Rational Design of Electrode–Electrolyte Interphase and Electrolytes for Rechargeable Proton Batteries
Corresponding Author: Chuan Zhao
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 96
Abstract
Rechargeable proton batteries have been regarded as a promising technology for next-generation energy storage devices, due to the smallest size, lightest weight, ultrafast diffusion kinetics and negligible cost of proton as charge carriers. Nevertheless, a proton battery possessing both high energy and power density is yet achieved. In addition, poor cycling stability is another major challenge making the lifespan of proton batteries unsatisfactory. These issues have motivated extensive research into electrode materials. Nonetheless, the design of electrode–electrolyte interphase and electrolytes is underdeveloped for solving the challenges. In this review, we summarize the development of interphase and electrolytes for proton batteries and elaborate on their importance in enhancing the energy density, power density and battery lifespan. The fundamental understanding of interphase is reviewed with respect to the desolvation process, interfacial reaction kinetics, solvent-electrode interactions, and analysis techniques. We categorize the currently used electrolytes according to their physicochemical properties and analyze their electrochemical potential window, solvent (e.g., water) activities, ionic conductivity, thermal stability, and safety. Finally, we offer our views on the challenges and opportunities toward the future research for both interphase and electrolytes for achieving high-performance proton batteries for energy storage.
Highlights:
1 The electrode–electrolyte interface reactions (complete desolvation process and incomplete process), interphase design strategies, and advanced interphase analysis techniques for aqueous proton batteries are discussed and reviewed.
2 Research progresses on pure phase aqueous electrolytes, hybrid aqueous electrolytes, non-aqueous electrolytes, and solid/quasi-solid electrolytes are summarized.
3 Perspectives on both interphase and electrolytes are discussed which can direct researchers to rationally design new interphase and electrolytes for high-performance proton batteries in the future.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi et al., Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011). https://doi.org/10.1021/cr100290v
- M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013). https://doi.org/10.1021/cr3001884
- G.N. Zhu, Y.G. Wang, Y.Y. Xia, Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 5, 6652–6667 (2012). https://doi.org/10.1039/c2ee03410g
- X. Hu, W. Zhang, X. Liu, Y. Mei, Y. Huang, Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem. Soc. Rev. 44, 2376–2404 (2015). https://doi.org/10.1039/c4cs00350k
- L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015). https://doi.org/10.1126/science.aab1595
- H. Wang, R. Tan, Z. Yang, Y. Feng, X. Duan et al., Stabilization perspective on metal anodes for aqueous batteries. Adv. Energy Mater. 11, 1–18 (2021). https://doi.org/10.1002/aenm.202000962
- D.J. Kim, D.J. Yoo, M.T. Otley, A. Prokofjevs, C. Pezzato et al., Rechargeable aluminium organic batteries. Nat. Energy 4, 51–59 (2019). https://doi.org/10.1038/s41560-018-0291-0
- K.W. Nam, H. Kim, Y. Beldjoudi, T.W. Kwon, D.J. Kim et al., Redox-active phenanthrenequinone triangles in aqueous rechargeable zinc batteries. J. Am. Chem. Soc. 142, 2541–2548 (2020). https://doi.org/10.1021/jacs.9b12436
- D. Su, A. McDonagh, S.Z. Qiao, G. Wang, High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 29, 1604007 (2017). https://doi.org/10.1002/adma.201604007
- H. Gao, J.B. Goodenough, An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3. Angew. Chem. Int. Ed. 128, 12960–12964 (2016). https://doi.org/10.1002/ange.201606508
- F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- Y. Xu, X. Wu, X. Ji, The renaissance of proton batteries. Small Struct. 2, 2000113 (2021). https://doi.org/10.1002/sstr.202000113
- H. Yu, Y. So, A. Kuwabara, E. Tochigi, N. Shibata et al., Crystalline grain interior confi guration affects lithium migration kinetics in Li-rich layered oxide. Nano Lett. 16, 2907–2915 (2016). https://doi.org/10.1021/acs.nanolett.5b03933
- T. Yasuda, M. Watanabe, Protic ionic liquids: fuel cell applications. MRS Bull. 38, 560–566 (2013). https://doi.org/10.1557/mrs.2013.153
- S. Dong, W. Shin, H. Jiang, X. Wu, Z. Li et al., Ultra-fast NH4+ storage: strong H bonding between NH4+ and Bi-layered V2O5. Chem 5, 1537–1551 (2019). https://doi.org/10.1016/j.chempr.2019.03.009
- T. Xu, D. Wang, Z. Li, Z. Chen, J. Zhang et al., Electrochemical proton storage: from fundamental understanding to materials to devices. Nano-Micro Lett. 14, 1–23 (2022). https://doi.org/10.1007/s40820-022-00864-y
- L. Yan, J. Huang, Z. Guo, X. Dong, Z. Wang et al., Solid-state proton battery operated at ultralow temperature. ACS Energy Lett. 685–691 (2020). https://doi.org/10.1021/acsenergylett.0c00109
- X. Wang, C. Bommier, Z. Jian, Z. Li, R.S. Chandrabose et al., Hydronium-ion batteries with perylenetetracarboxylic dianhydride crystals as an electrode. Angew. Chem. Int. Ed. 56, 2909–2913 (2017). https://doi.org/10.1002/anie.201700148
- Z. Guo, J. Huang, X. Dong, Y. Xia, L. Yan et al., An organic/inorganic electrode-based hydronium-ion battery. Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-14748-5
- J. Yu, J. Li, Z.Y. Leong, D. Sheng Li, J. Lu et al., A crystalline dihydroxyanthraquinone anodic material for proton batteries. Mater. Today Energy 22, 100872 (2021). https://doi.org/10.1016/j.mtener.2021.100872
- Z. Su, W. Ren, H. Guo, X. Peng, X. Chen et al., Ultrahigh areal capacity hydrogen-ion batteries with MoO3 loading over 90 mg cm−2. Adv. Funct. Mater. 30, 1–8 (2020). https://doi.org/10.1002/adfm.202005477
- H. Jiang, W. Shin, L. Ma, J.J. Hong, Z. Wei et al., A high-rate aqueous proton battery delivering power below −78 °C via an unfrozen phosphoric acid. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202000968
- X. Wang, Y. Xie, K. Tang, C. Wang, C. Yan, Redox chemistry of molybdenum trioxide for ultrafast hydrogen-ion storage. Angew. Chem. Int. Ed. 57, 11569–11573 (2018). https://doi.org/10.1002/anie.201803664
- H. Guo, D. Goonetilleke, N. Sharma, W. Ren, Z. Su et al., Two-phase electrochemical proton transport and storage in α-MoO3 for proton batteries. Cell Rep. Phys. Sci. 1, 100225 (2020). https://doi.org/10.1016/j.xcrp.2020.100225
- H. Jiang, J.J. Hong, X. Wu, T.W. Surta, Y. Qi et al., Insights on the proton insertion mechanism in the electrode of hexagonal tungsten oxide hydrate. J. Am. Chem. Soc. 140, 11556–11559 (2018). https://doi.org/10.1021/jacs.8b03959
- C. Geng, T. Sun, Z. Wang, J.M. Wu, Y.J. Gu et al., Surface-induced desolvation of hydronium ion enables anatase TiO2 as an efficient anode for proton batteries. Nano Lett. 21, 7021–7029 (2021). https://doi.org/10.1021/acs.nanolett.1c02421
- S. Wang, X. Zhao, X. Yan, Z. Xiao, C. Liu et al., Regulating fast anionic redox for high-voltage aqueous hydrogen-ion-based energy storage. Angew. Chem. Int. Ed. 131, 211–216 (2019). https://doi.org/10.1002/ange.201811220
- X. Wu, J.J. Hong, W. Shin, L. Ma, T. Liu et al., Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nat. Energy 4, 123–130 (2019). https://doi.org/10.1038/s41560-018-0309-7
- X. Peng, H. Guo, W. Ren, Z. Su, C. Zhao, Vanadium hexacyanoferrate as high-capacity cathode for fast proton storage. Chem. Commun. 56, 11803–11806 (2020). https://doi.org/10.1039/d0cc03974h
- W. Li, C. Xu, Z. Yang, H. Yu, W. Li et al., Sodium manganese hexacyanoferrate as ultra-high rate host for aqueous proton storage. Electrochim. Acta 401, 139525 (2022). https://doi.org/10.1016/j.electacta.2021.139525
- H. Jiang, W. Shin, L. Ma, J.J. Hong, Z. Wei et al., A high-rate aqueous proton battery delivering power below −78 °C via an unfrozen phosphoric acid. Adv. Energy Mater. 10, 1–8 (2020). https://doi.org/10.1002/aenm.202000968
- F. Wang, L. Suo, Y. Liang, C. Yang, F. Han et al., Spinel LiNi0.5Mn1.5O4 cathode for high-energy aqueous lithium-ion batteries. Adv. Energy Mater. 7, 3–8 (2017). https://doi.org/10.1002/aenm.201600922
- Y. Shen, X. Han, T. Cai, H. Hu, Y. Li et al., High-performance aqueous sodium-ion battery using a hybrid electrolyte with a wide electrochemical stability window. RSC Adv. 10, 25496–25499 (2020). https://doi.org/10.1039/d0ra04640j
- J. Li, H. Yan, C. Xu, Y. Liu, X. Zhang et al., Insights into host materials for aqueous proton batteries: structure, mechanism and prospect. Nano Energy (2021). https://doi.org/10.1016/j.nanoen.2021.106400
- C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan et al., Prussian blue analogues in aqueous batteries and desalination batteries. Nano-Micro Lett. 13, 166 (2021). https://doi.org/10.1007/s40820-021-00700-9
- H. Liu, X. Cai, X. Zhi, S. Di, B. Zhai et al., An amorphous anode for proton battery. Nano-Micro Lett. 15, 24 (2023). https://doi.org/10.1007/s40820-022-00987-2
- Z. Su, J. Chen, J. Stansby, C. Jia, T. Zhao et al., Hydrogen-bond disrupting electrolytes for fast and stable proton batteries. Small (2022). https://doi.org/10.1002/smll.202201449
- J. Zheng, Y. Hou, Y. Duan, X. Song, Y. Wei et al., Janus solid-liquid interface enabling ultrahigh charging and discharging rate for advanced lithium-ion batteries. Nano Lett. 15, 6102–6109 (2015). https://doi.org/10.1021/acs.nanolett.5b02379
- M. Gaberscek, R. Dominko, J. Jamnik, Is small p size more important than carbon coating? An example study on LiFePO4 cathodes. Electrochem. Commun. 9, 2778–2783 (2007). https://doi.org/10.1016/j.elecom.2007.09.020
- R. Malik, A. Abdellahi, G. Ceder, A critical review of the Li insertion mechanisms in LiFePO4 electrodes. J. Electrochem. Soc. 160, A3179–A3197 (2013). https://doi.org/10.1149/2.029305jes
- Y. Xu, X. Wu, H. Jiang, L. Tang, K.Y. Koga et al., A non-aqueous H3PO4 electrolyte enables stable cycling of proton electrodes. Angew. Chem. Int. Ed. 132, 22191–22195 (2020). https://doi.org/10.1002/ange.202010554
- W.A. Donald, R.D. Leib, M. Demireva, J.T.O. Brien, J. Prell et al., Directly relating reduction energies of Gaseous Eu(H2O)n3+, n = 55–140, to aqueous solution: the absolute SHE potential and real proton solvation energy. J. Am. Chem. Soc. (2009). https://doi.org/10.1021/ja902815v
- Z. Su, J. Chen, W. Ren, H. Guo, C. Jia et al., “Water-in-sugar” electrolytes enable ultrafast and stable electrochemical naked proton storage. Small (2021). https://doi.org/10.1002/smll.202102375
- Z. Su, J. Tang, J. Chen, H. Guo, S. Wu et al., Co-insertion of water with protons into organic electrodes enables high-rate and high-capacity proton batteries. Small Struct. (2023). https://doi.org/10.1002/sstr.202200257
- Y. Lu, L. Wang, J. Cheng, J.B. Goodenough, Prussian blue: a new framework of electrode materials for sodium batteries. Chem. Commun. 48, 6544–6546 (2012). https://doi.org/10.1039/c2cc31777j
- J.S. Lee, G. Nam, J. Sun, S. Higashi, H.W. Lee et al., Composites of a prussian blue analogue and gelatin-derived nitrogen-doped carbon-supported porous spinel oxides as electrocatalysts for a Zn–air battery. Adv. Energy Mater. 6, 1601052 (2016). https://doi.org/10.1002/aenm.201601052
- X. Wu, Y. Xu, H. Jiang, Z. Wei, J.J. Hong et al., NH4+ topotactic insertion in berlin green: an exceptionally long-cycling cathode in aqueous ammonium-ion batteries. ACS Appl. Energy Mater. 1, 3077–3083 (2018). https://doi.org/10.1021/acsaem.8b00789
- J. Qiao, M. Qin, Y.M. Shen, J. Cao, Z. Chen et al., A rechargeable aqueous proton battery based on a dipyridophenazine anode and an indium hexacyanoferrate cathode. Chem. Commun. 57, 4307–4310 (2021). https://doi.org/10.1039/d1cc01486b
- X. Wu, S. Qiu, Y. Xu, L. Ma, X. Bi et al., Hydrous nickel-iron turnbull’s blue as a high-rate and low-temperature proton electrode. ACS Appl. Mater. Interfaces 12, 9201–9208 (2020). https://doi.org/10.1021/acsami.9b20320
- B. Gavriel, G. Bergman, M. Turgeman, A. Nimkar, Y. Elias et al., Aqueous proton batteries based on acetic acid solutions: mechanistic insights. Mater. Today Energy 31, 101189 (2023). https://doi.org/10.1016/j.mtener.2022.101189
- K. Xu, Diffusionless charge transfer. Nat. Energy 4, 93–94 (2019). https://doi.org/10.1038/s41560-019-0328-z
- W. Luo, M. Allen, V. Raju, X. Ji, An organic pigment as a high-performance cathode for sodium-ion batteries. Adv. Energy Mater. 4, 4–8 (2014). https://doi.org/10.1002/aenm.201400554
- I.A. Rodríguez-Pérez, Z. Jian, P.K. Waldenmaier, J.W. Palmisano, R.S. Chandrabose et al., A hydrocarbon cathode for dual-ion batteries. ACS Energy Lett. 1, 719–723 (2016). https://doi.org/10.1021/acsenergylett.6b00300
- X. Han, C. Chang, L. Yuan, T. Sun, J. Sun, Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials. Adv. Mater. 19, 1616–1621 (2007). https://doi.org/10.1002/adma.200602584
- Y. Liang, Z. Chen, Y. Jing, Y. Rong, A. Facchetti et al., Heavily n-dopable π-conjugated redox polymers with ultrafast energy storage capability. J. Am. Chem. Soc. 137, 4956–4959 (2015). https://doi.org/10.1021/jacs.5b02290
- S. Muench, A. Wild, C. Friebe, B. Häupler, T. Janoschka et al., Polymer-based organic batteries. Chem. Rev. 116, 9438–9484 (2016). https://doi.org/10.1021/acs.chemrev.6b00070
- Y. Liang, Z. Tao, J. Chen, Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2, 742–769 (2012). https://doi.org/10.1002/aenm.201100795
- K. Lin, Q. Chen, M.R. Gerhardt, L. Tong, S.B. Kim et al., Alkaline quinone flow battery. Science 349, 1529–1532 (2015). https://doi.org/10.1126/science.aab3033
- Y. Liang, Y. Jing, S. Gheytani, K.Y. Lee, P. Liu et al., Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841–848 (2017). https://doi.org/10.1038/nmat4919
- D. Shen, A.M. Rao, J. Zhou, B. Lu, High-potential cathodes with nitrogen active centres for quasi-solid proton-ion batteries. Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/ange.202201972
- T. Sun, C. Liu, X.F. Xu, Q. Nian, S. Zheng et al., Insights into the hydronium-ion storage of alloxazine in mild electrolyte. J. Mater. Chem. A 8, 21983–21987 (2020). https://doi.org/10.1039/d0ta09316e
- C. Wang, S. Zhao, X. Song, N. Wang, H. Peng et al., Suppressed dissolution and enhanced desolvation in core–shell MoO3@TiO2 nanorods as a high-rate and long-life anode material for proton batteries. Adv. Energy Mater. 12, 1–9 (2022). https://doi.org/10.1002/aenm.202200157
- C. Wang, S. Zhao, X. Song, N. Wang, H. Peng et al., Suppressed dissolution and enhanced desolvation in core–shell MoO3@TiO2 nanorods as a high-rate and long-life anode material for proton batteries. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202200157
- F. Yue, Z. Tie, S. Deng, S. Wang, M. Yang et al., An ultralow temperature aqueous battery with proton chemistry. Angew. Chem. Int. Ed. 133, 14001–14005 (2021). https://doi.org/10.1002/ange.202103722
- D. Wang, T. Xu, M. Zhang, Z. Ren, H. Tong et al., A novel layered WO3 derived from an ion etching engineering for ultrafast proton storage in frozen electrolyte. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202211491
- T. Xu, Z. Li, D. Wang, M. Zhang, L. Ai et al., A fast proton-induced pseudocapacitive supercapacitor with high energy and power density. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202107720
- F. Yue, Z. Tie, S. Deng, S. Wang, M. Yang et al., An ultralow temperature aqueous battery with proton chemistry. Angew. Chem. Int. Ed. 60, 13882–13886 (2021). https://doi.org/10.1002/anie.202103722
- M. Liao, X. Ji, Y. Cao, J. Xu, X. Qiu et al., Solvent-free protic liquid enabling batteries operation at an ultra-wide temperature range. Nat. Commun. 13, 1–9 (2022). https://doi.org/10.1038/s41467-022-33612-2
- Z. Tie, S. Deng, H. Cao, M. Yao, Z. Niu et al., A symmetric all-organic proton battery in mild electrolyte. Angew. Chem. Int. Ed. 134, 2115180 (2022). https://doi.org/10.1002/ange.202115180
- L. Yuan, J. Hao, C.C. Kao, C. Wu, H.K. Liu et al., Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 14, 5669–5689 (2021). https://doi.org/10.1039/d1ee02021h
- Y. Jin, K.S. Han, Y. Shao, M.L. Sushko, J. Xiao et al., Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes. Adv. Funct. Mater. 30, 2003932 (2020). https://doi.org/10.1002/adfm.202003932
- Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58, 15841–15847 (2019). https://doi.org/10.1002/anie.201907830
- P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60, 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
- J. Hao, L. Yuan, C. Ye, D. Chao, K. Davey et al., Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chemie 133, 7442–7451 (2021). https://doi.org/10.1002/ange.202016531
- T. Sun, H. Du, S. Zheng, J. Shi, Z. Tao, High power and energy density aqueous proton battery operated at −90 °C. Adv. Funct. Mater. 31, 2010127 (2021). https://doi.org/10.1002/adfm.202010127
- B. Yang, T. Qin, Y. Du, Y. Zhang, J. Wang et al., Rocking-chair proton battery based on a low-cost “water in salt” electrolyte. Chem. Commun. 58, 1550–1553 (2022). https://doi.org/10.1039/d1cc06325a
- R. Dai, H. Liu, X. Zhi, S. Di, B. Zhai et al., A composite acidic electrolyte for ultra-long-life hydrogen-ion storage. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2022.137655
- H. Wang, R. Emanuelsson, C. Karlsson, P. Jannasch, M. Strømme et al., Rocking-chair proton batteries with conducting redox polymer active materials and protic ionic liquid electrolytes. ACS Appl. Mater. Interfaces 13, 19099–19108 (2021). https://doi.org/10.1021/acsami.1c01353
- R. Emanuelsson, M. Sterby, M. Strømme, M. Sjödin, An all-organic proton battery. J. Am. Chem. Soc. 139, 4828–4834 (2017). https://doi.org/10.1021/jacs.7b00159
- S. Wang, H. Jiang, Y. Dong, D. Clarkson, H. Zhu et al., Acid-in-clay electrolyte for wide-temperature-range and long-cycle proton batteries. Adv. Mater. (2022). https://doi.org/10.1002/adma.202202063
- M. Shi, R. Wang, L. Li, N. Chen, P. Xiao et al., Redox-active polymer integrated with MXene for ultra-stable and fast aqueous proton storage. Adv. Funct. Mater. 22, 777 (2022). https://doi.org/10.1002/adfm.202209777
- Q. Ni, B. Kim, C. Wu, K. Kang, Non-electrode components for rechargeable aqueous zinc batteries: electrolytes, solid-electrolyte-interphase, current collectors, binders, and separators. Adv. Mater. 34, 2108206 (2022). https://doi.org/10.1002/adma.202108206
- T. Hibino, K. Kobayashi, M. Nagao, Y. Yamamoto, Design of a rechargeable fuel-cell battery with enhanced performance and cyclability. J. Electrochem. Soc. 163, A1420–A1428 (2016). https://doi.org/10.1149/2.1341607jes
- M. Nagao, K. Kobayashi, Y. Yamamoto, T. Hibino, Rechargeable PEM fuel-cell batteries using quinones as hydrogen carriers. J. Electrochem. Soc. 162, F410–F418 (2015). https://doi.org/10.1149/2.0611504jes
- K. Kobayashi, M. Nagao, Y. Yamamoto, P. Heo, T. Hibino, Rechargeable PEM fuel-cell batteries using porous carbon modified with carbonyl groups as anode materials. J. Electrochem. Soc. 162, F868–F877 (2015). https://doi.org/10.1149/2.0581508jes
- T. Hibino, K. Kobayashi, M. Nagao, S. Kawasaki, High-temperature supercapacitor with a proton-conducting metal pyrophosphate electrolyte. Sci. Rep. 5, 1–7 (2015). https://doi.org/10.1038/srep07903
- X. Yang, Y. Ni, Y. Lu, Q. Zhang, J. Hou et al., Designing quinone-based anodes with rapid kinetics for rechargeable proton batteries. Angew. Chem. Int. Ed. 61, e202209642 (2022). https://doi.org/10.1002/anie.202209642
References
Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi et al., Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011). https://doi.org/10.1021/cr100290v
M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013). https://doi.org/10.1021/cr3001884
G.N. Zhu, Y.G. Wang, Y.Y. Xia, Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 5, 6652–6667 (2012). https://doi.org/10.1039/c2ee03410g
X. Hu, W. Zhang, X. Liu, Y. Mei, Y. Huang, Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem. Soc. Rev. 44, 2376–2404 (2015). https://doi.org/10.1039/c4cs00350k
L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015). https://doi.org/10.1126/science.aab1595
H. Wang, R. Tan, Z. Yang, Y. Feng, X. Duan et al., Stabilization perspective on metal anodes for aqueous batteries. Adv. Energy Mater. 11, 1–18 (2021). https://doi.org/10.1002/aenm.202000962
D.J. Kim, D.J. Yoo, M.T. Otley, A. Prokofjevs, C. Pezzato et al., Rechargeable aluminium organic batteries. Nat. Energy 4, 51–59 (2019). https://doi.org/10.1038/s41560-018-0291-0
K.W. Nam, H. Kim, Y. Beldjoudi, T.W. Kwon, D.J. Kim et al., Redox-active phenanthrenequinone triangles in aqueous rechargeable zinc batteries. J. Am. Chem. Soc. 142, 2541–2548 (2020). https://doi.org/10.1021/jacs.9b12436
D. Su, A. McDonagh, S.Z. Qiao, G. Wang, High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 29, 1604007 (2017). https://doi.org/10.1002/adma.201604007
H. Gao, J.B. Goodenough, An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3. Angew. Chem. Int. Ed. 128, 12960–12964 (2016). https://doi.org/10.1002/ange.201606508
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
Y. Xu, X. Wu, X. Ji, The renaissance of proton batteries. Small Struct. 2, 2000113 (2021). https://doi.org/10.1002/sstr.202000113
H. Yu, Y. So, A. Kuwabara, E. Tochigi, N. Shibata et al., Crystalline grain interior confi guration affects lithium migration kinetics in Li-rich layered oxide. Nano Lett. 16, 2907–2915 (2016). https://doi.org/10.1021/acs.nanolett.5b03933
T. Yasuda, M. Watanabe, Protic ionic liquids: fuel cell applications. MRS Bull. 38, 560–566 (2013). https://doi.org/10.1557/mrs.2013.153
S. Dong, W. Shin, H. Jiang, X. Wu, Z. Li et al., Ultra-fast NH4+ storage: strong H bonding between NH4+ and Bi-layered V2O5. Chem 5, 1537–1551 (2019). https://doi.org/10.1016/j.chempr.2019.03.009
T. Xu, D. Wang, Z. Li, Z. Chen, J. Zhang et al., Electrochemical proton storage: from fundamental understanding to materials to devices. Nano-Micro Lett. 14, 1–23 (2022). https://doi.org/10.1007/s40820-022-00864-y
L. Yan, J. Huang, Z. Guo, X. Dong, Z. Wang et al., Solid-state proton battery operated at ultralow temperature. ACS Energy Lett. 685–691 (2020). https://doi.org/10.1021/acsenergylett.0c00109
X. Wang, C. Bommier, Z. Jian, Z. Li, R.S. Chandrabose et al., Hydronium-ion batteries with perylenetetracarboxylic dianhydride crystals as an electrode. Angew. Chem. Int. Ed. 56, 2909–2913 (2017). https://doi.org/10.1002/anie.201700148
Z. Guo, J. Huang, X. Dong, Y. Xia, L. Yan et al., An organic/inorganic electrode-based hydronium-ion battery. Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-14748-5
J. Yu, J. Li, Z.Y. Leong, D. Sheng Li, J. Lu et al., A crystalline dihydroxyanthraquinone anodic material for proton batteries. Mater. Today Energy 22, 100872 (2021). https://doi.org/10.1016/j.mtener.2021.100872
Z. Su, W. Ren, H. Guo, X. Peng, X. Chen et al., Ultrahigh areal capacity hydrogen-ion batteries with MoO3 loading over 90 mg cm−2. Adv. Funct. Mater. 30, 1–8 (2020). https://doi.org/10.1002/adfm.202005477
H. Jiang, W. Shin, L. Ma, J.J. Hong, Z. Wei et al., A high-rate aqueous proton battery delivering power below −78 °C via an unfrozen phosphoric acid. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202000968
X. Wang, Y. Xie, K. Tang, C. Wang, C. Yan, Redox chemistry of molybdenum trioxide for ultrafast hydrogen-ion storage. Angew. Chem. Int. Ed. 57, 11569–11573 (2018). https://doi.org/10.1002/anie.201803664
H. Guo, D. Goonetilleke, N. Sharma, W. Ren, Z. Su et al., Two-phase electrochemical proton transport and storage in α-MoO3 for proton batteries. Cell Rep. Phys. Sci. 1, 100225 (2020). https://doi.org/10.1016/j.xcrp.2020.100225
H. Jiang, J.J. Hong, X. Wu, T.W. Surta, Y. Qi et al., Insights on the proton insertion mechanism in the electrode of hexagonal tungsten oxide hydrate. J. Am. Chem. Soc. 140, 11556–11559 (2018). https://doi.org/10.1021/jacs.8b03959
C. Geng, T. Sun, Z. Wang, J.M. Wu, Y.J. Gu et al., Surface-induced desolvation of hydronium ion enables anatase TiO2 as an efficient anode for proton batteries. Nano Lett. 21, 7021–7029 (2021). https://doi.org/10.1021/acs.nanolett.1c02421
S. Wang, X. Zhao, X. Yan, Z. Xiao, C. Liu et al., Regulating fast anionic redox for high-voltage aqueous hydrogen-ion-based energy storage. Angew. Chem. Int. Ed. 131, 211–216 (2019). https://doi.org/10.1002/ange.201811220
X. Wu, J.J. Hong, W. Shin, L. Ma, T. Liu et al., Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nat. Energy 4, 123–130 (2019). https://doi.org/10.1038/s41560-018-0309-7
X. Peng, H. Guo, W. Ren, Z. Su, C. Zhao, Vanadium hexacyanoferrate as high-capacity cathode for fast proton storage. Chem. Commun. 56, 11803–11806 (2020). https://doi.org/10.1039/d0cc03974h
W. Li, C. Xu, Z. Yang, H. Yu, W. Li et al., Sodium manganese hexacyanoferrate as ultra-high rate host for aqueous proton storage. Electrochim. Acta 401, 139525 (2022). https://doi.org/10.1016/j.electacta.2021.139525
H. Jiang, W. Shin, L. Ma, J.J. Hong, Z. Wei et al., A high-rate aqueous proton battery delivering power below −78 °C via an unfrozen phosphoric acid. Adv. Energy Mater. 10, 1–8 (2020). https://doi.org/10.1002/aenm.202000968
F. Wang, L. Suo, Y. Liang, C. Yang, F. Han et al., Spinel LiNi0.5Mn1.5O4 cathode for high-energy aqueous lithium-ion batteries. Adv. Energy Mater. 7, 3–8 (2017). https://doi.org/10.1002/aenm.201600922
Y. Shen, X. Han, T. Cai, H. Hu, Y. Li et al., High-performance aqueous sodium-ion battery using a hybrid electrolyte with a wide electrochemical stability window. RSC Adv. 10, 25496–25499 (2020). https://doi.org/10.1039/d0ra04640j
J. Li, H. Yan, C. Xu, Y. Liu, X. Zhang et al., Insights into host materials for aqueous proton batteries: structure, mechanism and prospect. Nano Energy (2021). https://doi.org/10.1016/j.nanoen.2021.106400
C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan et al., Prussian blue analogues in aqueous batteries and desalination batteries. Nano-Micro Lett. 13, 166 (2021). https://doi.org/10.1007/s40820-021-00700-9
H. Liu, X. Cai, X. Zhi, S. Di, B. Zhai et al., An amorphous anode for proton battery. Nano-Micro Lett. 15, 24 (2023). https://doi.org/10.1007/s40820-022-00987-2
Z. Su, J. Chen, J. Stansby, C. Jia, T. Zhao et al., Hydrogen-bond disrupting electrolytes for fast and stable proton batteries. Small (2022). https://doi.org/10.1002/smll.202201449
J. Zheng, Y. Hou, Y. Duan, X. Song, Y. Wei et al., Janus solid-liquid interface enabling ultrahigh charging and discharging rate for advanced lithium-ion batteries. Nano Lett. 15, 6102–6109 (2015). https://doi.org/10.1021/acs.nanolett.5b02379
M. Gaberscek, R. Dominko, J. Jamnik, Is small p size more important than carbon coating? An example study on LiFePO4 cathodes. Electrochem. Commun. 9, 2778–2783 (2007). https://doi.org/10.1016/j.elecom.2007.09.020
R. Malik, A. Abdellahi, G. Ceder, A critical review of the Li insertion mechanisms in LiFePO4 electrodes. J. Electrochem. Soc. 160, A3179–A3197 (2013). https://doi.org/10.1149/2.029305jes
Y. Xu, X. Wu, H. Jiang, L. Tang, K.Y. Koga et al., A non-aqueous H3PO4 electrolyte enables stable cycling of proton electrodes. Angew. Chem. Int. Ed. 132, 22191–22195 (2020). https://doi.org/10.1002/ange.202010554
W.A. Donald, R.D. Leib, M. Demireva, J.T.O. Brien, J. Prell et al., Directly relating reduction energies of Gaseous Eu(H2O)n3+, n = 55–140, to aqueous solution: the absolute SHE potential and real proton solvation energy. J. Am. Chem. Soc. (2009). https://doi.org/10.1021/ja902815v
Z. Su, J. Chen, W. Ren, H. Guo, C. Jia et al., “Water-in-sugar” electrolytes enable ultrafast and stable electrochemical naked proton storage. Small (2021). https://doi.org/10.1002/smll.202102375
Z. Su, J. Tang, J. Chen, H. Guo, S. Wu et al., Co-insertion of water with protons into organic electrodes enables high-rate and high-capacity proton batteries. Small Struct. (2023). https://doi.org/10.1002/sstr.202200257
Y. Lu, L. Wang, J. Cheng, J.B. Goodenough, Prussian blue: a new framework of electrode materials for sodium batteries. Chem. Commun. 48, 6544–6546 (2012). https://doi.org/10.1039/c2cc31777j
J.S. Lee, G. Nam, J. Sun, S. Higashi, H.W. Lee et al., Composites of a prussian blue analogue and gelatin-derived nitrogen-doped carbon-supported porous spinel oxides as electrocatalysts for a Zn–air battery. Adv. Energy Mater. 6, 1601052 (2016). https://doi.org/10.1002/aenm.201601052
X. Wu, Y. Xu, H. Jiang, Z. Wei, J.J. Hong et al., NH4+ topotactic insertion in berlin green: an exceptionally long-cycling cathode in aqueous ammonium-ion batteries. ACS Appl. Energy Mater. 1, 3077–3083 (2018). https://doi.org/10.1021/acsaem.8b00789
J. Qiao, M. Qin, Y.M. Shen, J. Cao, Z. Chen et al., A rechargeable aqueous proton battery based on a dipyridophenazine anode and an indium hexacyanoferrate cathode. Chem. Commun. 57, 4307–4310 (2021). https://doi.org/10.1039/d1cc01486b
X. Wu, S. Qiu, Y. Xu, L. Ma, X. Bi et al., Hydrous nickel-iron turnbull’s blue as a high-rate and low-temperature proton electrode. ACS Appl. Mater. Interfaces 12, 9201–9208 (2020). https://doi.org/10.1021/acsami.9b20320
B. Gavriel, G. Bergman, M. Turgeman, A. Nimkar, Y. Elias et al., Aqueous proton batteries based on acetic acid solutions: mechanistic insights. Mater. Today Energy 31, 101189 (2023). https://doi.org/10.1016/j.mtener.2022.101189
K. Xu, Diffusionless charge transfer. Nat. Energy 4, 93–94 (2019). https://doi.org/10.1038/s41560-019-0328-z
W. Luo, M. Allen, V. Raju, X. Ji, An organic pigment as a high-performance cathode for sodium-ion batteries. Adv. Energy Mater. 4, 4–8 (2014). https://doi.org/10.1002/aenm.201400554
I.A. Rodríguez-Pérez, Z. Jian, P.K. Waldenmaier, J.W. Palmisano, R.S. Chandrabose et al., A hydrocarbon cathode for dual-ion batteries. ACS Energy Lett. 1, 719–723 (2016). https://doi.org/10.1021/acsenergylett.6b00300
X. Han, C. Chang, L. Yuan, T. Sun, J. Sun, Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials. Adv. Mater. 19, 1616–1621 (2007). https://doi.org/10.1002/adma.200602584
Y. Liang, Z. Chen, Y. Jing, Y. Rong, A. Facchetti et al., Heavily n-dopable π-conjugated redox polymers with ultrafast energy storage capability. J. Am. Chem. Soc. 137, 4956–4959 (2015). https://doi.org/10.1021/jacs.5b02290
S. Muench, A. Wild, C. Friebe, B. Häupler, T. Janoschka et al., Polymer-based organic batteries. Chem. Rev. 116, 9438–9484 (2016). https://doi.org/10.1021/acs.chemrev.6b00070
Y. Liang, Z. Tao, J. Chen, Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2, 742–769 (2012). https://doi.org/10.1002/aenm.201100795
K. Lin, Q. Chen, M.R. Gerhardt, L. Tong, S.B. Kim et al., Alkaline quinone flow battery. Science 349, 1529–1532 (2015). https://doi.org/10.1126/science.aab3033
Y. Liang, Y. Jing, S. Gheytani, K.Y. Lee, P. Liu et al., Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841–848 (2017). https://doi.org/10.1038/nmat4919
D. Shen, A.M. Rao, J. Zhou, B. Lu, High-potential cathodes with nitrogen active centres for quasi-solid proton-ion batteries. Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/ange.202201972
T. Sun, C. Liu, X.F. Xu, Q. Nian, S. Zheng et al., Insights into the hydronium-ion storage of alloxazine in mild electrolyte. J. Mater. Chem. A 8, 21983–21987 (2020). https://doi.org/10.1039/d0ta09316e
C. Wang, S. Zhao, X. Song, N. Wang, H. Peng et al., Suppressed dissolution and enhanced desolvation in core–shell MoO3@TiO2 nanorods as a high-rate and long-life anode material for proton batteries. Adv. Energy Mater. 12, 1–9 (2022). https://doi.org/10.1002/aenm.202200157
C. Wang, S. Zhao, X. Song, N. Wang, H. Peng et al., Suppressed dissolution and enhanced desolvation in core–shell MoO3@TiO2 nanorods as a high-rate and long-life anode material for proton batteries. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202200157
F. Yue, Z. Tie, S. Deng, S. Wang, M. Yang et al., An ultralow temperature aqueous battery with proton chemistry. Angew. Chem. Int. Ed. 133, 14001–14005 (2021). https://doi.org/10.1002/ange.202103722
D. Wang, T. Xu, M. Zhang, Z. Ren, H. Tong et al., A novel layered WO3 derived from an ion etching engineering for ultrafast proton storage in frozen electrolyte. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202211491
T. Xu, Z. Li, D. Wang, M. Zhang, L. Ai et al., A fast proton-induced pseudocapacitive supercapacitor with high energy and power density. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202107720
F. Yue, Z. Tie, S. Deng, S. Wang, M. Yang et al., An ultralow temperature aqueous battery with proton chemistry. Angew. Chem. Int. Ed. 60, 13882–13886 (2021). https://doi.org/10.1002/anie.202103722
M. Liao, X. Ji, Y. Cao, J. Xu, X. Qiu et al., Solvent-free protic liquid enabling batteries operation at an ultra-wide temperature range. Nat. Commun. 13, 1–9 (2022). https://doi.org/10.1038/s41467-022-33612-2
Z. Tie, S. Deng, H. Cao, M. Yao, Z. Niu et al., A symmetric all-organic proton battery in mild electrolyte. Angew. Chem. Int. Ed. 134, 2115180 (2022). https://doi.org/10.1002/ange.202115180
L. Yuan, J. Hao, C.C. Kao, C. Wu, H.K. Liu et al., Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 14, 5669–5689 (2021). https://doi.org/10.1039/d1ee02021h
Y. Jin, K.S. Han, Y. Shao, M.L. Sushko, J. Xiao et al., Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes. Adv. Funct. Mater. 30, 2003932 (2020). https://doi.org/10.1002/adfm.202003932
Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58, 15841–15847 (2019). https://doi.org/10.1002/anie.201907830
P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60, 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
J. Hao, L. Yuan, C. Ye, D. Chao, K. Davey et al., Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chemie 133, 7442–7451 (2021). https://doi.org/10.1002/ange.202016531
T. Sun, H. Du, S. Zheng, J. Shi, Z. Tao, High power and energy density aqueous proton battery operated at −90 °C. Adv. Funct. Mater. 31, 2010127 (2021). https://doi.org/10.1002/adfm.202010127
B. Yang, T. Qin, Y. Du, Y. Zhang, J. Wang et al., Rocking-chair proton battery based on a low-cost “water in salt” electrolyte. Chem. Commun. 58, 1550–1553 (2022). https://doi.org/10.1039/d1cc06325a
R. Dai, H. Liu, X. Zhi, S. Di, B. Zhai et al., A composite acidic electrolyte for ultra-long-life hydrogen-ion storage. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2022.137655
H. Wang, R. Emanuelsson, C. Karlsson, P. Jannasch, M. Strømme et al., Rocking-chair proton batteries with conducting redox polymer active materials and protic ionic liquid electrolytes. ACS Appl. Mater. Interfaces 13, 19099–19108 (2021). https://doi.org/10.1021/acsami.1c01353
R. Emanuelsson, M. Sterby, M. Strømme, M. Sjödin, An all-organic proton battery. J. Am. Chem. Soc. 139, 4828–4834 (2017). https://doi.org/10.1021/jacs.7b00159
S. Wang, H. Jiang, Y. Dong, D. Clarkson, H. Zhu et al., Acid-in-clay electrolyte for wide-temperature-range and long-cycle proton batteries. Adv. Mater. (2022). https://doi.org/10.1002/adma.202202063
M. Shi, R. Wang, L. Li, N. Chen, P. Xiao et al., Redox-active polymer integrated with MXene for ultra-stable and fast aqueous proton storage. Adv. Funct. Mater. 22, 777 (2022). https://doi.org/10.1002/adfm.202209777
Q. Ni, B. Kim, C. Wu, K. Kang, Non-electrode components for rechargeable aqueous zinc batteries: electrolytes, solid-electrolyte-interphase, current collectors, binders, and separators. Adv. Mater. 34, 2108206 (2022). https://doi.org/10.1002/adma.202108206
T. Hibino, K. Kobayashi, M. Nagao, Y. Yamamoto, Design of a rechargeable fuel-cell battery with enhanced performance and cyclability. J. Electrochem. Soc. 163, A1420–A1428 (2016). https://doi.org/10.1149/2.1341607jes
M. Nagao, K. Kobayashi, Y. Yamamoto, T. Hibino, Rechargeable PEM fuel-cell batteries using quinones as hydrogen carriers. J. Electrochem. Soc. 162, F410–F418 (2015). https://doi.org/10.1149/2.0611504jes
K. Kobayashi, M. Nagao, Y. Yamamoto, P. Heo, T. Hibino, Rechargeable PEM fuel-cell batteries using porous carbon modified with carbonyl groups as anode materials. J. Electrochem. Soc. 162, F868–F877 (2015). https://doi.org/10.1149/2.0581508jes
T. Hibino, K. Kobayashi, M. Nagao, S. Kawasaki, High-temperature supercapacitor with a proton-conducting metal pyrophosphate electrolyte. Sci. Rep. 5, 1–7 (2015). https://doi.org/10.1038/srep07903
X. Yang, Y. Ni, Y. Lu, Q. Zhang, J. Hou et al., Designing quinone-based anodes with rapid kinetics for rechargeable proton batteries. Angew. Chem. Int. Ed. 61, e202209642 (2022). https://doi.org/10.1002/anie.202209642