.org/10.1021/ma2024057
- Q. Chen, Y. Shen, S.L. Zhang, Q.M. Zhang, Polymer-based dielectrics with high energy storage density. Ann. Rev. Mater. Res. 45, 433–458 (2015). https://doi.org/10.1146/annurev-matsci-070214-021017
- J.J. Wei, L. Zhu, Intrinsic polymer dielectrics for high energy density and low loss electric energy storage. Prog. Polym. Sci. 106, 101254 (2020). https://doi.org/10.1016/j.progpolymsci.2020.101254
- Z.M. Dang, J.K. Yuan, S.H. Yao, R.J. Liao, Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 25, 6334–6365 (2013). https://doi.org/10.1002/adma.201301752
- Q. Dong, S.L. Zhong, Q.K. Feng, M.S. Zheng, J.B. Ping et al., Preparation and properties of different dielectric films with Al metal electrode. IET Nanodielectr. 5, 125–131 (2022). https://doi.org/10.1049/nde2.12037
- M.S. Zheng, Y.T. Zheng, J.W. Zha, Y. Yang, P. Han et al., Improved dielectric, tensile and energy storage properties of surface rubberized BaTiO3/polypropylene nanocomposites. Nano Energy 48, 144–151 (2018). https://doi.org/10.1016/j.nanoen.2018.03.049
- Y. Feng, J.P. Xue, T.D. Zhang, Q.G. Chi, J.L. Li et al., Double-gradients design of polymer nanocomposites with high energy density. Energy Storage Mater. 44, 73–81 (2022). https://doi.org/10.1016/j.ensm.2021.10.008
- Q. Li, G.Z. Zhang, F.H. Liu, K. Han, M.R. Gadinski et al., Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy Environ. Sci. 8, 922–931 (2015). https://doi.org/10.1039/C4EE02962C
- Y.F. Wang, J. Cui, Q.B. Yuan, Y.J. Niu, Y.Y. Bai et al., Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites. Adv. Mater. 27, 6658–6663 (2015). https://doi.org/10.1002/adma.201503186
- Y.S. Li, S. Cheng, S.J. Wang, C. Yuan, Z. Luo et al., Multilayered ferroelectric polymer composites with high energy density at elevated temperature. Compos. Sci. Technol. 202, 108594 (2021). https://doi.org/10.1016/j.compscitech.2020.108594
- F.M. Guo, X. Shen, J.M. Zhou, D. Liu, Q.B. Zheng et al., Highly thermally conductive dielectric nanocomposites with synergistic alignments of graphene and boron nitride nanosheets. Adv. Funct. Mater. 30, 1910826 (2020). https://doi.org/10.1002/adfm.201910826
- Y. Wu, Z.Y. Wang, X. Shen, X. Liu, N.M. Han et al., Graphene/boron nitride–polyurethane microlaminates for exceptional dielectric properties and high energy densities. ACS Appl. Mater. Interfaces 10, 26641–26652 (2018). https://doi.org/10.1021/acsami.8b08031
- Y.K. Zhu, Y.J. Zhu, X.Y. Huang, J. Chen, Q. Li et al., High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Adv. Energy Mater. 9, 1901826 (2019). https://doi.org/10.1002/aenm.201901826
- J.Y. Pei, J.W. Zha, W.Y. Zhou, S.J. Wang, S.L. Zhong et al., Enhancement of breakdown strength of multilayer polymer film through electric field redistribution and defect modification. Appl. Phys. Lett. 114, 103702 (2019). https://doi.org/10.1063/1.5088085
- B.Y. Zhang, J.J. Liu, M. Ren, C. Wu, T.J. Moran et al., Reviving the “schottky” barrier for flexible polymer dielectrics with a superior 2D nanoassembly coating. Adv. Mater. 33, 2101374 (2021). https://doi.org/10.1002/adma.202101374
- J.Y. Pei, S.L. Zhong, Y. Zhao, L.J. Yin, Q.K. Feng et al., All-organic dielectric polymer films exhibiting superior electric breakdown strength and discharged energy density by adjusting the electrode–dielectric interface with an organic nano-interlayer. Energy Environ. Sci. 14, 5513–5522 (2021). https://doi.org/10.1039/D1EE01960K
- S. Cheng, Y. Zhou, J. Hu, J.L. He, Q. Li, Polyimide films coated by magnetron sputtered boron nitride for high-temperature capacitor dielectrics. IEEE Trans. Dielectr. Electr. Insul. 27, 498–503 (2020). https://doi.org/10.1109/TDEI.2020.008592
- Y.F. Wang, S. Nasreen, D. Kamal, Z.Z. Li, C. Wu et al., Tuning surface states of metal/polymer contacts toward highly insulating polymer-based dielectrics. ACS Appl. Mater. Interfaces 13, 46142–46150 (2021). https://doi.org/10.1021/acsami.1c12854
- Y. Zhou, Q. Li, B. Dang, Y. Tang, T. Shao et al., A scalable, high-throughput and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures. Adv. Mater. 30, 1805672 (2018). https://doi.org/10.1002/adma.201805672
- D.Q. Tan, Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors. Adv. Funct. Mater. 30, 1808567 (2020). https://doi.org/10.1002/adfm.201808567
- Y.X. Zhang, Q.K. Feng, S.L. Zhong, J.Y. Pei, F.Y. Chen et al., Digital twin accelerating development of metallized film capacitor: key issues, framework design and prospects. Energy Rep. 7, 7704–7715 (2021). https://doi.org/10.1016/j.egyr.2021.10.116
- Q.C. Xu, Z.X. Chen, X.X. Li, J.X. Hu, Y.L. Liao et al., Improved out-of-plane thermal conductivity of boron nitride nanosheet-filled polyamide 6/polyethylene terephthalate composites by a rapid solidification method. Mater. Adv. 4, 1490–1501 (2023). https://doi.org/10.1039/D2MA00985D
- A. Ayub, S. Farrukh, R. Jan, M. Azeem, Z. Salahuddin et al., Gas barrier properties evaluation for boron nitride nanosheets-polymer (polyethylene-terephthalate) composites. Appl. Nanosci. 11, 91–99 (2021). https://doi.org/10.1007/s13204-020-01563-z
- A. Sahoo, H.N. Gayathri, T.P. Sai, P.S. Upasani, V. Raje et al., Enhancement of thermal and mechanical properties of few layer boron nitride reinforced PET composite. Nanotechnology 31, 315706 (2020). https://doi.org/10.1088/1361-6528/ab88ec
- A. Azizi, M.R. Gadinski, Q. Li, M.A. AlSaud, J.J. Wang et al., High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials. Adv. Mater. 29, 1701864 (2017). https://doi.org/10.1002/adma.201701864
- H. Li, L.L. Ren, Y. Zhou, B. Yao, Q. Wang, Recent progress in polymer dielectrics containing boron nitride nanosheets for high energy density capacitors. High Volt. 5, 365 (2020). https://doi.org/10.1049/hve.2020.0076
- B.C. Luo, Z.H. Shen, Z.M. Cai, E.K. Tian, Y. Yao et al., Superhierarchical inorganic/organic nanocomposites exhibiting simultaneous ultrahigh dielectric energy density and high efficiency. Adv. Funct. Mater. 31, 2007994 (2020). https://doi.org/10.1002/adfm.202007994
- S.L. Zhong, Z.M. Cai, J.W. Zha, Y. Zhao, Z.M. Dang, Effect of interp electrostatic interactions on the dielectric response of 0–3 connectivity p/polymer composites for high energy density storage. J. Appl. Phys. 127, 184106 (2020). https://doi.org/10.1063/1.5139055
- Q.K. Feng, D.F. Liu, Y.X. Zhang, J.Y. Pei, S.L. Zhong et al., Significantly improved high-temperature charge-discharge efficiency of all-organic polyimide composites by suppressing space charges. Nano Energy 99, 107410 (2022). https://doi.org/10.1016/j.nanoen.2022.107410
- Q.K. Feng, Q. Dong, D.L. Zhang, J.Y. Pei, Z.M. Dang, Enhancement of high-temperature dielectric energy storage performances of polyimide nanocomposites utilizing surface functionalized MAX nanosheets. Compos. Sci. Technol. 218, 109193 (2022). https://doi.org/10.1016/j.compscitech.2021.109193
- Y.F. Wang, J. Chen, Y. Li, Y.J. Niu, Q. Wang et al., Multilayered hierarchical polymer composites for high energydensity capacitors. J. Mater. Chem. A 7, 2965–2980 (2019). https://doi.org/10.1039/C8TA11392K
- Q.K. Feng, S.L. Zhong, J.Y. Pei, Y. Zhao, D.L. Zhang et al., Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors. Chem. Rev. 122, 3820–3878 (2022). https://doi.org/10.1021/acs.chemrev.1c00793
- H. Li, B.S. Chang, H. Kim, Z.L. Xie, A. Laine et al., High-performing polysulfate dielectrics for electrostatic energy storage under harsh conditions. Joule 7, 95–111 (2023). https://doi.org/10.1016/j.joule.2022.12.010
- X.Y. Cheng, Q.K. Feng, Z.M. Dang, F.S. Du, Z.C. Li, Alternating [1.1.1]propellane-(meth)acrylate copolymers: a new class of dielectrics with high energy density for film capacitors. Macromol. Rapid Commun. 44, 2200888 (2023). https://doi.org/10.1002/marc.202200888
References
V.K. Prateek, R.K. Thakur, Gupta, recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 116, 4260–4317 (2016). https://doi.org/10.1021/acs.chemrev.5b00495
B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin et al., A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–336 (2006). https://doi.org/10.1126/science.1127798
Y.Y. Wang, S.R. Sun, X.L. Wu, H.F. Liang, W.L. Zhang, Status and opportunities of zinc ion hybrid capacitors: focus on carbon materials, current collectors, and separators. Nano-Micro Lett. 15, 78 (2023). https://doi.org/10.1007/s40820-023-01065-x
L.T. Yang, X. Kong, F. Li, H. Hao, Z.X. Cheng et al., Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 102, 72–108 (2019). https://doi.org/10.1016/j.pmatsci.2018.12.005
J.J. Liang, S.J. Wang, Z. Luo, J. Fu, J. Hu et al., Correlating the interfacial polar-phase structure to the local chemistry in ferroelectric polymer nanocomposites by combined scanning probe microscopy. Nano-Micro Lett. 15, 5 (2023). https://doi.org/10.1007/s40820-022-00978-3
Q.K. Feng, Y.X. Zhang, D.F. Liu, Y.H. Song, L. Huang et al., Dielectric and energy storage properties of all-organic sandwich-structured films used for high-temperature film capacitors. Mater. Today Energy 29, 101132 (2022). https://doi.org/10.1016/j.mtener.2022.101132
X.Y. Huang, B. Sun, Y.K. Zhu, S.T. Li, P.K. Jiang, High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog. Mater. Sci. 100, 187–225 (2019). https://doi.org/10.1016/j.pmatsci.2018.10.003
J. Ho, T.R. Jow, S. Boggs, Historical introduction to capacitor technology. IEEE Electr. Insul. Mag. 26, 20–25 (2010). https://doi.org/10.1109/MEI.2010.5383924
L. Zhu, Q. Wang, Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules 45, 2937–2954 (2012). https://doi.org/10.1021/ma2024057
Q. Chen, Y. Shen, S.L. Zhang, Q.M. Zhang, Polymer-based dielectrics with high energy storage density. Ann. Rev. Mater. Res. 45, 433–458 (2015). https://doi.org/10.1146/annurev-matsci-070214-021017
J.J. Wei, L. Zhu, Intrinsic polymer dielectrics for high energy density and low loss electric energy storage. Prog. Polym. Sci. 106, 101254 (2020). https://doi.org/10.1016/j.progpolymsci.2020.101254
Z.M. Dang, J.K. Yuan, S.H. Yao, R.J. Liao, Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 25, 6334–6365 (2013). https://doi.org/10.1002/adma.201301752
Q. Dong, S.L. Zhong, Q.K. Feng, M.S. Zheng, J.B. Ping et al., Preparation and properties of different dielectric films with Al metal electrode. IET Nanodielectr. 5, 125–131 (2022). https://doi.org/10.1049/nde2.12037
M.S. Zheng, Y.T. Zheng, J.W. Zha, Y. Yang, P. Han et al., Improved dielectric, tensile and energy storage properties of surface rubberized BaTiO3/polypropylene nanocomposites. Nano Energy 48, 144–151 (2018). https://doi.org/10.1016/j.nanoen.2018.03.049
Y. Feng, J.P. Xue, T.D. Zhang, Q.G. Chi, J.L. Li et al., Double-gradients design of polymer nanocomposites with high energy density. Energy Storage Mater. 44, 73–81 (2022). https://doi.org/10.1016/j.ensm.2021.10.008
Q. Li, G.Z. Zhang, F.H. Liu, K. Han, M.R. Gadinski et al., Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy Environ. Sci. 8, 922–931 (2015). https://doi.org/10.1039/C4EE02962C
Y.F. Wang, J. Cui, Q.B. Yuan, Y.J. Niu, Y.Y. Bai et al., Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites. Adv. Mater. 27, 6658–6663 (2015). https://doi.org/10.1002/adma.201503186
Y.S. Li, S. Cheng, S.J. Wang, C. Yuan, Z. Luo et al., Multilayered ferroelectric polymer composites with high energy density at elevated temperature. Compos. Sci. Technol. 202, 108594 (2021). https://doi.org/10.1016/j.compscitech.2020.108594
F.M. Guo, X. Shen, J.M. Zhou, D. Liu, Q.B. Zheng et al., Highly thermally conductive dielectric nanocomposites with synergistic alignments of graphene and boron nitride nanosheets. Adv. Funct. Mater. 30, 1910826 (2020). https://doi.org/10.1002/adfm.201910826
Y. Wu, Z.Y. Wang, X. Shen, X. Liu, N.M. Han et al., Graphene/boron nitride–polyurethane microlaminates for exceptional dielectric properties and high energy densities. ACS Appl. Mater. Interfaces 10, 26641–26652 (2018). https://doi.org/10.1021/acsami.8b08031
Y.K. Zhu, Y.J. Zhu, X.Y. Huang, J. Chen, Q. Li et al., High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Adv. Energy Mater. 9, 1901826 (2019). https://doi.org/10.1002/aenm.201901826
J.Y. Pei, J.W. Zha, W.Y. Zhou, S.J. Wang, S.L. Zhong et al., Enhancement of breakdown strength of multilayer polymer film through electric field redistribution and defect modification. Appl. Phys. Lett. 114, 103702 (2019). https://doi.org/10.1063/1.5088085
B.Y. Zhang, J.J. Liu, M. Ren, C. Wu, T.J. Moran et al., Reviving the “schottky” barrier for flexible polymer dielectrics with a superior 2D nanoassembly coating. Adv. Mater. 33, 2101374 (2021). https://doi.org/10.1002/adma.202101374
J.Y. Pei, S.L. Zhong, Y. Zhao, L.J. Yin, Q.K. Feng et al., All-organic dielectric polymer films exhibiting superior electric breakdown strength and discharged energy density by adjusting the electrode–dielectric interface with an organic nano-interlayer. Energy Environ. Sci. 14, 5513–5522 (2021). https://doi.org/10.1039/D1EE01960K
S. Cheng, Y. Zhou, J. Hu, J.L. He, Q. Li, Polyimide films coated by magnetron sputtered boron nitride for high-temperature capacitor dielectrics. IEEE Trans. Dielectr. Electr. Insul. 27, 498–503 (2020). https://doi.org/10.1109/TDEI.2020.008592
Y.F. Wang, S. Nasreen, D. Kamal, Z.Z. Li, C. Wu et al., Tuning surface states of metal/polymer contacts toward highly insulating polymer-based dielectrics. ACS Appl. Mater. Interfaces 13, 46142–46150 (2021). https://doi.org/10.1021/acsami.1c12854
Y. Zhou, Q. Li, B. Dang, Y. Tang, T. Shao et al., A scalable, high-throughput and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures. Adv. Mater. 30, 1805672 (2018). https://doi.org/10.1002/adma.201805672
D.Q. Tan, Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors. Adv. Funct. Mater. 30, 1808567 (2020). https://doi.org/10.1002/adfm.201808567
Y.X. Zhang, Q.K. Feng, S.L. Zhong, J.Y. Pei, F.Y. Chen et al., Digital twin accelerating development of metallized film capacitor: key issues, framework design and prospects. Energy Rep. 7, 7704–7715 (2021). https://doi.org/10.1016/j.egyr.2021.10.116
Q.C. Xu, Z.X. Chen, X.X. Li, J.X. Hu, Y.L. Liao et al., Improved out-of-plane thermal conductivity of boron nitride nanosheet-filled polyamide 6/polyethylene terephthalate composites by a rapid solidification method. Mater. Adv. 4, 1490–1501 (2023). https://doi.org/10.1039/D2MA00985D
A. Ayub, S. Farrukh, R. Jan, M. Azeem, Z. Salahuddin et al., Gas barrier properties evaluation for boron nitride nanosheets-polymer (polyethylene-terephthalate) composites. Appl. Nanosci. 11, 91–99 (2021). https://doi.org/10.1007/s13204-020-01563-z
A. Sahoo, H.N. Gayathri, T.P. Sai, P.S. Upasani, V. Raje et al., Enhancement of thermal and mechanical properties of few layer boron nitride reinforced PET composite. Nanotechnology 31, 315706 (2020). https://doi.org/10.1088/1361-6528/ab88ec
A. Azizi, M.R. Gadinski, Q. Li, M.A. AlSaud, J.J. Wang et al., High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials. Adv. Mater. 29, 1701864 (2017). https://doi.org/10.1002/adma.201701864
H. Li, L.L. Ren, Y. Zhou, B. Yao, Q. Wang, Recent progress in polymer dielectrics containing boron nitride nanosheets for high energy density capacitors. High Volt. 5, 365 (2020). https://doi.org/10.1049/hve.2020.0076
B.C. Luo, Z.H. Shen, Z.M. Cai, E.K. Tian, Y. Yao et al., Superhierarchical inorganic/organic nanocomposites exhibiting simultaneous ultrahigh dielectric energy density and high efficiency. Adv. Funct. Mater. 31, 2007994 (2020). https://doi.org/10.1002/adfm.202007994
S.L. Zhong, Z.M. Cai, J.W. Zha, Y. Zhao, Z.M. Dang, Effect of interp electrostatic interactions on the dielectric response of 0–3 connectivity p/polymer composites for high energy density storage. J. Appl. Phys. 127, 184106 (2020). https://doi.org/10.1063/1.5139055
Q.K. Feng, D.F. Liu, Y.X. Zhang, J.Y. Pei, S.L. Zhong et al., Significantly improved high-temperature charge-discharge efficiency of all-organic polyimide composites by suppressing space charges. Nano Energy 99, 107410 (2022). https://doi.org/10.1016/j.nanoen.2022.107410
Q.K. Feng, Q. Dong, D.L. Zhang, J.Y. Pei, Z.M. Dang, Enhancement of high-temperature dielectric energy storage performances of polyimide nanocomposites utilizing surface functionalized MAX nanosheets. Compos. Sci. Technol. 218, 109193 (2022). https://doi.org/10.1016/j.compscitech.2021.109193
Y.F. Wang, J. Chen, Y. Li, Y.J. Niu, Q. Wang et al., Multilayered hierarchical polymer composites for high energydensity capacitors. J. Mater. Chem. A 7, 2965–2980 (2019). https://doi.org/10.1039/C8TA11392K
Q.K. Feng, S.L. Zhong, J.Y. Pei, Y. Zhao, D.L. Zhang et al., Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors. Chem. Rev. 122, 3820–3878 (2022). https://doi.org/10.1021/acs.chemrev.1c00793
H. Li, B.S. Chang, H. Kim, Z.L. Xie, A. Laine et al., High-performing polysulfate dielectrics for electrostatic energy storage under harsh conditions. Joule 7, 95–111 (2023). https://doi.org/10.1016/j.joule.2022.12.010
X.Y. Cheng, Q.K. Feng, Z.M. Dang, F.S. Du, Z.C. Li, Alternating [1.1.1]propellane-(meth)acrylate copolymers: a new class of dielectrics with high energy density for film capacitors. Macromol. Rapid Commun. 44, 2200888 (2023). https://doi.org/10.1002/marc.202200888