Two-Dimensional Metal Halides for X-Ray Detection Applications
Corresponding Author: Zhiwen Jin
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 128
Abstract
Metal halide perovskites have recently emerged as promising candidates for the next generation of X-ray detectors due to their excellent optoelectronic properties. Especially, two-dimensional (2D) perovskites afford many distinct properties, including remarkable structural diversity, high generation energy, and balanced large exciton binding energy. With the advantages of 2D materials and perovskites, it successfully reduces the decomposition and phase transition of perovskite and effectively suppresses ion migration. Meanwhile, the existence of a high hydrophobic spacer can block water molecules, thus making 2D perovskite obtain excellent stability. All of these advantages have attracted much attention in the field of X-ray detection. This review introduces the classification of 2D halide perovskites, summarizes the synthesis technology and performance characteristics of 2D perovskite X-ray direct detector, and briefly discusses the application of 2D perovskite in scintillators. Finally, this review also emphasizes the key challenges faced by 2D perovskite X-ray detectors in practical application and presents our views on its future development.
Highlights:
1 The classification of 2D perovskite is summarized, and the preparation methods of 2D perovskite according to the requirements of X-ray detection materials are introduced.
2 We analyzed the advantages and insufficiency of different devices and introduced improvement measures, including ion migration, charge transfer performance, stability, and 2D/3D heterojunctions.
3 Finally, we introduced the potential preponderances of 2D perovskite in the scintillation detection field; meanwhile, the main challenges facing the practical application of 2D perovskite X-ray detectors are analyzed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Akcay, T. Breckon, Towards automatic threat detection: a survey of advances of deep learning within X-ray security imaging. Pattern Recogn. 122, 108245 (2022). https://doi.org/10.1016/j.patcog.2021.108245
- C. Szeles, CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. Phys. Status Solidi B 241(3), 783–790 (2004). https://doi.org/10.1002/pssb.200304296
- S. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani et al., Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors 11(5), 5112–5157 (2011). https://doi.org/10.3390/s110505112
- X. Xu, W. Qian, S. Xiao, J. Wang, S. Zheng et al., Halide perovskites: a dark horse for direct X-ray imaging. EcoMat 2(4), e12064 (2020). https://doi.org/10.1002/eom2.12064
- G. Peng, B. An, H. Chen, Z. Li, Y. Xu et al., Self-organizing pixelated Cs4PbBr6 scintillator plate for large-area, ultra-flexible, high spatial resolution and stable X-ray imaging. Adv. Opt. Mater. 11(1), 2201751 (2022). https://doi.org/10.1002/adom.202201751
- A. Xie, F. Maddalena, M.E. Witkowski, M. Makowski, B. Mahler et al., Library of two-dimensional hybrid lead halide perovskite scintillator crystals. Chem. Mater. 32(19), 8530–8539 (2020). https://doi.org/10.1021/acs.chemmater.0c02789
- Y. Hormozan, I. Sychugov, J. Linnros, High-resolution X-ray imaging using a structured scintillator. Med. Phys. 43(2), 696–701 (2016). https://doi.org/10.1118/1.4939258
- A. Jana, S. Cho, S.A. Patil, A. Meena, Y. Jo et al., Perovskite: Scintillators, direct detectors, and X-ray imagers. Mater. Today 55, 110–136 (2022). https://doi.org/10.1016/j.mattod.2022.04.009
- M. Xia, Z. Song, H. Wu, X. Du, X. He et al., Compact and large-area perovskite films achieved via soft-pressing and multi-functional polymerizable binder for flat-panel X-ray imager. Adv. Funct. Mater. 32(16), 2110729 (2022). https://doi.org/10.1002/adfm.202110729
- Z. Li, F. Zhou, H. Yao, Z. Ci, Z. Yang et al., Halide perovskites for high-performance X-ray detector. Mater. Today 48, 155–175 (2021). https://doi.org/10.1016/j.mattod.2021.01.028
- Z. Li, G. Peng, Z. Li, Y. Xu, T. Wang et al., Hydrogen bonds strengthened metal-free perovskite for degradable X-ray detector with enhanced stability, flexibility and sensitivity. Angew. Chem. Int. Ed. 62(10), e202218349 (2023). https://doi.org/10.1002/anie.202218349
- H. Chen, Q. Wang, G. Peng, S. Wang, Y. Lei et al., Cesium lead halide nanocrystals based flexible X-ray imaging screen and visible dose rate indication on paper substrate. Adv. Opt. Mater. 10(8), 2102790 (2022). https://doi.org/10.1002/adom.202102790
- Y. Xu, Y. Li, G. Peng, Q. Wang, Z. Li et al., Asymmetric metal halide film with suppressed leakage current for high sensitive X-ray detection and imaging. IEEE Electron Dev Lett. 43(10), 1709–1712 (2022). https://doi.org/10.1109/led.2022.3202173
- H. Huang, S. Abbaszadeh, Recent developments of amorphous selenium-based X-ray detectors: a review. IEEE Sens. J. 20(4), 1694–1704 (2020). https://doi.org/10.1109/jsen.2019.2950319
- N.K. Tailor, J. Ghosh, M.A. Afroz, S. Bennett, M. Chatterjee et al., Self-powered X-ray detection and imaging using Cs2AgBiCl6 lead-free double perovskite single crystal. ACS Appl. Electron. Mater. 4(9), 4530–4539 (2022). https://doi.org/10.1021/acsaelm.2c00752
- R. Bellazzini, G. Spandre, A. Brez, M. Minuti, M. Pinchera et al., Chromatic X-ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC. J. Instrum. 8(02), C02028–C02028 (2013). https://doi.org/10.1088/1748-0221/8/02/c02028
- H. Wu, Y. Ge, G. Niu, J. Tang, Metal halide perovskites for X-ray detection and imaging. Matter 4(1), 144–163 (2021). https://doi.org/10.1016/j.matt.2020.11.015
- H.M. Thirimanne, K. Jayawardena, A.J. Parnell, R.M.I. Bandara, A. Karalasingam et al., High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response. Nat. Commun. 9(1), 2926 (2018). https://doi.org/10.1038/s41467-018-05301-6
- H.J. Snaith, Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4(21), 3623–3630 (2013). https://doi.org/10.1021/jz4020162
- Z. Li, Z. Li, G. Peng, C. Shi, H. Wang et al., PF6—pseudohalides anion based metal-free perovskite single crystal for stable X-ray detector to attain record sensitivity. Adv. Mater. e2300480 (2023). https://doi.org/10.1002/adma.202300480
- W.-J. Yin, T. Shi, Y. Yan, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104(6), 063903 (2014). https://doi.org/10.1063/1.4864778
- W.J. Yin, T. Shi, Y. Yan, Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26(27), 4653–4658 (2014). https://doi.org/10.1002/adma.201306281
- K. Liu, Z. Wang, S. Qu, L. Ding, Stress and strain in perovskite/silicon tandem solar cells. Nano-Micro Lett. 15(1), 59 (2023). https://doi.org/10.1007/s40820-023-01019-3
- D.W. deQuilettes, S.M. Vorpahl, S.D. Stranks, H. Nagaoka, G.E. Eperon et al., Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348(6235), 683–686 (2015). https://doi.org/10.1126/science.aaa5333
- G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam et al., Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013). https://doi.org/10.1126/science.1243167
- J. Sun, L. Ding, Linearly polarization-sensitive perovskite photodetectors. Nano-Micro Lett. 15(1), 90 (2023). https://doi.org/10.1007/s40820-023-01048-y
- M. Xia, J.H. Yuan, G. Niu, X. Du, L. Yin et al., Unveiling the structural descriptor of A3B2X9 perovskite derivatives toward X-ray detectors with low detection limit and high stability. Adv. Funct. Mater. 30(24), 1910648 (2020). https://doi.org/10.1002/adfm.201910648
- X. Li, P. Zhang, Y. Hua, F. Cui, X. Sun et al., Ultralow detection limit and robust hard X-ray imaging detector based on inch-sized lead-free perovskite Cs3Bi2Br9 single crystals. ACS Appl. Mater. Interfaces 14(7), 9340–9351 (2022). https://doi.org/10.1021/acsami.1c24086
- L. Gao, J. You, S. Liu, Superior photovoltaics/optoelectronics of two-dimensional halide perovskites. J. Energy Chem. 57, 69–82 (2021). https://doi.org/10.1016/j.jechem.2020.08.022
- L. Mao, Y. Wu, C.C. Stoumpos, B. Traore, C. Katan et al., Tunable white-light emission in single-cation-templated three-layered 2D perovskites (CH3CH2NH3)4Pb3Br10-xCx. J. Am. Chem. Soc. 139(34), 11956–11963 (2017). https://doi.org/10.1021/jacs.7b06143
- B. Xiao, Q. Sun, F. Wang, S. Wang, B.-B. Zhang et al., Towards superior X-ray detection performance of two-dimensional halide perovskite crystals by adjusting the anisotropic transport behavior. J. Mater. Chem. A 9(22), 13209–13219 (2021). https://doi.org/10.1039/d1ta02918e
- Z. Wang, Z. Shi, T. Li, Y. Chen, W. Huang, Stability of perovskite solar cells: a prospective on the substitution of the a cation and X anion. Angew. Chem. Int. Ed. 56(5), 1190–1212 (2017). https://doi.org/10.1002/anie.201603694
- J. Zhuang, J. Wang, F. Yan, Review on chemical stability of lead halide perovskite solar cells. Nano-Micro Lett. 15(1), 84 (2023). https://doi.org/10.1007/s40820-023-01046-0
- X. Fu, T. He, S. Zhang, X. Lei, Y. Jiang et al., Halogen-halogen bonds enable improved long-term operational stability of mixed-halide perovskite photovoltaics. Chem 7(11), 3131–3143 (2021). https://doi.org/10.1016/j.chempr.2021.08.009
- K. Sakhatskyi, R.A. John, A. Guerrero, S. Tsarev, S. Sabisch et al., Assessing the drawbacks and benefits of ion migration in lead halide perovskites. ACS Energy Lett. 7(10), 3401–3414 (2022). https://doi.org/10.1021/acsenergylett.2c01663
- X. He, M. Xia, H. Wu, X. Du, Z. Song et al., Quasi-2D perovskite thick film for X-ray detection with low detection limit. Adv. Funct. Mater. 32(7), 2109458 (2021). https://doi.org/10.1002/adfm.202109458
- S. Sun, M. Lu, X. Gao, Z. Shi, X. Bai et al., 0D perovskites: unique properties, synthesis, and their applications. Adv. Sci. 8(24), e2102689 (2021). https://doi.org/10.1002/advs.202102689
- M. Zhang, D. Xin, S. Dong, W. Zhao, S. Tie et al., Methylamine-assisted preparation of ruddlesden-popper perovskites for stable detection and imaging of X-rays. Adv. Opt. Mater. 10(23), 2201548 (2022). https://doi.org/10.1002/adom.202201548
- D. Xin, S. Dong, M. Zhang, S. Tie, J. Ren et al., Nucleation engineering in sprayed MA3Bi2I9 films for direct-conversion X-ray detectors. J. Phys. Chem. Lett. 13(1), 371–377 (2022). https://doi.org/10.1021/acs.jpclett.1c03922
- Y. Liu, Z. Xu, Z. Yang, Y. Zhang, J. Cui et al., Inch-size 0D-structured lead-free perovskite single crystals for highly sensitive stable X-ray imaging. Matter 3(1), 180–196 (2020). https://doi.org/10.1016/j.matt.2020.04.017
- Y. Zheng, T. Niu, X. Ran, J. Qiu, B. Li et al., Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application. J. Mater. Chem. A 7(23), 13860–13872 (2019). https://doi.org/10.1039/c9ta03217g
- N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao et al., Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10(11), 699–704 (2016). https://doi.org/10.1038/nphoton.2016.185
- L. Cheng, T. Jiang, Y. Cao, C. Yi, N. Wang et al., Multiple-quantum-well perovskites for high-performance light-emitting diodes. Adv. Mater. 32(15), 2208875 (2019). https://doi.org/10.1002/adma.201904163
- B. Zhang, T. Zheng, J. You, C. Ma, Y. Liu et al., Electron–phonon coupling suppression by enhanced lattice rigidity in 2D perovskite single crystals for high-performance X-ray detection. Adv. Mater. 35(7), e2208875 (2022). https://doi.org/10.1002/adma.202208875
- J. Cho, P.S. Mathew, J.T. DuBose, P.V. Kamat, Photoinduced halide segregation in ruddlesden-popper 2D mixed halide perovskite films. Adv. Mater. 33(48), e2105585 (2021). https://doi.org/10.1002/adma.202105585
- Y. Chen, Y. Sun, J. Peng, J. Tang, K. Zheng et al., 2D Ruddlesden–Popper perovskites for optoelectronics. Adv. Mater. 30(2), 1703487 (2018). https://doi.org/10.1002/adma.201703487
- C.C. Stoumpos, D.H. Cao, D.J. Clark, J. Young, J.M. Rondinelli et al., Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28(8), 2852–2867 (2016). https://doi.org/10.1021/acs.chemmater.6b00847
- L. Mao, W. Ke, L. Pedesseau, Y. Wu, C. Katan et al., Hybrid Dion-Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 140(10), 3775–3783 (2018). https://doi.org/10.1021/jacs.8b00542
- O. Nazarenko, M.R. Kotyrba, M. Worle, E. Cuervo-Reyes, S. Yakunin et al., Luminescent and photoconductive layered lead halide perovskite compounds comprising mixtures of cesium and guanidinium cations. Inorg. Chem. 56(19), 11552–11564 (2017). https://doi.org/10.1021/acs.inorgchem.7b01204
- L. Mao, C.C. Stoumpos, M.G. Kanatzidis, Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 141(3), 1171–1190 (2019). https://doi.org/10.1021/jacs.8b10851
- H. Fu, Dion-Jacobson halide perovskites for photovoltaic and photodetection applications. J. Mater. Chem. C 9(20), 6378–6394 (2021). https://doi.org/10.1039/d1tc01061a
- W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge et al., Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photonics 11(11), 726–732 (2017). https://doi.org/10.1038/s41566-017-0012-4
- Z. Xu, X. Liu, Y. Li, X. Liu, T. Yang et al., Exploring lead-free hybrid double perovskite crystals of (BA)2CsAgBiBr7 with large mobility-lifetime product toward X-ray detection. Angew. Chem. Int. Ed. 58(44), 15757–15761 (2019). https://doi.org/10.1002/anie.201909815
- I. Spanopoulos, I. Hadar, W. Ke, Q. Tu, M. Chen et al., Uniaxial expansion of the 2D Ruddlesden-Popper perovskite family for improved environmental stability. J. Am. Chem. Soc. 141(13), 5518–5534 (2019). https://doi.org/10.1021/jacs.9b01327
- X. Li, W. Ke, B. Traore, P. Guo, I. Hadar et al., Two-dimensional Dion-Jacobson hybrid lead iodide perovskites with aromatic diammonium cations. J. Am. Chem. Soc. 141(32), 12880–12890 (2019). https://doi.org/10.1021/jacs.9b06398
- Y. Fu, X. Jiang, X. Li, B. Traore, I. Spanopoulos et al., Cation engineering in two-dimensional Ruddlesden–Popper lead iodide perovskites with mixed large A-site cations in the cages. J. Am. Chem. Soc. 142(8), 4008–4021 (2020). https://doi.org/10.1021/jacs.9b13587
- D. Chen, G. Niu, S. Hao, L. Fan, J. Zhao et al., Decreasing structural dimensionality of double perovskites for phase stabilization toward efficient X-ray detection. ACS Appl. Mater. Interfaces 13(51), 61447–61453 (2021). https://doi.org/10.1021/acsami.1c20234
- T. Niu, J. Lu, M.-C. Tang, D. Barrit, D.-M. Smilgies et al., High performance ambient-air-stable FAPbI3 perovskite solar cells with molecule-passivated Ruddlesden–Popper/3D heterostructured film. Energy Environ. Sci. 11(12), 3358–3366 (2018). https://doi.org/10.1039/c8ee02542h
- J. Di, J. Chang, S. Liu, Recent progress of two-dimensional lead halide perovskite single crystals: crystal growth, physical properties, and device applications. EcoMat 2(3), (2020). https://doi.org/10.1002/eom2.12036
- J. Di, H. Li, J. Su, H. Yuan, Z. Lin et al., Reveal the humidity effect on the phase pure CsPbBr3 single crystals formation at room temperature and its application for ultrahigh sensitive X-ray detector. Adv. Sci. 9(2), e2103482 (2022). https://doi.org/10.1002/advs.202103482
- Y. Shen, Y. Liu, H. Ye, Y. Zheng, Q. Wei et al., Centimeter-sized single crystal of two-dimensional halide perovskites incorporating straight-chain symmetric diammonium ion for X-ray detection. Angew. Chem. Int. Ed. 59(35), 14896–14902 (2020). https://doi.org/10.1002/anie.202004160
- Y. Zhang, Y. Liu, Z. Xu, H. Ye, Q. Li et al., Two-dimensional (PEA)2PbBr4 perovskite single crystals for a high performance UV-detector. J. Mater. Chem. C 7(6), 1584–1591 (2019). https://doi.org/10.1039/c8tc06129g
- H. Tian, L. Zhao, X. Wang, Y.W. Yeh, N. Yao et al., Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing. ACS Nano 11(12), 12247–12256 (2017). https://doi.org/10.1021/acsnano.7b05726
- X. Xiao, J. Dai, Y. Fang, J. Zhao, X. Zheng et al., Suppressed ion migration along the in-plane direction in layered perovskites. ACS Energy Lett. 3(3), 684–688 (2018). https://doi.org/10.1021/acsenergylett.8b00047
- Y. Xu, Y. Li, Q. Wang, H. Chen, Y. Lei et al., Two-dimensional BA2PbBr4-based wafer for X-rays imaging application. Mater. Chem. Front. 6(10), 1310–1316 (2022). https://doi.org/10.1039/d2qm00233g
- D.H. Cao, C.C. Stoumpos, O.K. Farha, J.T. Hupp, M.G. Kanatzidis, 2D homologous perovskites as Light-Absorbing materials for solar cell applications. J. Am. Chem. Soc. 137(24), 7843–7850 (2015). https://doi.org/10.1021/jacs.5b03796
- Y. Xu, Z. Lin, J. Zhang, Y. Hao, J. Ouyang et al., Flexible perovskite solar cells: material selection and structure design. Appl. Phys. Rev. 9(2), 021307 (2022). https://doi.org/10.1063/5.0084596
- L. Chu, S. Zhai, W. Ahmad, J. Zhang, Y. Zang et al., High-performance large-area perovskite photovoltaic modules. Nano Res. Energy 1, 9120024 (2022). https://doi.org/10.26599/nre.2022.9120024
- Z. Lai, R. Dong, Q. Zhu, Y. Meng, F. Wang et al., Bication-mediated Quasi-2D halide perovskites for high-performance flexible photodetectors: from Ruddlesden-Popper type to Dion-Jacobson type. ACS Appl. Mater. Interfaces 12(35), 39567–39577 (2020). https://doi.org/10.1021/acsami.0c09651
- H. Tsai, S. Shrestha, L. Pan, H.H. Huang, J. Strzalka et al., Quasi-2D perovskite crystalline layers for printable direct conversion X-ray imaging. Adv. Mater. 34(13), e2106498 (2022). https://doi.org/10.1002/adma.202106498
- J. Zeng, L. Bi, Y. Cheng, B. Xu, A.K.Y. Jen, Self-assembled monolayer enabling improved buried interfaces in blade-coated perovskite solar cells for high efficiency and stability. Nano Res. Energy 1, 9120004 (2022). https://doi.org/10.26599/nre.2022.9120004
- S. Shrestha, R. Fischer, G.J. Matt, P. Feldner, T. Michel et al., High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat. Photonics 11(7), 436–440 (2017). https://doi.org/10.1038/nphoton.2017.94
- P.T. Lai, H.C. Lin, Y.T. Chuang, C.Y. Chen, W.K. Cheng et al., All-vacuum-deposited perovskite X-ray detector with a record-high self-powered sensitivity of 1.2 C Gy−1 cm−3. ACS Appl. Mater. Interfaces 14(17), 19795–19805 (2022). https://doi.org/10.1021/acsami.2c03114
- J. Zhao, L. Zhao, Y. Deng, X. Xiao, Z. Ni et al., Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays. Nat. Photonics 14(10), 612–617 (2020). https://doi.org/10.1038/s41566-020-0678-x
- S. Wang, Y. Lei, H. Chen, G. Peng, Q. Wang et al., Vertically oriented porous PET as template to integrated metal halide for high-performance large-area and ultra-flexible X-ray detector. Small 18(52), e2205095 (2022). https://doi.org/10.1002/smll.202205095
- H. Li, Y. Lei, G. Peng, Q. Wang, Z. Li et al., Low-temperature melt processing monolithic integration of organic manganese (II) bromide wafers with pixelated substrate for high sensitivity X-ray imaging. Adv. Funct. Mater. 32(48), 2208199 (2022). https://doi.org/10.1002/adfm.202208199
- Yukta, J. Ghosh, M.A. Afroz, S. Alghamdi, P.J. Sellin et al., Efficient and highly stable X-ray detection and imaging using 2D (BA)2PbI4 perovskite single crystals. ACS Photonics 9(11), 3529–3539 (2022). https://doi.org/10.1021/acsphotonics.2c00776
- X. Xu, Y. Wu, Y. Zhang, X. Li, F. Wang et al., Two-dimensional perovskite single crystals for high-performance X-ray imaging and exploring MeV X-ray detection. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12487
- H. Li, J. Song, W. Pan, D. Xu, W.A. Zhu et al., Sensitive and stable 2D perovskite single-crystal X-ray detectors enabled by a supramolecular anchor. Adv. Mater. 32(40), e2003790 (2020). https://doi.org/10.1002/adma.202003790
- C. Ji, S. Wang, Y. Wang, H. Chen, L. Li et al., 2D hybrid perovskite ferroelectric enables highly sensitive X-ray detection with low driving voltage. Adv. Funct. Mater. 30(5), 1905529 (2019). https://doi.org/10.1002/adfm.201905529
- C.-F. Wang, H. Li, M.-G. Li, Y. Cui, X. Son et al., Centimeter-sized single crystals of two-dimensional hybrid iodide double perovskite (4,4-Difluoropiperidinium)4AgBiI8 for high-temperature ferroelectricity and efficient X-ray detection. Adv. Funct. Mater. 31(13), 2009457 (2021). https://doi.org/10.1002/adfm.202009457
- C. Ma, L. Gao, Z. Xu, X. Li, X. Song et al., Centimeter-sized 2D perovskitoid single crystals for efficient X-ray photoresponsivity. Chem. Mater. 34(4), 1699–1709 (2022). https://doi.org/10.1021/acs.chemmater.1c03832
- F. Lédée, A. Ciavatti, M. Verdi, L. Basiricò, B. Fraboni, Ultra-stable and robust response to X-rays in 2D layered perovskite micro-crystalline films directly deposited on flexible substrate. Adv. Opt. Mater. 10(1), 2101145 (2021). https://doi.org/10.1002/adom.202101145
- H. Tsai, F. Liu, S. Shrestha, K. Fernando, S. Tretiak et al., A sensitive and robust thin-film X-ray detector using 2D layered perovskite diodes. Sci. Adv. 6(15), eaay0815 (2020). https://doi.org/10.1126/sciadv.aay0815
- J.S. Yun, J. Seidel, J. Kim, A.M. Soufiani, S. Huang et al., Critical role of grain boundaries for ion migration in formamidinium and methylammonium lead halide perovskite solar cells. Adv. Energy Mater. 6(13), 1600330 (2016). https://doi.org/10.1002/aenm.201600330
- T. Zhang, C. Hu, S. Yang, Ion Migration: a “double-edged sword” for halide-perovskite-based electronic devices. Small Methods 4(5), 1900552 (2019). https://doi.org/10.1002/smtd.201900552
- J.M. Azpiroz, E. Mosconi, J. Bisquert, F. De Angelis, Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8(7), 2118–2127 (2015). https://doi.org/10.1039/c5ee01265a
- Z. Li, G. Peng, H. Chen, C. Shi, Z. Li et al., Metal-free PAZE-NH4X3.H2O perovskite for flexible transparent X-ray detection and imaging. Angew. Chem. Int. Ed. 61(36), e202207198 (2022). https://doi.org/10.1002/anie.202207198
- M. Li, H. Li, W. Li, B. Li, T. Lu et al., Oriented 2D perovskite wafers for anisotropic X-ray detection through a fast tableting strategy. Adv. Mater. 34(8), e2108020 (2022). https://doi.org/10.1002/adma.202108020
- J. Cho, J.T. DuBose, A.N.T. Le, P.V. Kamat, Suppressed halide ion migration in 2D lead halide perovskites. ACS Mater. Lett. 2(6), 565–570 (2020). https://doi.org/10.1021/acsmaterialslett.0c00124
- B. Zhang, Z. Xu, C. Ma, H. Li, Y. Liu et al., First-principles calculation design for 2D perovskite to suppress ion migration for high-performance X-ray detection. Adv. Funct. Mater. 32(15), 2110392 (2021). https://doi.org/10.1002/adfm.202110392
- X. Liu, S. Wang, P. Long, L. Li, Y. Peng et al., Polarization-driven self-powered photodetection in a single-phase biaxial hybrid perovskite ferroelectric. Angew. Chem. Int. Ed. 58(41), 14504–14508 (2019). https://doi.org/10.1002/anie.201907660
- Y. Lei, Z. Li, H. Wang, Q. Wang, G. Peng et al., Manipulate energy transport via fluorinated spacers towards record-efficiency 2D Dion-Jacobson CsPbI3 solar cells. Sci. Bull. 67(13), 1352–1361 (2022). https://doi.org/10.1016/j.scib.2022.05.019
- K. Wang, C. Wu, D. Yang, Y. Jiang, S. Priya, Quasi-two-dimensional halide perovskite single crystal photodetector. ACS Nano 12(5), 4919–4929 (2018). https://doi.org/10.1021/acsnano.8b01999
- C. Ma, D. Shen, T.W. Ng, M.F. Lo, C.S. Lee, 2D perovskites with short interlayer distance for high-performance solar cell application. Adv. Mater. 30(22), e1800710 (2018). https://doi.org/10.1002/adma.201800710
- J. Xu, J. Chen, S. Chen, H. Gao, Y. Li et al., Organic spacer engineering of ruddlesden-popper perovskite materials toward efficient and stable solar cells. Chem. Eng. J. 453, 139790 (2022). https://doi.org/10.1016/j.cej.2022.139790
- J. Di, H. Li, L. Chen, S. Zhang, Y. Hu et al., Low trap density para-F substituted 2D PEA2PbX4 (X = Cl, Br, I) single crystals with tunable optoelectrical properties and high sensitive X-ray detector performance. Research 2022, 9768019 (2022). https://doi.org/10.34133/2022/9768019
- H. Chen, Y. Li, D. Xue, 2D organic-inorganic hybrid perovskite quantum well materials and their dramatical X-ray optoelectronic properties. Materials 14(19), 14195539 (2021). https://doi.org/10.3390/ma14195539
- M.C. Gelvez-Rueda, M.B. Fridriksson, R.K. Dubey, W.F. Jager, W. van der Stam et al., Overcoming the exciton binding energy in two-dimensional perovskite nanoplatelets by attachment of conjugated organic chromophores. Nat. Commun. 11(1), 1901 (2020). https://doi.org/10.1038/s41467-020-15869-7
- J.C. Blancon, H. Tsai, W. Nie, C.C. Stoumpos, L. Pedesseau et al., Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355(6331), 1288–1291 (2017). https://doi.org/10.1126/science.aal4211
- W. Fu, H. Chen, A.K.Y. Jen, Two-dimensional perovskites for photovoltaics. Materials Today Nano 14, 100117 (2021). https://doi.org/10.1016/j.mtnano.2021.100117
- H. Zheng, G. Liu, L. Zhu, J. Ye, X. Zhang et al., The effect of hydrophobicity of ammonium salts on stability of Quasi-2D perovskite materials in moist condition. Adv. Energy Mater. 8(21), 1800051 (2018). https://doi.org/10.1002/aenm.201800051
- H. Ren, S. Yu, L. Chao, Y. Xia, Y. Sun et al., Efficient and stable Ruddlesden–Popper perovskite solar cell with tailored interlayer molecular interaction. Nat. Photonics 14(3), 154–163 (2020). https://doi.org/10.1038/s41566-019-0572-6
- H. Tsai, D. Ghosh, W. Panaccione, L.-Y. Su, C.-H. Hou et al., Addressing the voltage induced instability problem of perovskite semiconductor detectors. ACS Energy Lett. 3871-3879 (2022). https://doi.org/10.1021/acsenergylett.2c02054
- T. Zhang, M.I. Dar, G. Li, F. Xu, N. Guo et al., Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Sci. Adv. 3(9), 1700841 (2017). https://doi.org/10.1126/sciadv.1700841
- L.N. Quan, M. Yuan, R. Comin, O. Voznyy, E.M. Beauregard et al., Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138(8), 2649–2655 (2016). https://doi.org/10.1021/jacs.5b11740
- T. He, Y. Jiang, X. Xing, M. Yuan, Structured perovskite light absorbers for efficient and stable photovoltaics. Adv. Mater. 32(26), e1903937 (2020). https://doi.org/10.1002/adma.201903937
- W. Guo, Z. Yang, J. Dang, M. Wang, Progress and perspective in Dion-Jacobson phase 2D layered perovskite optoelectronic applications. Nano Energy 86, 106129 (2021). https://doi.org/10.1016/j.nanoen.2021.106129
- N. Zhou, H. Zhou, Spacer organic cation engineering for Quasi-2D metal halide perovskites and the optoelectronic application. Small Struct. 3(7), 2100232 (2022). https://doi.org/10.1002/sstr.202100232
- Y. He, W. Pan, C. Guo, H. Zhang, H. Wei et al., 3D/2D perovskite single crystals heterojunction for suppressed ions iigration in hard X-ray detection. Adv. Funct. Mater. 31(49), 2104880 (2021). https://doi.org/10.1002/adfm.202104880
- X. Xu, W. Qian, J. Wang, J. Yang, J. Chen et al., Sequential growth of 2D/3D double-Layer perovskite films with superior X-ray detection performance. Adv. Sci. 8(21), e2102730 (2021). https://doi.org/10.1002/advs.202102730
- X. Zhang, T. Zhu, C. Ji, Y. Yao, J. Luo, In situ epitaxial growth of centimeter-sized lead-free (BA)2CsAgBiBr7/Cs2AgBiBr6 heterocrystals for self-driven X-ray detection. J. Am. Chem. Soc. 143(49), 20802–20810 (2021). https://doi.org/10.1021/jacs.1c08959
- J. Peng, Y. Xu, F. Yao, H. Huang, R. Li et al., Ion-exchange-induced slow crystallization of 2D–3D perovskite thick junctions for X-ray detection and imaging. Matter 5(7), 2251–2264 (2022). https://doi.org/10.1016/j.matt.2022.04.030
- J. Cao, Z. Guo, S. Zhu, Y. Fu, H. Zhang et al., Preparation of lead-free two-dimensional-layered (C8H17NH3)2SnBr4 perovskite scintillators and their application in X-ray imaging. ACS Appl. Mater. Interfaces 12(17), 19797–19804 (2020). https://doi.org/10.1021/acsami.0c02116
- W. Shao, X. Wang, Z. Zhang, J. Huang, Z. Han et al., Highly efficient and flexible scintillation screen based on manganese (II) activated 2D perovskite for planar and nonplanar high-resolution X-ray imaging. Adv. Opt. Mater. 10(6), 2102282 (2022). https://doi.org/10.1002/adom.202102282
- A. Xie, C. Hettiarachchi, F. Maddalena, M.E. Witkowski, M. Makowski et al., Lithium-doped two-dimensional perovskite scintillator for wide-range radiation detection. Commun. Mater. 1(1), 37 (2020). https://doi.org/10.1038/s43246-020-0038-x
- Z. Zhang, S. Wang, X. Liu, Y. Chen, C. Su et al., Metal halide perovskite/2D material heterostructures: syntheses and applications. Small Methods 5(4), e2000937 (2021). https://doi.org/10.1002/smtd.202000937
- H. Wang, Y. Chen, D. Li, Two/Quasi-two-dimensional perovskite-based heterostructures: construction, properties and applications. Int. J. Extreme Manuf. 5(1), 012004 (2023). https://doi.org/10.1088/2631-7990/acab40
- Y. Bai, L. Sun, Q. Yu, Y. Lei, B. Liu, Biomolecule capturing and sensing on 2D transition metal dichalcogenide canvas. Nano Res. Energy 2, 9120043 (2023). https://doi.org/10.26599/nre.2023.9120043
References
S. Akcay, T. Breckon, Towards automatic threat detection: a survey of advances of deep learning within X-ray security imaging. Pattern Recogn. 122, 108245 (2022). https://doi.org/10.1016/j.patcog.2021.108245
C. Szeles, CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. Phys. Status Solidi B 241(3), 783–790 (2004). https://doi.org/10.1002/pssb.200304296
S. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani et al., Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors 11(5), 5112–5157 (2011). https://doi.org/10.3390/s110505112
X. Xu, W. Qian, S. Xiao, J. Wang, S. Zheng et al., Halide perovskites: a dark horse for direct X-ray imaging. EcoMat 2(4), e12064 (2020). https://doi.org/10.1002/eom2.12064
G. Peng, B. An, H. Chen, Z. Li, Y. Xu et al., Self-organizing pixelated Cs4PbBr6 scintillator plate for large-area, ultra-flexible, high spatial resolution and stable X-ray imaging. Adv. Opt. Mater. 11(1), 2201751 (2022). https://doi.org/10.1002/adom.202201751
A. Xie, F. Maddalena, M.E. Witkowski, M. Makowski, B. Mahler et al., Library of two-dimensional hybrid lead halide perovskite scintillator crystals. Chem. Mater. 32(19), 8530–8539 (2020). https://doi.org/10.1021/acs.chemmater.0c02789
Y. Hormozan, I. Sychugov, J. Linnros, High-resolution X-ray imaging using a structured scintillator. Med. Phys. 43(2), 696–701 (2016). https://doi.org/10.1118/1.4939258
A. Jana, S. Cho, S.A. Patil, A. Meena, Y. Jo et al., Perovskite: Scintillators, direct detectors, and X-ray imagers. Mater. Today 55, 110–136 (2022). https://doi.org/10.1016/j.mattod.2022.04.009
M. Xia, Z. Song, H. Wu, X. Du, X. He et al., Compact and large-area perovskite films achieved via soft-pressing and multi-functional polymerizable binder for flat-panel X-ray imager. Adv. Funct. Mater. 32(16), 2110729 (2022). https://doi.org/10.1002/adfm.202110729
Z. Li, F. Zhou, H. Yao, Z. Ci, Z. Yang et al., Halide perovskites for high-performance X-ray detector. Mater. Today 48, 155–175 (2021). https://doi.org/10.1016/j.mattod.2021.01.028
Z. Li, G. Peng, Z. Li, Y. Xu, T. Wang et al., Hydrogen bonds strengthened metal-free perovskite for degradable X-ray detector with enhanced stability, flexibility and sensitivity. Angew. Chem. Int. Ed. 62(10), e202218349 (2023). https://doi.org/10.1002/anie.202218349
H. Chen, Q. Wang, G. Peng, S. Wang, Y. Lei et al., Cesium lead halide nanocrystals based flexible X-ray imaging screen and visible dose rate indication on paper substrate. Adv. Opt. Mater. 10(8), 2102790 (2022). https://doi.org/10.1002/adom.202102790
Y. Xu, Y. Li, G. Peng, Q. Wang, Z. Li et al., Asymmetric metal halide film with suppressed leakage current for high sensitive X-ray detection and imaging. IEEE Electron Dev Lett. 43(10), 1709–1712 (2022). https://doi.org/10.1109/led.2022.3202173
H. Huang, S. Abbaszadeh, Recent developments of amorphous selenium-based X-ray detectors: a review. IEEE Sens. J. 20(4), 1694–1704 (2020). https://doi.org/10.1109/jsen.2019.2950319
N.K. Tailor, J. Ghosh, M.A. Afroz, S. Bennett, M. Chatterjee et al., Self-powered X-ray detection and imaging using Cs2AgBiCl6 lead-free double perovskite single crystal. ACS Appl. Electron. Mater. 4(9), 4530–4539 (2022). https://doi.org/10.1021/acsaelm.2c00752
R. Bellazzini, G. Spandre, A. Brez, M. Minuti, M. Pinchera et al., Chromatic X-ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC. J. Instrum. 8(02), C02028–C02028 (2013). https://doi.org/10.1088/1748-0221/8/02/c02028
H. Wu, Y. Ge, G. Niu, J. Tang, Metal halide perovskites for X-ray detection and imaging. Matter 4(1), 144–163 (2021). https://doi.org/10.1016/j.matt.2020.11.015
H.M. Thirimanne, K. Jayawardena, A.J. Parnell, R.M.I. Bandara, A. Karalasingam et al., High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response. Nat. Commun. 9(1), 2926 (2018). https://doi.org/10.1038/s41467-018-05301-6
H.J. Snaith, Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4(21), 3623–3630 (2013). https://doi.org/10.1021/jz4020162
Z. Li, Z. Li, G. Peng, C. Shi, H. Wang et al., PF6—pseudohalides anion based metal-free perovskite single crystal for stable X-ray detector to attain record sensitivity. Adv. Mater. e2300480 (2023). https://doi.org/10.1002/adma.202300480
W.-J. Yin, T. Shi, Y. Yan, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104(6), 063903 (2014). https://doi.org/10.1063/1.4864778
W.J. Yin, T. Shi, Y. Yan, Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26(27), 4653–4658 (2014). https://doi.org/10.1002/adma.201306281
K. Liu, Z. Wang, S. Qu, L. Ding, Stress and strain in perovskite/silicon tandem solar cells. Nano-Micro Lett. 15(1), 59 (2023). https://doi.org/10.1007/s40820-023-01019-3
D.W. deQuilettes, S.M. Vorpahl, S.D. Stranks, H. Nagaoka, G.E. Eperon et al., Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348(6235), 683–686 (2015). https://doi.org/10.1126/science.aaa5333
G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam et al., Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013). https://doi.org/10.1126/science.1243167
J. Sun, L. Ding, Linearly polarization-sensitive perovskite photodetectors. Nano-Micro Lett. 15(1), 90 (2023). https://doi.org/10.1007/s40820-023-01048-y
M. Xia, J.H. Yuan, G. Niu, X. Du, L. Yin et al., Unveiling the structural descriptor of A3B2X9 perovskite derivatives toward X-ray detectors with low detection limit and high stability. Adv. Funct. Mater. 30(24), 1910648 (2020). https://doi.org/10.1002/adfm.201910648
X. Li, P. Zhang, Y. Hua, F. Cui, X. Sun et al., Ultralow detection limit and robust hard X-ray imaging detector based on inch-sized lead-free perovskite Cs3Bi2Br9 single crystals. ACS Appl. Mater. Interfaces 14(7), 9340–9351 (2022). https://doi.org/10.1021/acsami.1c24086
L. Gao, J. You, S. Liu, Superior photovoltaics/optoelectronics of two-dimensional halide perovskites. J. Energy Chem. 57, 69–82 (2021). https://doi.org/10.1016/j.jechem.2020.08.022
L. Mao, Y. Wu, C.C. Stoumpos, B. Traore, C. Katan et al., Tunable white-light emission in single-cation-templated three-layered 2D perovskites (CH3CH2NH3)4Pb3Br10-xCx. J. Am. Chem. Soc. 139(34), 11956–11963 (2017). https://doi.org/10.1021/jacs.7b06143
B. Xiao, Q. Sun, F. Wang, S. Wang, B.-B. Zhang et al., Towards superior X-ray detection performance of two-dimensional halide perovskite crystals by adjusting the anisotropic transport behavior. J. Mater. Chem. A 9(22), 13209–13219 (2021). https://doi.org/10.1039/d1ta02918e
Z. Wang, Z. Shi, T. Li, Y. Chen, W. Huang, Stability of perovskite solar cells: a prospective on the substitution of the a cation and X anion. Angew. Chem. Int. Ed. 56(5), 1190–1212 (2017). https://doi.org/10.1002/anie.201603694
J. Zhuang, J. Wang, F. Yan, Review on chemical stability of lead halide perovskite solar cells. Nano-Micro Lett. 15(1), 84 (2023). https://doi.org/10.1007/s40820-023-01046-0
X. Fu, T. He, S. Zhang, X. Lei, Y. Jiang et al., Halogen-halogen bonds enable improved long-term operational stability of mixed-halide perovskite photovoltaics. Chem 7(11), 3131–3143 (2021). https://doi.org/10.1016/j.chempr.2021.08.009
K. Sakhatskyi, R.A. John, A. Guerrero, S. Tsarev, S. Sabisch et al., Assessing the drawbacks and benefits of ion migration in lead halide perovskites. ACS Energy Lett. 7(10), 3401–3414 (2022). https://doi.org/10.1021/acsenergylett.2c01663
X. He, M. Xia, H. Wu, X. Du, Z. Song et al., Quasi-2D perovskite thick film for X-ray detection with low detection limit. Adv. Funct. Mater. 32(7), 2109458 (2021). https://doi.org/10.1002/adfm.202109458
S. Sun, M. Lu, X. Gao, Z. Shi, X. Bai et al., 0D perovskites: unique properties, synthesis, and their applications. Adv. Sci. 8(24), e2102689 (2021). https://doi.org/10.1002/advs.202102689
M. Zhang, D. Xin, S. Dong, W. Zhao, S. Tie et al., Methylamine-assisted preparation of ruddlesden-popper perovskites for stable detection and imaging of X-rays. Adv. Opt. Mater. 10(23), 2201548 (2022). https://doi.org/10.1002/adom.202201548
D. Xin, S. Dong, M. Zhang, S. Tie, J. Ren et al., Nucleation engineering in sprayed MA3Bi2I9 films for direct-conversion X-ray detectors. J. Phys. Chem. Lett. 13(1), 371–377 (2022). https://doi.org/10.1021/acs.jpclett.1c03922
Y. Liu, Z. Xu, Z. Yang, Y. Zhang, J. Cui et al., Inch-size 0D-structured lead-free perovskite single crystals for highly sensitive stable X-ray imaging. Matter 3(1), 180–196 (2020). https://doi.org/10.1016/j.matt.2020.04.017
Y. Zheng, T. Niu, X. Ran, J. Qiu, B. Li et al., Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application. J. Mater. Chem. A 7(23), 13860–13872 (2019). https://doi.org/10.1039/c9ta03217g
N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao et al., Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10(11), 699–704 (2016). https://doi.org/10.1038/nphoton.2016.185
L. Cheng, T. Jiang, Y. Cao, C. Yi, N. Wang et al., Multiple-quantum-well perovskites for high-performance light-emitting diodes. Adv. Mater. 32(15), 2208875 (2019). https://doi.org/10.1002/adma.201904163
B. Zhang, T. Zheng, J. You, C. Ma, Y. Liu et al., Electron–phonon coupling suppression by enhanced lattice rigidity in 2D perovskite single crystals for high-performance X-ray detection. Adv. Mater. 35(7), e2208875 (2022). https://doi.org/10.1002/adma.202208875
J. Cho, P.S. Mathew, J.T. DuBose, P.V. Kamat, Photoinduced halide segregation in ruddlesden-popper 2D mixed halide perovskite films. Adv. Mater. 33(48), e2105585 (2021). https://doi.org/10.1002/adma.202105585
Y. Chen, Y. Sun, J. Peng, J. Tang, K. Zheng et al., 2D Ruddlesden–Popper perovskites for optoelectronics. Adv. Mater. 30(2), 1703487 (2018). https://doi.org/10.1002/adma.201703487
C.C. Stoumpos, D.H. Cao, D.J. Clark, J. Young, J.M. Rondinelli et al., Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28(8), 2852–2867 (2016). https://doi.org/10.1021/acs.chemmater.6b00847
L. Mao, W. Ke, L. Pedesseau, Y. Wu, C. Katan et al., Hybrid Dion-Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 140(10), 3775–3783 (2018). https://doi.org/10.1021/jacs.8b00542
O. Nazarenko, M.R. Kotyrba, M. Worle, E. Cuervo-Reyes, S. Yakunin et al., Luminescent and photoconductive layered lead halide perovskite compounds comprising mixtures of cesium and guanidinium cations. Inorg. Chem. 56(19), 11552–11564 (2017). https://doi.org/10.1021/acs.inorgchem.7b01204
L. Mao, C.C. Stoumpos, M.G. Kanatzidis, Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 141(3), 1171–1190 (2019). https://doi.org/10.1021/jacs.8b10851
H. Fu, Dion-Jacobson halide perovskites for photovoltaic and photodetection applications. J. Mater. Chem. C 9(20), 6378–6394 (2021). https://doi.org/10.1039/d1tc01061a
W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge et al., Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photonics 11(11), 726–732 (2017). https://doi.org/10.1038/s41566-017-0012-4
Z. Xu, X. Liu, Y. Li, X. Liu, T. Yang et al., Exploring lead-free hybrid double perovskite crystals of (BA)2CsAgBiBr7 with large mobility-lifetime product toward X-ray detection. Angew. Chem. Int. Ed. 58(44), 15757–15761 (2019). https://doi.org/10.1002/anie.201909815
I. Spanopoulos, I. Hadar, W. Ke, Q. Tu, M. Chen et al., Uniaxial expansion of the 2D Ruddlesden-Popper perovskite family for improved environmental stability. J. Am. Chem. Soc. 141(13), 5518–5534 (2019). https://doi.org/10.1021/jacs.9b01327
X. Li, W. Ke, B. Traore, P. Guo, I. Hadar et al., Two-dimensional Dion-Jacobson hybrid lead iodide perovskites with aromatic diammonium cations. J. Am. Chem. Soc. 141(32), 12880–12890 (2019). https://doi.org/10.1021/jacs.9b06398
Y. Fu, X. Jiang, X. Li, B. Traore, I. Spanopoulos et al., Cation engineering in two-dimensional Ruddlesden–Popper lead iodide perovskites with mixed large A-site cations in the cages. J. Am. Chem. Soc. 142(8), 4008–4021 (2020). https://doi.org/10.1021/jacs.9b13587
D. Chen, G. Niu, S. Hao, L. Fan, J. Zhao et al., Decreasing structural dimensionality of double perovskites for phase stabilization toward efficient X-ray detection. ACS Appl. Mater. Interfaces 13(51), 61447–61453 (2021). https://doi.org/10.1021/acsami.1c20234
T. Niu, J. Lu, M.-C. Tang, D. Barrit, D.-M. Smilgies et al., High performance ambient-air-stable FAPbI3 perovskite solar cells with molecule-passivated Ruddlesden–Popper/3D heterostructured film. Energy Environ. Sci. 11(12), 3358–3366 (2018). https://doi.org/10.1039/c8ee02542h
J. Di, J. Chang, S. Liu, Recent progress of two-dimensional lead halide perovskite single crystals: crystal growth, physical properties, and device applications. EcoMat 2(3), (2020). https://doi.org/10.1002/eom2.12036
J. Di, H. Li, J. Su, H. Yuan, Z. Lin et al., Reveal the humidity effect on the phase pure CsPbBr3 single crystals formation at room temperature and its application for ultrahigh sensitive X-ray detector. Adv. Sci. 9(2), e2103482 (2022). https://doi.org/10.1002/advs.202103482
Y. Shen, Y. Liu, H. Ye, Y. Zheng, Q. Wei et al., Centimeter-sized single crystal of two-dimensional halide perovskites incorporating straight-chain symmetric diammonium ion for X-ray detection. Angew. Chem. Int. Ed. 59(35), 14896–14902 (2020). https://doi.org/10.1002/anie.202004160
Y. Zhang, Y. Liu, Z. Xu, H. Ye, Q. Li et al., Two-dimensional (PEA)2PbBr4 perovskite single crystals for a high performance UV-detector. J. Mater. Chem. C 7(6), 1584–1591 (2019). https://doi.org/10.1039/c8tc06129g
H. Tian, L. Zhao, X. Wang, Y.W. Yeh, N. Yao et al., Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing. ACS Nano 11(12), 12247–12256 (2017). https://doi.org/10.1021/acsnano.7b05726
X. Xiao, J. Dai, Y. Fang, J. Zhao, X. Zheng et al., Suppressed ion migration along the in-plane direction in layered perovskites. ACS Energy Lett. 3(3), 684–688 (2018). https://doi.org/10.1021/acsenergylett.8b00047
Y. Xu, Y. Li, Q. Wang, H. Chen, Y. Lei et al., Two-dimensional BA2PbBr4-based wafer for X-rays imaging application. Mater. Chem. Front. 6(10), 1310–1316 (2022). https://doi.org/10.1039/d2qm00233g
D.H. Cao, C.C. Stoumpos, O.K. Farha, J.T. Hupp, M.G. Kanatzidis, 2D homologous perovskites as Light-Absorbing materials for solar cell applications. J. Am. Chem. Soc. 137(24), 7843–7850 (2015). https://doi.org/10.1021/jacs.5b03796
Y. Xu, Z. Lin, J. Zhang, Y. Hao, J. Ouyang et al., Flexible perovskite solar cells: material selection and structure design. Appl. Phys. Rev. 9(2), 021307 (2022). https://doi.org/10.1063/5.0084596
L. Chu, S. Zhai, W. Ahmad, J. Zhang, Y. Zang et al., High-performance large-area perovskite photovoltaic modules. Nano Res. Energy 1, 9120024 (2022). https://doi.org/10.26599/nre.2022.9120024
Z. Lai, R. Dong, Q. Zhu, Y. Meng, F. Wang et al., Bication-mediated Quasi-2D halide perovskites for high-performance flexible photodetectors: from Ruddlesden-Popper type to Dion-Jacobson type. ACS Appl. Mater. Interfaces 12(35), 39567–39577 (2020). https://doi.org/10.1021/acsami.0c09651
H. Tsai, S. Shrestha, L. Pan, H.H. Huang, J. Strzalka et al., Quasi-2D perovskite crystalline layers for printable direct conversion X-ray imaging. Adv. Mater. 34(13), e2106498 (2022). https://doi.org/10.1002/adma.202106498
J. Zeng, L. Bi, Y. Cheng, B. Xu, A.K.Y. Jen, Self-assembled monolayer enabling improved buried interfaces in blade-coated perovskite solar cells for high efficiency and stability. Nano Res. Energy 1, 9120004 (2022). https://doi.org/10.26599/nre.2022.9120004
S. Shrestha, R. Fischer, G.J. Matt, P. Feldner, T. Michel et al., High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat. Photonics 11(7), 436–440 (2017). https://doi.org/10.1038/nphoton.2017.94
P.T. Lai, H.C. Lin, Y.T. Chuang, C.Y. Chen, W.K. Cheng et al., All-vacuum-deposited perovskite X-ray detector with a record-high self-powered sensitivity of 1.2 C Gy−1 cm−3. ACS Appl. Mater. Interfaces 14(17), 19795–19805 (2022). https://doi.org/10.1021/acsami.2c03114
J. Zhao, L. Zhao, Y. Deng, X. Xiao, Z. Ni et al., Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays. Nat. Photonics 14(10), 612–617 (2020). https://doi.org/10.1038/s41566-020-0678-x
S. Wang, Y. Lei, H. Chen, G. Peng, Q. Wang et al., Vertically oriented porous PET as template to integrated metal halide for high-performance large-area and ultra-flexible X-ray detector. Small 18(52), e2205095 (2022). https://doi.org/10.1002/smll.202205095
H. Li, Y. Lei, G. Peng, Q. Wang, Z. Li et al., Low-temperature melt processing monolithic integration of organic manganese (II) bromide wafers with pixelated substrate for high sensitivity X-ray imaging. Adv. Funct. Mater. 32(48), 2208199 (2022). https://doi.org/10.1002/adfm.202208199
Yukta, J. Ghosh, M.A. Afroz, S. Alghamdi, P.J. Sellin et al., Efficient and highly stable X-ray detection and imaging using 2D (BA)2PbI4 perovskite single crystals. ACS Photonics 9(11), 3529–3539 (2022). https://doi.org/10.1021/acsphotonics.2c00776
X. Xu, Y. Wu, Y. Zhang, X. Li, F. Wang et al., Two-dimensional perovskite single crystals for high-performance X-ray imaging and exploring MeV X-ray detection. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12487
H. Li, J. Song, W. Pan, D. Xu, W.A. Zhu et al., Sensitive and stable 2D perovskite single-crystal X-ray detectors enabled by a supramolecular anchor. Adv. Mater. 32(40), e2003790 (2020). https://doi.org/10.1002/adma.202003790
C. Ji, S. Wang, Y. Wang, H. Chen, L. Li et al., 2D hybrid perovskite ferroelectric enables highly sensitive X-ray detection with low driving voltage. Adv. Funct. Mater. 30(5), 1905529 (2019). https://doi.org/10.1002/adfm.201905529
C.-F. Wang, H. Li, M.-G. Li, Y. Cui, X. Son et al., Centimeter-sized single crystals of two-dimensional hybrid iodide double perovskite (4,4-Difluoropiperidinium)4AgBiI8 for high-temperature ferroelectricity and efficient X-ray detection. Adv. Funct. Mater. 31(13), 2009457 (2021). https://doi.org/10.1002/adfm.202009457
C. Ma, L. Gao, Z. Xu, X. Li, X. Song et al., Centimeter-sized 2D perovskitoid single crystals for efficient X-ray photoresponsivity. Chem. Mater. 34(4), 1699–1709 (2022). https://doi.org/10.1021/acs.chemmater.1c03832
F. Lédée, A. Ciavatti, M. Verdi, L. Basiricò, B. Fraboni, Ultra-stable and robust response to X-rays in 2D layered perovskite micro-crystalline films directly deposited on flexible substrate. Adv. Opt. Mater. 10(1), 2101145 (2021). https://doi.org/10.1002/adom.202101145
H. Tsai, F. Liu, S. Shrestha, K. Fernando, S. Tretiak et al., A sensitive and robust thin-film X-ray detector using 2D layered perovskite diodes. Sci. Adv. 6(15), eaay0815 (2020). https://doi.org/10.1126/sciadv.aay0815
J.S. Yun, J. Seidel, J. Kim, A.M. Soufiani, S. Huang et al., Critical role of grain boundaries for ion migration in formamidinium and methylammonium lead halide perovskite solar cells. Adv. Energy Mater. 6(13), 1600330 (2016). https://doi.org/10.1002/aenm.201600330
T. Zhang, C. Hu, S. Yang, Ion Migration: a “double-edged sword” for halide-perovskite-based electronic devices. Small Methods 4(5), 1900552 (2019). https://doi.org/10.1002/smtd.201900552
J.M. Azpiroz, E. Mosconi, J. Bisquert, F. De Angelis, Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8(7), 2118–2127 (2015). https://doi.org/10.1039/c5ee01265a
Z. Li, G. Peng, H. Chen, C. Shi, Z. Li et al., Metal-free PAZE-NH4X3.H2O perovskite for flexible transparent X-ray detection and imaging. Angew. Chem. Int. Ed. 61(36), e202207198 (2022). https://doi.org/10.1002/anie.202207198
M. Li, H. Li, W. Li, B. Li, T. Lu et al., Oriented 2D perovskite wafers for anisotropic X-ray detection through a fast tableting strategy. Adv. Mater. 34(8), e2108020 (2022). https://doi.org/10.1002/adma.202108020
J. Cho, J.T. DuBose, A.N.T. Le, P.V. Kamat, Suppressed halide ion migration in 2D lead halide perovskites. ACS Mater. Lett. 2(6), 565–570 (2020). https://doi.org/10.1021/acsmaterialslett.0c00124
B. Zhang, Z. Xu, C. Ma, H. Li, Y. Liu et al., First-principles calculation design for 2D perovskite to suppress ion migration for high-performance X-ray detection. Adv. Funct. Mater. 32(15), 2110392 (2021). https://doi.org/10.1002/adfm.202110392
X. Liu, S. Wang, P. Long, L. Li, Y. Peng et al., Polarization-driven self-powered photodetection in a single-phase biaxial hybrid perovskite ferroelectric. Angew. Chem. Int. Ed. 58(41), 14504–14508 (2019). https://doi.org/10.1002/anie.201907660
Y. Lei, Z. Li, H. Wang, Q. Wang, G. Peng et al., Manipulate energy transport via fluorinated spacers towards record-efficiency 2D Dion-Jacobson CsPbI3 solar cells. Sci. Bull. 67(13), 1352–1361 (2022). https://doi.org/10.1016/j.scib.2022.05.019
K. Wang, C. Wu, D. Yang, Y. Jiang, S. Priya, Quasi-two-dimensional halide perovskite single crystal photodetector. ACS Nano 12(5), 4919–4929 (2018). https://doi.org/10.1021/acsnano.8b01999
C. Ma, D. Shen, T.W. Ng, M.F. Lo, C.S. Lee, 2D perovskites with short interlayer distance for high-performance solar cell application. Adv. Mater. 30(22), e1800710 (2018). https://doi.org/10.1002/adma.201800710
J. Xu, J. Chen, S. Chen, H. Gao, Y. Li et al., Organic spacer engineering of ruddlesden-popper perovskite materials toward efficient and stable solar cells. Chem. Eng. J. 453, 139790 (2022). https://doi.org/10.1016/j.cej.2022.139790
J. Di, H. Li, L. Chen, S. Zhang, Y. Hu et al., Low trap density para-F substituted 2D PEA2PbX4 (X = Cl, Br, I) single crystals with tunable optoelectrical properties and high sensitive X-ray detector performance. Research 2022, 9768019 (2022). https://doi.org/10.34133/2022/9768019
H. Chen, Y. Li, D. Xue, 2D organic-inorganic hybrid perovskite quantum well materials and their dramatical X-ray optoelectronic properties. Materials 14(19), 14195539 (2021). https://doi.org/10.3390/ma14195539
M.C. Gelvez-Rueda, M.B. Fridriksson, R.K. Dubey, W.F. Jager, W. van der Stam et al., Overcoming the exciton binding energy in two-dimensional perovskite nanoplatelets by attachment of conjugated organic chromophores. Nat. Commun. 11(1), 1901 (2020). https://doi.org/10.1038/s41467-020-15869-7
J.C. Blancon, H. Tsai, W. Nie, C.C. Stoumpos, L. Pedesseau et al., Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355(6331), 1288–1291 (2017). https://doi.org/10.1126/science.aal4211
W. Fu, H. Chen, A.K.Y. Jen, Two-dimensional perovskites for photovoltaics. Materials Today Nano 14, 100117 (2021). https://doi.org/10.1016/j.mtnano.2021.100117
H. Zheng, G. Liu, L. Zhu, J. Ye, X. Zhang et al., The effect of hydrophobicity of ammonium salts on stability of Quasi-2D perovskite materials in moist condition. Adv. Energy Mater. 8(21), 1800051 (2018). https://doi.org/10.1002/aenm.201800051
H. Ren, S. Yu, L. Chao, Y. Xia, Y. Sun et al., Efficient and stable Ruddlesden–Popper perovskite solar cell with tailored interlayer molecular interaction. Nat. Photonics 14(3), 154–163 (2020). https://doi.org/10.1038/s41566-019-0572-6
H. Tsai, D. Ghosh, W. Panaccione, L.-Y. Su, C.-H. Hou et al., Addressing the voltage induced instability problem of perovskite semiconductor detectors. ACS Energy Lett. 3871-3879 (2022). https://doi.org/10.1021/acsenergylett.2c02054
T. Zhang, M.I. Dar, G. Li, F. Xu, N. Guo et al., Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Sci. Adv. 3(9), 1700841 (2017). https://doi.org/10.1126/sciadv.1700841
L.N. Quan, M. Yuan, R. Comin, O. Voznyy, E.M. Beauregard et al., Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138(8), 2649–2655 (2016). https://doi.org/10.1021/jacs.5b11740
T. He, Y. Jiang, X. Xing, M. Yuan, Structured perovskite light absorbers for efficient and stable photovoltaics. Adv. Mater. 32(26), e1903937 (2020). https://doi.org/10.1002/adma.201903937
W. Guo, Z. Yang, J. Dang, M. Wang, Progress and perspective in Dion-Jacobson phase 2D layered perovskite optoelectronic applications. Nano Energy 86, 106129 (2021). https://doi.org/10.1016/j.nanoen.2021.106129
N. Zhou, H. Zhou, Spacer organic cation engineering for Quasi-2D metal halide perovskites and the optoelectronic application. Small Struct. 3(7), 2100232 (2022). https://doi.org/10.1002/sstr.202100232
Y. He, W. Pan, C. Guo, H. Zhang, H. Wei et al., 3D/2D perovskite single crystals heterojunction for suppressed ions iigration in hard X-ray detection. Adv. Funct. Mater. 31(49), 2104880 (2021). https://doi.org/10.1002/adfm.202104880
X. Xu, W. Qian, J. Wang, J. Yang, J. Chen et al., Sequential growth of 2D/3D double-Layer perovskite films with superior X-ray detection performance. Adv. Sci. 8(21), e2102730 (2021). https://doi.org/10.1002/advs.202102730
X. Zhang, T. Zhu, C. Ji, Y. Yao, J. Luo, In situ epitaxial growth of centimeter-sized lead-free (BA)2CsAgBiBr7/Cs2AgBiBr6 heterocrystals for self-driven X-ray detection. J. Am. Chem. Soc. 143(49), 20802–20810 (2021). https://doi.org/10.1021/jacs.1c08959
J. Peng, Y. Xu, F. Yao, H. Huang, R. Li et al., Ion-exchange-induced slow crystallization of 2D–3D perovskite thick junctions for X-ray detection and imaging. Matter 5(7), 2251–2264 (2022). https://doi.org/10.1016/j.matt.2022.04.030
J. Cao, Z. Guo, S. Zhu, Y. Fu, H. Zhang et al., Preparation of lead-free two-dimensional-layered (C8H17NH3)2SnBr4 perovskite scintillators and their application in X-ray imaging. ACS Appl. Mater. Interfaces 12(17), 19797–19804 (2020). https://doi.org/10.1021/acsami.0c02116
W. Shao, X. Wang, Z. Zhang, J. Huang, Z. Han et al., Highly efficient and flexible scintillation screen based on manganese (II) activated 2D perovskite for planar and nonplanar high-resolution X-ray imaging. Adv. Opt. Mater. 10(6), 2102282 (2022). https://doi.org/10.1002/adom.202102282
A. Xie, C. Hettiarachchi, F. Maddalena, M.E. Witkowski, M. Makowski et al., Lithium-doped two-dimensional perovskite scintillator for wide-range radiation detection. Commun. Mater. 1(1), 37 (2020). https://doi.org/10.1038/s43246-020-0038-x
Z. Zhang, S. Wang, X. Liu, Y. Chen, C. Su et al., Metal halide perovskite/2D material heterostructures: syntheses and applications. Small Methods 5(4), e2000937 (2021). https://doi.org/10.1002/smtd.202000937
H. Wang, Y. Chen, D. Li, Two/Quasi-two-dimensional perovskite-based heterostructures: construction, properties and applications. Int. J. Extreme Manuf. 5(1), 012004 (2023). https://doi.org/10.1088/2631-7990/acab40
Y. Bai, L. Sun, Q. Yu, Y. Lei, B. Liu, Biomolecule capturing and sensing on 2D transition metal dichalcogenide canvas. Nano Res. Energy 2, 9120043 (2023). https://doi.org/10.26599/nre.2023.9120043