Mixed Cations Enabled Combined Bulk and Interfacial Passivation for Efficient and Stable Perovskite Solar Cells
Corresponding Author: Fei Zhang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 114
Abstract
Here, we report a mixed GAI and MAI (MGM) treatment method by forming a 2D alternating-cation-interlayer (ACI) phase (n = 2) perovskite layer on the 3D perovskite, modulating the bulk and interfacial defects in the perovskite films simultaneously, leading to the suppressed nonradiative recombination, longer lifetime, higher mobility, and reduced trap density. Consequently, the devices’ performance is enhanced to 24.5% and 18.7% for 0.12 and 64 cm2, respectively. In addition, the MGM treatment can be applied to a wide range of perovskite compositions, including MA-, FA-, MAFA-, and CsFAMA-based lead halide perovskites, making it a general method for preparing efficient perovskite solar cells. Without encapsulation, the treated devices show improved stabilities.
Highlights:
1 A mixed GAI and MAI (MGM) treatment modulating the bulk and interfacial defects simultaneously is reported.
2 The devices’ performance is enhanced to ~24.5% in 0.12 cm2 and ~18.7% in 64 cm2 with improved stability.
3 The MGM treatment can be applied to a wide range of perovskite compositions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.O. Brinkmann, T. Becker, F. Zimmermann, C. Kreusel, T. Gahlmann et al., Perovskite–organic tandem solar cells with indium oxide interconnect. Nature 604(7905), 280–286 (2022). https://doi.org/10.1038/s41586-022-04455-0
- Z. Li, B. Li, X. Wu, S.A. Sheppard, S. Zhang et al., Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376(6591), 416–420 (2022). https://doi.org/10.1126/science.abm8566
- J. Zeng, L. Bi, Y. Cheng, B. Xu, A.K.Y. Jen, Self-assembled monolayer enabling improved buried interfaces in blade-coated perovskite solar cells for high efficiency and stability. Nano Res. Energy. 1(1), e9120004 (2022). https://doi.org/10.26599/NRE.2022.9120004
- Best Research-Cell Efficiency Chart, National Renewable Energy Laboratory. https://www.nrel.gov/pv/cell-efficiency.html (2022).
- P. Wu, S. Wang, X. Li, F. Zhang, Beyond efficiency fever: preventing lead leakage for perovskite solar cells. Matter 5(4), 1137–1161 (2022). https://doi.org/10.1016/j.matt.2022.02.012
- F. Zhang, K. Zhu, Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 10(13), 1902579 (2020). https://doi.org/10.1002/aenm.201902579
- R. Chen, S. Liu, X. Xu, F. Ren, J. Zhou et al., Robust hole transport material with interface anchors enhances the efficiency and stability of inverted formamidinium–cesium perovskite solar cells with a certified efficiency of 22.3%. Energy Environ. Sci. 15(6), 2567–2580 (2022). https://doi.org/10.1039/D2EE00433J
- D. Yu, Q. Wei, H. Li, J. Xie, X. Jiang et al., Quasi-2D bilayer surface passivation for high efficiency narrow bandgap perovskite solar cells. Angew. Chem. Int. Ed. 61(20), e202202346 (2022). https://doi.org/10.1002/anie.202202346
- S. Wang, L. Tan, J. Zhou, M. Li, X. Zhao et al., Over 24% efficient MA-free CsxFA1−xPbX3 perovskite solar cells. Joule 6(6), 1344–1356 (2022). https://doi.org/10.1016/j.joule.2022.05.002
- X. Yang, Q. Li, Y. Zheng, D. Luo, Y. Zhang et al., Perovskite hetero-bilayer for efficient charge-transport-layer-free solar cells. Joule 6(6), 1277–1289 (2022). https://doi.org/10.1016/j.joule.2022.04.012
- W. Li, J. Fan, L. Ding, Multidimensional perovskites enhance solar cell performance. J. Semicond. 42(2), 020201 (2021). https://doi.org/10.1088/1674-4926/42/2/020201
- F. Zhang, C. Xiao, X. Chen, B.W. Larson, S.P. Harvey et al., Self-seeding growth for perovskite solar cells with enhanced stability. Joule 3(6), 1452–1463 (2019). https://doi.org/10.1016/j.joule.2019.03.023
- C. Jiang, J. Zhou, H. Li, L. Tan, M. Li et al., Double layer composite electrode strategy for efficient perovskite solar cells with excellent reverse-bias stability. Nano-Micro Lett. 15(1), 12 (2022). https://doi.org/10.1007/s40820-022-00985-4
- C. Long, K. Huang, J. Chang, C. Zuo, Y. Gao et al., Creating a dual-functional 2D perovskite layer at the interface to enhance the performance of flexible perovskite solar cells. Small 17(32), 2102368 (2021). https://doi.org/10.1002/smll.202102368
- J. Chen, Y. Yang, H. Dong, J. Li, X. Zhu et al., Highly efficient and stable perovskite solar cells enabled by low-dimensional perovskitoids. Sci. Adv. 8(4), eabk2722 (2022). https://doi.org/10.1126/sciadv.abk2722
- F. Zhang, H. Lu, B.W. Larson, C. Xiao, S.P. Dunfield et al., Surface lattice engineering through three-dimensional lead iodide perovskitoid for high-performance perovskite solar cells. Chem 7(3), 774–785 (2021). https://doi.org/10.1016/j.chempr.2020.12.023
- Y.-W. Jang, S. Lee, K.M. Yeom, K. Jeong, K. Choi et al., Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6(1), 63–71 (2021). https://doi.org/10.1038/s41560-020-00749-7
- G. Wu, R. Liang, M. Ge, G. Sun, Y. Zhang et al., Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells. Adv. Mater. 34(8), 2105635 (2022). https://doi.org/10.1002/adma.202105635
- X. Zhao, T. Liu, Y.-L. Loo, Advancing 2D perovskites for efficient and stable solar cells: challenges and opportunities. Adv. Mater. 34(3), 2105849 (2022). https://doi.org/10.1002/adma.202105849
- F. Zhang, S.Y. Park, C. Yao, H. Lu, S.P. Dunfield et al., Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science 375(6576), 71–76 (2022). https://doi.org/10.1126/science.abj2637
- J. Zhou, M. Li, S. Wang, L. Tan, Y. Liu et al., 2-CF3-PEAI to eliminate Pb0 traps and form a 2D perovskite layer to enhance the performance and stability of perovskite solar cells. Nano Energy 95, 107036 (2022). https://doi.org/10.1016/j.nanoen.2022.107036
- Y. Cho, A.M. Soufiani, J.S. Yun, J. Kim, D.S. Lee et al., Mixed 3D–2D passivation treatment for mixed-cation lead mixed-halide perovskite solar cells for higher efficiency and better stability. Adv. Energy Mater. 8(20), 1703392 (2018). https://doi.org/10.1002/aenm.201703392
- Y. Liu, R. Lu, J. Zhang, X. Guo, C. Li, Construction of a gradient-type 2D/3D perovskite structure for subsurface passivation and energy-level alignment of an MAPbI3 film. J. Mater. Chem. A 9(46), 26086–26094 (2021). https://doi.org/10.1039/D1TA07537C
- Y. Liu, S. Akin, A. Hinderhofer, F.T. Eickemeyer, H. Zhu et al., Stabilization of highly efficient and stable phase-pure FAPbI3 perovskite solar cells by molecularly tailored 2D-overlayers. Angew. Chem. Int. Ed. 59(36), 15688–15694 (2020). https://doi.org/10.1002/anie.202005211
- R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A.S. Subbiah et al., Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376(6588), 73–77 (2022). https://doi.org/10.1126/science.abm5784
- J. Lu, T. Yang, T. Niu, N. Bu, Y. Zhang et al., Formamidinium-based Ruddlesden–Popper perovskite films fabricated via two-step sequential deposition: quantum well formation, physical properties and film-based solar cells. Energy Environ. Sci. 15(3), 1144–1155 (2022). https://doi.org/10.1039/D1EE02851K
- P. Wu, D. Li, S. Wang, F. Zhang, Magic guanidinium cations in perovskite solar cells: from bulk to interface. Mater. Chem. Front. (2023). https://doi.org/10.1039/D2QM01315K
- C.M.M. Soe, C.C. Stoumpos, M. Kepenekian, B. Traoré, H. Tsai et al., New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: structure, properties, and photovoltaic performance. J. Am. Chem. Soc. 139(45), 16297–16309 (2017). https://doi.org/10.1021/jacs.7b09096
- D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu et al., Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360(6396), 1442–1446 (2018). https://doi.org/10.1126/science.aap9282
- J.Y. Kim, J.-W. Lee, H.S. Jung, H. Shin, N.-G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120(15), 7867–7918 (2020). https://doi.org/10.1021/acs.chemrev.0c00107
- J. He, H. Liu, F. Zhang, X. Li, S. Wang, In situ synthesized 2D covalent organic framework nanosheets induce growth of high-quality perovskite film for efficient and stable solar cells. Adv. Funct. Mater. 32(16), 2110030 (2022). https://doi.org/10.1002/adfm.202110030
- T. Luo, Y. Zhang, Z. Xu, T. Niu, J. Wen et al., Compositional control in 2D perovskites with alternating cations in the interlayer space for photovoltaics with efficiency over 18%. Adv. Mater. 31(44), e1903848 (2019). https://doi.org/10.1002/adma.201903848
- B.B. Yu, Z. Chen, Y. Zhu, Y. Wang, B. Han et al., Heterogeneous 2D/3D Tin-halides perovskite solar cells with certified conversion efficiency breaking 14%. Adv. Mater. 33(36), 2102055 (2021). https://doi.org/10.1002/adma.202102055
- Y. Zhang, Y. Wang, L. Zhao, X. Yang, C.-H. Hou et al., Depth-dependent defect manipulation in perovskites for high-performance solar cells. Energy Environ. Sci. 14(12), 6526–6535 (2021). https://doi.org/10.1039/D1EE02287C
- L. Wen, Y. Rao, M. Zhu, R. Li, J. Zhan et al., Reducing defects density and enhancing hole extraction for efficient perovskite solar cells enabled by π-Pb2+ interactions. Angew. Chem. Int. Ed. 60(32), 17356–17361 (2021). https://doi.org/10.1002/anie.202102096
- X. Liu, J. Min, Q. Chen, T. Liu, G. Qu et al., Synergy effect of a π-conjugated ionic compound: dual interfacial energy Level regulation and passivation to promote Voc and stability of planar perovskite solar cells. Angew. Chem. Int. Ed. 61(11), e202117303 (2022). https://doi.org/10.1002/anie.202117303
- G. Yang, Z.W. Ren, K. Liu, M.C. Qin, W.Y. Deng et al., Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nat. Photon. 15(9), 681–689 (2021). https://doi.org/10.1038/s41566-021-00829-4
- H. Tan, A. Jain, O. Voznyy, X. Lan, F.P. Garcia de Arquer et al., Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355(6326), 722–726 (2017). https://doi.org/10.1126/science.aai9081
- W. Li, S. Sidhik, B. Traore, R. Asadpour, J. Hou et al., Light-activated interlayer contraction in two-dimensional perovskites for high-efficiency solar cells. Nat. Nanotechnol. 17(1), 45–52 (2022). https://doi.org/10.1038/s41565-021-01010-2
- S. Zouhair, S.M. Yoo, D. Bogachuk, J.P. Herterich, J. Lim et al., Employing 2D-perovskite as an electron blocking layer in highly efficient (18.5%) perovskite solar cells with printable low temperature carbon electrode. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202200837
- X. Wei, M. Xiao, B. Wang, C. Wang, Y. Li et al., Avoiding structural collapse to reduce lead leakage in perovskite photovoltaics. Angew. Chem. Int. Ed. 61(27), e202204314 (2022). https://doi.org/10.1002/anie.202204314
- K. Wang, S. Ma, X. Xue, T. Li, S. Sha et al., Highly efficient and stable CsPbTh3 (Th = I, Br, Cl) perovskite solar cells by combinational passivation strategy. Adv. Sci. 9(9), e2105103 (2022). https://doi.org/10.1002/advs.202105103
- R. Wang, J. Xue, K.L. Wang, Z.K. Wang, Y. Luo et al., Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366(6472), 1509–1513 (2019). https://doi.org/10.1126/science.aay9698
- C. Xiao, F. Zhang, Z. Li, S.P. Harvey, X. Chen et al., Inhomogeneous doping of perovskite materials by dopants from hole-transport layer. Matter 2(1), 261–272 (2020). https://doi.org/10.1016/j.matt.2019.10.005
- P. Kumar, E. Vahidzadeh, U.K. Thakur, P. Kar, K.M. Alam et al., C3N5: a low bandgap semiconductor containing an azo-linked carbon nitride framework for photocatalytic, photovoltaic and adsorbent applications. J. Am. Chem. Soc. 141(13), 5415–5436 (2019). https://doi.org/10.1021/jacs.9b00144
- J. Yuan, H. Bao, H. Liu, S. Wang, X. Li, Mixed solvent atmosphere induces the surface termination state transition of perovskite to achieve matched energy level alignment. Chem. Eng. J. 424, 130508 (2021). https://doi.org/10.1016/j.cej.2021.130508
- X. Sun, Z. Shao, Z. Li, D. Liu, C. Gao et al., Highly efficient CsPbI3/Cs1-xDMAxPbI3 bulk heterojunction perovskite solar cell. Joule 6(4), 850–860 (2022). https://doi.org/10.1016/j.joule.2022.02.004
- D.-Y. Son, S.-G. Kim, J.-Y. Seo, S.-H. Lee, H. Shin et al., Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J. Am. Chem. Soc. 140(4), 1358–1364 (2018). https://doi.org/10.1021/jacs.7b10430
- Y. Zhao, P. Zhu, S. Huang, S. Tan, M. Wang et al., Molecular interaction regulates the performance and longevity of defect passivation for metal halide perovskite solar cells. J. Am. Chem. Soc. 142(47), 20071–20079 (2020). https://doi.org/10.1021/jacs.0c09560
- X. Zhao, C. Yao, K. Gu, T. Liu, Y. Xia et al., A hole-transport material that also passivates perovskite surface defects for solar cells with improved efficiency and stability. Energy Environ. Sci. 13(11), 4334–4343 (2020). https://doi.org/10.1039/d0ee01655a
- M.Y. Kuo, N. Spitha, M.P. Hautzinger, P.L. Hsieh, J. Li et al., Distinct carrier transport properties across horizontally vs vertically oriented heterostructures of 2D/3D perovskites. J. Am. Chem. Soc. 143(13), 4969–4978 (2021). https://doi.org/10.1021/jacs.0c10000
- T.S. Su, F.T. Eickemeyer, M.A. Hope, F. Jahanbakhshi, M. Mladenovic et al., Crown ether modulation enables over 23% efficient formamidinium-based perovskite solar cells. J. Am. Chem. Soc. 142(47), 19980–19991 (2020). https://doi.org/10.1021/jacs.0c08592
- Y. Zheng, X. Yang, R. Su, P. Wu, Q. Gong et al., High-performance CsPbIxBr3–x all-inorganic perovskite solar cells with efficiency over 18% via spontaneous interfacial manipulation. Adv. Funct. Mater. 30(46), 2000457 (2020). https://doi.org/10.1002/adfm.202000457
- P. Guo, Q. Ye, C. Liu, F. Cao, X. Yang et al., Double barriers for moisture degradation: assembly of hydrolysable hydrophobic molecules for stable perovskite solar cells with high open-circuit voltage. Adv. Funct. Mater. 30(28), 2002639 (2020). https://doi.org/10.1002/adfm.202002639
- M.V. Khenkin, E.A. Katz, A. Abate, G. Bardizza, J.J. Berry et al., Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5(1), 35–49 (2020). https://doi.org/10.1038/s41560-019-0529-5
References
K.O. Brinkmann, T. Becker, F. Zimmermann, C. Kreusel, T. Gahlmann et al., Perovskite–organic tandem solar cells with indium oxide interconnect. Nature 604(7905), 280–286 (2022). https://doi.org/10.1038/s41586-022-04455-0
Z. Li, B. Li, X. Wu, S.A. Sheppard, S. Zhang et al., Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376(6591), 416–420 (2022). https://doi.org/10.1126/science.abm8566
J. Zeng, L. Bi, Y. Cheng, B. Xu, A.K.Y. Jen, Self-assembled monolayer enabling improved buried interfaces in blade-coated perovskite solar cells for high efficiency and stability. Nano Res. Energy. 1(1), e9120004 (2022). https://doi.org/10.26599/NRE.2022.9120004
Best Research-Cell Efficiency Chart, National Renewable Energy Laboratory. https://www.nrel.gov/pv/cell-efficiency.html (2022).
P. Wu, S. Wang, X. Li, F. Zhang, Beyond efficiency fever: preventing lead leakage for perovskite solar cells. Matter 5(4), 1137–1161 (2022). https://doi.org/10.1016/j.matt.2022.02.012
F. Zhang, K. Zhu, Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 10(13), 1902579 (2020). https://doi.org/10.1002/aenm.201902579
R. Chen, S. Liu, X. Xu, F. Ren, J. Zhou et al., Robust hole transport material with interface anchors enhances the efficiency and stability of inverted formamidinium–cesium perovskite solar cells with a certified efficiency of 22.3%. Energy Environ. Sci. 15(6), 2567–2580 (2022). https://doi.org/10.1039/D2EE00433J
D. Yu, Q. Wei, H. Li, J. Xie, X. Jiang et al., Quasi-2D bilayer surface passivation for high efficiency narrow bandgap perovskite solar cells. Angew. Chem. Int. Ed. 61(20), e202202346 (2022). https://doi.org/10.1002/anie.202202346
S. Wang, L. Tan, J. Zhou, M. Li, X. Zhao et al., Over 24% efficient MA-free CsxFA1−xPbX3 perovskite solar cells. Joule 6(6), 1344–1356 (2022). https://doi.org/10.1016/j.joule.2022.05.002
X. Yang, Q. Li, Y. Zheng, D. Luo, Y. Zhang et al., Perovskite hetero-bilayer for efficient charge-transport-layer-free solar cells. Joule 6(6), 1277–1289 (2022). https://doi.org/10.1016/j.joule.2022.04.012
W. Li, J. Fan, L. Ding, Multidimensional perovskites enhance solar cell performance. J. Semicond. 42(2), 020201 (2021). https://doi.org/10.1088/1674-4926/42/2/020201
F. Zhang, C. Xiao, X. Chen, B.W. Larson, S.P. Harvey et al., Self-seeding growth for perovskite solar cells with enhanced stability. Joule 3(6), 1452–1463 (2019). https://doi.org/10.1016/j.joule.2019.03.023
C. Jiang, J. Zhou, H. Li, L. Tan, M. Li et al., Double layer composite electrode strategy for efficient perovskite solar cells with excellent reverse-bias stability. Nano-Micro Lett. 15(1), 12 (2022). https://doi.org/10.1007/s40820-022-00985-4
C. Long, K. Huang, J. Chang, C. Zuo, Y. Gao et al., Creating a dual-functional 2D perovskite layer at the interface to enhance the performance of flexible perovskite solar cells. Small 17(32), 2102368 (2021). https://doi.org/10.1002/smll.202102368
J. Chen, Y. Yang, H. Dong, J. Li, X. Zhu et al., Highly efficient and stable perovskite solar cells enabled by low-dimensional perovskitoids. Sci. Adv. 8(4), eabk2722 (2022). https://doi.org/10.1126/sciadv.abk2722
F. Zhang, H. Lu, B.W. Larson, C. Xiao, S.P. Dunfield et al., Surface lattice engineering through three-dimensional lead iodide perovskitoid for high-performance perovskite solar cells. Chem 7(3), 774–785 (2021). https://doi.org/10.1016/j.chempr.2020.12.023
Y.-W. Jang, S. Lee, K.M. Yeom, K. Jeong, K. Choi et al., Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6(1), 63–71 (2021). https://doi.org/10.1038/s41560-020-00749-7
G. Wu, R. Liang, M. Ge, G. Sun, Y. Zhang et al., Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells. Adv. Mater. 34(8), 2105635 (2022). https://doi.org/10.1002/adma.202105635
X. Zhao, T. Liu, Y.-L. Loo, Advancing 2D perovskites for efficient and stable solar cells: challenges and opportunities. Adv. Mater. 34(3), 2105849 (2022). https://doi.org/10.1002/adma.202105849
F. Zhang, S.Y. Park, C. Yao, H. Lu, S.P. Dunfield et al., Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science 375(6576), 71–76 (2022). https://doi.org/10.1126/science.abj2637
J. Zhou, M. Li, S. Wang, L. Tan, Y. Liu et al., 2-CF3-PEAI to eliminate Pb0 traps and form a 2D perovskite layer to enhance the performance and stability of perovskite solar cells. Nano Energy 95, 107036 (2022). https://doi.org/10.1016/j.nanoen.2022.107036
Y. Cho, A.M. Soufiani, J.S. Yun, J. Kim, D.S. Lee et al., Mixed 3D–2D passivation treatment for mixed-cation lead mixed-halide perovskite solar cells for higher efficiency and better stability. Adv. Energy Mater. 8(20), 1703392 (2018). https://doi.org/10.1002/aenm.201703392
Y. Liu, R. Lu, J. Zhang, X. Guo, C. Li, Construction of a gradient-type 2D/3D perovskite structure for subsurface passivation and energy-level alignment of an MAPbI3 film. J. Mater. Chem. A 9(46), 26086–26094 (2021). https://doi.org/10.1039/D1TA07537C
Y. Liu, S. Akin, A. Hinderhofer, F.T. Eickemeyer, H. Zhu et al., Stabilization of highly efficient and stable phase-pure FAPbI3 perovskite solar cells by molecularly tailored 2D-overlayers. Angew. Chem. Int. Ed. 59(36), 15688–15694 (2020). https://doi.org/10.1002/anie.202005211
R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A.S. Subbiah et al., Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376(6588), 73–77 (2022). https://doi.org/10.1126/science.abm5784
J. Lu, T. Yang, T. Niu, N. Bu, Y. Zhang et al., Formamidinium-based Ruddlesden–Popper perovskite films fabricated via two-step sequential deposition: quantum well formation, physical properties and film-based solar cells. Energy Environ. Sci. 15(3), 1144–1155 (2022). https://doi.org/10.1039/D1EE02851K
P. Wu, D. Li, S. Wang, F. Zhang, Magic guanidinium cations in perovskite solar cells: from bulk to interface. Mater. Chem. Front. (2023). https://doi.org/10.1039/D2QM01315K
C.M.M. Soe, C.C. Stoumpos, M. Kepenekian, B. Traoré, H. Tsai et al., New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: structure, properties, and photovoltaic performance. J. Am. Chem. Soc. 139(45), 16297–16309 (2017). https://doi.org/10.1021/jacs.7b09096
D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu et al., Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360(6396), 1442–1446 (2018). https://doi.org/10.1126/science.aap9282
J.Y. Kim, J.-W. Lee, H.S. Jung, H. Shin, N.-G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120(15), 7867–7918 (2020). https://doi.org/10.1021/acs.chemrev.0c00107
J. He, H. Liu, F. Zhang, X. Li, S. Wang, In situ synthesized 2D covalent organic framework nanosheets induce growth of high-quality perovskite film for efficient and stable solar cells. Adv. Funct. Mater. 32(16), 2110030 (2022). https://doi.org/10.1002/adfm.202110030
T. Luo, Y. Zhang, Z. Xu, T. Niu, J. Wen et al., Compositional control in 2D perovskites with alternating cations in the interlayer space for photovoltaics with efficiency over 18%. Adv. Mater. 31(44), e1903848 (2019). https://doi.org/10.1002/adma.201903848
B.B. Yu, Z. Chen, Y. Zhu, Y. Wang, B. Han et al., Heterogeneous 2D/3D Tin-halides perovskite solar cells with certified conversion efficiency breaking 14%. Adv. Mater. 33(36), 2102055 (2021). https://doi.org/10.1002/adma.202102055
Y. Zhang, Y. Wang, L. Zhao, X. Yang, C.-H. Hou et al., Depth-dependent defect manipulation in perovskites for high-performance solar cells. Energy Environ. Sci. 14(12), 6526–6535 (2021). https://doi.org/10.1039/D1EE02287C
L. Wen, Y. Rao, M. Zhu, R. Li, J. Zhan et al., Reducing defects density and enhancing hole extraction for efficient perovskite solar cells enabled by π-Pb2+ interactions. Angew. Chem. Int. Ed. 60(32), 17356–17361 (2021). https://doi.org/10.1002/anie.202102096
X. Liu, J. Min, Q. Chen, T. Liu, G. Qu et al., Synergy effect of a π-conjugated ionic compound: dual interfacial energy Level regulation and passivation to promote Voc and stability of planar perovskite solar cells. Angew. Chem. Int. Ed. 61(11), e202117303 (2022). https://doi.org/10.1002/anie.202117303
G. Yang, Z.W. Ren, K. Liu, M.C. Qin, W.Y. Deng et al., Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nat. Photon. 15(9), 681–689 (2021). https://doi.org/10.1038/s41566-021-00829-4
H. Tan, A. Jain, O. Voznyy, X. Lan, F.P. Garcia de Arquer et al., Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355(6326), 722–726 (2017). https://doi.org/10.1126/science.aai9081
W. Li, S. Sidhik, B. Traore, R. Asadpour, J. Hou et al., Light-activated interlayer contraction in two-dimensional perovskites for high-efficiency solar cells. Nat. Nanotechnol. 17(1), 45–52 (2022). https://doi.org/10.1038/s41565-021-01010-2
S. Zouhair, S.M. Yoo, D. Bogachuk, J.P. Herterich, J. Lim et al., Employing 2D-perovskite as an electron blocking layer in highly efficient (18.5%) perovskite solar cells with printable low temperature carbon electrode. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202200837
X. Wei, M. Xiao, B. Wang, C. Wang, Y. Li et al., Avoiding structural collapse to reduce lead leakage in perovskite photovoltaics. Angew. Chem. Int. Ed. 61(27), e202204314 (2022). https://doi.org/10.1002/anie.202204314
K. Wang, S. Ma, X. Xue, T. Li, S. Sha et al., Highly efficient and stable CsPbTh3 (Th = I, Br, Cl) perovskite solar cells by combinational passivation strategy. Adv. Sci. 9(9), e2105103 (2022). https://doi.org/10.1002/advs.202105103
R. Wang, J. Xue, K.L. Wang, Z.K. Wang, Y. Luo et al., Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366(6472), 1509–1513 (2019). https://doi.org/10.1126/science.aay9698
C. Xiao, F. Zhang, Z. Li, S.P. Harvey, X. Chen et al., Inhomogeneous doping of perovskite materials by dopants from hole-transport layer. Matter 2(1), 261–272 (2020). https://doi.org/10.1016/j.matt.2019.10.005
P. Kumar, E. Vahidzadeh, U.K. Thakur, P. Kar, K.M. Alam et al., C3N5: a low bandgap semiconductor containing an azo-linked carbon nitride framework for photocatalytic, photovoltaic and adsorbent applications. J. Am. Chem. Soc. 141(13), 5415–5436 (2019). https://doi.org/10.1021/jacs.9b00144
J. Yuan, H. Bao, H. Liu, S. Wang, X. Li, Mixed solvent atmosphere induces the surface termination state transition of perovskite to achieve matched energy level alignment. Chem. Eng. J. 424, 130508 (2021). https://doi.org/10.1016/j.cej.2021.130508
X. Sun, Z. Shao, Z. Li, D. Liu, C. Gao et al., Highly efficient CsPbI3/Cs1-xDMAxPbI3 bulk heterojunction perovskite solar cell. Joule 6(4), 850–860 (2022). https://doi.org/10.1016/j.joule.2022.02.004
D.-Y. Son, S.-G. Kim, J.-Y. Seo, S.-H. Lee, H. Shin et al., Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J. Am. Chem. Soc. 140(4), 1358–1364 (2018). https://doi.org/10.1021/jacs.7b10430
Y. Zhao, P. Zhu, S. Huang, S. Tan, M. Wang et al., Molecular interaction regulates the performance and longevity of defect passivation for metal halide perovskite solar cells. J. Am. Chem. Soc. 142(47), 20071–20079 (2020). https://doi.org/10.1021/jacs.0c09560
X. Zhao, C. Yao, K. Gu, T. Liu, Y. Xia et al., A hole-transport material that also passivates perovskite surface defects for solar cells with improved efficiency and stability. Energy Environ. Sci. 13(11), 4334–4343 (2020). https://doi.org/10.1039/d0ee01655a
M.Y. Kuo, N. Spitha, M.P. Hautzinger, P.L. Hsieh, J. Li et al., Distinct carrier transport properties across horizontally vs vertically oriented heterostructures of 2D/3D perovskites. J. Am. Chem. Soc. 143(13), 4969–4978 (2021). https://doi.org/10.1021/jacs.0c10000
T.S. Su, F.T. Eickemeyer, M.A. Hope, F. Jahanbakhshi, M. Mladenovic et al., Crown ether modulation enables over 23% efficient formamidinium-based perovskite solar cells. J. Am. Chem. Soc. 142(47), 19980–19991 (2020). https://doi.org/10.1021/jacs.0c08592
Y. Zheng, X. Yang, R. Su, P. Wu, Q. Gong et al., High-performance CsPbIxBr3–x all-inorganic perovskite solar cells with efficiency over 18% via spontaneous interfacial manipulation. Adv. Funct. Mater. 30(46), 2000457 (2020). https://doi.org/10.1002/adfm.202000457
P. Guo, Q. Ye, C. Liu, F. Cao, X. Yang et al., Double barriers for moisture degradation: assembly of hydrolysable hydrophobic molecules for stable perovskite solar cells with high open-circuit voltage. Adv. Funct. Mater. 30(28), 2002639 (2020). https://doi.org/10.1002/adfm.202002639
M.V. Khenkin, E.A. Katz, A. Abate, G. Bardizza, J.J. Berry et al., Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5(1), 35–49 (2020). https://doi.org/10.1038/s41560-019-0529-5