Antimony Potassium Tartrate Stabilizes Wide-Bandgap Perovskites for Inverted 4-T All-Perovskite Tandem Solar Cells with Efficiencies over 26%
Corresponding Author: Chen Tao
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 103
Abstract
Wide-bandgap (WBG) perovskites have been attracting much attention because of their immense potential as a front light-absorber for tandem solar cells. However, WBG perovskite solar cells (PSCs) generally exhibit undesired large open-circuit voltage (VOC) loss due to light-induced phase segregation and severe non-radiative recombination loss. Herein, antimony potassium tartrate (APTA) is added to perovskite precursor as a multifunctional additive that not only coordinates with unbonded lead but also inhibits the migration of halogen in perovskite, which results in suppressed non-radiative recombination, inhibited phase segregation and better band energy alignment. Therefore, a APTA auxiliary WBG PSC with a champion photoelectric conversion efficiency of 20.35% and less hysteresis is presented. They maintain 80% of their initial efficiencies under 100 mW cm−2 white light illumination in nitrogen after 1,000 h. Furthermore, by combining a semi-transparent WBG perovskite front cell with a narrow-bandgap tin–lead PSC, a perovskite/perovskite four-terminal tandem solar cell with an efficiency over 26% is achieved. Our work provides a feasible approach for the fabrication of efficient tandem solar cells.
Highlights:
1 A versatile material-antimony potassium tartrate is added to wide-bandgap perovskite cells for the first time.
2 Inverted wide-bandgap perovskite solar cells with a structure of ITO/MeO-2PACz/perovskite/C60/ALD-SnO2/Cu yield a champion power conversion efficiency of 20.35%.
3 A perovskite/perovskite four-terminal tandem solar cell with efficiency of 26.3% is achieved.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Kojima, Y. Teshima, T. Shirai, Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat et al., Pseudo-halide anion engineering for α-FaPbI3 perovskite solar cells. Nature 592(7854), 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5
- Q. Jiang, J. Tong, Y. Xian, R.A. Kerner, S.P. Dunfield et al., Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611(7935), 278–283 (2022). https://doi.org/10.1038/s41586-022-05268-x
- H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
- J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590(7847), 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
- H. Zeng, L. Li, F. Liu, M. Li, S. Zhang et al., Improved performance and stability of perovskite solar modules by regulating interfacial ion diffusion with nonionic cross-linked 1D lead-iodide. Adv. Energy Mater. 12(1), 2102820 (2022). https://doi.org/10.1002/aenm.202102820
- H. Chen, Y. Chen, J. Hou, S.T. Xu et al., Passivation of the buried interface via preferential crystallization of 2D perovskite on metal oxide transport layers. Adv. Mater. 33(41), 2103394 (2021). https://doi.org/10.1002/adma.202103394
- W. Xu, Y. Gao, W. Ming, F. He, J. Li et al., Suppressing defects-induced nonradiative recombination for efficient perovskite solar cells through green antisolvent engineering. Adv. Mater. 32(38), 2003965 (2020). https://doi.org/10.1002/adma.202003965
- T. Mahmoudi, Y. Wang, Y.B. Hahn, Highly stable perovskite solar cells based on perovskite/NiO-graphene composites and nio interface with 25.9 mA/cm2 photocurrent density and 20.8% efficiency. Nano Energy 79, 105452 (2021). https://doi.org/10.1016/j.nanoen.2020.105452
- M. Degani, Q. An, M. Albaladejo-Siguan, Y.J. Hofstetter, C. Cho et al., 23.7% efficient inverted perovskite solar cells by dual interfacial modification. Sci. Adv. 7(49), 7930 (2021). https://doi.org/10.1126/sciadv.abj7930
- J. Wen, Y. Zhao, Z. Liu, H. Gao, R. Lin et al., Steric engineering enables efficient and photostable wide-bandgap perovskites for all-perovskite tandem solar cells. Adv. Mater. 34(26), 2110356 (2022). https://doi.org/10.1002/adma.202110356
- X. Dai, S. Chen, H. Jiao, L. Zhao, K. Wang et al., Efficient monolithic all-perovskite tandem solar modules with small cell-to-module derate. Nat. Energy 7(10), 923–931 (2022). https://doi.org/10.1038/s41560-022-01102-w
- Z. Yu, Z. Yang, Z. Ni, Y. Shao, B. Chen et al., Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nat. Energy 5(9), 657–665 (2020). https://doi.org/10.1038/s41560-020-0657-y
- Y. Yang, L. Liu, J. Li, S. Zhao, Z. Chang et al., Ambient-aging process enables enhanced efficiency for wide-bandgap perovskite solar cells. Nano Energy 109, 108288 (2023). https://doi.org/10.1016/j.nanoen.2023.108288
- Y. Li, B. Shi, Q. Xu, L. Yan, N. Ren et al., Wide bandgap interface layer induced stabilized perovskite/silicon tandem solar cells with stability over ten thousand hours. Adv. Energy Mater. 11(48), 2102046 (2021). https://doi.org/10.1002/aenm.202102046
- P. Tockhorn, J. Sutter, A. Cruz, P. Wagner, K. Jäger et al., Nano-optical designs for high-efficiency monolithic perovskite–silicon tandem solar cells. Nat. Nanotechnol. 17(11), 1214–1221 (2022). https://doi.org/10.1038/s41565-022-01228-8
- A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370(6522), 1300–1309 (2020). https://doi.org/10.1126/science.abd4016
- Z. Liu, C. Zhu, H. Luo, W. Kong, X. Luo et al., Grain regrowth and bifacial passivation for high-efficiency wide-bandgap perovskite solar cells. Adv. Energy Mater. 13(2), 2203230 (2022). https://doi.org/10.1002/aenm.202203230
- M. Jošt, E. Köhnen, A. Al-Ashouri, T. Bertram, Š Tomšič et al., Perovskite/CIGS tandem solar cells: From certified 24.2% toward 30% and beyond. ACS Energy Lett. 7(4), 1298–1307 (2022). https://doi.org/10.1021/acsenergylett.2c00274
- H. Kim, C.P. Muzzillo, J. Tong, A.F. Palmstrom, B.W. Larson et al., Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with CIGS. Joule 3(7), 1734–1745 (2019). https://doi.org/10.1016/j.joule.2019.04.012
- C. Wang, W. Shao, J. Liang, C. Chen, X. Hu et al., Suppressing phase segregation in wide bandgap perovskites for monolithic perovskite/organic tandem solar cells with reduced voltage loss. Small 18(49), 2204081 (2022). https://doi.org/10.1002/smll.202204081
- L. Liu, H. Xiao, K. Jin, Z. Xiao, X. Du et al., 4-terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency. Nano-Micro Lett. 15, 23 (2023). https://doi.org/10.1007/s40820-022-00995-2
- J. Liang, C. Chen, X. Hu, Z. Chen, X. Zheng et al., Suppressing the phase segregation with potassium for highly efficient and photostable inverted wide-band gap halide perovskite solar cells. ACS Appl. Mater. Interfaces 12(43), 48458–48466 (2020). https://doi.org/10.1021/acsami.0c10310
- C. Chen, J. Liang, J. Zhang, X. Liu, X. Yin et al., Interfacial engineering of a thiophene-based 2D/3D perovskite heterojunction for efficient and stable inverted wide-bandgap perovskite solar cells. Nano Energy 90, 106608 (2021). https://doi.org/10.1016/j.nanoen.2021.106608
- G. Yang, Z. Ni, Z.J. Yu, B.W. Larson, Z. Yu et al., Defect engineering in wide-bandgap perovskites for efficient perovskite–silicon tandem solar cells. Nat. Photonics 16(8), 588–594 (2022). https://doi.org/10.1038/s41566-022-01033-8
- Q. Jiang, J. Tong, R.A. Scheidt, X. Wang, A.E. Louks et al., Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. Science 378(6626), 1295–1300 (2022). https://doi.org/10.1126/science.adf0194
- X. Zhang, X. Li, L. Tao, Z. Zhang, H. Ling et al., Precise control of crystallization and phase-transition with green anti-solvent in wide-bandgap perovskite solar cells with open-circuit voltage exceeding 1.25 V. Small (2023). https://doi.org/10.1002/smll.202208289
- X. Wang, Y. Chen, T. Zhang, X. Wang, Y. Wang et al., Stable cesium-rich formamidinium/cesium pure-iodide perovskites for efficient photovoltaics. ACS Energy Lett. 6(8), 2735–2741 (2021). https://doi.org/10.1021/acsenergylett.1c01013
- Z. Liu, J. Siekmann, B. Klingebiel, U. Rau, T. Kirchartz, Interface optimization via fullerene blends enables open-circuit voltages of 1.35 V in CH3NH3Pb(I0.8Br0.2)3 solar cells. Adv. Energy Mater. 11(16), 2003386 (2021). https://doi.org/10.1002/aenm.202003386
- S. Wang, B. Yang, J. Han, Z. He, T. Li et al., Polymeric room-temperature molten salt as a multifunctional additive toward highly efficient and stable inverted planar perovskite solar cells. Energy Environ. Sci. 13(12), 5068–5079 (2020). https://doi.org/10.1039/d0ee02043e
- S. Xiong, Z. Hou, S. Zou, X. Lu, J. Yang et al., Direct observation on p- to n-type transformation of perovskite surface region during defect passivation driving high photovoltaic efficiency. Joule 5(2), 467–480 (2021). https://doi.org/10.1016/j.joule.2020.12.009
- R. Su, Z. Xu, J. Wu, D. Luo, Q. Hu et al., Dielectric screening in perovskite photovoltaics. Nat. Commun. 12(1), 2479 (2021). https://doi.org/10.1038/s41467-021-22783-z
- Y. Yu, R. Liu, C. Liu, X.-L. Shi, H. Yu et al., Synergetic regulation of oriented crystallization and interfacial passivation enables 19.1% efficient wide-bandgap perovskite solar cells. Adv. Energy Mater. 12(33), 2201509 (2022). https://doi.org/10.1002/aenm.202201509
- Y. Son, S.G. Kim, J.Y. Seo, S.H. Lee, H. Shin et al., Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J. Am. Chem. Soc. 140(4), 1358–1364 (2018). https://doi.org/10.1021/jacs.7b10430
- Y. Chen, N. Li, L. Wang, L. Li, Z. Xu et al., Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. Nat. Commun. 10(1), 1112 (2019). https://doi.org/10.1038/s41467-019-09093-1
- D.-H. Kang, N.-G. Park, On the current–voltage hysteresis in perovskite solar cells: Dependence on perovskite composition and methods to remove hysteresis. Adv. Mater. 31(34), 1805214 (2019). https://doi.org/10.1002/adma.201805214
- Z. Wang, S. You, G. Zheng, Z. Tang, L. Zhang et al., Tartaric acid additive to enhance perovskite multiple preferential orientations for high-performance solar cells. J. Energy Chem. 69, 406–413 (2022). https://doi.org/10.1016/j.jechem.2022.02.007
- Y. Sun, S. Yang, Z. Pang, Y. Quan, R. Song et al., Preferred film orientation to achieve stable and efficient Sn–Pb binary perovskite solar cells. ACS Appl. Mater. Interfaces 13(9), 10822–10836 (2021). https://doi.org/10.1021/acsami.0c19014
- Y. Wang, H. Ju, T. Mahmoudi, C. Liu, C. Zhang et al., Cation-size mismatch and interface stabilization for efficient NiOx-based inverted perovskite solar cells with 21.9% efficiency. Nano Energy 88, 106285 (2021). https://doi.org/10.1016/j.nanoen.2021.106285
- P. Liu, Y. Chen, H. Xiang, X. Yang, W. Wang et al., Benefitting from synergistic effect of anion and cation in antimony acetate for stable CH3NH3PbI3-based perovskite solar cell with efficiency beyond 21%. Small 17(46), 2102186 (2021). https://doi.org/10.1002/smll.202102186
- B. Ge, Z.Q. Lin, Z.R. Zhou, H.W. Qiao, A.P. Chen et al., Boric acid mediated formation and doping of NiOx layers for perovskite solar cells with efficiency over 21%. Sol. RRL 5(4), 2000810 (2021). https://doi.org/10.1002/solr.202000810
- J.P. Correa Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner et al., Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8(10), 2928–2934 (2015). https://doi.org/10.1039/c5ee02608c
- S. Ye, H. Rao, Z. Zhao, L. Zhang, H. Bao et al., A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I. J. Am. Chem. Soc. 139(22), 7504–7512 (2017). https://doi.org/10.1021/jacs.7b01439
- S. Khelifi, K. Decock, J. Lauwaert, H. Vrielinck, D. Spoltore et al., Investigation of defects by admittance spectroscopy measurements in poly (3-hexylthiophene):(6,6)-phenyl C61-butyric acid methyl ester organic solar cells degraded under air exposure. J. Appl. Phys. 110(9), 094509 (2011). https://doi.org/10.1063/1.3658023
- D.B. Khadka, Y. Shirai, M. Yanagida, J.W. Ryan, K. Miyano, Exploring the effects of interfacial carrier transport layers on device performance and optoelectronic properties of planar perovskite solar cells. J. Mater. Chem. C 5(34), 8819–8827 (2017). https://doi.org/10.1039/c7tc02822a
- S. Wang, P. Kaienburg, B. Klingebiel, D. Schillings, T. Kirchartz, Understanding thermal admittance spectroscopy in low-mobility semiconductors. J. Phys. Chem. C. 122(18), 9795–9803 (2018). https://doi.org/10.1021/acs.jpcc.8b01921
References
K. Kojima, Y. Teshima, T. Shirai, Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat et al., Pseudo-halide anion engineering for α-FaPbI3 perovskite solar cells. Nature 592(7854), 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5
Q. Jiang, J. Tong, Y. Xian, R.A. Kerner, S.P. Dunfield et al., Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611(7935), 278–283 (2022). https://doi.org/10.1038/s41586-022-05268-x
H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590(7847), 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
H. Zeng, L. Li, F. Liu, M. Li, S. Zhang et al., Improved performance and stability of perovskite solar modules by regulating interfacial ion diffusion with nonionic cross-linked 1D lead-iodide. Adv. Energy Mater. 12(1), 2102820 (2022). https://doi.org/10.1002/aenm.202102820
H. Chen, Y. Chen, J. Hou, S.T. Xu et al., Passivation of the buried interface via preferential crystallization of 2D perovskite on metal oxide transport layers. Adv. Mater. 33(41), 2103394 (2021). https://doi.org/10.1002/adma.202103394
W. Xu, Y. Gao, W. Ming, F. He, J. Li et al., Suppressing defects-induced nonradiative recombination for efficient perovskite solar cells through green antisolvent engineering. Adv. Mater. 32(38), 2003965 (2020). https://doi.org/10.1002/adma.202003965
T. Mahmoudi, Y. Wang, Y.B. Hahn, Highly stable perovskite solar cells based on perovskite/NiO-graphene composites and nio interface with 25.9 mA/cm2 photocurrent density and 20.8% efficiency. Nano Energy 79, 105452 (2021). https://doi.org/10.1016/j.nanoen.2020.105452
M. Degani, Q. An, M. Albaladejo-Siguan, Y.J. Hofstetter, C. Cho et al., 23.7% efficient inverted perovskite solar cells by dual interfacial modification. Sci. Adv. 7(49), 7930 (2021). https://doi.org/10.1126/sciadv.abj7930
J. Wen, Y. Zhao, Z. Liu, H. Gao, R. Lin et al., Steric engineering enables efficient and photostable wide-bandgap perovskites for all-perovskite tandem solar cells. Adv. Mater. 34(26), 2110356 (2022). https://doi.org/10.1002/adma.202110356
X. Dai, S. Chen, H. Jiao, L. Zhao, K. Wang et al., Efficient monolithic all-perovskite tandem solar modules with small cell-to-module derate. Nat. Energy 7(10), 923–931 (2022). https://doi.org/10.1038/s41560-022-01102-w
Z. Yu, Z. Yang, Z. Ni, Y. Shao, B. Chen et al., Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nat. Energy 5(9), 657–665 (2020). https://doi.org/10.1038/s41560-020-0657-y
Y. Yang, L. Liu, J. Li, S. Zhao, Z. Chang et al., Ambient-aging process enables enhanced efficiency for wide-bandgap perovskite solar cells. Nano Energy 109, 108288 (2023). https://doi.org/10.1016/j.nanoen.2023.108288
Y. Li, B. Shi, Q. Xu, L. Yan, N. Ren et al., Wide bandgap interface layer induced stabilized perovskite/silicon tandem solar cells with stability over ten thousand hours. Adv. Energy Mater. 11(48), 2102046 (2021). https://doi.org/10.1002/aenm.202102046
P. Tockhorn, J. Sutter, A. Cruz, P. Wagner, K. Jäger et al., Nano-optical designs for high-efficiency monolithic perovskite–silicon tandem solar cells. Nat. Nanotechnol. 17(11), 1214–1221 (2022). https://doi.org/10.1038/s41565-022-01228-8
A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370(6522), 1300–1309 (2020). https://doi.org/10.1126/science.abd4016
Z. Liu, C. Zhu, H. Luo, W. Kong, X. Luo et al., Grain regrowth and bifacial passivation for high-efficiency wide-bandgap perovskite solar cells. Adv. Energy Mater. 13(2), 2203230 (2022). https://doi.org/10.1002/aenm.202203230
M. Jošt, E. Köhnen, A. Al-Ashouri, T. Bertram, Š Tomšič et al., Perovskite/CIGS tandem solar cells: From certified 24.2% toward 30% and beyond. ACS Energy Lett. 7(4), 1298–1307 (2022). https://doi.org/10.1021/acsenergylett.2c00274
H. Kim, C.P. Muzzillo, J. Tong, A.F. Palmstrom, B.W. Larson et al., Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with CIGS. Joule 3(7), 1734–1745 (2019). https://doi.org/10.1016/j.joule.2019.04.012
C. Wang, W. Shao, J. Liang, C. Chen, X. Hu et al., Suppressing phase segregation in wide bandgap perovskites for monolithic perovskite/organic tandem solar cells with reduced voltage loss. Small 18(49), 2204081 (2022). https://doi.org/10.1002/smll.202204081
L. Liu, H. Xiao, K. Jin, Z. Xiao, X. Du et al., 4-terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency. Nano-Micro Lett. 15, 23 (2023). https://doi.org/10.1007/s40820-022-00995-2
J. Liang, C. Chen, X. Hu, Z. Chen, X. Zheng et al., Suppressing the phase segregation with potassium for highly efficient and photostable inverted wide-band gap halide perovskite solar cells. ACS Appl. Mater. Interfaces 12(43), 48458–48466 (2020). https://doi.org/10.1021/acsami.0c10310
C. Chen, J. Liang, J. Zhang, X. Liu, X. Yin et al., Interfacial engineering of a thiophene-based 2D/3D perovskite heterojunction for efficient and stable inverted wide-bandgap perovskite solar cells. Nano Energy 90, 106608 (2021). https://doi.org/10.1016/j.nanoen.2021.106608
G. Yang, Z. Ni, Z.J. Yu, B.W. Larson, Z. Yu et al., Defect engineering in wide-bandgap perovskites for efficient perovskite–silicon tandem solar cells. Nat. Photonics 16(8), 588–594 (2022). https://doi.org/10.1038/s41566-022-01033-8
Q. Jiang, J. Tong, R.A. Scheidt, X. Wang, A.E. Louks et al., Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. Science 378(6626), 1295–1300 (2022). https://doi.org/10.1126/science.adf0194
X. Zhang, X. Li, L. Tao, Z. Zhang, H. Ling et al., Precise control of crystallization and phase-transition with green anti-solvent in wide-bandgap perovskite solar cells with open-circuit voltage exceeding 1.25 V. Small (2023). https://doi.org/10.1002/smll.202208289
X. Wang, Y. Chen, T. Zhang, X. Wang, Y. Wang et al., Stable cesium-rich formamidinium/cesium pure-iodide perovskites for efficient photovoltaics. ACS Energy Lett. 6(8), 2735–2741 (2021). https://doi.org/10.1021/acsenergylett.1c01013
Z. Liu, J. Siekmann, B. Klingebiel, U. Rau, T. Kirchartz, Interface optimization via fullerene blends enables open-circuit voltages of 1.35 V in CH3NH3Pb(I0.8Br0.2)3 solar cells. Adv. Energy Mater. 11(16), 2003386 (2021). https://doi.org/10.1002/aenm.202003386
S. Wang, B. Yang, J. Han, Z. He, T. Li et al., Polymeric room-temperature molten salt as a multifunctional additive toward highly efficient and stable inverted planar perovskite solar cells. Energy Environ. Sci. 13(12), 5068–5079 (2020). https://doi.org/10.1039/d0ee02043e
S. Xiong, Z. Hou, S. Zou, X. Lu, J. Yang et al., Direct observation on p- to n-type transformation of perovskite surface region during defect passivation driving high photovoltaic efficiency. Joule 5(2), 467–480 (2021). https://doi.org/10.1016/j.joule.2020.12.009
R. Su, Z. Xu, J. Wu, D. Luo, Q. Hu et al., Dielectric screening in perovskite photovoltaics. Nat. Commun. 12(1), 2479 (2021). https://doi.org/10.1038/s41467-021-22783-z
Y. Yu, R. Liu, C. Liu, X.-L. Shi, H. Yu et al., Synergetic regulation of oriented crystallization and interfacial passivation enables 19.1% efficient wide-bandgap perovskite solar cells. Adv. Energy Mater. 12(33), 2201509 (2022). https://doi.org/10.1002/aenm.202201509
Y. Son, S.G. Kim, J.Y. Seo, S.H. Lee, H. Shin et al., Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J. Am. Chem. Soc. 140(4), 1358–1364 (2018). https://doi.org/10.1021/jacs.7b10430
Y. Chen, N. Li, L. Wang, L. Li, Z. Xu et al., Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. Nat. Commun. 10(1), 1112 (2019). https://doi.org/10.1038/s41467-019-09093-1
D.-H. Kang, N.-G. Park, On the current–voltage hysteresis in perovskite solar cells: Dependence on perovskite composition and methods to remove hysteresis. Adv. Mater. 31(34), 1805214 (2019). https://doi.org/10.1002/adma.201805214
Z. Wang, S. You, G. Zheng, Z. Tang, L. Zhang et al., Tartaric acid additive to enhance perovskite multiple preferential orientations for high-performance solar cells. J. Energy Chem. 69, 406–413 (2022). https://doi.org/10.1016/j.jechem.2022.02.007
Y. Sun, S. Yang, Z. Pang, Y. Quan, R. Song et al., Preferred film orientation to achieve stable and efficient Sn–Pb binary perovskite solar cells. ACS Appl. Mater. Interfaces 13(9), 10822–10836 (2021). https://doi.org/10.1021/acsami.0c19014
Y. Wang, H. Ju, T. Mahmoudi, C. Liu, C. Zhang et al., Cation-size mismatch and interface stabilization for efficient NiOx-based inverted perovskite solar cells with 21.9% efficiency. Nano Energy 88, 106285 (2021). https://doi.org/10.1016/j.nanoen.2021.106285
P. Liu, Y. Chen, H. Xiang, X. Yang, W. Wang et al., Benefitting from synergistic effect of anion and cation in antimony acetate for stable CH3NH3PbI3-based perovskite solar cell with efficiency beyond 21%. Small 17(46), 2102186 (2021). https://doi.org/10.1002/smll.202102186
B. Ge, Z.Q. Lin, Z.R. Zhou, H.W. Qiao, A.P. Chen et al., Boric acid mediated formation and doping of NiOx layers for perovskite solar cells with efficiency over 21%. Sol. RRL 5(4), 2000810 (2021). https://doi.org/10.1002/solr.202000810
J.P. Correa Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner et al., Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8(10), 2928–2934 (2015). https://doi.org/10.1039/c5ee02608c
S. Ye, H. Rao, Z. Zhao, L. Zhang, H. Bao et al., A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I. J. Am. Chem. Soc. 139(22), 7504–7512 (2017). https://doi.org/10.1021/jacs.7b01439
S. Khelifi, K. Decock, J. Lauwaert, H. Vrielinck, D. Spoltore et al., Investigation of defects by admittance spectroscopy measurements in poly (3-hexylthiophene):(6,6)-phenyl C61-butyric acid methyl ester organic solar cells degraded under air exposure. J. Appl. Phys. 110(9), 094509 (2011). https://doi.org/10.1063/1.3658023
D.B. Khadka, Y. Shirai, M. Yanagida, J.W. Ryan, K. Miyano, Exploring the effects of interfacial carrier transport layers on device performance and optoelectronic properties of planar perovskite solar cells. J. Mater. Chem. C 5(34), 8819–8827 (2017). https://doi.org/10.1039/c7tc02822a
S. Wang, P. Kaienburg, B. Klingebiel, D. Schillings, T. Kirchartz, Understanding thermal admittance spectroscopy in low-mobility semiconductors. J. Phys. Chem. C. 122(18), 9795–9803 (2018). https://doi.org/10.1021/acs.jpcc.8b01921