Recent Progress and Approaches on Carbon-Free Energy from Water Splitting
Corresponding Author: K. Sakthipandi
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 103
Abstract
Sunlight is the most abundant renewable energy resource, providing the earth with enough power that is capable of taking care of all of humanity’s desires—a hundred times over. However, as it is at times diffuse and intermittent, it raises issues concerning how best to reap this energy and store it for times when the Sun is not shining. With increasing population in the world and modern economic development, there will be an additional increase in energy demand. Devices that use daylight to separate water into individual chemical elements may well be the answer to this issue, as water splitting produces an ideal fuel. If such devices that generate fuel were to become widely adopted, they must be low in cost, both for supplying and operation. Therefore, it is essential to research for cheap technologies for water ripping. This review summarizes the progress made toward such development, the open challenges existing, and the approaches undertaken to generate carbon-free energy through water splitting.
Highlights:
1 Different approaches for efficient carbon-free energy from water splitting are summarized.
2 Step-wise evolution of water splitting research is highlighted with current progress.
3 It describes the open challenges of charge transport properties and future research direction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Nebel, K.M. Macounová, H. Tarábková, L. Kavan, P. Krtil, Selectivity of photoelectrochemical water splitting on TiO2 anatase single crystals. J. Phys. Chem. C 123(17), 10857–10867 (2019). https://doi.org/10.1021/acs.jpcc.8b11730
- C.V. Reddy, K.R. Reddy, N.P. Shetti, J. Shim, T.M. Aminabhavi, D.D. Dionysiou, Hetero-nanostructured metal oxide-based hybrid photocatalysts for enhanced photoelectrochemical water splitting—a review. Int. J. Hydrog. Energy (2019). https://doi.org/10.1016/j.ijhydene.2019.02.109
- H. Yu, L. Jiang, H. Wang, B. Huang, X. Yuan, J. Huang, J. Zhang, G. Zeng, Modulation of Bi2MoO6-based materials for photocatalytic water splitting and environmental application: a critical review. Small (2019). https://doi.org/10.1002/smll.201901008
- S. Pillai, M.A. Green, Plasmonics for photovoltaic applications. Solar Energy Mater. Solar Cells 94(9), 1481–1486 (2010). https://doi.org/10.1016/j.solmat.2010.02.046
- T.J. Wydrzynski, W. Hillier (eds.), Molecular Solar Fuels (Royal Society of Chemistry, London, 2011). https://doi.org/10.1039/9781849733038
- T.A. Faunce, W. Lubitz, A.W. Bill Rutherford, D. MacFarlane, G.F. Moore et al., Energy and environment policy case for a global project on artificial photosynthesis. Energy Environ. Sci. 6(3), 695–698 (2013). https://doi.org/10.1039/c3ee00063j
- R.E. Blankenship, D.M. Tiede, J. Barber, G.W. Brudvig, G. Fleming et al., Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332(6031), 805–809 (2011). https://doi.org/10.1126/science.1200165
- N. Armaroli, V. Balzani, Solar electricity and solar fuels: status and perspectives in the context of the energy transition. Chem. Eur. J. 22(1), 32–57 (2016). https://doi.org/10.1002/chem.201503580
- Y. Tachibana, L. Vayssieres, J.R. Durrant, Artificial photosynthesis for solar water-splitting. Nat. Photon. 6(8), 511–518 (2012). https://doi.org/10.1038/nphoton.2012.175
- B. Yao, J. Zhang, X. Fan, J. He, Y. Li, Surface engineering of nanomaterials for photo-electrochemical water splitting. Small 15(1), 1803746 (2019). https://doi.org/10.1002/smll.201803746
- Q. Zhang, D.T. Gangadharan, Y. Liu, Z. Xu, M. Chaker, D. Ma, Recent advancements in plasmon-enhanced visible light-driven water splitting. J. Materiomics 3(1), 33–50 (2017). https://doi.org/10.1016/j.jmat.2016.11.005
- F. Jiang, T. Harada, Y. Kuang, T. Minegishi, K. Domen, S. Ikeda, Pt/In2S3/CdS/Cu2ZnSnS4 thin film as an efficient and stable photocathode for water reduction under sunlight radiation. J. Am. Chem. Soc. 137(42), 13691–13697 (2015). https://doi.org/10.1021/jacs.5b09015
- P. Zhang, T. Wang, J. Gong, Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv. Mater. 27(36), 5328–5342 (2015). https://doi.org/10.1002/adma.201500888
- J. Liu, Z. Wei, W. Shangguan, Defects engineering in photocatalytic water splitting materials. ChemCatChem 11, 1–14 (2019). https://doi.org/10.1002/cctc.201901579
- X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44(15), 5148–5180 (2015). https://doi.org/10.1039/C4CS00448E
- D. Kang, T.W. Kim, S.R. Kubota, A.C. Cardiel, H.G. Cha, K. Choi, Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting. Chem. Rev. 115(23), 12839–12887 (2015). https://doi.org/10.1021/acs.chemrev.5b00498
- A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972). https://doi.org/10.1038/238037a0
- M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewism, Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326
- C.G. Morales-Guio, S.D. Tilley, H. Vrubel, M. Grätzel, X. Hu, Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat. Commun. 5, 3059 (2014). https://doi.org/10.1038/ncomms4059
- T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrog. Energy 27(10), 991–1022 (2002). https://doi.org/10.1016/S0360-3199(02)00022-8
- Y. Qiu, W. Liu, W. Chen, W. Chen, G. Zhou et al., Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells. Sci. Adv. 2, e1501764 (2016). https://doi.org/10.1126/sciadv.1501764
- Y. Chen, J.D. Prange, S. Dühnen, Y. Park, M. Gunji, C.E.D. Chidsey, P.C. McIntyre, Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat. Mater. 10(7), 539–544 (2011). https://doi.org/10.1038/nmat3047
- T.J. Jacobsson, V. Fjällström, M. Sahlberg, M. Edoff, T. Edvinsson, A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency. Energy Environ. Sci. 6(12), 3676–3683 (2013). https://doi.org/10.1039/c3ee42519c
- C.R. Cox, J.Z. Lee, D.G. Nocera, T. Buonassisi, Ten-percent solar-to-fuel conversion with nonprecious materials. Proc. Natl. Acad. Sci. U.S.A. 111(39), 14057–14061 (2014). https://doi.org/10.1073/pnas.1414290111
- B.A. Pinaud, J.D. Benck, L.C. Seitz, A.J. Forman, Z. Chen et al., Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6(7), 1983–2002 (2013). https://doi.org/10.1039/c3ee40831k
- C.A. Rodriguez, M.A. Modestino, D. Psaltis, C. Moser, Design and cost considerations for practical solar-hydrogen generators. Energy Environ. Sci. 7(12), 3828–3835 (2014). https://doi.org/10.1039/C4EE01453G
- S.Y. Reece, J.A. Hamel, K. Sung, T.D. Jarvi, A.J. Esswein, J.J. Pijpers, D.G. Nocera, Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334(6056), 645–648 (2011). https://doi.org/10.1126/science.1209816
- A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, E. Thimsen, Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10(6), 456–461 (2011). https://doi.org/10.1038/nmat3017
- M.J. Kenney, M. Gong, Y. Li, J.Z. Wu, J. Feng, M. Lanza, H. Dai, High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 342(6160), 836–840 (2013). https://doi.org/10.1126/science.1241327
- J. Luo, J. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin et al., Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345(6204), 1593–1596 (2014). https://doi.org/10.1126/science.1258307
- M.A. Green, S. Pillai, Harnessing plasmonics for solar cells. Nat. Photon. 6(3), 130–132 (2012). https://doi.org/10.1038/nphoton.2012.30
- I. Thomann, B.A. Pinaud, Z. Chen, B.M. Clemens, T.F. Jaramillo, M.L. Brongersma, Plasmon enhanced solar-to-fuel energy conversion. Nano Lett. 11(8), 3440–3446 (2011). https://doi.org/10.1021/nl201908s
- H. Dotan, K. Sivula, M. Grätzel, A. Rothschild, S.C. Warren, Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ. Sci. 4(3), 958–964 (2011). https://doi.org/10.1039/C0EE00570C
- C. Hägglund, S.P. Apell, B. Kasemo, Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics. Nano Lett. 10(8), 3135–3141 (2010). https://doi.org/10.1021/nl101929j
- W. Ho, Reactions at metal surfaces induced by femtosecond lasers, tunneling electrons, and heating. J. Phys. Chem. 100(31), 13050–13060 (1996). https://doi.org/10.1021/jp9535497
- P. Christopher, H. Xin, S. Linic, Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3(6), 467–472 (2011). https://doi.org/10.1038/nchem.1032
- A.J. Morfa, K.L. Rowlen, T.H. Reilly, M.J. Romero, J. van de Lagemaat, Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl. Phys. Lett. 92(1), 013504 (2008). https://doi.org/10.1063/1.2823578
- O. Stenzel, A. Stendal, K. Voigtsberger, C. Von Borczyskowski, Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters. Solar Energy Mater. Solar Cells 37(3–4), 337–348 (1995). https://doi.org/10.1016/0927-0248(95)00027-5
- H.R. Stuart, D.G. Hall, Island size effects in nanoparticle-enhanced photodetectors. Appl. Phys. Lett. 73(26), 3815–3817 (1998). https://doi.org/10.1063/1.122903
- D.M. Schaadt, B. Feng, E.T. Yu, Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 86(6), 063106 (2005). https://doi.org/10.1063/1.1855423
- S. Pillai, K.R. Catchpole, T. Trupke, M.A. Green, Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101(9), 093105 (2007). https://doi.org/10.1063/1.2734885
- S.C. Warren, E. Thimsen, Plasmonic solar water splitting. Energy Environ. Sci. 5(1), 5133–5146 (2012). https://doi.org/10.1039/C1EE02875H
- Z. Liu, W. Hou, P. Pavaskar, M. Aykol, S.B. Cronin, Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11(3), 1111–1116 (2011). https://doi.org/10.1021/nl104005n
- Y. Wei, L. Ke, J. Kong, H. Liu, Z. Jiao et al., Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photoanode decorated with Ag nanoparticles. Nanotechnology 23(23), 235401 (2012). https://doi.org/10.1088/0957-4484/23/23/235401
- R. Solarska, A. Królikowska, J. Augustyński, Silver nanoparticle induced photocurrent enhancement at WO3 photoanodes. Angew. Chem. Int. Ed. 49(43), 7980–7983 (2010). https://doi.org/10.1002/anie.201002173
- X. Zhang, Y. Zhu, X. Yang, S. Wang, J. Shen, B. Lin, C. Li, Enhanced visible light photocatalytic activity of interlayer-isolated triplex Ag@SiO2@TiO2 core–shell nanoparticles. Nanoscale 5(8), 3359–3366 (2013). https://doi.org/10.1039/c3nr00044c
- D.B. Ingram, S. Linic, Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc. 133(14), 5202–5205 (2011). https://doi.org/10.1021/ja200086g
- A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38(1), 253–278 (2009). https://doi.org/10.1039/B800489G
- R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura et al., Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 334(6060), 1256–1260 (2011). https://doi.org/10.1126/science.1211934
- Y. Luo, L. Tang, U. Khan, Q. Yu, H. Cheng, X. Zou, B. Liu, Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 10(1), 269 (2019). https://doi.org/10.1038/s41467-018-07792-9
- T. Wang, Z. Luo, C. Li, J. Gong, Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition. Chem. Soc. Rev. 43(22), 7469–7484 (2014). https://doi.org/10.1039/C3CS60370A
- R. Liu, Z. Zheng, J. Spurgeon, X. Yang, Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ. Sci. 7(8), 2504–2517 (2014). https://doi.org/10.1039/C4EE00450G
- F. Le Formal, N. Tetreault, M. Cornuz, T. Moehl, M. Grätzel, K. Sivula, Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2(4), 737–743 (2011). https://doi.org/10.1039/C0SC00578A
- P. Zhang, T. Wang, J. Gong, Passivation of surface states by ALD-grown TiO2 overlayers on Ta3N5 anodes for photoelectrochemical water oxidation. Chem. Commun. 52(57), 8806–8809 (2016). https://doi.org/10.1039/C6CC03411J
- Z. Zhang, Q. Qian, B. Li, K.J. Chen, Interface engineering of monolayer MoS2/GaN hybrid heterostructure: modified band alignment for photocatalytic water splitting application by nitridation treatment. ACS Appl. Mater. Interfaces 10(20), 17419–17426 (2018). https://doi.org/10.1021/acsami.8b01286
- Z. Kang, H. Si, S. Zhang, J. Wu, Y. Sun, Q. Liao, Z. Zhang, Y. Zhang, Interface engineering for modulation of charge carrier behavior in ZnO photoelectrochemical water splitting. Adv. Funct. Mater. 29(15), 1808032 (2019). https://doi.org/10.1002/adfm.201808032
- P. Niu, M. Qiao, Y. Li, L. Huang, T. Zhai, Distinctive defects engineering in graphitic carbon nitride for greatly extended visible light photocatalytic hydrogen evolution. Nano Energy 44, 73–81 (2018). https://doi.org/10.1016/j.nanoen.2017.11.059
- S. Bai, N. Zhang, C. Gao, Y. Xiong, Defect engineering in photocatalytic materials. Nano Energy 53, 296–336 (2018). https://doi.org/10.1016/j.nanoen.2018.08.058
- X. Chen, L. Liu, Y. Yu Peter, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018), 746–750 (2011). https://doi.org/10.1126/science.1200448
- F. Lei, Y. Sun, K. Liu, S. Gao, L. Liang, B. Pan, Y. Xie, Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 136(19), 6826–6829 (2014). https://doi.org/10.1021/ja501866r
- S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297(5590), 2243–2245 (2002). https://doi.org/10.1126/science.1075035
- F. Zuo, K. Bozhilov, R.J. Dillon, L. Wang, P. Smith, X. Zhao, C. Bardeen, P. Feng, Active facets on titanium(III)-doped TiO2: an effective strategy to improve the visible-light photocatalytic activity. Angew. Chem. Int. Ed. 51(25), 6223–6226 (2012). https://doi.org/10.1002/anie.201202191
- Z. Wang, C. Yang, T. Lin, H. Yin, P. Chen et al., Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ. Sci. 6(10), 3007–3014 (2013). https://doi.org/10.1039/c3ee41817k
- H. Wang, L. Jia, P. Bogdanoff, S. Fiechter, H. Möhwald, D. Shchukin, Size-related native defect engineering in high intensity ultrasonication of nanoparticles for photoelectrochemical water splitting. Energy Environ. Sci. 6(3), 799–804 (2013). https://doi.org/10.1039/c3ee24058d
- L. Shi, W. Zhou, Z. Li, S. Koul, A. Kushima, Y. Yang, Periodically ordered nanoporous perovskite photoelectrode for efficient photoelectrochemical water splitting. ACS Nano 12(6), 6335–6342 (2018). https://doi.org/10.1021/acsnano.8b03940
- G. Wang, Y. Yang, Y. Ling, H. Wang, X. Lu et al., An electrochemical method to enhance the performance of metal oxides for photoelectrochemical water oxidation. J. Mater. Chem. A 4(8), 2849–2855 (2016). https://doi.org/10.1039/C5TA10477G
- G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang et al., Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11(7), 3026–3033 (2011). https://doi.org/10.1021/nl201766h
- I.S. Cho, M. Logar, C.H. Lee, L. Cai, F.B. Prinz, X. Zheng, Rapid and controllable flame reduction of TiO2 nanowires for enhanced solar water-splitting. Nano Lett. 14(1), 24–31 (2013). https://doi.org/10.1021/nl4026902
- J.-W. Jang, C. Du, Y. Ye, Y. Lin, X. Yao et al., Enabling unassisted solar water splitting by iron oxide and silicon. Nat. Commun. 6, 7447 (2015). https://doi.org/10.1038/ncomms8447
- Y. Umena, K. Kawakami, J. Shen, N. Kamiya, Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473(7345), 55–60 (2011). https://doi.org/10.1038/nature09913
- K.N. Ferreira, T.M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, Architecture of the photosynthetic oxygen-evolving center. Science 303(5665), 1831–1838 (2004). https://doi.org/10.1126/science.1093087
- A.J. Bard, Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J. Photochem. 10(1), 59–75 (1979). https://doi.org/10.1016/0047-2670(79)80037-4
- H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chem. Lett. 33(10), 1348–1349 (2004). https://doi.org/10.1246/cl.2004.1348
- D.J. Martin, P.J.T. Reardon, S.J.A. Moniz, J. Tang, Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. J. Am. Chem. Soc. 136(36), 12568–12571 (2014). https://doi.org/10.1021/ja506386e
- C. Liu, B.C. Colón, M. Ziesack, P.A. Silver, D.G. Nocera, Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352(6290), 1210–1213 (2016). https://doi.org/10.1126/science.aaf5039
- A.C. Walters, T.G. Perring, J.-S. Caux, A.T. Savici, G.D. Gu, C.-C. Lee, W. Ku, I.A. Zaliznyak, Effect of covalent bonding on magnetism and the missing neutron intensity in copper oxide compounds. Nat. Phys. 5(12), 867 (2009). https://doi.org/10.1038/nphys1405
- Z. Chen, T.F. Jaramillo, T.G. Deutsch, A. Kleiman-Shwarsctein, A.J. Forman et al., Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J. Mater. Res. 25(1), 3–16 (2010). https://doi.org/10.1557/JMR.2010.0020
- M.F. Weber, M.J. Dignam, Efficiency of splitting water with semiconducting photoelectrodes. J. Electrochem. Soc. 131(6), 1258–1265 (1984). https://doi.org/10.1149/1.2115797
- J.R. Bolton, S.J. Strickler, J.S. Connolly, Limiting and realizable efficiencies of solar photolysis of water. Nature 316(6028), 495–500 (1985). https://doi.org/10.1038/316495a0
- R.E. Rocheleau, E.L. Miller, Photoelectrochemical production of hydrogen: engineering loss analysis. Int. J. Hydrog. Energy 22(8), 771–782 (1997). https://doi.org/10.1016/S0360-3199(96)00221-2
- S. Chen, L. Wang, Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem. Mater. 24(18), 3659–3666 (2012). https://doi.org/10.1021/cm302533s
- J. Greeley, T.F. Jaramillo, J. Bonde, I.B. Chorkendorff, J.K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Mater. Sustain. Energy (2010). https://doi.org/10.1142/9789814317665_0041
- R. van de Krol, Y. Liang, J. Schoonman, Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 18(20), 2311–2320 (2008). https://doi.org/10.1039/b718969a
- A.V. Akimov, A.J. Neukirch, O.V. Prezhdo, Theoretical insights into photoinduced charge transfer and catalysis at oxide interfaces. Chem. Rev. 113(6), 4496–4565 (2013). https://doi.org/10.1021/cr3004899
- P. Liao, E.A. Carter, New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides. Chem. Soc. Rev. 42(6), 2401–2422 (2013). https://doi.org/10.1039/C2CS35267B
- L.C. Seitz, Z. Chen, A.J. Forman, B.A. Pinaud, J.D. Benck, T.F. Jaramillo, Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research. Chemsuschem 7(5), 1372–1385 (2014). https://doi.org/10.1002/cssc.201301030
- H. Cheng, A. Selloni, Hydroxide ions at the water/anatase TiO2(101) interface: structure and electronic states from first principles molecular dynamics. Langmuir 26(13), 11518–11525 (2010). https://doi.org/10.1021/la100672f
- J. Cheng, M. Sprik, The electric double layer at a rutile TiO2 water interface modelled using density functional theory based molecular dynamics simulation. J. Phys.: Condens. Matter 26(24), 244108 (2014). https://doi.org/10.1088/0953-8984/26/24/244108
- A. Laio, F.L. Gervasio, Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep. Prog. Phys. 71(12), 126601 (2008). https://doi.org/10.1088/0034-4885/71/12/126601
- M. Otani, O. Sugino, First-principles calculations of charged surfaces and interfaces: a plane-wave nonrepeated slab approach. Phys. Rev. B 73(11), 115407 (2006). https://doi.org/10.1103/PhysRevB.73.115407
- D. Opalka, T.A. Pham, M. Sprik, G. Galli, Electronic energy levels and band alignment for aqueous phenol and phenolate from first principles. J. Phys. Chem. B 119(30), 9651–9660 (2015). https://doi.org/10.1021/acs.jpcb.5b04189
- A.P. Gaiduk, M. Govoni, R. Seidel, J.H. Skone, B. Winter, G. Galli, Photoelectron spectra of aqueous solutions from first principles. J. Am. Chem. Soc. 138(22), 6912–6915 (2016). https://doi.org/10.1021/jacs.6b00225
- T.W. Kim, Y. Ping, G.A. Galli, K.-S. Choi, Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting. Nat. Commun. 6, 8769 (2015). https://doi.org/10.1038/ncomms9769
- M. Pastore, F. De Angelis, First-principles modeling of a dye-sensitized TiO2/IrO2 photoanode for water oxidation. J. Am. Chem. Soc. 137(17), 5798–5809 (2015). https://doi.org/10.1021/jacs.5b02128
- G.P. Smestad, A. Steinfeld, Review: photochemical and thermochemical production of solar fuels from H2O and CO2 using metal oxide catalysts. Ind. Eng. Chem. Res. 51(37), 11828–11840 (2012). https://doi.org/10.1021/ie3007962
- C.N.R. Rao, S. Dey, Generation of H2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides. J. Solid State Chem. 242, 107–115 (2016). https://doi.org/10.1016/j.jssc.2015.12.018
- T. Kodama, N. Gokon, Thermochemical cycles for high-temperature solar hydrogen production. Chem. Rev. 107(10), 4048–4077 (2007). https://doi.org/10.1021/cr050188a
- T. Nakamura, Hydrogen production from water utilizing solar heat at high temperatures. Sol. Energy 19(5), 467–475 (1977). https://doi.org/10.1016/0038-092X(77)90102-5
- J. Kim, C.A. Henao, T.A. Johnson, D.E. Dedrick, J.E. Miller, E.B. Stechel, C.T. Maravelias, Methanol production from CO2 using solar-thermal energy: process development and techno-economic analysis. Energy Environ. Sci. 4(9), 3122–3132 (2011). https://doi.org/10.1039/c1ee01311d
- C.N.R. Rao, S. Dey, Solar thermochemical splitting of water to generate hydrogen. Proc. Natl. Acad. Sci. U.S.A. 114(51), 13385–13393 (2017). https://doi.org/10.1073/pnas.1700104114
- C.L. Muhich, B.D. Ehrhart, I. Al-Shankiti, B.J. Ward, C.B. Musgrave, A.W. Weimer, A review and perspective of efficient hydrogen generation via solar thermal water splitting. Wires Energy Environ. 5(3), 261–287 (2016). https://doi.org/10.1002/wene.174
- C. Agrafiotis, M. Roeb, C. Sattler, A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renew. Sustain. Energy Rev. 42, 254–285 (2015). https://doi.org/10.1016/j.rser.2014.09.039
- S.S. Naghavi, A.A. Emery, H.A. Hansen, F. Zhou, V. Ozolins, C. Wolverton, Giant onsite electronic entropy enhances the performance of ceria for water splitting. Nat. Commun. 8(1), 285 (2017). https://doi.org/10.1038/s41467-017-00381-2
- C.E. Myers, D.T. Graves, Vaporization thermodynamics of lanthanide trihalides. J. Chem. Eng. Data 22(4), 440–445 (1977). https://doi.org/10.1021/je60075a023
- P. Chakthranont, L.C. Seitz, T.F. Jaramillo, Mapping photoelectrochemical current distribution at nanoscale dimensions on morphologically controlled BiVO4. J. Phys. Chem. Lett. 6(18), 3702–3707 (2015). https://doi.org/10.1021/acs.jpclett.5b01587
- J.B. Gerken, J.G. McAlpin, J.Y.C. Chen, M.L. Rigsby, W.H. Casey, R.D. Britt, S.S. Stahl, Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: the thermodynamic basis for catalyst structure, stability, and activity. J. Am. Chem. Soc. 133(36), 14431–14442 (2011). https://doi.org/10.1021/ja205647m
- S. Pintado, S. Goberna-Ferrón, E.C. Escudero-Adán, J.R. Galán-Mascarós, Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: the thermodynamic basis for catalyst structure, stability, and activity. J. Am. Chem. Soc. 135(36), 13270–13273 (2013). https://doi.org/10.1021/ja406242y
- Y. Yamada, K. Oyama, R. Gates, S. Fukuzumi, High catalytic activity of heteropolynuclear cyanide complexes containing cobalt and platinum ions: visible-light driven water oxidation. Angew. Chem. Int. Ed. 54(19), 5613–5617 (2015). https://doi.org/10.1002/anie.201501116
- Y. Park, K.J. McDonald, K.-S. Choi, Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 42(6), 2321–2337 (2013). https://doi.org/10.1039/C2CS35260E
- D.K. Zhong, S. Choi, D.R. Gamelin, Near-complete suppression of surface recombination in solar photoelectrolysis by “Co–Pi” catalyst-modified W:BiVO4. J. Am. Chem. Soc. 133(45), 18370–18377 (2011). https://doi.org/10.1021/ja207348x
- K.J. McDonald, K.-S. Choi, A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation. Energy Environ. Sci. 5(9), 8553–8557 (2012). https://doi.org/10.1039/c2ee22608a
- J.A. Seabold, K.-S. Choi, Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J. Am. Chem. Soc. 134(4), 2186–2192 (2012). https://doi.org/10.1021/ja209001d
- S.K. Pilli, T.E. Furtak, L.D. Brown, T.G. Deutsch, J.A. Turner, A.M. Herring, Cobalt–phosphate (Co–Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy Environ. Sci. 4(12), 5028–5034 (2011). https://doi.org/10.1039/c1ee02444b
- F.F. Abdi, L. Han, A.H.M. Smets, M. Zeman, B. Dam, R. Van De Krol, Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4, 2195 (2013). https://doi.org/10.1038/ncomms3195
- C.F. Bohren, D.R. Huffman, Z. Kam, Scattered thoughts. Nature 306, 625 (1983). https://doi.org/10.1038/306625a0
- L. Cao, J.S. White, J.-S. Park, J.A. Schuller, B.M. Clemens, M.L. Brongersma, Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 8(8), 643 (2009). https://doi.org/10.1038/nmat2477
- F. Boudoire, R. Toth, J. Heier, A. Braun, E.C. Constable, Photonic light trapping in self-organized all-oxide microspheroids impacts photoelectrochemical water splitting. Energy Environ. Sci. 7(8), 2680–2688 (2014). https://doi.org/10.1039/C4EE00380B
- K.X. Wang, Z. Yu, V. Liu, A. Raman, Y. Cui, S. Fan, Light trapping in photonic crystals. Energy Environ. Sci. 7(8), 2725–2738 (2014). https://doi.org/10.1039/C4EE00839A
- M.L. Brongersma, Y. Cui, S. Fan, Light management for photovoltaics using high-index nanostructures. Nat. Mater. 13(5), 451–460 (2014). https://doi.org/10.1038/nmat3921
- J. Brillet, J. Yum, M. Cornuz, T. Hisatomi, R. Solarska et al., Highly efficient water splitting by a dual-absorber tandem cell. Nat. Photon. 6(12), 824–828 (2012). https://doi.org/10.1038/nphoton.2012.265
- L. Li, Y. Yu, F. Meng, Y. Tan, R.J. Hamers, S. Jin, Facile solution synthesis of α-FeF3·3H2O nanowires and their conversion to α-Fe2O3 nanowires for photoelectrochemical application. Nano Lett. 12(2), 724–731 (2012). https://doi.org/10.1021/nl2036854
- L.A. Marusak, R. Messier, W.B. White, Optical absorption spectrum of hematite, αFe2O3 near IR to UV. J. Phys. Chem. Solids 41(9), 981–984 (1980). https://doi.org/10.1016/0022-3697(80)90105-5
- A. Kay, I. Cesar, M. Grätzel, New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128(49), 15714–15721 (2006). https://doi.org/10.1021/ja064380l
- E. Thimsen, F. Le Formal, M. Gratzel, S.C. Warren, Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting. Nano Lett. 11(1), 35–43 (2010). https://doi.org/10.1021/nl1022354
- S.C. Warren, K. Voïtchovsky, H. Dotan, C.M. Leroy, M. Cornuz et al., Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12(9), 842–849 (2013). https://doi.org/10.1038/nmat3684
- J. Barber, Hydrogen derived from water as a sustainable solar fuel: learning from biology. Sustain. Energy Fuels 2(5), 927–935 (2018). https://doi.org/10.1039/C8SE00002F
- D.G. Nocera, The artificial leaf. Acc. Chem. Res. 45(5), 767–776 (2012). https://doi.org/10.1021/ar2003013
- MathSciNet
- T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Re. 43(22), 7520–7535 (2014). https://doi.org/10.1039/C3CS60378D
- K. Maeda, K. Teramura, D. Lu, N. Saito, Y. Inoue, K. Domen, Noble-metal/Cr2O3 core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting. Angew. Chem. Int. Ed. 45(46), 7806–7809 (2006). https://doi.org/10.1002/anie.200602473
- C. Pan, T. Takata, M. Nakabayashi, T. Matsumoto, N. Shibata, Y. Ikuhara, K. Domen, A complex perovskite-type oxynitride: the first photocatalyst for water splitting operable at up to 600 nm. Angew. Chem. Int. Ed. 54(10), 2955–2959 (2015). https://doi.org/10.1002/anie.201410961
- P.D. Nguyen, T.M. Duong, P.D. Tran, Current progress and challenges in engineering viable artificial leaf for solar water splitting. J. Sci.: Adv. Mater. Dev. 2, 399–417 (2017). https://doi.org/10.1016/j.jsamd.2017.08.006
- J. Barber, Photosynthetic energy conversion: natural and artificial. Chem. Soc. Rev. 38(1), 185–196 (2009). https://doi.org/10.1039/B802262N
- Y. Liu, B. Yi, Z. Shao, D. Xing, H. Zhang, Carbon nanotubes reinforced nafion composite membrane for fuel cell applications. Electrochem. Solid-State Lett. 9(7), A356–A359 (2006). https://doi.org/10.1149/1.2203230
- M. Haro, C. Solis, G. Molina, L. Otero, J. Bisquert, S. Gimenez, A. Guerrero, Toward stable solar hydrogen generation using organic photoelectrochemical cells. J. Phys. Chem. C 119(12), 6488–6494 (2015). https://doi.org/10.1021/acs.jpcc.5b01420
- T. Bourgeteau, D. Tondelier, B. Geffroy, R. Brisse, C. Laberty-Robert et al., A H2-evolving photocathode based on direct sensitization of MoS3 with an organic photovoltaic cell. Energy Environ. Sci. 6(9), 2706–2713 (2013). https://doi.org/10.1039/c3ee41321g
- H.C. Rojas, S. Bellani, F. Fumagalli, G. Tullii, S. Leonardi et al., Polymer-based photocathodes with a solution-processable cuprous iodide anode layer and a polyethyleneimine protective coating. Energy Environ. Sci. 9(12), 3710–3723 (2016). https://doi.org/10.1039/C6EE01655C
- B. Seger, A.B. Laursen, P.C.K. Vesborg, T. Pedersen, O. Hansen, S. Dahl, I.B. Chorkendorff, Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+ p-silicon photocathode. Angew. Chem. Int. Ed. 51(36), 9128–9131 (2012). https://doi.org/10.1002/anie.201203585
- S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas, H.J. Snaith, Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14(10), 5561–5568 (2014). https://doi.org/10.1021/nl501982b
References
R. Nebel, K.M. Macounová, H. Tarábková, L. Kavan, P. Krtil, Selectivity of photoelectrochemical water splitting on TiO2 anatase single crystals. J. Phys. Chem. C 123(17), 10857–10867 (2019). https://doi.org/10.1021/acs.jpcc.8b11730
C.V. Reddy, K.R. Reddy, N.P. Shetti, J. Shim, T.M. Aminabhavi, D.D. Dionysiou, Hetero-nanostructured metal oxide-based hybrid photocatalysts for enhanced photoelectrochemical water splitting—a review. Int. J. Hydrog. Energy (2019). https://doi.org/10.1016/j.ijhydene.2019.02.109
H. Yu, L. Jiang, H. Wang, B. Huang, X. Yuan, J. Huang, J. Zhang, G. Zeng, Modulation of Bi2MoO6-based materials for photocatalytic water splitting and environmental application: a critical review. Small (2019). https://doi.org/10.1002/smll.201901008
S. Pillai, M.A. Green, Plasmonics for photovoltaic applications. Solar Energy Mater. Solar Cells 94(9), 1481–1486 (2010). https://doi.org/10.1016/j.solmat.2010.02.046
T.J. Wydrzynski, W. Hillier (eds.), Molecular Solar Fuels (Royal Society of Chemistry, London, 2011). https://doi.org/10.1039/9781849733038
T.A. Faunce, W. Lubitz, A.W. Bill Rutherford, D. MacFarlane, G.F. Moore et al., Energy and environment policy case for a global project on artificial photosynthesis. Energy Environ. Sci. 6(3), 695–698 (2013). https://doi.org/10.1039/c3ee00063j
R.E. Blankenship, D.M. Tiede, J. Barber, G.W. Brudvig, G. Fleming et al., Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332(6031), 805–809 (2011). https://doi.org/10.1126/science.1200165
N. Armaroli, V. Balzani, Solar electricity and solar fuels: status and perspectives in the context of the energy transition. Chem. Eur. J. 22(1), 32–57 (2016). https://doi.org/10.1002/chem.201503580
Y. Tachibana, L. Vayssieres, J.R. Durrant, Artificial photosynthesis for solar water-splitting. Nat. Photon. 6(8), 511–518 (2012). https://doi.org/10.1038/nphoton.2012.175
B. Yao, J. Zhang, X. Fan, J. He, Y. Li, Surface engineering of nanomaterials for photo-electrochemical water splitting. Small 15(1), 1803746 (2019). https://doi.org/10.1002/smll.201803746
Q. Zhang, D.T. Gangadharan, Y. Liu, Z. Xu, M. Chaker, D. Ma, Recent advancements in plasmon-enhanced visible light-driven water splitting. J. Materiomics 3(1), 33–50 (2017). https://doi.org/10.1016/j.jmat.2016.11.005
F. Jiang, T. Harada, Y. Kuang, T. Minegishi, K. Domen, S. Ikeda, Pt/In2S3/CdS/Cu2ZnSnS4 thin film as an efficient and stable photocathode for water reduction under sunlight radiation. J. Am. Chem. Soc. 137(42), 13691–13697 (2015). https://doi.org/10.1021/jacs.5b09015
P. Zhang, T. Wang, J. Gong, Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv. Mater. 27(36), 5328–5342 (2015). https://doi.org/10.1002/adma.201500888
J. Liu, Z. Wei, W. Shangguan, Defects engineering in photocatalytic water splitting materials. ChemCatChem 11, 1–14 (2019). https://doi.org/10.1002/cctc.201901579
X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44(15), 5148–5180 (2015). https://doi.org/10.1039/C4CS00448E
D. Kang, T.W. Kim, S.R. Kubota, A.C. Cardiel, H.G. Cha, K. Choi, Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting. Chem. Rev. 115(23), 12839–12887 (2015). https://doi.org/10.1021/acs.chemrev.5b00498
A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972). https://doi.org/10.1038/238037a0
M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewism, Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326
C.G. Morales-Guio, S.D. Tilley, H. Vrubel, M. Grätzel, X. Hu, Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat. Commun. 5, 3059 (2014). https://doi.org/10.1038/ncomms4059
T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrog. Energy 27(10), 991–1022 (2002). https://doi.org/10.1016/S0360-3199(02)00022-8
Y. Qiu, W. Liu, W. Chen, W. Chen, G. Zhou et al., Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells. Sci. Adv. 2, e1501764 (2016). https://doi.org/10.1126/sciadv.1501764
Y. Chen, J.D. Prange, S. Dühnen, Y. Park, M. Gunji, C.E.D. Chidsey, P.C. McIntyre, Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat. Mater. 10(7), 539–544 (2011). https://doi.org/10.1038/nmat3047
T.J. Jacobsson, V. Fjällström, M. Sahlberg, M. Edoff, T. Edvinsson, A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency. Energy Environ. Sci. 6(12), 3676–3683 (2013). https://doi.org/10.1039/c3ee42519c
C.R. Cox, J.Z. Lee, D.G. Nocera, T. Buonassisi, Ten-percent solar-to-fuel conversion with nonprecious materials. Proc. Natl. Acad. Sci. U.S.A. 111(39), 14057–14061 (2014). https://doi.org/10.1073/pnas.1414290111
B.A. Pinaud, J.D. Benck, L.C. Seitz, A.J. Forman, Z. Chen et al., Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6(7), 1983–2002 (2013). https://doi.org/10.1039/c3ee40831k
C.A. Rodriguez, M.A. Modestino, D. Psaltis, C. Moser, Design and cost considerations for practical solar-hydrogen generators. Energy Environ. Sci. 7(12), 3828–3835 (2014). https://doi.org/10.1039/C4EE01453G
S.Y. Reece, J.A. Hamel, K. Sung, T.D. Jarvi, A.J. Esswein, J.J. Pijpers, D.G. Nocera, Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334(6056), 645–648 (2011). https://doi.org/10.1126/science.1209816
A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, E. Thimsen, Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10(6), 456–461 (2011). https://doi.org/10.1038/nmat3017
M.J. Kenney, M. Gong, Y. Li, J.Z. Wu, J. Feng, M. Lanza, H. Dai, High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 342(6160), 836–840 (2013). https://doi.org/10.1126/science.1241327
J. Luo, J. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin et al., Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345(6204), 1593–1596 (2014). https://doi.org/10.1126/science.1258307
M.A. Green, S. Pillai, Harnessing plasmonics for solar cells. Nat. Photon. 6(3), 130–132 (2012). https://doi.org/10.1038/nphoton.2012.30
I. Thomann, B.A. Pinaud, Z. Chen, B.M. Clemens, T.F. Jaramillo, M.L. Brongersma, Plasmon enhanced solar-to-fuel energy conversion. Nano Lett. 11(8), 3440–3446 (2011). https://doi.org/10.1021/nl201908s
H. Dotan, K. Sivula, M. Grätzel, A. Rothschild, S.C. Warren, Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ. Sci. 4(3), 958–964 (2011). https://doi.org/10.1039/C0EE00570C
C. Hägglund, S.P. Apell, B. Kasemo, Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics. Nano Lett. 10(8), 3135–3141 (2010). https://doi.org/10.1021/nl101929j
W. Ho, Reactions at metal surfaces induced by femtosecond lasers, tunneling electrons, and heating. J. Phys. Chem. 100(31), 13050–13060 (1996). https://doi.org/10.1021/jp9535497
P. Christopher, H. Xin, S. Linic, Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3(6), 467–472 (2011). https://doi.org/10.1038/nchem.1032
A.J. Morfa, K.L. Rowlen, T.H. Reilly, M.J. Romero, J. van de Lagemaat, Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl. Phys. Lett. 92(1), 013504 (2008). https://doi.org/10.1063/1.2823578
O. Stenzel, A. Stendal, K. Voigtsberger, C. Von Borczyskowski, Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters. Solar Energy Mater. Solar Cells 37(3–4), 337–348 (1995). https://doi.org/10.1016/0927-0248(95)00027-5
H.R. Stuart, D.G. Hall, Island size effects in nanoparticle-enhanced photodetectors. Appl. Phys. Lett. 73(26), 3815–3817 (1998). https://doi.org/10.1063/1.122903
D.M. Schaadt, B. Feng, E.T. Yu, Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 86(6), 063106 (2005). https://doi.org/10.1063/1.1855423
S. Pillai, K.R. Catchpole, T. Trupke, M.A. Green, Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101(9), 093105 (2007). https://doi.org/10.1063/1.2734885
S.C. Warren, E. Thimsen, Plasmonic solar water splitting. Energy Environ. Sci. 5(1), 5133–5146 (2012). https://doi.org/10.1039/C1EE02875H
Z. Liu, W. Hou, P. Pavaskar, M. Aykol, S.B. Cronin, Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11(3), 1111–1116 (2011). https://doi.org/10.1021/nl104005n
Y. Wei, L. Ke, J. Kong, H. Liu, Z. Jiao et al., Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photoanode decorated with Ag nanoparticles. Nanotechnology 23(23), 235401 (2012). https://doi.org/10.1088/0957-4484/23/23/235401
R. Solarska, A. Królikowska, J. Augustyński, Silver nanoparticle induced photocurrent enhancement at WO3 photoanodes. Angew. Chem. Int. Ed. 49(43), 7980–7983 (2010). https://doi.org/10.1002/anie.201002173
X. Zhang, Y. Zhu, X. Yang, S. Wang, J. Shen, B. Lin, C. Li, Enhanced visible light photocatalytic activity of interlayer-isolated triplex Ag@SiO2@TiO2 core–shell nanoparticles. Nanoscale 5(8), 3359–3366 (2013). https://doi.org/10.1039/c3nr00044c
D.B. Ingram, S. Linic, Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc. 133(14), 5202–5205 (2011). https://doi.org/10.1021/ja200086g
A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38(1), 253–278 (2009). https://doi.org/10.1039/B800489G
R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura et al., Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 334(6060), 1256–1260 (2011). https://doi.org/10.1126/science.1211934
Y. Luo, L. Tang, U. Khan, Q. Yu, H. Cheng, X. Zou, B. Liu, Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 10(1), 269 (2019). https://doi.org/10.1038/s41467-018-07792-9
T. Wang, Z. Luo, C. Li, J. Gong, Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition. Chem. Soc. Rev. 43(22), 7469–7484 (2014). https://doi.org/10.1039/C3CS60370A
R. Liu, Z. Zheng, J. Spurgeon, X. Yang, Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ. Sci. 7(8), 2504–2517 (2014). https://doi.org/10.1039/C4EE00450G
F. Le Formal, N. Tetreault, M. Cornuz, T. Moehl, M. Grätzel, K. Sivula, Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2(4), 737–743 (2011). https://doi.org/10.1039/C0SC00578A
P. Zhang, T. Wang, J. Gong, Passivation of surface states by ALD-grown TiO2 overlayers on Ta3N5 anodes for photoelectrochemical water oxidation. Chem. Commun. 52(57), 8806–8809 (2016). https://doi.org/10.1039/C6CC03411J
Z. Zhang, Q. Qian, B. Li, K.J. Chen, Interface engineering of monolayer MoS2/GaN hybrid heterostructure: modified band alignment for photocatalytic water splitting application by nitridation treatment. ACS Appl. Mater. Interfaces 10(20), 17419–17426 (2018). https://doi.org/10.1021/acsami.8b01286
Z. Kang, H. Si, S. Zhang, J. Wu, Y. Sun, Q. Liao, Z. Zhang, Y. Zhang, Interface engineering for modulation of charge carrier behavior in ZnO photoelectrochemical water splitting. Adv. Funct. Mater. 29(15), 1808032 (2019). https://doi.org/10.1002/adfm.201808032
P. Niu, M. Qiao, Y. Li, L. Huang, T. Zhai, Distinctive defects engineering in graphitic carbon nitride for greatly extended visible light photocatalytic hydrogen evolution. Nano Energy 44, 73–81 (2018). https://doi.org/10.1016/j.nanoen.2017.11.059
S. Bai, N. Zhang, C. Gao, Y. Xiong, Defect engineering in photocatalytic materials. Nano Energy 53, 296–336 (2018). https://doi.org/10.1016/j.nanoen.2018.08.058
X. Chen, L. Liu, Y. Yu Peter, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018), 746–750 (2011). https://doi.org/10.1126/science.1200448
F. Lei, Y. Sun, K. Liu, S. Gao, L. Liang, B. Pan, Y. Xie, Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 136(19), 6826–6829 (2014). https://doi.org/10.1021/ja501866r
S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297(5590), 2243–2245 (2002). https://doi.org/10.1126/science.1075035
F. Zuo, K. Bozhilov, R.J. Dillon, L. Wang, P. Smith, X. Zhao, C. Bardeen, P. Feng, Active facets on titanium(III)-doped TiO2: an effective strategy to improve the visible-light photocatalytic activity. Angew. Chem. Int. Ed. 51(25), 6223–6226 (2012). https://doi.org/10.1002/anie.201202191
Z. Wang, C. Yang, T. Lin, H. Yin, P. Chen et al., Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ. Sci. 6(10), 3007–3014 (2013). https://doi.org/10.1039/c3ee41817k
H. Wang, L. Jia, P. Bogdanoff, S. Fiechter, H. Möhwald, D. Shchukin, Size-related native defect engineering in high intensity ultrasonication of nanoparticles for photoelectrochemical water splitting. Energy Environ. Sci. 6(3), 799–804 (2013). https://doi.org/10.1039/c3ee24058d
L. Shi, W. Zhou, Z. Li, S. Koul, A. Kushima, Y. Yang, Periodically ordered nanoporous perovskite photoelectrode for efficient photoelectrochemical water splitting. ACS Nano 12(6), 6335–6342 (2018). https://doi.org/10.1021/acsnano.8b03940
G. Wang, Y. Yang, Y. Ling, H. Wang, X. Lu et al., An electrochemical method to enhance the performance of metal oxides for photoelectrochemical water oxidation. J. Mater. Chem. A 4(8), 2849–2855 (2016). https://doi.org/10.1039/C5TA10477G
G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang et al., Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11(7), 3026–3033 (2011). https://doi.org/10.1021/nl201766h
I.S. Cho, M. Logar, C.H. Lee, L. Cai, F.B. Prinz, X. Zheng, Rapid and controllable flame reduction of TiO2 nanowires for enhanced solar water-splitting. Nano Lett. 14(1), 24–31 (2013). https://doi.org/10.1021/nl4026902
J.-W. Jang, C. Du, Y. Ye, Y. Lin, X. Yao et al., Enabling unassisted solar water splitting by iron oxide and silicon. Nat. Commun. 6, 7447 (2015). https://doi.org/10.1038/ncomms8447
Y. Umena, K. Kawakami, J. Shen, N. Kamiya, Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473(7345), 55–60 (2011). https://doi.org/10.1038/nature09913
K.N. Ferreira, T.M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, Architecture of the photosynthetic oxygen-evolving center. Science 303(5665), 1831–1838 (2004). https://doi.org/10.1126/science.1093087
A.J. Bard, Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J. Photochem. 10(1), 59–75 (1979). https://doi.org/10.1016/0047-2670(79)80037-4
H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chem. Lett. 33(10), 1348–1349 (2004). https://doi.org/10.1246/cl.2004.1348
D.J. Martin, P.J.T. Reardon, S.J.A. Moniz, J. Tang, Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. J. Am. Chem. Soc. 136(36), 12568–12571 (2014). https://doi.org/10.1021/ja506386e
C. Liu, B.C. Colón, M. Ziesack, P.A. Silver, D.G. Nocera, Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352(6290), 1210–1213 (2016). https://doi.org/10.1126/science.aaf5039
A.C. Walters, T.G. Perring, J.-S. Caux, A.T. Savici, G.D. Gu, C.-C. Lee, W. Ku, I.A. Zaliznyak, Effect of covalent bonding on magnetism and the missing neutron intensity in copper oxide compounds. Nat. Phys. 5(12), 867 (2009). https://doi.org/10.1038/nphys1405
Z. Chen, T.F. Jaramillo, T.G. Deutsch, A. Kleiman-Shwarsctein, A.J. Forman et al., Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J. Mater. Res. 25(1), 3–16 (2010). https://doi.org/10.1557/JMR.2010.0020
M.F. Weber, M.J. Dignam, Efficiency of splitting water with semiconducting photoelectrodes. J. Electrochem. Soc. 131(6), 1258–1265 (1984). https://doi.org/10.1149/1.2115797
J.R. Bolton, S.J. Strickler, J.S. Connolly, Limiting and realizable efficiencies of solar photolysis of water. Nature 316(6028), 495–500 (1985). https://doi.org/10.1038/316495a0
R.E. Rocheleau, E.L. Miller, Photoelectrochemical production of hydrogen: engineering loss analysis. Int. J. Hydrog. Energy 22(8), 771–782 (1997). https://doi.org/10.1016/S0360-3199(96)00221-2
S. Chen, L. Wang, Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem. Mater. 24(18), 3659–3666 (2012). https://doi.org/10.1021/cm302533s
J. Greeley, T.F. Jaramillo, J. Bonde, I.B. Chorkendorff, J.K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Mater. Sustain. Energy (2010). https://doi.org/10.1142/9789814317665_0041
R. van de Krol, Y. Liang, J. Schoonman, Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 18(20), 2311–2320 (2008). https://doi.org/10.1039/b718969a
A.V. Akimov, A.J. Neukirch, O.V. Prezhdo, Theoretical insights into photoinduced charge transfer and catalysis at oxide interfaces. Chem. Rev. 113(6), 4496–4565 (2013). https://doi.org/10.1021/cr3004899
P. Liao, E.A. Carter, New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides. Chem. Soc. Rev. 42(6), 2401–2422 (2013). https://doi.org/10.1039/C2CS35267B
L.C. Seitz, Z. Chen, A.J. Forman, B.A. Pinaud, J.D. Benck, T.F. Jaramillo, Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research. Chemsuschem 7(5), 1372–1385 (2014). https://doi.org/10.1002/cssc.201301030
H. Cheng, A. Selloni, Hydroxide ions at the water/anatase TiO2(101) interface: structure and electronic states from first principles molecular dynamics. Langmuir 26(13), 11518–11525 (2010). https://doi.org/10.1021/la100672f
J. Cheng, M. Sprik, The electric double layer at a rutile TiO2 water interface modelled using density functional theory based molecular dynamics simulation. J. Phys.: Condens. Matter 26(24), 244108 (2014). https://doi.org/10.1088/0953-8984/26/24/244108
A. Laio, F.L. Gervasio, Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep. Prog. Phys. 71(12), 126601 (2008). https://doi.org/10.1088/0034-4885/71/12/126601
M. Otani, O. Sugino, First-principles calculations of charged surfaces and interfaces: a plane-wave nonrepeated slab approach. Phys. Rev. B 73(11), 115407 (2006). https://doi.org/10.1103/PhysRevB.73.115407
D. Opalka, T.A. Pham, M. Sprik, G. Galli, Electronic energy levels and band alignment for aqueous phenol and phenolate from first principles. J. Phys. Chem. B 119(30), 9651–9660 (2015). https://doi.org/10.1021/acs.jpcb.5b04189
A.P. Gaiduk, M. Govoni, R. Seidel, J.H. Skone, B. Winter, G. Galli, Photoelectron spectra of aqueous solutions from first principles. J. Am. Chem. Soc. 138(22), 6912–6915 (2016). https://doi.org/10.1021/jacs.6b00225
T.W. Kim, Y. Ping, G.A. Galli, K.-S. Choi, Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting. Nat. Commun. 6, 8769 (2015). https://doi.org/10.1038/ncomms9769
M. Pastore, F. De Angelis, First-principles modeling of a dye-sensitized TiO2/IrO2 photoanode for water oxidation. J. Am. Chem. Soc. 137(17), 5798–5809 (2015). https://doi.org/10.1021/jacs.5b02128
G.P. Smestad, A. Steinfeld, Review: photochemical and thermochemical production of solar fuels from H2O and CO2 using metal oxide catalysts. Ind. Eng. Chem. Res. 51(37), 11828–11840 (2012). https://doi.org/10.1021/ie3007962
C.N.R. Rao, S. Dey, Generation of H2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides. J. Solid State Chem. 242, 107–115 (2016). https://doi.org/10.1016/j.jssc.2015.12.018
T. Kodama, N. Gokon, Thermochemical cycles for high-temperature solar hydrogen production. Chem. Rev. 107(10), 4048–4077 (2007). https://doi.org/10.1021/cr050188a
T. Nakamura, Hydrogen production from water utilizing solar heat at high temperatures. Sol. Energy 19(5), 467–475 (1977). https://doi.org/10.1016/0038-092X(77)90102-5
J. Kim, C.A. Henao, T.A. Johnson, D.E. Dedrick, J.E. Miller, E.B. Stechel, C.T. Maravelias, Methanol production from CO2 using solar-thermal energy: process development and techno-economic analysis. Energy Environ. Sci. 4(9), 3122–3132 (2011). https://doi.org/10.1039/c1ee01311d
C.N.R. Rao, S. Dey, Solar thermochemical splitting of water to generate hydrogen. Proc. Natl. Acad. Sci. U.S.A. 114(51), 13385–13393 (2017). https://doi.org/10.1073/pnas.1700104114
C.L. Muhich, B.D. Ehrhart, I. Al-Shankiti, B.J. Ward, C.B. Musgrave, A.W. Weimer, A review and perspective of efficient hydrogen generation via solar thermal water splitting. Wires Energy Environ. 5(3), 261–287 (2016). https://doi.org/10.1002/wene.174
C. Agrafiotis, M. Roeb, C. Sattler, A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renew. Sustain. Energy Rev. 42, 254–285 (2015). https://doi.org/10.1016/j.rser.2014.09.039
S.S. Naghavi, A.A. Emery, H.A. Hansen, F. Zhou, V. Ozolins, C. Wolverton, Giant onsite electronic entropy enhances the performance of ceria for water splitting. Nat. Commun. 8(1), 285 (2017). https://doi.org/10.1038/s41467-017-00381-2
C.E. Myers, D.T. Graves, Vaporization thermodynamics of lanthanide trihalides. J. Chem. Eng. Data 22(4), 440–445 (1977). https://doi.org/10.1021/je60075a023
P. Chakthranont, L.C. Seitz, T.F. Jaramillo, Mapping photoelectrochemical current distribution at nanoscale dimensions on morphologically controlled BiVO4. J. Phys. Chem. Lett. 6(18), 3702–3707 (2015). https://doi.org/10.1021/acs.jpclett.5b01587
J.B. Gerken, J.G. McAlpin, J.Y.C. Chen, M.L. Rigsby, W.H. Casey, R.D. Britt, S.S. Stahl, Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: the thermodynamic basis for catalyst structure, stability, and activity. J. Am. Chem. Soc. 133(36), 14431–14442 (2011). https://doi.org/10.1021/ja205647m
S. Pintado, S. Goberna-Ferrón, E.C. Escudero-Adán, J.R. Galán-Mascarós, Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: the thermodynamic basis for catalyst structure, stability, and activity. J. Am. Chem. Soc. 135(36), 13270–13273 (2013). https://doi.org/10.1021/ja406242y
Y. Yamada, K. Oyama, R. Gates, S. Fukuzumi, High catalytic activity of heteropolynuclear cyanide complexes containing cobalt and platinum ions: visible-light driven water oxidation. Angew. Chem. Int. Ed. 54(19), 5613–5617 (2015). https://doi.org/10.1002/anie.201501116
Y. Park, K.J. McDonald, K.-S. Choi, Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 42(6), 2321–2337 (2013). https://doi.org/10.1039/C2CS35260E
D.K. Zhong, S. Choi, D.R. Gamelin, Near-complete suppression of surface recombination in solar photoelectrolysis by “Co–Pi” catalyst-modified W:BiVO4. J. Am. Chem. Soc. 133(45), 18370–18377 (2011). https://doi.org/10.1021/ja207348x
K.J. McDonald, K.-S. Choi, A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation. Energy Environ. Sci. 5(9), 8553–8557 (2012). https://doi.org/10.1039/c2ee22608a
J.A. Seabold, K.-S. Choi, Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J. Am. Chem. Soc. 134(4), 2186–2192 (2012). https://doi.org/10.1021/ja209001d
S.K. Pilli, T.E. Furtak, L.D. Brown, T.G. Deutsch, J.A. Turner, A.M. Herring, Cobalt–phosphate (Co–Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy Environ. Sci. 4(12), 5028–5034 (2011). https://doi.org/10.1039/c1ee02444b
F.F. Abdi, L. Han, A.H.M. Smets, M. Zeman, B. Dam, R. Van De Krol, Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4, 2195 (2013). https://doi.org/10.1038/ncomms3195
C.F. Bohren, D.R. Huffman, Z. Kam, Scattered thoughts. Nature 306, 625 (1983). https://doi.org/10.1038/306625a0
L. Cao, J.S. White, J.-S. Park, J.A. Schuller, B.M. Clemens, M.L. Brongersma, Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 8(8), 643 (2009). https://doi.org/10.1038/nmat2477
F. Boudoire, R. Toth, J. Heier, A. Braun, E.C. Constable, Photonic light trapping in self-organized all-oxide microspheroids impacts photoelectrochemical water splitting. Energy Environ. Sci. 7(8), 2680–2688 (2014). https://doi.org/10.1039/C4EE00380B
K.X. Wang, Z. Yu, V. Liu, A. Raman, Y. Cui, S. Fan, Light trapping in photonic crystals. Energy Environ. Sci. 7(8), 2725–2738 (2014). https://doi.org/10.1039/C4EE00839A
M.L. Brongersma, Y. Cui, S. Fan, Light management for photovoltaics using high-index nanostructures. Nat. Mater. 13(5), 451–460 (2014). https://doi.org/10.1038/nmat3921
J. Brillet, J. Yum, M. Cornuz, T. Hisatomi, R. Solarska et al., Highly efficient water splitting by a dual-absorber tandem cell. Nat. Photon. 6(12), 824–828 (2012). https://doi.org/10.1038/nphoton.2012.265
L. Li, Y. Yu, F. Meng, Y. Tan, R.J. Hamers, S. Jin, Facile solution synthesis of α-FeF3·3H2O nanowires and their conversion to α-Fe2O3 nanowires for photoelectrochemical application. Nano Lett. 12(2), 724–731 (2012). https://doi.org/10.1021/nl2036854
L.A. Marusak, R. Messier, W.B. White, Optical absorption spectrum of hematite, αFe2O3 near IR to UV. J. Phys. Chem. Solids 41(9), 981–984 (1980). https://doi.org/10.1016/0022-3697(80)90105-5
A. Kay, I. Cesar, M. Grätzel, New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128(49), 15714–15721 (2006). https://doi.org/10.1021/ja064380l
E. Thimsen, F. Le Formal, M. Gratzel, S.C. Warren, Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting. Nano Lett. 11(1), 35–43 (2010). https://doi.org/10.1021/nl1022354
S.C. Warren, K. Voïtchovsky, H. Dotan, C.M. Leroy, M. Cornuz et al., Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12(9), 842–849 (2013). https://doi.org/10.1038/nmat3684
J. Barber, Hydrogen derived from water as a sustainable solar fuel: learning from biology. Sustain. Energy Fuels 2(5), 927–935 (2018). https://doi.org/10.1039/C8SE00002F
D.G. Nocera, The artificial leaf. Acc. Chem. Res. 45(5), 767–776 (2012). https://doi.org/10.1021/ar2003013
MathSciNet
T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Re. 43(22), 7520–7535 (2014). https://doi.org/10.1039/C3CS60378D
K. Maeda, K. Teramura, D. Lu, N. Saito, Y. Inoue, K. Domen, Noble-metal/Cr2O3 core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting. Angew. Chem. Int. Ed. 45(46), 7806–7809 (2006). https://doi.org/10.1002/anie.200602473
C. Pan, T. Takata, M. Nakabayashi, T. Matsumoto, N. Shibata, Y. Ikuhara, K. Domen, A complex perovskite-type oxynitride: the first photocatalyst for water splitting operable at up to 600 nm. Angew. Chem. Int. Ed. 54(10), 2955–2959 (2015). https://doi.org/10.1002/anie.201410961
P.D. Nguyen, T.M. Duong, P.D. Tran, Current progress and challenges in engineering viable artificial leaf for solar water splitting. J. Sci.: Adv. Mater. Dev. 2, 399–417 (2017). https://doi.org/10.1016/j.jsamd.2017.08.006
J. Barber, Photosynthetic energy conversion: natural and artificial. Chem. Soc. Rev. 38(1), 185–196 (2009). https://doi.org/10.1039/B802262N
Y. Liu, B. Yi, Z. Shao, D. Xing, H. Zhang, Carbon nanotubes reinforced nafion composite membrane for fuel cell applications. Electrochem. Solid-State Lett. 9(7), A356–A359 (2006). https://doi.org/10.1149/1.2203230
M. Haro, C. Solis, G. Molina, L. Otero, J. Bisquert, S. Gimenez, A. Guerrero, Toward stable solar hydrogen generation using organic photoelectrochemical cells. J. Phys. Chem. C 119(12), 6488–6494 (2015). https://doi.org/10.1021/acs.jpcc.5b01420
T. Bourgeteau, D. Tondelier, B. Geffroy, R. Brisse, C. Laberty-Robert et al., A H2-evolving photocathode based on direct sensitization of MoS3 with an organic photovoltaic cell. Energy Environ. Sci. 6(9), 2706–2713 (2013). https://doi.org/10.1039/c3ee41321g
H.C. Rojas, S. Bellani, F. Fumagalli, G. Tullii, S. Leonardi et al., Polymer-based photocathodes with a solution-processable cuprous iodide anode layer and a polyethyleneimine protective coating. Energy Environ. Sci. 9(12), 3710–3723 (2016). https://doi.org/10.1039/C6EE01655C
B. Seger, A.B. Laursen, P.C.K. Vesborg, T. Pedersen, O. Hansen, S. Dahl, I.B. Chorkendorff, Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+ p-silicon photocathode. Angew. Chem. Int. Ed. 51(36), 9128–9131 (2012). https://doi.org/10.1002/anie.201203585
S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas, H.J. Snaith, Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14(10), 5561–5568 (2014). https://doi.org/10.1021/nl501982b