Intrinsic Self-Healing Chemistry for Next-Generation Flexible Energy Storage Devices
Corresponding Author: Geping Yin
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 99
Abstract
The booming wearable/portable electronic devices industry has stimulated the progress of supporting flexible energy storage devices. Excellent performance of flexible devices not only requires the component units of each device to maintain the original performance under external forces, but also demands the overall device to be flexible in response to external fields. However, flexible energy storage devices inevitably occur mechanical damages (extrusion, impact, vibration)/electrical damages (overcharge, over-discharge, external short circuit) during long-term complex deformation conditions, causing serious performance degradation and safety risks. Inspired by the healing phenomenon of nature, endowing energy storage devices with self-healing capability has become a promising strategy to effectively improve the durability and functionality of devices. Herein, this review systematically summarizes the latest progress in intrinsic self-healing chemistry for energy storage devices. Firstly, the main intrinsic self-healing mechanism is introduced. Then, the research situation of electrodes, electrolytes, artificial interface layers and integrated devices based on intrinsic self-healing and advanced characterization technology is reviewed. Finally, the current challenges and perspective are provided. We believe this critical review will contribute to the development of intrinsic self-healing chemistry in the flexible energy storage field.
Highlights:
1 The introduction of self-healing mechanism into flexible energy storage devices is expected to solve the problems of mechanical and electrochemical performance degradation caused by mechanical deformation.
2 Applications of different healing mechanisms and advanced characterization techniques in energy storage devices are summarized.
3 The key challenges of self-healing in the field of flexible energy storage are pointed out, and the future research direction is prospected.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Zhou, F. Li, H.M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7, 1307–1338 (2014). https://doi.org/10.1039/c3ee43182g
- W. Liu, M.S. Song, B. Kong, Y. Cui, Flexible and stretchable energy storage: Recent advances and future perspectives. Adv. Mater. 29, 1603436 (2017). https://doi.org/10.1002/adma.201603436
- T.Q. Trung, N.E. Lee, Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv. Mater. 29, 1603167 (2017). https://doi.org/10.1002/adma.201603167
- Y. Cao, Y.J. Tan, S. Li, W.W. Lee, H. Guo et al., Self-healing electronic skins for aquatic environments. Nat. Electron. 2, 75–82 (2019). https://doi.org/10.1038/s41928-019-0206-5
- X. Pu, L. Li, H. Song, C. Du, Z. Zhao et al., A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 27, 2472–2478 (2015). https://doi.org/10.1002/adma.201500311
- Z. Shi, L. Meng, X. Shi, H. Li, J. Zhang et al., Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 14, 141 (2022). https://doi.org/10.1007/s40820-022-00874-w
- X. Tong, Z. Tian, J. Sun, V. Tung, R.B. Kaner et al., Self-healing flexible/stretchable energy storage devices. Mater. Today 44, 78–104 (2021). https://doi.org/10.1016/j.mattod.2020.10.026
- Y. An, C. Luo, D. Yao, S. Wen, P. Zheng et al., Natural cocoons enabling flexible and stable fabric lithium-sulfur full batteries. Nano-Micro Lett. 13, 84 (2021). https://doi.org/10.1007/s40820-021-00609-3
- Q. Deng, Y. Yang, C. Mao, T. Wang, Z. Fang et al., Electronic state modulation and reaction pathway regulation on necklace-like MnOx-CeO2@polypyrrole hierarchical cathode for advanced and flexible Li–CO2 batteries. Adv. Energy Mater. 12, 2103667 (2022). https://doi.org/10.1002/aenm.202103667
- X. Wang, X. Lu, B. Liu, D. Chen, Y. Tong et al., Flexible energy-storage devices: Design consideration and recent progress. Adv. Mater. 26, 4763–4782 (2014). https://doi.org/10.1002/adma.201400910
- R. Li, Z. Fang, C. Wang, X. Zhu, X. Fu et al., Six-armed and dicationic polymeric ionic liquid for highly stretchable, nonflammable and notch-insensitive intrinsic self-healing solid-state polymer electrolyte for flexible and safe lithium batteries. Chem. Eng. J. 430, 132706 (2022). https://doi.org/10.1016/j.cej.2021.132706
- L. Dong, C. Xu, Y. Li, Z. Pan, G. Liang et al., Breathable and wearable energy storage based on highly flexible paper electrodes. Adv. Mater. 28, 9313–9319 (2016). https://doi.org/10.1002/adma.201602541
- Y. Zou, C. Chen, Y. Sun, S. Gan, L. Dong et al., Flexible, all-hydrogel supercapacitor with self-healing ability. Chem. Eng. J. 418, 128616 (2021). https://doi.org/10.1016/j.cej.2021.128616
- L. Dong, C. Xu, Y. Li, Z.-H. Huang, F. Kang et al., Flexible electrodes and supercapacitors for wearable energy storage: a review by category. J. Mater. Chem. A 4, 4659–4685 (2016). https://doi.org/10.1039/C5TA10582J
- Y.Z. Zhang, Y. Wang, T. Cheng, L.Q. Yao, X. Li et al., Printed supercapacitors: Materials, printing and applications. Chem. Soc. Rev. 48, 3229–3264 (2019). https://doi.org/10.1039/c7cs00819h
- S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D.E. Jiang et al., Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120, 6738–6782 (2020). https://doi.org/10.1021/acs.chemrev.0c00170
- Y.Z. Zhang, T. Cheng, Y. Wang, W.Y. Lai, H. Pang et al., A simple approach to boost capacitance: Flexible supercapacitors based on manganese oxides@MOFs via chemically induced in situ self-transformation. Adv. Mater. 28, 5242–5248 (2016). https://doi.org/10.1002/adma.201600319
- T. Cheng, Y.Z. Zhang, S. Wang, Y.L. Chen, S.Y. Gao et al., Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors. Adv. Funct. Mater. 31, 2101303 (2021). https://doi.org/10.1002/adfm.202101303
- C. Choi, D.S. Ashby, D.M. Butts, R.H. DeBlock, Q. Wei et al., Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2019). https://doi.org/10.1038/s41578-019-0142-z
- D. Feng, T. Lei, M.R. Lukatskaya, J. Park, Z. Huang et al., Robust and conductive two-dimensional metal–organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 3, 30–36 (2018). https://doi.org/10.1038/s41560-017-0044-5
- X. Lin, F. Li, Y. Bing, T. Fei, S. Liu et al., Biocompatible multifunctional e-skins with excellent self-healing ability enabled by clean and scalable fabrication. Nano-Micro Lett. 13, 200 (2021). https://doi.org/10.1007/s40820-021-00701-8
- Y. Cheng, X. Xiao, K. Pan, H. Pang, Development and application of self-healing materials in smart batteries and supercapacitors. Chem. Eng. J. 380, 122565 (2020). https://doi.org/10.1016/j.cej.2019.122565
- Z. Xu, J. Yang, T. Zhang, Y. Nuli, J. Wang et al., Silicon microp anodes with self-healing multiple network binder. Joule 2, 950–961 (2018). https://doi.org/10.1016/j.joule.2018.02.012
- S. Huang, F. Wan, S. Bi, J. Zhu, Z. Niu et al., A self-healing integrated all-in-one zinc-ion battery. Angew. Chem. Int. Ed. 58, 4313–4317 (2019). https://doi.org/10.1002/anie.201814653
- H. Liu, X.-B. Cheng, Z. Jin, R. Zhang, G. Wang et al., Recent advances in understanding dendrite growth on alkali metal anodes. EnergyChem 1, 100003 (2019). https://doi.org/10.1016/j.enchem.2019.100003
- Y. Hu, N. Dunlap, S. Wan, S. Lu, S. Huang et al., Crystalline lithium imidazolate covalent organic frameworks with high li-ion conductivity. J. Am. Chem. Soc. 141, 7518–7525 (2019). https://doi.org/10.1021/jacs.9b02448
- T. Lei, W. Chen, W. Lv, J. Huang, J. Zhu et al., Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule 2, 2091–2104 (2018). https://doi.org/10.1016/j.joule.2018.07.022
- X. Shan, Y. Zhong, L. Zhang, Y. Zhang, X. Xia et al., A brief review on solid electrolyte interphase composition characterization technology for lithium metal batteries: challenges and perspectives. J. Phys. Chem. C 125, 19060–19080 (2021). https://doi.org/10.1021/acs.jpcc.1c06277
- D.L. Taylor, M. Panhuis, Self-healing hydrogels. Adv. Mater. 28, 9060–9093 (2016). https://doi.org/10.1002/adma.201601613
- Y. Yang, M.W. Urban, Self-healing polymeric materials. Chem. Soc. Rev. 42, 7446–7467 (2013). https://doi.org/10.1039/c3cs60109a
- S. An, M.W. Lee, A.L. Yarin, S.S. Yoon, A review on corrosion-protective extrinsic self-healing: comparison of microcapsule-based systems and those based on core-shell vascular networks. Chem. Eng. J. 344, 206–220 (2018). https://doi.org/10.1016/j.cej.2018.03.040
- D.Y. Zhu, M.Z. Rong, M.Q. Zhang, Self-healing polymeric materials based on microencapsulated healing agents: From design to preparation. Prog. Polym. Sci. 49–50, 175–220 (2015). https://doi.org/10.1016/j.progpolymsci.2015.07.002
- F. Sun, L. Liu, T. Liu, X. Wang, Q. Qi et al., Vascular smooth muscle-inspired architecture enables soft yet tough self-healing materials for durable capacitive strain-sensor. Nat. Commun. 14, 130 (2023). https://doi.org/10.1038/s41467-023-35810-y
- S.H. Cho, S.R. White, P.V. Braun, Room-temperature polydimethylsiloxane-based self-healing polymers. Chem. Mater. 24, 4209–4214 (2012). https://doi.org/10.1021/cm302501b
- Q. Wei, J. Wang, X. Shen, X.A. Zhang, J.Z. Sun et al., Self-healing hyperbranched poly(aroyltriazole)s. Sci. Rep. 3, 1093 (2013). https://doi.org/10.1038/srep01093
- N. Roy, B. Bruchmann, J.M. Lehn, Dynamers: dynamic polymers as self-healing materials. Chem. Soc. Rev. 44, 3786–3807 (2015). https://doi.org/10.1039/c5cs00194c
- S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler et al., Autonomic healing of polymer composites. Nature 409, 794–797 (2001). https://doi.org/10.1038/35057232
- C.J. Hansen, W. Wu, K.S. Toohey, N.R. Sottos, S.R. White et al., Self-healing materials with interpenetrating microvascular networks. Adv. Mater. 21, 4143–4147 (2009). https://doi.org/10.1002/adma.200900588
- C.J. Hansen, S.R. White, N.R. Sottos, J.A. Lewis, Accelerated self-healing via ternary interpenetrating microvascular networks. Adv. Funct. Mater. 21, 4320–4326 (2011). https://doi.org/10.1002/adfm.201101553
- J.D. Rule, E.N. Brown, N.R. Sottos, S.R. White, J.S. Moore, Wax-protected catalyst microspheres for efficient self-healing materials. Adv. Mater. 17, 205–208 (2005). https://doi.org/10.1002/adma.200400607
- C. Suryanarayana, K.C. Rao, D. Kumar, Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings. Prog. Org. Coat. 63, 72–78 (2008). https://doi.org/10.1016/j.porgcoat.2008.04.008
- S. Lang, Q. Zhou, Synthesis and characterization of poly(urea-formaldehyde) microcapsules containing linseed oil for self-healing coating development. Prog. Org. Coat. 105, 99–110 (2017). https://doi.org/10.1016/j.porgcoat.2016.11.015
- J.F. Patrick, K.R. Hart, B.P. Krull, C.E. Diesendruck, J.S. Moore et al., Continuous self-healing life cycle in vascularized structural composites. Adv. Mater. 26, 4302–4308 (2014). https://doi.org/10.1002/adma.201400248
- F. Herbst, D. Dohler, P. Michael, W.H. Binder, Self-healing polymers via supramolecular forces. Macromol. Rapid Commun. 34, 203–220 (2013). https://doi.org/10.1002/marc.201200675
- S.J. Rowan, S.J. Cantrill, G.R.L. Cousins, J.K.M. Sanders, J.F. Stoddart, Dynamic covalent chemistry. Angew. Chem. Int. Ed. 41, 898–952 (2002). https://doi.org/10.1002/1521-3773(20020315)41:6%3c898::aid-anie898%3e3.0.co;2-e
- H. Yu, C. Chen, J. Sun, H. Zhang, Y. Feng et al., Highly thermally conductive polymer/graphene composites with rapid room-temperature self-healing capacity. Nano-Micro Lett. 14, 135 (2022). https://doi.org/10.1007/s40820-022-00882-w
- Z.P. Zhang, M.Z. Rong, M.Q. Zhang, Polymer engineering based on reversible covalent chemistry: A promising innovative pathway towards new materials and new functionalities. Prog. Polym. Sci. 80, 39–93 (2018). https://doi.org/10.1016/j.progpolymsci.2018.03.002
- J.A. Syrett, C.R. Becer, D.M. Haddleton, Self-healing and self-mendable polymers. Polym. Chem. 1, 978 (2010). https://doi.org/10.1039/c0py00104j
- X. Wan, C. Kang, T. Mu, J. Zhu, P. Zuo et al., A multilevel buffered binder network for high-performance silicon anodes. ACS Energy Lett. 7, 3572–3580 (2022). https://doi.org/10.1021/acsenergylett.2c02030
- J.M. Lehn, From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev. 36, 151–160 (2007). https://doi.org/10.1039/b616752g
- Y. Jin, C. Yu, R.J. Denman, W. Zhang, Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. 42, 6634–6654 (2013). https://doi.org/10.1039/c3cs60044k
- R.J. Wojtecki, M.A. Meador, S.J. Rowan, Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat. Mater. 10, 14–27 (2011). https://doi.org/10.1038/nmat2891
- Y. Amamoto, H. Otsuka, A. Takahara, K. Matyjaszewski, Self-healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light. Adv. Mater. 24, 3975–3980 (2012). https://doi.org/10.1002/adma.201201928
- J.J. Cash, T. Kubo, A.P. Bapat, B.S. Sumerlin, Room-temperature self-healing polymers based on dynamic-covalent boronic esters. Macromolecules 48, 2098–2106 (2015). https://doi.org/10.1021/acs.macromol.5b00210
- H. Ying, Y. Zhang, J. Cheng, Dynamic urea bond for the design of reversible and self-healing polymers. Nat. Commun. 5, 3218 (2014). https://doi.org/10.1038/ncomms4218
- J.Y. Oh, S. Rondeau-Gagne, Y.C. Chiu, A. Chortos, F. Lissel et al., Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016). https://doi.org/10.1038/nature20102
- X. Huang, M.J. Bolen, N.S. Zacharia, Silver nanop aided self-healing of polyelectrolyte multilayers. Phys. Chem. Chem. Phys. 16, 10267–10273 (2014). https://doi.org/10.1039/c4cp00349g
- G. Ju, F. Guo, Q. Zhang, A.J.C. Kuehne, S. Cui et al., Self-correction strategy for precise, massive, and parallel macroscopic supramolecular assembly. Adv. Mater. 29, 1702444 (2017). https://doi.org/10.1002/adma.201702444
- G.W. Goodall, W. Hayes, Advances in cycloaddition polymerizations. Chem. Soc. Rev. 35, 280–312 (2006). https://doi.org/10.1039/b507209n
- M.H. Cao, N.J. Green, S.Z. Xu, Application of the aza-diels-alder reaction in the synthesis of natural products. Org. Biomol. Chem. 15, 3105–3129 (2017). https://doi.org/10.1039/c6ob02761j
- V. Eschenbrenner-Lux, K. Kumar, H. Waldmann, The asymmetric hetero-diels-alder reaction in the syntheses of biologically relevant compounds. Angew. Chem. Int. Ed. 53, 11146–11157 (2014). https://doi.org/10.1002/anie.201404094
- P. Tanasi, M.H. Santana, J. Carretero-González, R. Verdejo, M.A. López-Manchado, Thermo-reversible crosslinked natural rubber: a diels-alder route for reuse and self-healing properties in elastomers. Polymer 175, 15–24 (2019). https://doi.org/10.1016/j.polymer.2019.04.059
- Y. Fang, J. Li, X. Du, Z. Du, X. Cheng et al., Thermal- and mechanical-responsive polyurethane elastomers with self-healing, mechanical-reinforced, and thermal-stable capabilities. Polymer 158, 166–175 (2018). https://doi.org/10.1016/j.polymer.2018.10.056
- B.T. Michal, C.A. Jaye, E.J. Spencer, S.J. Rowan, Inherently photohealable and thermal shape-memory polydisulfide networks. ACS Macro Lett. 2, 694–699 (2013). https://doi.org/10.1021/mz400318m
- S.P. Black, J.K. Sanders, A.R. Stefankiewicz, Disulfide exchange: Exposing supramolecular reactivity through dynamic covalent chemistry. Chem. Soc. Rev. 43, 1861–1872 (2014). https://doi.org/10.1039/c3cs60326a
- H. Xiang, J. Yin, G. Lin, X. Liu, M. Rong et al., Photo-crosslinkable, self-healable and reprocessable rubbers. Chem. Eng. J. 358, 878–890 (2019). https://doi.org/10.1016/j.cej.2018.10.103
- H.P. Xiang, M.Z. Rong, M.Q. Zhang, A facile method for imparting sunlight driven catalyst-free self-healability and recyclability to commercial silicone elastomer. Polymer 108, 339–347 (2017). https://doi.org/10.1016/j.polymer.2016.12.006
- Y. Zhu, Q. Shen, L. Wei, X. Fu, C. Huang et al., Ultra-tough, strong, and defect-tolerant elastomers with self-healing and intelligent-responsive abilities. ACS Appl. Mater. Interfaces 11, 29373–29381 (2019). https://doi.org/10.1021/acsami.9b11041
- J. Sun, X. Pu, M. Liu, A. Yu, C. Du et al., Self-healable, stretchable, transparent triboelectric nanogenerators as soft power sources. ACS Nano 12, 6147–6155 (2018). https://doi.org/10.1021/acsnano.8b02479
- A. Chao, I. Negulescu, D. Zhang, Dynamic covalent polymer networks based on degenerative imine bond exchange: tuning the malleability and self-healing properties by solvent. Macromolecules 49, 6277–6284 (2016). https://doi.org/10.1021/acs.macromol.6b01443
- J. Pignanelli, B. Billet, M. Straeten, M. Prado, K. Schlingman et al., Imine and metal-ligand dynamic bonds in soft polymers for autonomous self-healing capacitive-based pressure sensors. Soft Matter 15, 7654–7662 (2019). https://doi.org/10.1039/c9sm01254k
- Y.-L. Liu, T.-W. Chuo, Self-healing polymers based on thermally reversible Diels–Alder chemistry. Polym. Chem. 4, 2194 (2013). https://doi.org/10.1039/c2py20957h
- A.A. Kavitha, N.K. Singha, “Click chemistry” in tailor-made polymethacrylates bearing reactive furfuryl functionality: a new class of self-healing polymeric material. ACS Appl. Mater. Interfaces 1, 1427–1436 (2009). https://doi.org/10.1021/am900124c
- A. Gandini, The furan/maleimide Diels–Alder reaction: a versatile click–unclick tool in macromolecular synthesis. Prog. Polym. Sci. 38, 1–29 (2013). https://doi.org/10.1016/j.progpolymsci.2012.04.002
- G. Postiglione, S. Turri, M. Levi, Effect of the plasticizer on the self-healing properties of a polymer coating based on the thermoreversible Diels–Alder reaction. Prog. Org. Coat. 78, 526–531 (2015). https://doi.org/10.1016/j.porgcoat.2014.05.022
- W. Zhang, J. Duchet, J.F. Gerard, Self-healable interfaces based on thermo-reversible diels-alder reactions in carbon fiber reinforced composites. J. Colloid Interface Sci. 430, 61–68 (2014). https://doi.org/10.1016/j.jcis.2014.05.007
- N.K. Kildahl, Bond energy data summarized. J. Chem. Educ. 72, 423 (1995). https://doi.org/10.1021/ed072p423
- C. Liu, Y. Tan, H. Xu, Functional polymer materials based on dynamic covalent chemistry. Sci. China Mater. 65, 2017–2034 (2022). https://doi.org/10.1007/s40843-021-2018-y
- Z.Q. Lei, H.P. Xiang, Y.J. Yuan, M.Z. Rong, M.Q. Zhang, Room-temperature self-healable and remoldable cross-linked polymer based on the dynamic exchange of disulfide bonds. Chem. Mater. 26, 2038–2046 (2014). https://doi.org/10.1021/cm4040616
- M. Pepels, I. Filot, B. Klumperman, H. Goossens, Self-healing systems based on disulfide–thiol exchange reactions. Polym. Chem. 4, 4955 (2013). https://doi.org/10.1039/c3py00087g
- J.K. Oh, C. Tang, H. Gao, N.V. Tsarevsky, K. Matyjaszewski, Inverse miniemulsion atrp: A new method for synthesis and functionalization of well-defined water-soluble/cross-linked polymeric ps. J. Am. Chem. Soc. 128, 5578–5584 (2006)
- H. Otsuka, S. Nagano, Y. Kobashi, T. Maeda, A. Takahara, A dynamic covalent polymer driven by disulfide metathesis under photoirradiation. Chem. Commun. 46, 1150–1152 (2010). https://doi.org/10.1039/b916128g
- H. Schiff, Mittheilungen aus dem universitätslaboratorium in pisa: Eine neue reihe organischer basen. Eur. J. Org. Chem. 131, 118–119 (1864). https://doi.org/10.1002/jlac.18641310113
- M.E. Belowicha, J.F. Stoddart, Dynamic imine chemistry. Chem. Soc. Rev. 41, 2003–2024 (2012). https://doi.org/10.1039/c2cs15305j
- F. Song, Z. Li, P. Jia, M. Zhang, C. Bo et al., Tunable “soft and stiff”, self-healing, recyclable, thermadapt shape memory biomass polymers based on multiple hydrogen bonds and dynamic imine bonds. J. Mater. Chem. A 7, 13400–13410 (2019). https://doi.org/10.1039/c9ta03872h
- C. Cheng, X. Zhang, Y. Meng, Z. Zhang, J. Chen et al., Multiresponsive and biocompatible self-healing hydrogel: Its facile synthesis in water, characterization and properties. Soft Matter 13, 3003–3012 (2017). https://doi.org/10.1039/c7sm00350a
- X. Lei, Y. Huang, S. Liang, X. Zhao, L. Liu, Preparation of highly transparent, room-temperature self-healing and recyclable silicon elastomers based on dynamic imine bond and their ion responsive properties. Mater. Lett. 268, 127598 (2020). https://doi.org/10.1016/j.matlet.2020.127598
- J. Xu, C. Ding, P. Chen, L. Tan, C. Chen et al., Intrinsic self-healing polymers for advanced lithium-based batteries: advances and strategies. Appl. Phys. Rev. 7, 031304 (2020). https://doi.org/10.1063/5.0008206
- L. Cao, D. Yuan, C. Xu, Y. Chen, Biobased, self-healable, high strength rubber with tunicate cellulose nanocrystals. Nanoscale 9, 15696–15706 (2017). https://doi.org/10.1039/c7nr05011a
- Y. Chen, A.M. Kushner, G.A. Williams, Z. Guan, Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 4, 467–472 (2012). https://doi.org/10.1038/nchem.1314
- P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008). https://doi.org/10.1038/nature06669
- B.C. Tee, C. Wang, R. Allen, Z. Bao, An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 7, 825–832 (2012). https://doi.org/10.1038/nnano.2012.192
- G. Zhang, Y. Chen, Y. Deng, T. Ngai, C. Wang, Dynamic supramolecular hydrogels: regulating hydrogel properties through self-complementary quadruple hydrogen bonds and thermo-switch. ACS Macro Lett. 6, 641–646 (2017). https://doi.org/10.1021/acsmacrolett.7b00275
- M. Guo, L.M. Pitet, H.M. Wyss, M. Vos, P.Y. Dankers et al., Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. J. Am. Chem. Soc. 136, 6969–6977 (2014). https://doi.org/10.1021/ja500205v
- H. Chen, Z. Wu, Z. Su, S. Chen, C. Yan et al., A mechanically robust self-healing binder for silicon anode in lithium ion batteries. Nano Energy 81, 105654 (2021). https://doi.org/10.1016/j.nanoen.2020.105654
- A. Das, A. Sallat, F. Böhme, M. Suckow, D. Basu et al., Ionic modification turns commercial rubber into a self-healing material. ACS Appl. Mater. Interfaces 7, 20623–20630 (2015). https://doi.org/10.1021/acsami.5b05041
- D. Wang, J. Guo, H. Zhang, B. Cheng, H. Shen et al., Intelligent rubber with tailored properties for self-healing and shape memory. J. Mater. Chem. A 3, 12864–12872 (2015). https://doi.org/10.1039/c5ta01915j
- Q. Wang, J.L. Mynar, M. Yoshida, E. Lee, M. Lee et al., High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463, 339–343 (2010). https://doi.org/10.1038/nature08693
- M. Burnworth, L. Tang, J.R. Kumpfer, A.J. Duncan, F.L. Beyer et al., Optically healable supramolecular polymers. Nature 472, 334–337 (2011). https://doi.org/10.1038/nature09963
- O. Goor, S.I.S. Hendrikse, P.Y.W. Dankers, E.W. Meijer, From supramolecular polymers to multi-component biomaterials. Chem. Soc. Rev. 46, 6621–6637 (2017). https://doi.org/10.1039/c7cs00564d
- G. Thangavel, M.W.M. Tan, P.S. Lee, Advances in self-healing supramolecular soft materials and nanocomposites. Nano Converg. 6, 29 (2019). https://doi.org/10.1186/s40580-019-0199-9
- J. Wu, L.H. Cai, D.A. Weitz, Tough self-healing elastomers by molecular enforced integration of covalent and reversible networks. Adv. Mater. 29, 1702616 (2017). https://doi.org/10.1002/adma.201702616
- G. Zhang, Y. Yang, Y. Chen, J. Huang, T. Zhang et al., A quadruple-hydrogen-bonded supramolecular binder for high-performance silicon anodes in lithium-ion batteries. Small 14, 1801189 (2018). https://doi.org/10.1002/smll.201801189
- B.A. Blight, C.A. Hunter, D.A. Leigh, H. McNab, P.I. Thomson, An aaaa-dddd quadruple hydrogen-bond array. Nat. Chem. 3, 244–248 (2011). https://doi.org/10.1038/nchem.987
- J. Kang, D. Son, G.N. Wang, Y. Liu, J. Lopez et al., Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 30, e1706846 (2018). https://doi.org/10.1002/adma.201706846
- R. Li, T. Fan, G. Chen, H. Xie, B. Su et al., Highly transparent, self-healing conductive elastomers enabled by synergistic hydrogen bonding interactions. Chem. Eng. J. 393, 124685 (2020). https://doi.org/10.1016/j.cej.2020.124685
- X. Wang, D. Liang, B. Cheng, Preparation and research of intrinsic self-healing elastomers based on hydrogen and ionic bond. Compos. Sci. Technol. 193, 108127 (2020). https://doi.org/10.1016/j.compscitech.2020.108127
- S. Wang, M.W. Urban, Self-healing polymers. Nat. Rev. Mater. 5, 562–583 (2020). https://doi.org/10.1038/s41578-020-0202-4
- J.Y. Sun, X. Zhao, W.R. Illeperuma, O. Chaudhuri, K.H. Oh et al., Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012). https://doi.org/10.1038/nature11409
- A.J. D’Angelo, M.J. Panzer, Design of stretchable and self-healing gel electrolytes via fully zwitterionic polymer networks in solvate ionic liquids for li-based batteries. Chem. Mater. 31, 2913–2922 (2019). https://doi.org/10.1021/acs.chemmater.9b00172
- Y. Cao, T.G. Morrissey, E. Acome, S.I. Allec, B.M. Wong et al., A transparent, self-healing, highly stretchable ionic conductor. Adv. Mater. 29, 1605099 (2017). https://doi.org/10.1002/adma.201605099
- C.H. Li, J.L. Zuo, Self-healing polymers based on coordination bonds. Adv. Mater. 32, e1903762 (2020). https://doi.org/10.1002/adma.201903762
- T. Aida, E.W. Meijer, S.I. Stupp, Functional supramolecular polymers. Science 335, 813–817 (2012). https://doi.org/10.1126/science.1205962
- W.C. Yount, D.M. Loveless, S.L. Craig, Strong means slow: Dynamic contributions to the bulk mechanical properties of supramolecular networks. Angew. Chem. Int. Ed. 44, 2746–2748 (2005). https://doi.org/10.1002/anie.200500026
- Y.L. Rao, A. Chortos, R. Pfattner, F. Lissel, Y.C. Chiu et al., Stretchable self-healing polymeric dielectrics cross-linked through metal-ligand coordination. J. Am. Chem. Soc. 138, 6020–6027 (2016). https://doi.org/10.1021/jacs.6b02428
- D. Mozhdehi, S. Ayala, O.R. Cromwell, Z. Guan, Self-healing multiphase polymers via dynamic metal-ligand interactions. J. Am. Chem. Soc. 136, 16128–16131 (2014). https://doi.org/10.1021/ja5097094
- C.H. Li, C. Wang, C. Keplinger, J.L. Zuo, L. Jin et al., A highly stretchable autonomous self-healing elastomer. Nat. Chem. 8, 618–624 (2016). https://doi.org/10.1038/nchem.2492
- J.C. Lai, X.Y. Jia, D.P. Wang, Y.B. Deng, P. Zheng et al., Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. Nat. Commun. 10, 1164 (2019). https://doi.org/10.1038/s41467-019-09130-z
- H. Li, Z. Tang, Z. Liu, C. Zhi, Evaluating flexibility and wearability of flexible energy storage devices. Joule 3, 613–619 (2019). https://doi.org/10.1016/j.joule.2019.01.013
- L. Mao, Q. Meng, A. Ahmad, Z. Wei, Mechanical analyses and structural design requirements for flexible energy storage devices. Adv. Energy Mater. 7, 1700535 (2017). https://doi.org/10.1002/aenm.201700535
- D. Wang, C. Han, F. Mo, Q. Yang, Y. Zhao et al., Energy density issues of flexible energy storage devices. Energy Storage Mater. 28, 264–292 (2020). https://doi.org/10.1016/j.ensm.2020.03.006
- S. Yin, W. Deng, J. Chen, X. Gao, G. Zou et al., Fundamental and solutions of microcrack in ni-rich layered oxide cathode materials of lithium-ion batteries. Nano Energy 83, 105854 (2021). https://doi.org/10.1016/j.nanoen.2021.105854
- T. Mu, Y. Zhao, C. Zhao, N.G. Holmes, S. Lou et al., Stable silicon anodes by molecular layer deposited artificial zincone coatings. Adv. Funct. Mater. 31, 2010526 (2021). https://doi.org/10.1002/adfm.202010526
- S. Wu, F. Di, J. Zheng, H. Zhao, H. Zhang et al., Self-healing polymer binders for the si and si/carbon anodes of lithium-ion batteries. New Carbon Mater. 37, 802–826 (2022). https://doi.org/10.1016/s1872-5805(22)60638-3
- H.J. Peng, J.Q. Huang, X.Y. Liu, X.B. Cheng, W.T. Xu et al., Healing high-loading sulfur electrodes with unprecedented long cycling life: Spatial heterogeneity control. J. Am. Chem. Soc. 139, 8458–8466 (2017). https://doi.org/10.1021/jacs.6b12358
- T.W. Kwon, Y.K. Jeong, I. Lee, T.S. Kim, J.W. Choi et al., Systematic molecular-level design of binders incorporating meldrum’s acid for silicon anodes in lithium rechargeable batteries. Adv. Mater. 26, 7979–7985 (2014). https://doi.org/10.1002/adma.201402950
- H. Wang, B. Zhu, W. Jiang, Y. Yang, W.R. Leow et al., A mechanically and electrically self-healing supercapacitor. Adv. Mater. 26, 3638–3643 (2014). https://doi.org/10.1002/adma.201305682
- H. Sun, X. You, Y. Jiang, G. Guan, X. Fang et al., Self-healable electrically conducting wires for wearable microelectronics. Angew. Chem. Int. Ed. 126, 9680–9685 (2014). https://doi.org/10.1002/anie.201405145
- Y. Huang, Y. Huang, M. Zhu, W. Meng, Z. Pei et al., Magnetic-assisted, self-healable, yarn-based supercapacitor. ACS Nano 9, 6242–6251 (2015). https://doi.org/10.1021/acsnano.5b01602
- T.W. Kwon, J.W. Choi, A. Coskun, The emerging era of supramolecular polymeric binders in silicon anodes. Chem. Soc. Rev. 47, 2145–2164 (2018). https://doi.org/10.1039/c7cs00858a
- Y.K. Jeong, J.W. Choi, Mussel-inspired self-healing metallopolymers for silicon nanop anodes. ACS Nano 13, 8364–8373 (2019). https://doi.org/10.1021/acsnano.9b03837
- S. Choi, T. Kwon, A. Coskun, J.W. Choi, Highly elastic binders integrating polyrotaxanes for silicon microp anodes in lithium ion batteries. Science 357, 279–283 (2017). https://doi.org/10.1126/science.aal4373
- S.J. Park, H. Zhao, G. Ai, C. Wang, X. Song et al., Side-chain conducting and phase-separated polymeric binders for high-performance silicon anodes in lithium-ion batteries. J. Am. Chem. Soc. 137, 2565–2571 (2015). https://doi.org/10.1021/ja511181p
- Y.K. Jeong, T.-W. Kwon, I. Lee, T.-S. Kim, A. Coskun et al., Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes. Energy Environ. Sci. 8, 1224–1230 (2015). https://doi.org/10.1039/c5ee00239g
- C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui et al., Self-healing chemistry enables the stable operation of silicon microp anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042–1048 (2013). https://doi.org/10.1038/nchem.1802
- T. Munaoka, X. Yan, J. Lopez, J.W.F. To, J. Park et al., Ionically conductive self-healing binder for low cost si microps anodes in Li-ion batteries. Adv. Energy Mater. 8, 1703138 (2018). https://doi.org/10.1002/aenm.201703138
- Z. Chen, C. Wang, J. Lopez, Z. Lu, Y. Cui et al., High-areal-capacity silicon electrodes with low-cost silicon ps based on spatial control of self-healing binder. Adv. Energy Mater. 5, 1401826 (2015). https://doi.org/10.1002/aenm.201401826
- R. Gao, Q. Zhang, Y. Zhao, Z. Han, C. Sun et al., Regulating polysulfide redox kinetics on a self-healing electrode for high-performance flexible lithium-sulfur batteries. Adv. Funct. Mater. 32, 2110313 (2021). https://doi.org/10.1002/adfm.202110313
- F.-L. Zeng, X.-Y. Zhou, N. Li, A.-B. Wang, W.-K. Wang et al., A multifunctional zipper-like sulfur electrode enables the stable operation of lithium-sulfur battery through self-healing chemistry. Energy Storage Mater. 34, 755–767 (2021). https://doi.org/10.1016/j.ensm.2020.10.025
- X. Jiao, J. Yin, X. Xu, J. Wang, Y. Liu et al., Highly energy-dissipative, fast self-healing binder for stable si anode in lithium-ion batteries. Adv. Funct. Mater. 31, 2005699 (2020). https://doi.org/10.1002/adfm.202005699
- J. Zhang, N. Wang, W. Zhang, S. Fang, Z. Yu et al., A cycling robust network binder for high performance si-based negative electrodes for lithium-ion batteries. J. Colloid Interface Sci. 578, 452–460 (2020). https://doi.org/10.1016/j.jcis.2020.06.008
- R. Chen, W. Qu, X. Guo, L. Li, F. Wu, The pursuit of solid-state electrolytes for lithium batteries: From comprehensive insight to emerging horizons. Mater. Horiz. 3, 487–516 (2016). https://doi.org/10.1039/c6mh00218h
- B. Zhou, M. Yang, C. Zuo, G. Chen, D. He et al., Flexible, self-healing, and fire-resistant polymer electrolytes fabricated via photopolymerization for all-solid-state lithium metal batteries. ACS Macro Lett. 9, 525–532 (2020). https://doi.org/10.1021/acsmacrolett.9b01024
- C. Wang, R. Li, P. Chen, Y. Fu, X. Ma et al., Highly stretchable, non-flammable and notch-insensitive intrinsic self-healing solid-state polymer electrolyte for stable and safe flexible lithium batteries. J. Mater. Chem. A 9, 4758–4769 (2021). https://doi.org/10.1039/d0ta10745j
- X. Zhu, Z. Fang, Q. Deng, Y. Zhou, X. Fu et al., Poly(ionic liquid)@pegma block polymer initiated microphase separation architecture in poly(ethylene oxide)-based solid-state polymer electrolyte for flexible and self-healing lithium batteries. ACS Sustain. Chem. Eng. 10, 4173–4185 (2022). https://doi.org/10.1021/acssuschemeng.1c08306
- S. Huang, F. Wan, S. Bi, J. Zhu, Z. Niu et al., A self-healing integrated all-in-one zinc-ion battery. Angew. Chem. Int. Ed. 131, 4357–4361 (2019). https://doi.org/10.1002/anie.201814653
- Z. Niu, H. Dong, B. Zhu, J. Li, H.H. Hng et al., Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv. Mater. 25, 1058–1064 (2013). https://doi.org/10.1002/adma.201204003
- D. Chao, C.R. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2d layered zinc orthovanadate array. Adv. Mater. 30, e1803181 (2018). https://doi.org/10.1002/adma.201803181
- Z. Zhang, Y. Shao, B. Lotsch, Y.-S. Hu, H. Li et al., New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 11, 1945–1976 (2018). https://doi.org/10.1039/c8ee01053f
- Y. Huang, Z. Shi, H. Wang, J. Wang, Z. Xue, Shape-memory and self-healing polyurethane-based solid polymer electrolytes constructed from polycaprolactone segment and disulfide metathesis. Energy Storage Mater. 51, 1–10 (2022). https://doi.org/10.1016/j.ensm.2022.06.021
- N. Wu, Y.R. Shi, S.Y. Lang, J.M. Zhou, J.Y. Liang et al., Self-healable solid polymeric electrolytes for stable and flexible lithium metal batteries. Angew. Chem. Int. Ed. 58, 18146–18149 (2019). https://doi.org/10.1002/anie.201910478
- R.P. Sijbesma, F.H. Beijer, L. Brunsveld, B.J. Folmer, J.H. Hirschberg et al., Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278, 1601–1604 (1997). https://doi.org/10.1126/science.278.5343.1601
- B. Zhou, D. He, J. Hu, Y. Ye, H. Peng et al., A flexible, self-healing and highly stretchable polymer electrolyte via quadruple hydrogen bonding for lithium-ion batteries. J. Mater. Chem. A 6, 11725–11733 (2018). https://doi.org/10.1039/c8ta01907j
- P. Guo, H. Zhang, X. Liu, J. Sun, Counteranion-mediated intrinsic healing of poly(ionic liquid) copolymers. ACS Appl. Mater. Interfaces 10, 2105–2113 (2018). https://doi.org/10.1021/acsami.7b16880
- W. Zhou, M. Zhang, X. Kong, W. Huang, Q. Zhang, Recent advance in ionic-liquid-based electrolytes for rechargeable metal-ion batteries. Adv. Sci. 8, 2004490 (2021). https://doi.org/10.1002/advs.202004490
- Q. Yang, Z. Zhang, X.G. Sun, Y.S. Hu, H. Xing et al., Ionic liquids and derived materials for lithium and sodium batteries. Chem. Soc. Rev. 47, 2020–2064 (2018). https://doi.org/10.1039/c7cs00464h
- M. Watanabe, M.L. Thomas, S. Zhang, K. Ueno, T. Yasuda et al., Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev. 117, 7190–7239 (2017). https://doi.org/10.1021/acs.chemrev.6b00504
- J. Cui, F.-M. Nie, J.-X. Yang, L. Pan, Z. Ma et al., Novel imidazolium-based poly(ionic liquid)s with different counterions for self-healing. J. Mater. Chem. A 5, 25220–25229 (2017). https://doi.org/10.1039/c7ta06793c
- Y.H. Jo, S. Li, C. Zuo, Y. Zhang, H. Gan et al., Self-healing solid polymer electrolyte facilitated by a dynamic cross-linked polymer matrix for lithium-ion batteries. Macromolecules 53, 1024–1032 (2020). https://doi.org/10.1021/acs.macromol.9b02305
- K. Deng, S. Zhou, Z. Xu, M. Xiao, Y. Meng, A high ion-conducting, self-healing and nonflammable polymer electrolyte with dynamic imine bonds for dendrite-free lithium metal batteries. Chem. Eng. J. 428, 131224 (2022). https://doi.org/10.1016/j.cej.2021.131224
- A. Wang, S. Kadam, H. Li, S. Shi, Y. Qi, Review on modeling of the anode solid electrolyte interphase (sei) for lithium-ion batteries. NPJ Comput. Mater. 4, 15 (2018). https://doi.org/10.1038/s41524-018-0064-0
- H. Ye, Z.J. Zheng, H.R. Yao, S.C. Liu, T.T. Zuo et al., Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries. Angew. Chem. Int. Ed. 58, 1094–1099 (2019). https://doi.org/10.1002/anie.201811955
- P. Jaumaux, Q. Liu, D. Zhou, X. Xu, T. Wang et al., Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries. Angew. Chem. Int. Ed. 59, 9134–9142 (2020). https://doi.org/10.1002/anie.202001793
- S. Xia, J. Lopez, C. Liang, Z. Zhang, Z. Bao et al., High-rate and large-capacity lithium metal anode enabled by volume conformal and self-healable composite polymer electrolyte. Adv. Sci. 6, 1802353 (2019). https://doi.org/10.1002/advs.201802353
- G. Zheng, C. Wang, A. Pei, J. Lopez, F. Shi et al., High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Lett. 1, 1247–1255 (2016). https://doi.org/10.1021/acsenergylett.6b00456
- G. Wang, C. Chen, Y. Chen, X. Kang, C. Yang et al., Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahigh-rate and large-capacity lithium-metal anode. Angew. Chem. Int. Ed. 59, 2055–2060 (2020). https://doi.org/10.1002/anie.201913351
- Z. Huang, S. Choudhury, N. Paul, J.H. Thienenkamp, P. Lennartz et al., Effects of polymer coating mechanics at solid-electrolyte interphase for stabilizing lithium metal anodes. Adv. Energy Mater. 12, 2103187 (2021). https://doi.org/10.1002/aenm.202103187
- X. Cui, Y. Chu, X. Wang, X. Zhang, Y. Li et al., Stabilizing lithium metal anodes by a self-healable and li-regulating interlayer. ACS Appl. Mater. Interfaces 13, 44983–44990 (2021). https://doi.org/10.1021/acsami.1c08858
- Z. Ji, H. Wang, Z. Chen, P. Wang, J. Liu et al., A both microscopically and macroscopically intrinsic self-healing long lifespan yarn battery. Energy Stor. Mater. 28, 334–341 (2020). https://doi.org/10.1016/j.ensm.2020.03.020
- M. Hu, J. Wang, J. Liu, P. Wang, Y. Feng et al., A flour-based one-stop supercapacitor with intrinsic self-healability and stretchability after self-healing and biodegradability. Energy Storage Mater. 21, 174–179 (2019). https://doi.org/10.1016/j.ensm.2018.12.013
- G. Scheltjens, M.M. Diaz, J. Brancart, G.V. Assche, B.V. Mele, A self-healing polymer network based on reversible covalent bonding. React. Funct. Polym. 73, 413–420 (2013). https://doi.org/10.1016/j.reactfunctpolym.2012.06.017
- M. Sharma, D. Mondal, C. Mukesh, K. Prasad, Self-healing guar gum and guar gum-multiwalled carbon nanotubes nanocomposite gels prepared in an ionic liquid. Carbohydr. Polym. 98, 1025–1030 (2013). https://doi.org/10.1016/j.carbpol.2013.06.074
- R. Araya-Hermosilla, A.A. Broekhuis, F. Picchioni, Reversible polymer networks containing covalent and hydrogen bonding interactions. Eur. Polym. J. 50, 127–134 (2014). https://doi.org/10.1016/j.eurpolymj.2013.10.014
- T. Kakuta, Y. Takashima, M. Nakahata, M. Otsubo, H. Yamaguchi et al., Preorganized hydrogel: Self-healing properties of supramolecular hydrogels formed by polymerization of host-guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv. Mater. 25, 2849–2853 (2013). https://doi.org/10.1002/adma.201205321
- J. Li, G. Zhang, L. Deng, K. Jiang, S. Zhao et al., Thermally reversible and self-healing novolac epoxy resins based on diels-alder chemistry. J. Appl. Polym. Sci. 132, 42167 (2015). https://doi.org/10.1002/app.42167
- J. Canadell, H. Goossens, B. Klumperman, Self-healing materials based on disulfide links. Macromolecules 44, 2536–2541 (2011). https://doi.org/10.1021/ma2001492
- M. Zhang, D. Xu, X. Yan, J. Chen, S. Dong et al., Self-healing supramolecular gels formed by crown ether based host-guest interactions. Angew. Chem. Int. Ed. 51, 7011–7015 (2012). https://doi.org/10.1002/anie.201203063
- A. Faghihnejad, K.E. Feldman, J. Yu, M.V. Tirrell, J.N. Israelachvili et al., Adhesion and surface interactions of a self-healing polymer with multiple hydrogen-bonding groups. Adv. Funct. Mater. 24, 2322–2333 (2014). https://doi.org/10.1002/adfm.201303013
References
G. Zhou, F. Li, H.M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7, 1307–1338 (2014). https://doi.org/10.1039/c3ee43182g
W. Liu, M.S. Song, B. Kong, Y. Cui, Flexible and stretchable energy storage: Recent advances and future perspectives. Adv. Mater. 29, 1603436 (2017). https://doi.org/10.1002/adma.201603436
T.Q. Trung, N.E. Lee, Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv. Mater. 29, 1603167 (2017). https://doi.org/10.1002/adma.201603167
Y. Cao, Y.J. Tan, S. Li, W.W. Lee, H. Guo et al., Self-healing electronic skins for aquatic environments. Nat. Electron. 2, 75–82 (2019). https://doi.org/10.1038/s41928-019-0206-5
X. Pu, L. Li, H. Song, C. Du, Z. Zhao et al., A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 27, 2472–2478 (2015). https://doi.org/10.1002/adma.201500311
Z. Shi, L. Meng, X. Shi, H. Li, J. Zhang et al., Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 14, 141 (2022). https://doi.org/10.1007/s40820-022-00874-w
X. Tong, Z. Tian, J. Sun, V. Tung, R.B. Kaner et al., Self-healing flexible/stretchable energy storage devices. Mater. Today 44, 78–104 (2021). https://doi.org/10.1016/j.mattod.2020.10.026
Y. An, C. Luo, D. Yao, S. Wen, P. Zheng et al., Natural cocoons enabling flexible and stable fabric lithium-sulfur full batteries. Nano-Micro Lett. 13, 84 (2021). https://doi.org/10.1007/s40820-021-00609-3
Q. Deng, Y. Yang, C. Mao, T. Wang, Z. Fang et al., Electronic state modulation and reaction pathway regulation on necklace-like MnOx-CeO2@polypyrrole hierarchical cathode for advanced and flexible Li–CO2 batteries. Adv. Energy Mater. 12, 2103667 (2022). https://doi.org/10.1002/aenm.202103667
X. Wang, X. Lu, B. Liu, D. Chen, Y. Tong et al., Flexible energy-storage devices: Design consideration and recent progress. Adv. Mater. 26, 4763–4782 (2014). https://doi.org/10.1002/adma.201400910
R. Li, Z. Fang, C. Wang, X. Zhu, X. Fu et al., Six-armed and dicationic polymeric ionic liquid for highly stretchable, nonflammable and notch-insensitive intrinsic self-healing solid-state polymer electrolyte for flexible and safe lithium batteries. Chem. Eng. J. 430, 132706 (2022). https://doi.org/10.1016/j.cej.2021.132706
L. Dong, C. Xu, Y. Li, Z. Pan, G. Liang et al., Breathable and wearable energy storage based on highly flexible paper electrodes. Adv. Mater. 28, 9313–9319 (2016). https://doi.org/10.1002/adma.201602541
Y. Zou, C. Chen, Y. Sun, S. Gan, L. Dong et al., Flexible, all-hydrogel supercapacitor with self-healing ability. Chem. Eng. J. 418, 128616 (2021). https://doi.org/10.1016/j.cej.2021.128616
L. Dong, C. Xu, Y. Li, Z.-H. Huang, F. Kang et al., Flexible electrodes and supercapacitors for wearable energy storage: a review by category. J. Mater. Chem. A 4, 4659–4685 (2016). https://doi.org/10.1039/C5TA10582J
Y.Z. Zhang, Y. Wang, T. Cheng, L.Q. Yao, X. Li et al., Printed supercapacitors: Materials, printing and applications. Chem. Soc. Rev. 48, 3229–3264 (2019). https://doi.org/10.1039/c7cs00819h
S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D.E. Jiang et al., Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120, 6738–6782 (2020). https://doi.org/10.1021/acs.chemrev.0c00170
Y.Z. Zhang, T. Cheng, Y. Wang, W.Y. Lai, H. Pang et al., A simple approach to boost capacitance: Flexible supercapacitors based on manganese oxides@MOFs via chemically induced in situ self-transformation. Adv. Mater. 28, 5242–5248 (2016). https://doi.org/10.1002/adma.201600319
T. Cheng, Y.Z. Zhang, S. Wang, Y.L. Chen, S.Y. Gao et al., Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors. Adv. Funct. Mater. 31, 2101303 (2021). https://doi.org/10.1002/adfm.202101303
C. Choi, D.S. Ashby, D.M. Butts, R.H. DeBlock, Q. Wei et al., Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2019). https://doi.org/10.1038/s41578-019-0142-z
D. Feng, T. Lei, M.R. Lukatskaya, J. Park, Z. Huang et al., Robust and conductive two-dimensional metal–organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 3, 30–36 (2018). https://doi.org/10.1038/s41560-017-0044-5
X. Lin, F. Li, Y. Bing, T. Fei, S. Liu et al., Biocompatible multifunctional e-skins with excellent self-healing ability enabled by clean and scalable fabrication. Nano-Micro Lett. 13, 200 (2021). https://doi.org/10.1007/s40820-021-00701-8
Y. Cheng, X. Xiao, K. Pan, H. Pang, Development and application of self-healing materials in smart batteries and supercapacitors. Chem. Eng. J. 380, 122565 (2020). https://doi.org/10.1016/j.cej.2019.122565
Z. Xu, J. Yang, T. Zhang, Y. Nuli, J. Wang et al., Silicon microp anodes with self-healing multiple network binder. Joule 2, 950–961 (2018). https://doi.org/10.1016/j.joule.2018.02.012
S. Huang, F. Wan, S. Bi, J. Zhu, Z. Niu et al., A self-healing integrated all-in-one zinc-ion battery. Angew. Chem. Int. Ed. 58, 4313–4317 (2019). https://doi.org/10.1002/anie.201814653
H. Liu, X.-B. Cheng, Z. Jin, R. Zhang, G. Wang et al., Recent advances in understanding dendrite growth on alkali metal anodes. EnergyChem 1, 100003 (2019). https://doi.org/10.1016/j.enchem.2019.100003
Y. Hu, N. Dunlap, S. Wan, S. Lu, S. Huang et al., Crystalline lithium imidazolate covalent organic frameworks with high li-ion conductivity. J. Am. Chem. Soc. 141, 7518–7525 (2019). https://doi.org/10.1021/jacs.9b02448
T. Lei, W. Chen, W. Lv, J. Huang, J. Zhu et al., Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule 2, 2091–2104 (2018). https://doi.org/10.1016/j.joule.2018.07.022
X. Shan, Y. Zhong, L. Zhang, Y. Zhang, X. Xia et al., A brief review on solid electrolyte interphase composition characterization technology for lithium metal batteries: challenges and perspectives. J. Phys. Chem. C 125, 19060–19080 (2021). https://doi.org/10.1021/acs.jpcc.1c06277
D.L. Taylor, M. Panhuis, Self-healing hydrogels. Adv. Mater. 28, 9060–9093 (2016). https://doi.org/10.1002/adma.201601613
Y. Yang, M.W. Urban, Self-healing polymeric materials. Chem. Soc. Rev. 42, 7446–7467 (2013). https://doi.org/10.1039/c3cs60109a
S. An, M.W. Lee, A.L. Yarin, S.S. Yoon, A review on corrosion-protective extrinsic self-healing: comparison of microcapsule-based systems and those based on core-shell vascular networks. Chem. Eng. J. 344, 206–220 (2018). https://doi.org/10.1016/j.cej.2018.03.040
D.Y. Zhu, M.Z. Rong, M.Q. Zhang, Self-healing polymeric materials based on microencapsulated healing agents: From design to preparation. Prog. Polym. Sci. 49–50, 175–220 (2015). https://doi.org/10.1016/j.progpolymsci.2015.07.002
F. Sun, L. Liu, T. Liu, X. Wang, Q. Qi et al., Vascular smooth muscle-inspired architecture enables soft yet tough self-healing materials for durable capacitive strain-sensor. Nat. Commun. 14, 130 (2023). https://doi.org/10.1038/s41467-023-35810-y
S.H. Cho, S.R. White, P.V. Braun, Room-temperature polydimethylsiloxane-based self-healing polymers. Chem. Mater. 24, 4209–4214 (2012). https://doi.org/10.1021/cm302501b
Q. Wei, J. Wang, X. Shen, X.A. Zhang, J.Z. Sun et al., Self-healing hyperbranched poly(aroyltriazole)s. Sci. Rep. 3, 1093 (2013). https://doi.org/10.1038/srep01093
N. Roy, B. Bruchmann, J.M. Lehn, Dynamers: dynamic polymers as self-healing materials. Chem. Soc. Rev. 44, 3786–3807 (2015). https://doi.org/10.1039/c5cs00194c
S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler et al., Autonomic healing of polymer composites. Nature 409, 794–797 (2001). https://doi.org/10.1038/35057232
C.J. Hansen, W. Wu, K.S. Toohey, N.R. Sottos, S.R. White et al., Self-healing materials with interpenetrating microvascular networks. Adv. Mater. 21, 4143–4147 (2009). https://doi.org/10.1002/adma.200900588
C.J. Hansen, S.R. White, N.R. Sottos, J.A. Lewis, Accelerated self-healing via ternary interpenetrating microvascular networks. Adv. Funct. Mater. 21, 4320–4326 (2011). https://doi.org/10.1002/adfm.201101553
J.D. Rule, E.N. Brown, N.R. Sottos, S.R. White, J.S. Moore, Wax-protected catalyst microspheres for efficient self-healing materials. Adv. Mater. 17, 205–208 (2005). https://doi.org/10.1002/adma.200400607
C. Suryanarayana, K.C. Rao, D. Kumar, Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings. Prog. Org. Coat. 63, 72–78 (2008). https://doi.org/10.1016/j.porgcoat.2008.04.008
S. Lang, Q. Zhou, Synthesis and characterization of poly(urea-formaldehyde) microcapsules containing linseed oil for self-healing coating development. Prog. Org. Coat. 105, 99–110 (2017). https://doi.org/10.1016/j.porgcoat.2016.11.015
J.F. Patrick, K.R. Hart, B.P. Krull, C.E. Diesendruck, J.S. Moore et al., Continuous self-healing life cycle in vascularized structural composites. Adv. Mater. 26, 4302–4308 (2014). https://doi.org/10.1002/adma.201400248
F. Herbst, D. Dohler, P. Michael, W.H. Binder, Self-healing polymers via supramolecular forces. Macromol. Rapid Commun. 34, 203–220 (2013). https://doi.org/10.1002/marc.201200675
S.J. Rowan, S.J. Cantrill, G.R.L. Cousins, J.K.M. Sanders, J.F. Stoddart, Dynamic covalent chemistry. Angew. Chem. Int. Ed. 41, 898–952 (2002). https://doi.org/10.1002/1521-3773(20020315)41:6%3c898::aid-anie898%3e3.0.co;2-e
H. Yu, C. Chen, J. Sun, H. Zhang, Y. Feng et al., Highly thermally conductive polymer/graphene composites with rapid room-temperature self-healing capacity. Nano-Micro Lett. 14, 135 (2022). https://doi.org/10.1007/s40820-022-00882-w
Z.P. Zhang, M.Z. Rong, M.Q. Zhang, Polymer engineering based on reversible covalent chemistry: A promising innovative pathway towards new materials and new functionalities. Prog. Polym. Sci. 80, 39–93 (2018). https://doi.org/10.1016/j.progpolymsci.2018.03.002
J.A. Syrett, C.R. Becer, D.M. Haddleton, Self-healing and self-mendable polymers. Polym. Chem. 1, 978 (2010). https://doi.org/10.1039/c0py00104j
X. Wan, C. Kang, T. Mu, J. Zhu, P. Zuo et al., A multilevel buffered binder network for high-performance silicon anodes. ACS Energy Lett. 7, 3572–3580 (2022). https://doi.org/10.1021/acsenergylett.2c02030
J.M. Lehn, From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev. 36, 151–160 (2007). https://doi.org/10.1039/b616752g
Y. Jin, C. Yu, R.J. Denman, W. Zhang, Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. 42, 6634–6654 (2013). https://doi.org/10.1039/c3cs60044k
R.J. Wojtecki, M.A. Meador, S.J. Rowan, Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat. Mater. 10, 14–27 (2011). https://doi.org/10.1038/nmat2891
Y. Amamoto, H. Otsuka, A. Takahara, K. Matyjaszewski, Self-healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light. Adv. Mater. 24, 3975–3980 (2012). https://doi.org/10.1002/adma.201201928
J.J. Cash, T. Kubo, A.P. Bapat, B.S. Sumerlin, Room-temperature self-healing polymers based on dynamic-covalent boronic esters. Macromolecules 48, 2098–2106 (2015). https://doi.org/10.1021/acs.macromol.5b00210
H. Ying, Y. Zhang, J. Cheng, Dynamic urea bond for the design of reversible and self-healing polymers. Nat. Commun. 5, 3218 (2014). https://doi.org/10.1038/ncomms4218
J.Y. Oh, S. Rondeau-Gagne, Y.C. Chiu, A. Chortos, F. Lissel et al., Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016). https://doi.org/10.1038/nature20102
X. Huang, M.J. Bolen, N.S. Zacharia, Silver nanop aided self-healing of polyelectrolyte multilayers. Phys. Chem. Chem. Phys. 16, 10267–10273 (2014). https://doi.org/10.1039/c4cp00349g
G. Ju, F. Guo, Q. Zhang, A.J.C. Kuehne, S. Cui et al., Self-correction strategy for precise, massive, and parallel macroscopic supramolecular assembly. Adv. Mater. 29, 1702444 (2017). https://doi.org/10.1002/adma.201702444
G.W. Goodall, W. Hayes, Advances in cycloaddition polymerizations. Chem. Soc. Rev. 35, 280–312 (2006). https://doi.org/10.1039/b507209n
M.H. Cao, N.J. Green, S.Z. Xu, Application of the aza-diels-alder reaction in the synthesis of natural products. Org. Biomol. Chem. 15, 3105–3129 (2017). https://doi.org/10.1039/c6ob02761j
V. Eschenbrenner-Lux, K. Kumar, H. Waldmann, The asymmetric hetero-diels-alder reaction in the syntheses of biologically relevant compounds. Angew. Chem. Int. Ed. 53, 11146–11157 (2014). https://doi.org/10.1002/anie.201404094
P. Tanasi, M.H. Santana, J. Carretero-González, R. Verdejo, M.A. López-Manchado, Thermo-reversible crosslinked natural rubber: a diels-alder route for reuse and self-healing properties in elastomers. Polymer 175, 15–24 (2019). https://doi.org/10.1016/j.polymer.2019.04.059
Y. Fang, J. Li, X. Du, Z. Du, X. Cheng et al., Thermal- and mechanical-responsive polyurethane elastomers with self-healing, mechanical-reinforced, and thermal-stable capabilities. Polymer 158, 166–175 (2018). https://doi.org/10.1016/j.polymer.2018.10.056
B.T. Michal, C.A. Jaye, E.J. Spencer, S.J. Rowan, Inherently photohealable and thermal shape-memory polydisulfide networks. ACS Macro Lett. 2, 694–699 (2013). https://doi.org/10.1021/mz400318m
S.P. Black, J.K. Sanders, A.R. Stefankiewicz, Disulfide exchange: Exposing supramolecular reactivity through dynamic covalent chemistry. Chem. Soc. Rev. 43, 1861–1872 (2014). https://doi.org/10.1039/c3cs60326a
H. Xiang, J. Yin, G. Lin, X. Liu, M. Rong et al., Photo-crosslinkable, self-healable and reprocessable rubbers. Chem. Eng. J. 358, 878–890 (2019). https://doi.org/10.1016/j.cej.2018.10.103
H.P. Xiang, M.Z. Rong, M.Q. Zhang, A facile method for imparting sunlight driven catalyst-free self-healability and recyclability to commercial silicone elastomer. Polymer 108, 339–347 (2017). https://doi.org/10.1016/j.polymer.2016.12.006
Y. Zhu, Q. Shen, L. Wei, X. Fu, C. Huang et al., Ultra-tough, strong, and defect-tolerant elastomers with self-healing and intelligent-responsive abilities. ACS Appl. Mater. Interfaces 11, 29373–29381 (2019). https://doi.org/10.1021/acsami.9b11041
J. Sun, X. Pu, M. Liu, A. Yu, C. Du et al., Self-healable, stretchable, transparent triboelectric nanogenerators as soft power sources. ACS Nano 12, 6147–6155 (2018). https://doi.org/10.1021/acsnano.8b02479
A. Chao, I. Negulescu, D. Zhang, Dynamic covalent polymer networks based on degenerative imine bond exchange: tuning the malleability and self-healing properties by solvent. Macromolecules 49, 6277–6284 (2016). https://doi.org/10.1021/acs.macromol.6b01443
J. Pignanelli, B. Billet, M. Straeten, M. Prado, K. Schlingman et al., Imine and metal-ligand dynamic bonds in soft polymers for autonomous self-healing capacitive-based pressure sensors. Soft Matter 15, 7654–7662 (2019). https://doi.org/10.1039/c9sm01254k
Y.-L. Liu, T.-W. Chuo, Self-healing polymers based on thermally reversible Diels–Alder chemistry. Polym. Chem. 4, 2194 (2013). https://doi.org/10.1039/c2py20957h
A.A. Kavitha, N.K. Singha, “Click chemistry” in tailor-made polymethacrylates bearing reactive furfuryl functionality: a new class of self-healing polymeric material. ACS Appl. Mater. Interfaces 1, 1427–1436 (2009). https://doi.org/10.1021/am900124c
A. Gandini, The furan/maleimide Diels–Alder reaction: a versatile click–unclick tool in macromolecular synthesis. Prog. Polym. Sci. 38, 1–29 (2013). https://doi.org/10.1016/j.progpolymsci.2012.04.002
G. Postiglione, S. Turri, M. Levi, Effect of the plasticizer on the self-healing properties of a polymer coating based on the thermoreversible Diels–Alder reaction. Prog. Org. Coat. 78, 526–531 (2015). https://doi.org/10.1016/j.porgcoat.2014.05.022
W. Zhang, J. Duchet, J.F. Gerard, Self-healable interfaces based on thermo-reversible diels-alder reactions in carbon fiber reinforced composites. J. Colloid Interface Sci. 430, 61–68 (2014). https://doi.org/10.1016/j.jcis.2014.05.007
N.K. Kildahl, Bond energy data summarized. J. Chem. Educ. 72, 423 (1995). https://doi.org/10.1021/ed072p423
C. Liu, Y. Tan, H. Xu, Functional polymer materials based on dynamic covalent chemistry. Sci. China Mater. 65, 2017–2034 (2022). https://doi.org/10.1007/s40843-021-2018-y
Z.Q. Lei, H.P. Xiang, Y.J. Yuan, M.Z. Rong, M.Q. Zhang, Room-temperature self-healable and remoldable cross-linked polymer based on the dynamic exchange of disulfide bonds. Chem. Mater. 26, 2038–2046 (2014). https://doi.org/10.1021/cm4040616
M. Pepels, I. Filot, B. Klumperman, H. Goossens, Self-healing systems based on disulfide–thiol exchange reactions. Polym. Chem. 4, 4955 (2013). https://doi.org/10.1039/c3py00087g
J.K. Oh, C. Tang, H. Gao, N.V. Tsarevsky, K. Matyjaszewski, Inverse miniemulsion atrp: A new method for synthesis and functionalization of well-defined water-soluble/cross-linked polymeric ps. J. Am. Chem. Soc. 128, 5578–5584 (2006)
H. Otsuka, S. Nagano, Y. Kobashi, T. Maeda, A. Takahara, A dynamic covalent polymer driven by disulfide metathesis under photoirradiation. Chem. Commun. 46, 1150–1152 (2010). https://doi.org/10.1039/b916128g
H. Schiff, Mittheilungen aus dem universitätslaboratorium in pisa: Eine neue reihe organischer basen. Eur. J. Org. Chem. 131, 118–119 (1864). https://doi.org/10.1002/jlac.18641310113
M.E. Belowicha, J.F. Stoddart, Dynamic imine chemistry. Chem. Soc. Rev. 41, 2003–2024 (2012). https://doi.org/10.1039/c2cs15305j
F. Song, Z. Li, P. Jia, M. Zhang, C. Bo et al., Tunable “soft and stiff”, self-healing, recyclable, thermadapt shape memory biomass polymers based on multiple hydrogen bonds and dynamic imine bonds. J. Mater. Chem. A 7, 13400–13410 (2019). https://doi.org/10.1039/c9ta03872h
C. Cheng, X. Zhang, Y. Meng, Z. Zhang, J. Chen et al., Multiresponsive and biocompatible self-healing hydrogel: Its facile synthesis in water, characterization and properties. Soft Matter 13, 3003–3012 (2017). https://doi.org/10.1039/c7sm00350a
X. Lei, Y. Huang, S. Liang, X. Zhao, L. Liu, Preparation of highly transparent, room-temperature self-healing and recyclable silicon elastomers based on dynamic imine bond and their ion responsive properties. Mater. Lett. 268, 127598 (2020). https://doi.org/10.1016/j.matlet.2020.127598
J. Xu, C. Ding, P. Chen, L. Tan, C. Chen et al., Intrinsic self-healing polymers for advanced lithium-based batteries: advances and strategies. Appl. Phys. Rev. 7, 031304 (2020). https://doi.org/10.1063/5.0008206
L. Cao, D. Yuan, C. Xu, Y. Chen, Biobased, self-healable, high strength rubber with tunicate cellulose nanocrystals. Nanoscale 9, 15696–15706 (2017). https://doi.org/10.1039/c7nr05011a
Y. Chen, A.M. Kushner, G.A. Williams, Z. Guan, Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 4, 467–472 (2012). https://doi.org/10.1038/nchem.1314
P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008). https://doi.org/10.1038/nature06669
B.C. Tee, C. Wang, R. Allen, Z. Bao, An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 7, 825–832 (2012). https://doi.org/10.1038/nnano.2012.192
G. Zhang, Y. Chen, Y. Deng, T. Ngai, C. Wang, Dynamic supramolecular hydrogels: regulating hydrogel properties through self-complementary quadruple hydrogen bonds and thermo-switch. ACS Macro Lett. 6, 641–646 (2017). https://doi.org/10.1021/acsmacrolett.7b00275
M. Guo, L.M. Pitet, H.M. Wyss, M. Vos, P.Y. Dankers et al., Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. J. Am. Chem. Soc. 136, 6969–6977 (2014). https://doi.org/10.1021/ja500205v
H. Chen, Z. Wu, Z. Su, S. Chen, C. Yan et al., A mechanically robust self-healing binder for silicon anode in lithium ion batteries. Nano Energy 81, 105654 (2021). https://doi.org/10.1016/j.nanoen.2020.105654
A. Das, A. Sallat, F. Böhme, M. Suckow, D. Basu et al., Ionic modification turns commercial rubber into a self-healing material. ACS Appl. Mater. Interfaces 7, 20623–20630 (2015). https://doi.org/10.1021/acsami.5b05041
D. Wang, J. Guo, H. Zhang, B. Cheng, H. Shen et al., Intelligent rubber with tailored properties for self-healing and shape memory. J. Mater. Chem. A 3, 12864–12872 (2015). https://doi.org/10.1039/c5ta01915j
Q. Wang, J.L. Mynar, M. Yoshida, E. Lee, M. Lee et al., High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463, 339–343 (2010). https://doi.org/10.1038/nature08693
M. Burnworth, L. Tang, J.R. Kumpfer, A.J. Duncan, F.L. Beyer et al., Optically healable supramolecular polymers. Nature 472, 334–337 (2011). https://doi.org/10.1038/nature09963
O. Goor, S.I.S. Hendrikse, P.Y.W. Dankers, E.W. Meijer, From supramolecular polymers to multi-component biomaterials. Chem. Soc. Rev. 46, 6621–6637 (2017). https://doi.org/10.1039/c7cs00564d
G. Thangavel, M.W.M. Tan, P.S. Lee, Advances in self-healing supramolecular soft materials and nanocomposites. Nano Converg. 6, 29 (2019). https://doi.org/10.1186/s40580-019-0199-9
J. Wu, L.H. Cai, D.A. Weitz, Tough self-healing elastomers by molecular enforced integration of covalent and reversible networks. Adv. Mater. 29, 1702616 (2017). https://doi.org/10.1002/adma.201702616
G. Zhang, Y. Yang, Y. Chen, J. Huang, T. Zhang et al., A quadruple-hydrogen-bonded supramolecular binder for high-performance silicon anodes in lithium-ion batteries. Small 14, 1801189 (2018). https://doi.org/10.1002/smll.201801189
B.A. Blight, C.A. Hunter, D.A. Leigh, H. McNab, P.I. Thomson, An aaaa-dddd quadruple hydrogen-bond array. Nat. Chem. 3, 244–248 (2011). https://doi.org/10.1038/nchem.987
J. Kang, D. Son, G.N. Wang, Y. Liu, J. Lopez et al., Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 30, e1706846 (2018). https://doi.org/10.1002/adma.201706846
R. Li, T. Fan, G. Chen, H. Xie, B. Su et al., Highly transparent, self-healing conductive elastomers enabled by synergistic hydrogen bonding interactions. Chem. Eng. J. 393, 124685 (2020). https://doi.org/10.1016/j.cej.2020.124685
X. Wang, D. Liang, B. Cheng, Preparation and research of intrinsic self-healing elastomers based on hydrogen and ionic bond. Compos. Sci. Technol. 193, 108127 (2020). https://doi.org/10.1016/j.compscitech.2020.108127
S. Wang, M.W. Urban, Self-healing polymers. Nat. Rev. Mater. 5, 562–583 (2020). https://doi.org/10.1038/s41578-020-0202-4
J.Y. Sun, X. Zhao, W.R. Illeperuma, O. Chaudhuri, K.H. Oh et al., Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012). https://doi.org/10.1038/nature11409
A.J. D’Angelo, M.J. Panzer, Design of stretchable and self-healing gel electrolytes via fully zwitterionic polymer networks in solvate ionic liquids for li-based batteries. Chem. Mater. 31, 2913–2922 (2019). https://doi.org/10.1021/acs.chemmater.9b00172
Y. Cao, T.G. Morrissey, E. Acome, S.I. Allec, B.M. Wong et al., A transparent, self-healing, highly stretchable ionic conductor. Adv. Mater. 29, 1605099 (2017). https://doi.org/10.1002/adma.201605099
C.H. Li, J.L. Zuo, Self-healing polymers based on coordination bonds. Adv. Mater. 32, e1903762 (2020). https://doi.org/10.1002/adma.201903762
T. Aida, E.W. Meijer, S.I. Stupp, Functional supramolecular polymers. Science 335, 813–817 (2012). https://doi.org/10.1126/science.1205962
W.C. Yount, D.M. Loveless, S.L. Craig, Strong means slow: Dynamic contributions to the bulk mechanical properties of supramolecular networks. Angew. Chem. Int. Ed. 44, 2746–2748 (2005). https://doi.org/10.1002/anie.200500026
Y.L. Rao, A. Chortos, R. Pfattner, F. Lissel, Y.C. Chiu et al., Stretchable self-healing polymeric dielectrics cross-linked through metal-ligand coordination. J. Am. Chem. Soc. 138, 6020–6027 (2016). https://doi.org/10.1021/jacs.6b02428
D. Mozhdehi, S. Ayala, O.R. Cromwell, Z. Guan, Self-healing multiphase polymers via dynamic metal-ligand interactions. J. Am. Chem. Soc. 136, 16128–16131 (2014). https://doi.org/10.1021/ja5097094
C.H. Li, C. Wang, C. Keplinger, J.L. Zuo, L. Jin et al., A highly stretchable autonomous self-healing elastomer. Nat. Chem. 8, 618–624 (2016). https://doi.org/10.1038/nchem.2492
J.C. Lai, X.Y. Jia, D.P. Wang, Y.B. Deng, P. Zheng et al., Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. Nat. Commun. 10, 1164 (2019). https://doi.org/10.1038/s41467-019-09130-z
H. Li, Z. Tang, Z. Liu, C. Zhi, Evaluating flexibility and wearability of flexible energy storage devices. Joule 3, 613–619 (2019). https://doi.org/10.1016/j.joule.2019.01.013
L. Mao, Q. Meng, A. Ahmad, Z. Wei, Mechanical analyses and structural design requirements for flexible energy storage devices. Adv. Energy Mater. 7, 1700535 (2017). https://doi.org/10.1002/aenm.201700535
D. Wang, C. Han, F. Mo, Q. Yang, Y. Zhao et al., Energy density issues of flexible energy storage devices. Energy Storage Mater. 28, 264–292 (2020). https://doi.org/10.1016/j.ensm.2020.03.006
S. Yin, W. Deng, J. Chen, X. Gao, G. Zou et al., Fundamental and solutions of microcrack in ni-rich layered oxide cathode materials of lithium-ion batteries. Nano Energy 83, 105854 (2021). https://doi.org/10.1016/j.nanoen.2021.105854
T. Mu, Y. Zhao, C. Zhao, N.G. Holmes, S. Lou et al., Stable silicon anodes by molecular layer deposited artificial zincone coatings. Adv. Funct. Mater. 31, 2010526 (2021). https://doi.org/10.1002/adfm.202010526
S. Wu, F. Di, J. Zheng, H. Zhao, H. Zhang et al., Self-healing polymer binders for the si and si/carbon anodes of lithium-ion batteries. New Carbon Mater. 37, 802–826 (2022). https://doi.org/10.1016/s1872-5805(22)60638-3
H.J. Peng, J.Q. Huang, X.Y. Liu, X.B. Cheng, W.T. Xu et al., Healing high-loading sulfur electrodes with unprecedented long cycling life: Spatial heterogeneity control. J. Am. Chem. Soc. 139, 8458–8466 (2017). https://doi.org/10.1021/jacs.6b12358
T.W. Kwon, Y.K. Jeong, I. Lee, T.S. Kim, J.W. Choi et al., Systematic molecular-level design of binders incorporating meldrum’s acid for silicon anodes in lithium rechargeable batteries. Adv. Mater. 26, 7979–7985 (2014). https://doi.org/10.1002/adma.201402950
H. Wang, B. Zhu, W. Jiang, Y. Yang, W.R. Leow et al., A mechanically and electrically self-healing supercapacitor. Adv. Mater. 26, 3638–3643 (2014). https://doi.org/10.1002/adma.201305682
H. Sun, X. You, Y. Jiang, G. Guan, X. Fang et al., Self-healable electrically conducting wires for wearable microelectronics. Angew. Chem. Int. Ed. 126, 9680–9685 (2014). https://doi.org/10.1002/anie.201405145
Y. Huang, Y. Huang, M. Zhu, W. Meng, Z. Pei et al., Magnetic-assisted, self-healable, yarn-based supercapacitor. ACS Nano 9, 6242–6251 (2015). https://doi.org/10.1021/acsnano.5b01602
T.W. Kwon, J.W. Choi, A. Coskun, The emerging era of supramolecular polymeric binders in silicon anodes. Chem. Soc. Rev. 47, 2145–2164 (2018). https://doi.org/10.1039/c7cs00858a
Y.K. Jeong, J.W. Choi, Mussel-inspired self-healing metallopolymers for silicon nanop anodes. ACS Nano 13, 8364–8373 (2019). https://doi.org/10.1021/acsnano.9b03837
S. Choi, T. Kwon, A. Coskun, J.W. Choi, Highly elastic binders integrating polyrotaxanes for silicon microp anodes in lithium ion batteries. Science 357, 279–283 (2017). https://doi.org/10.1126/science.aal4373
S.J. Park, H. Zhao, G. Ai, C. Wang, X. Song et al., Side-chain conducting and phase-separated polymeric binders for high-performance silicon anodes in lithium-ion batteries. J. Am. Chem. Soc. 137, 2565–2571 (2015). https://doi.org/10.1021/ja511181p
Y.K. Jeong, T.-W. Kwon, I. Lee, T.-S. Kim, A. Coskun et al., Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes. Energy Environ. Sci. 8, 1224–1230 (2015). https://doi.org/10.1039/c5ee00239g
C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui et al., Self-healing chemistry enables the stable operation of silicon microp anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042–1048 (2013). https://doi.org/10.1038/nchem.1802
T. Munaoka, X. Yan, J. Lopez, J.W.F. To, J. Park et al., Ionically conductive self-healing binder for low cost si microps anodes in Li-ion batteries. Adv. Energy Mater. 8, 1703138 (2018). https://doi.org/10.1002/aenm.201703138
Z. Chen, C. Wang, J. Lopez, Z. Lu, Y. Cui et al., High-areal-capacity silicon electrodes with low-cost silicon ps based on spatial control of self-healing binder. Adv. Energy Mater. 5, 1401826 (2015). https://doi.org/10.1002/aenm.201401826
R. Gao, Q. Zhang, Y. Zhao, Z. Han, C. Sun et al., Regulating polysulfide redox kinetics on a self-healing electrode for high-performance flexible lithium-sulfur batteries. Adv. Funct. Mater. 32, 2110313 (2021). https://doi.org/10.1002/adfm.202110313
F.-L. Zeng, X.-Y. Zhou, N. Li, A.-B. Wang, W.-K. Wang et al., A multifunctional zipper-like sulfur electrode enables the stable operation of lithium-sulfur battery through self-healing chemistry. Energy Storage Mater. 34, 755–767 (2021). https://doi.org/10.1016/j.ensm.2020.10.025
X. Jiao, J. Yin, X. Xu, J. Wang, Y. Liu et al., Highly energy-dissipative, fast self-healing binder for stable si anode in lithium-ion batteries. Adv. Funct. Mater. 31, 2005699 (2020). https://doi.org/10.1002/adfm.202005699
J. Zhang, N. Wang, W. Zhang, S. Fang, Z. Yu et al., A cycling robust network binder for high performance si-based negative electrodes for lithium-ion batteries. J. Colloid Interface Sci. 578, 452–460 (2020). https://doi.org/10.1016/j.jcis.2020.06.008
R. Chen, W. Qu, X. Guo, L. Li, F. Wu, The pursuit of solid-state electrolytes for lithium batteries: From comprehensive insight to emerging horizons. Mater. Horiz. 3, 487–516 (2016). https://doi.org/10.1039/c6mh00218h
B. Zhou, M. Yang, C. Zuo, G. Chen, D. He et al., Flexible, self-healing, and fire-resistant polymer electrolytes fabricated via photopolymerization for all-solid-state lithium metal batteries. ACS Macro Lett. 9, 525–532 (2020). https://doi.org/10.1021/acsmacrolett.9b01024
C. Wang, R. Li, P. Chen, Y. Fu, X. Ma et al., Highly stretchable, non-flammable and notch-insensitive intrinsic self-healing solid-state polymer electrolyte for stable and safe flexible lithium batteries. J. Mater. Chem. A 9, 4758–4769 (2021). https://doi.org/10.1039/d0ta10745j
X. Zhu, Z. Fang, Q. Deng, Y. Zhou, X. Fu et al., Poly(ionic liquid)@pegma block polymer initiated microphase separation architecture in poly(ethylene oxide)-based solid-state polymer electrolyte for flexible and self-healing lithium batteries. ACS Sustain. Chem. Eng. 10, 4173–4185 (2022). https://doi.org/10.1021/acssuschemeng.1c08306
S. Huang, F. Wan, S. Bi, J. Zhu, Z. Niu et al., A self-healing integrated all-in-one zinc-ion battery. Angew. Chem. Int. Ed. 131, 4357–4361 (2019). https://doi.org/10.1002/anie.201814653
Z. Niu, H. Dong, B. Zhu, J. Li, H.H. Hng et al., Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv. Mater. 25, 1058–1064 (2013). https://doi.org/10.1002/adma.201204003
D. Chao, C.R. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2d layered zinc orthovanadate array. Adv. Mater. 30, e1803181 (2018). https://doi.org/10.1002/adma.201803181
Z. Zhang, Y. Shao, B. Lotsch, Y.-S. Hu, H. Li et al., New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 11, 1945–1976 (2018). https://doi.org/10.1039/c8ee01053f
Y. Huang, Z. Shi, H. Wang, J. Wang, Z. Xue, Shape-memory and self-healing polyurethane-based solid polymer electrolytes constructed from polycaprolactone segment and disulfide metathesis. Energy Storage Mater. 51, 1–10 (2022). https://doi.org/10.1016/j.ensm.2022.06.021
N. Wu, Y.R. Shi, S.Y. Lang, J.M. Zhou, J.Y. Liang et al., Self-healable solid polymeric electrolytes for stable and flexible lithium metal batteries. Angew. Chem. Int. Ed. 58, 18146–18149 (2019). https://doi.org/10.1002/anie.201910478
R.P. Sijbesma, F.H. Beijer, L. Brunsveld, B.J. Folmer, J.H. Hirschberg et al., Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278, 1601–1604 (1997). https://doi.org/10.1126/science.278.5343.1601
B. Zhou, D. He, J. Hu, Y. Ye, H. Peng et al., A flexible, self-healing and highly stretchable polymer electrolyte via quadruple hydrogen bonding for lithium-ion batteries. J. Mater. Chem. A 6, 11725–11733 (2018). https://doi.org/10.1039/c8ta01907j
P. Guo, H. Zhang, X. Liu, J. Sun, Counteranion-mediated intrinsic healing of poly(ionic liquid) copolymers. ACS Appl. Mater. Interfaces 10, 2105–2113 (2018). https://doi.org/10.1021/acsami.7b16880
W. Zhou, M. Zhang, X. Kong, W. Huang, Q. Zhang, Recent advance in ionic-liquid-based electrolytes for rechargeable metal-ion batteries. Adv. Sci. 8, 2004490 (2021). https://doi.org/10.1002/advs.202004490
Q. Yang, Z. Zhang, X.G. Sun, Y.S. Hu, H. Xing et al., Ionic liquids and derived materials for lithium and sodium batteries. Chem. Soc. Rev. 47, 2020–2064 (2018). https://doi.org/10.1039/c7cs00464h
M. Watanabe, M.L. Thomas, S. Zhang, K. Ueno, T. Yasuda et al., Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev. 117, 7190–7239 (2017). https://doi.org/10.1021/acs.chemrev.6b00504
J. Cui, F.-M. Nie, J.-X. Yang, L. Pan, Z. Ma et al., Novel imidazolium-based poly(ionic liquid)s with different counterions for self-healing. J. Mater. Chem. A 5, 25220–25229 (2017). https://doi.org/10.1039/c7ta06793c
Y.H. Jo, S. Li, C. Zuo, Y. Zhang, H. Gan et al., Self-healing solid polymer electrolyte facilitated by a dynamic cross-linked polymer matrix for lithium-ion batteries. Macromolecules 53, 1024–1032 (2020). https://doi.org/10.1021/acs.macromol.9b02305
K. Deng, S. Zhou, Z. Xu, M. Xiao, Y. Meng, A high ion-conducting, self-healing and nonflammable polymer electrolyte with dynamic imine bonds for dendrite-free lithium metal batteries. Chem. Eng. J. 428, 131224 (2022). https://doi.org/10.1016/j.cej.2021.131224
A. Wang, S. Kadam, H. Li, S. Shi, Y. Qi, Review on modeling of the anode solid electrolyte interphase (sei) for lithium-ion batteries. NPJ Comput. Mater. 4, 15 (2018). https://doi.org/10.1038/s41524-018-0064-0
H. Ye, Z.J. Zheng, H.R. Yao, S.C. Liu, T.T. Zuo et al., Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries. Angew. Chem. Int. Ed. 58, 1094–1099 (2019). https://doi.org/10.1002/anie.201811955
P. Jaumaux, Q. Liu, D. Zhou, X. Xu, T. Wang et al., Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries. Angew. Chem. Int. Ed. 59, 9134–9142 (2020). https://doi.org/10.1002/anie.202001793
S. Xia, J. Lopez, C. Liang, Z. Zhang, Z. Bao et al., High-rate and large-capacity lithium metal anode enabled by volume conformal and self-healable composite polymer electrolyte. Adv. Sci. 6, 1802353 (2019). https://doi.org/10.1002/advs.201802353
G. Zheng, C. Wang, A. Pei, J. Lopez, F. Shi et al., High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Lett. 1, 1247–1255 (2016). https://doi.org/10.1021/acsenergylett.6b00456
G. Wang, C. Chen, Y. Chen, X. Kang, C. Yang et al., Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahigh-rate and large-capacity lithium-metal anode. Angew. Chem. Int. Ed. 59, 2055–2060 (2020). https://doi.org/10.1002/anie.201913351
Z. Huang, S. Choudhury, N. Paul, J.H. Thienenkamp, P. Lennartz et al., Effects of polymer coating mechanics at solid-electrolyte interphase for stabilizing lithium metal anodes. Adv. Energy Mater. 12, 2103187 (2021). https://doi.org/10.1002/aenm.202103187
X. Cui, Y. Chu, X. Wang, X. Zhang, Y. Li et al., Stabilizing lithium metal anodes by a self-healable and li-regulating interlayer. ACS Appl. Mater. Interfaces 13, 44983–44990 (2021). https://doi.org/10.1021/acsami.1c08858
Z. Ji, H. Wang, Z. Chen, P. Wang, J. Liu et al., A both microscopically and macroscopically intrinsic self-healing long lifespan yarn battery. Energy Stor. Mater. 28, 334–341 (2020). https://doi.org/10.1016/j.ensm.2020.03.020
M. Hu, J. Wang, J. Liu, P. Wang, Y. Feng et al., A flour-based one-stop supercapacitor with intrinsic self-healability and stretchability after self-healing and biodegradability. Energy Storage Mater. 21, 174–179 (2019). https://doi.org/10.1016/j.ensm.2018.12.013
G. Scheltjens, M.M. Diaz, J. Brancart, G.V. Assche, B.V. Mele, A self-healing polymer network based on reversible covalent bonding. React. Funct. Polym. 73, 413–420 (2013). https://doi.org/10.1016/j.reactfunctpolym.2012.06.017
M. Sharma, D. Mondal, C. Mukesh, K. Prasad, Self-healing guar gum and guar gum-multiwalled carbon nanotubes nanocomposite gels prepared in an ionic liquid. Carbohydr. Polym. 98, 1025–1030 (2013). https://doi.org/10.1016/j.carbpol.2013.06.074
R. Araya-Hermosilla, A.A. Broekhuis, F. Picchioni, Reversible polymer networks containing covalent and hydrogen bonding interactions. Eur. Polym. J. 50, 127–134 (2014). https://doi.org/10.1016/j.eurpolymj.2013.10.014
T. Kakuta, Y. Takashima, M. Nakahata, M. Otsubo, H. Yamaguchi et al., Preorganized hydrogel: Self-healing properties of supramolecular hydrogels formed by polymerization of host-guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv. Mater. 25, 2849–2853 (2013). https://doi.org/10.1002/adma.201205321
J. Li, G. Zhang, L. Deng, K. Jiang, S. Zhao et al., Thermally reversible and self-healing novolac epoxy resins based on diels-alder chemistry. J. Appl. Polym. Sci. 132, 42167 (2015). https://doi.org/10.1002/app.42167
J. Canadell, H. Goossens, B. Klumperman, Self-healing materials based on disulfide links. Macromolecules 44, 2536–2541 (2011). https://doi.org/10.1021/ma2001492
M. Zhang, D. Xu, X. Yan, J. Chen, S. Dong et al., Self-healing supramolecular gels formed by crown ether based host-guest interactions. Angew. Chem. Int. Ed. 51, 7011–7015 (2012). https://doi.org/10.1002/anie.201203063
A. Faghihnejad, K.E. Feldman, J. Yu, M.V. Tirrell, J.N. Israelachvili et al., Adhesion and surface interactions of a self-healing polymer with multiple hydrogen-bonding groups. Adv. Funct. Mater. 24, 2322–2333 (2014). https://doi.org/10.1002/adfm.201303013