Solid Additive-Assisted Layer-by-Layer Processing for 19% Efficiency Binary Organic Solar Cells
Corresponding Author: Hongzheng Chen
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 92
Abstract
Morphology is of great significance to the performance of organic solar cells (OSCs), since appropriate morphology could not only promote the exciton dissociation, but also reduce the charge recombination. In this work, we have developed a solid additive-assisted layer-by-layer (SAA-LBL) processing to fabricate high-efficiency OSCs. By adding the solid additive of fatty acid (FA) into polymer donor PM6 solution, controllable pre-phase separation forms between PM6 and FA. This intermixed morphology facilitates the diffusion of acceptor Y6 into the donor PM6 during the LBL processing, due to the good miscibility and fast-solvation of the FA with chloroform solution dripping. Interestingly, this results in the desired morphology with refined phase-separated domain and vertical phase-separation structure to better balance the charge transport /collection and exciton dissociation. Consequently, the binary single junction OSCs based on PM6:Y6 blend reach champion power conversion efficiency (PCE) of 18.16% with SAA-LBL processing, which can be generally applicable to diverse systems, e.g., the PM6:L8-BO-based devices and thick-film devices. The efficacy of SAA-LBL is confirmed in binary OSCs based on PM6:L8-BO, where record PCEs of 19.02% and 16.44% are realized for devices with 100 and 250 nm active layers, respectively. The work provides a simple but effective way to control the morphology for high-efficiency OSCs and demonstrates the SAA-LBL processing a promising methodology for boosting the industrial manufacturing of OSCs.
Highlights:
1 A solid additive-assisted layer-by-layer (SAA-LBL) processing was developed to facilitate the inter-diffusion between polymer donor and acceptor and optimize the morphology of quasi-planar heterojunction for high-performance organic solar cells (OSCs).
2 The pre-phase separation between fatty acid and polymer donor, easily tuned via controlling the cohesive energy, is critical to form the desired vertical phase-separation morphology.
3 The SAA-LBL is generally applicable to various OSC systems, and enables the record efficiency of 19.02% among the binary OSCs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Hong, H. Yao, Y. Cui, P. Bi, T. Zhang et al., 18.5% efficiency organic solar cells with a hybrid planar/bulk heterojunction. Adv. Mater. 33(43), e2103091 (2021). https://doi.org/10.1002/adma.202103091
- R. Sun, T. Wang, X. Yang, Y. Wu, Y. Wang et al., High-speed sequential deposition of photoactive layers for organic solar cell manufacturing. Nat. Energy 7(11), 1087–1099 (2022). https://doi.org/10.1038/s41560-022-01140-4
- X. Zheng, L. Zuo, F. Zhao, Y. Li, T. Chen et al., High-efficiency ito-free organic photovoltaics with superior flexibility and upscalability. Adv. Mater. 34(17), e2200044 (2022). https://doi.org/10.1002/adma.202200044
- H. Mao, L. Zhang, L. Wen, L. Huang, L. Tan et al., Nanoimprint lithography-dependent vertical composition gradient in pseudo-planar heterojunction organic solar cells combined with sequential deposition. Adv. Funct. Mater. 31(1), 2209152 (2022). https://doi.org/10.1002/adfm.202209152
- L. Zhan, S. Yin, Y. Li, S. Li, T. Chen et al., Multiphase morphology with enhanced carrier lifetime via quaternary strategy enables high-efficiency, thick-film, and large-area organic photovoltaics. Adv. Mater. 34(45), e2206269 (2022). https://doi.org/10.1002/adma.202206269
- Y. Li, Y. Guo, Z. Chen, L. Zhan, C. He et al., Mechanism study on organic ternary photovoltaics with 18.3% certified efficiency: from molecule to device. Energy Environ. Sci. 15(2), 855–865 (2022). https://doi.org/10.1039/d1ee02977k
- C. He, Z. Chen, T. Wang, Z. Shen, Y. Li et al., Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18. Nat. Commun. 13(1), 2598 (2022). https://doi.org/10.1038/s41467-022-30225-7
- S. Guan, Y. Li, K. Yan, W. Fu, L. Zuo et al., Balancing the selective absorption and photon-to-electron conversion for semitransparent organic photovoltaics with 5.0% light-utilization efficiency. Adv. Mater. 34(41), e2205844 (2022). https://doi.org/10.1002/adma.202205844
- Y.K. Li, C.L. He, L.J. Zuo, F. Zhao, L.L. Zhan et al., High-performance semi-transparent organic photovoltaic devices via improving absorbing selectivity. Adv. Energy Mater. (2021). https://doi.org/10.1002/aenm.202003408
- L. Zuo, S.B. Jo, Y. Li, Y. Meng, R.J. Stoddard et al., Dilution effect for highly efficient multiple-component organic solar cells. Nat. Nanotechnol. 17(1), 53–60 (2022). https://doi.org/10.1038/s41565-021-01011-1
- J. Wan, Y. Xia, J. Fang, Z. Zhang, B. Xu et al., Solution-processed transparent conducting electrodes for flexible organic solar cells with 16.61% efficiency. Nano-Micro Lett. 13(1), 44 (2021). https://doi.org/10.1007/s40820-020-00566-3
- L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan et al., Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 21(6), 656–663 (2022). https://doi.org/10.1038/s41563-022-01244-y
- L. Zhan, S. Li, Y. Li, R. Sun, J. Min et al., Manipulating charge transfer and transport via intermediary electron acceptor channels enables 19.3% efficiency organic photovoltaics. Adv. Energy Mater. 12(39), 2201076 (2022). https://doi.org/10.1002/aenm.202201076
- C. He, Y. Pan, Y. Ouyang, Q. Shen, Y. Gao et al., Manipulating the d: a interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics. Energy Environ. Sci. 15(6), 2537–2544 (2022). https://doi.org/10.1039/d2ee00595f
- J. Wang, Z. Zheng, Y. Zu, Y. Wang, X. Liu et al., A tandem organic photovoltaic cell with 19.6% efficiency enabled by light distribution control. Adv. Mater. 33(39), e2102787 (2021). https://doi.org/10.1002/adma.202102787
- C.W. Tang, 2-layer organic photovoltaic cell. Appl. Phys. Lett. 48(2), 183–185 (1986). https://doi.org/10.1063/1.96937
- G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells - enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243), 1789–1791 (1995). https://doi.org/10.1126/science.270.5243.1789
- Y. Cai, Y. Li, R. Wang, H. Wu, Z. Chen et al., A well-mixed phase formed by two compatible non-fullerene acceptors enables ternary organic solar cells with efficiency over 18.6. Adv. Mater. 33(33), e2101733 (2021). https://doi.org/10.1002/adma.202101733
- C. He, Z. Bi, Z. Chen, J. Guo, X. Xia et al., Compromising charge generation and recombination with asymmetric molecule for high-performance binary organic photovoltaics with over 18% certified efficiency. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202112511
- L. Zhan, S. Li, Y. Li, R. Sun, J. Min et al., Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric-asymmetric molecule ternary organic photovoltaics. Joule 6(3), 662–675 (2022). https://doi.org/10.1016/j.joule.2022.02.001
- J. Yao, S. Ding, R. Zhang, Y. Bai, Q. Zhou et al., Fluorinated perylene-diimides: cathode interlayers facilitating carrier collection for high-performance organic solar cells. Adv. Mater. 34(32), e2203690 (2022). https://doi.org/10.1002/adma.202203690
- Z.Y. Wang, K. Gao, Y.Y. Kan, M. Zhang, C.Q. Qiu et al., The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances. Nat. Commun. 12(1), 14 (2021). https://doi.org/10.1038/s41467-020-20515-3
- K. Weng, L. Ye, L. Zhu, J. Xu, J. Zhou et al., Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells. Nat. Commun. 11(1), 2855 (2020). https://doi.org/10.1038/s41467-020-16621-x
- K. Jiang, J. Zhang, Z. Peng, F. Lin, S. Wu et al., Pseudo-bilayer architecture enables high-performance organic solar cells with enhanced exciton diffusion length. Nat. Commun. 12(1), 468 (2021). https://doi.org/10.1038/s41467-020-20791-z
- R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu et al., A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency. Joule 4(2), 407–419 (2020). https://doi.org/10.1016/j.joule.2019.12.004
- L. Zhan, S. Li, X. Xia, Y. Li, X. Lu et al., Layer-by-layer processed ternary organic photovoltaics with efficiency over 18. Adv. Mater. 33(12), e2007231 (2021). https://doi.org/10.1002/adma.202007231
- H. Chen, T. Zhao, L. Li, P. Tan, H. Lai et al., 17.6%-efficient quasiplanar heterojunction organic solar cells from a chlorinated 3d network acceptor. Adv. Mater. 33(37), e2102778 (2021). https://doi.org/10.1002/adma.202102778
- D.H. Kim, J. Mei, A.L. Ayzner, K. Schmidt, G. Giri et al., Sequentially solution-processed, nanostructured polymer photovoltaics using selective solvents. Energy Environ. Sci. 7(3), 1103–1109 (2014). https://doi.org/10.1039/c3ee43541e
- M.T. Sajjad, A. Ruseckas, I.D.W. Samuel, Enhancing exciton diffusion length provides new opportunities for organic photovoltaics. Matter 3(2), 341–354 (2020). https://doi.org/10.1016/j.matt.2020.06.028
- Y. Cui, S. Zhang, N. Liang, J. Kong, C. Yang et al., Toward efficient polymer solar cells processed by a solution-processed layer-by-layer approach. Adv. Mater. 30(34), 1802499 (2018). https://doi.org/10.1002/adma.201802499
- R. Sun, J. Guo, C. Sun, T. Wang, Z. Luo et al., A universal layer-by-layer solution-processing approach for efficient non-fullerene organic solar cells. Energy Environ. Sci. 12(1), 384–395 (2019). https://doi.org/10.1039/C8EE02560F
- D. Zhang, W. Zhong, L. Ying, B. Fan, M. Li et al., Overcoming incompatibility of donors and acceptors by constructing planar heterojunction organic solar cells. Nano Energy 85, 105957 (2021). https://doi.org/10.1016/j.nanoen.2021.105957
- Y. Zhang, K. Liu, J. Huang, X. Xia, J. Cao et al., Graded bulk-heterojunction enables 17% binary organic solar cells via nonhalogenated open air coating. Nat. Commun. 12(1), 4815 (2021). https://doi.org/10.1038/s41467-021-25148-8
- I. Riedel, J. Parisi, V. Dyakonov, L. Lutsen, D. Vanderzande et al., Effect of temperature and illumination on the electrical characteristics of polymer–fullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 14(1), 38–44 (2004). https://doi.org/10.1002/adfm.200304399
- H. Fu, W. Gao, Y. Li, F. Lin, X. Wu et al., A generally applicable approach using sequential deposition to enable highly efficient organic solar cells. Small Methods 4(12), 2000687 (2020). https://doi.org/10.1002/smtd.202000687
- M. Ren, G. Zhang, Z. Chen, J. Xiao, X. Jiao et al., High-performance ternary organic solar cells with controllable morphology via sequential layer-by-layer deposition. ACS Appl. Mater. Interfaces 12(11), 13077–13086 (2020). https://doi.org/10.1021/acsami.9b23011
- X. Xu, L. Yu, H. Meng, L. Dai, H. Yan et al., Polymer solar cells with 18.74% efficiency: from bulk heterojunction to interdigitated bulk heterojunction. Adv. Funct. Mater. 32(4), 2108797 (2021). https://doi.org/10.1002/adfm.202108797
- C. He, Y. Pan, G. Lu, B. Wu, X. Xia et al., Versatile sequential casting processing for highly efficient and stable binary organic photovoltaics. Adv. Mater. 34(33), e2203379 (2022). https://doi.org/10.1002/adma.202203379
- Q.N. He, W.P. Sheng, M. Zhang, G.D. Xu, P.P. Zhu et al., Revealing morphology evolution in highly efficient bulk heterojunction and pseudo-planar heterojunction solar cells by additives treatment. Adv. Energy Mater. 11(7), 2003390 (2021). https://doi.org/10.1002/aenm.202003390
- T. Liu, L.J. Huo, S. Chandrabose, K. Chen, G.C. Han et al., Optimized fibril network morphology by precise side-chain engineering to achieve high-performance bulk-heterojunction organic solar cells. Adv. Mater. 30(26), 8 (2018). https://doi.org/10.1002/adma.201707353
- X. Xia, T.K. Lau, X. Guo, Y. Li, M. Qin et al., Uncovering the out-of-plane nanomorphology of organic photovoltaic bulk heterojunction by GTSAXS. Nat. Commun. 12(1), 6226 (2021). https://doi.org/10.1038/s41467-021-26510-6
- D.K. Owens, R.C. Wendt, Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13(8), 1741–1747 (1969). https://doi.org/10.1002/app.1969.070130815
- M. Zhang, L. Zhu, T. Hao, G. Zhou, C. Qiu et al., High-efficiency organic photovoltaics using eutectic acceptor fibrils to achieve current amplification. Adv. Mater. 33(18), e2007177 (2021). https://doi.org/10.1002/adma.202007177
- Z. Chen, X. Chen, B. Qiu, G. Zhou, Z. Jia et al., Ultrafast hole transfer and carrier transport controlled by nanoscale-phase morphology in nonfullerene organic solar cells. J. Phys. Chem. Lett. 11(9), 3226–3233 (2020). https://doi.org/10.1021/acs.jpclett.0c00919
- S. Li, L. Zhan, C. Sun, H. Zhu, G. Zhou, H. Chen et al., Highly efficient fullerene-free organic solar cells operate at near zero highest occupied molecular orbital offsets. J. Am. Chem. Soc. 141(7), 3073–3082 (2019). https://doi.org/10.1021/jacs.8b12126
- Y. Cai, Q. Li, G. Lu, H.S. Ryu, Y. Li et al., Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers. Nat. Commun. 13(1), 2369 (2022). https://doi.org/10.1038/s41467-022-29803-6
References
L. Hong, H. Yao, Y. Cui, P. Bi, T. Zhang et al., 18.5% efficiency organic solar cells with a hybrid planar/bulk heterojunction. Adv. Mater. 33(43), e2103091 (2021). https://doi.org/10.1002/adma.202103091
R. Sun, T. Wang, X. Yang, Y. Wu, Y. Wang et al., High-speed sequential deposition of photoactive layers for organic solar cell manufacturing. Nat. Energy 7(11), 1087–1099 (2022). https://doi.org/10.1038/s41560-022-01140-4
X. Zheng, L. Zuo, F. Zhao, Y. Li, T. Chen et al., High-efficiency ito-free organic photovoltaics with superior flexibility and upscalability. Adv. Mater. 34(17), e2200044 (2022). https://doi.org/10.1002/adma.202200044
H. Mao, L. Zhang, L. Wen, L. Huang, L. Tan et al., Nanoimprint lithography-dependent vertical composition gradient in pseudo-planar heterojunction organic solar cells combined with sequential deposition. Adv. Funct. Mater. 31(1), 2209152 (2022). https://doi.org/10.1002/adfm.202209152
L. Zhan, S. Yin, Y. Li, S. Li, T. Chen et al., Multiphase morphology with enhanced carrier lifetime via quaternary strategy enables high-efficiency, thick-film, and large-area organic photovoltaics. Adv. Mater. 34(45), e2206269 (2022). https://doi.org/10.1002/adma.202206269
Y. Li, Y. Guo, Z. Chen, L. Zhan, C. He et al., Mechanism study on organic ternary photovoltaics with 18.3% certified efficiency: from molecule to device. Energy Environ. Sci. 15(2), 855–865 (2022). https://doi.org/10.1039/d1ee02977k
C. He, Z. Chen, T. Wang, Z. Shen, Y. Li et al., Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18. Nat. Commun. 13(1), 2598 (2022). https://doi.org/10.1038/s41467-022-30225-7
S. Guan, Y. Li, K. Yan, W. Fu, L. Zuo et al., Balancing the selective absorption and photon-to-electron conversion for semitransparent organic photovoltaics with 5.0% light-utilization efficiency. Adv. Mater. 34(41), e2205844 (2022). https://doi.org/10.1002/adma.202205844
Y.K. Li, C.L. He, L.J. Zuo, F. Zhao, L.L. Zhan et al., High-performance semi-transparent organic photovoltaic devices via improving absorbing selectivity. Adv. Energy Mater. (2021). https://doi.org/10.1002/aenm.202003408
L. Zuo, S.B. Jo, Y. Li, Y. Meng, R.J. Stoddard et al., Dilution effect for highly efficient multiple-component organic solar cells. Nat. Nanotechnol. 17(1), 53–60 (2022). https://doi.org/10.1038/s41565-021-01011-1
J. Wan, Y. Xia, J. Fang, Z. Zhang, B. Xu et al., Solution-processed transparent conducting electrodes for flexible organic solar cells with 16.61% efficiency. Nano-Micro Lett. 13(1), 44 (2021). https://doi.org/10.1007/s40820-020-00566-3
L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan et al., Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 21(6), 656–663 (2022). https://doi.org/10.1038/s41563-022-01244-y
L. Zhan, S. Li, Y. Li, R. Sun, J. Min et al., Manipulating charge transfer and transport via intermediary electron acceptor channels enables 19.3% efficiency organic photovoltaics. Adv. Energy Mater. 12(39), 2201076 (2022). https://doi.org/10.1002/aenm.202201076
C. He, Y. Pan, Y. Ouyang, Q. Shen, Y. Gao et al., Manipulating the d: a interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics. Energy Environ. Sci. 15(6), 2537–2544 (2022). https://doi.org/10.1039/d2ee00595f
J. Wang, Z. Zheng, Y. Zu, Y. Wang, X. Liu et al., A tandem organic photovoltaic cell with 19.6% efficiency enabled by light distribution control. Adv. Mater. 33(39), e2102787 (2021). https://doi.org/10.1002/adma.202102787
C.W. Tang, 2-layer organic photovoltaic cell. Appl. Phys. Lett. 48(2), 183–185 (1986). https://doi.org/10.1063/1.96937
G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells - enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243), 1789–1791 (1995). https://doi.org/10.1126/science.270.5243.1789
Y. Cai, Y. Li, R. Wang, H. Wu, Z. Chen et al., A well-mixed phase formed by two compatible non-fullerene acceptors enables ternary organic solar cells with efficiency over 18.6. Adv. Mater. 33(33), e2101733 (2021). https://doi.org/10.1002/adma.202101733
C. He, Z. Bi, Z. Chen, J. Guo, X. Xia et al., Compromising charge generation and recombination with asymmetric molecule for high-performance binary organic photovoltaics with over 18% certified efficiency. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202112511
L. Zhan, S. Li, Y. Li, R. Sun, J. Min et al., Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric-asymmetric molecule ternary organic photovoltaics. Joule 6(3), 662–675 (2022). https://doi.org/10.1016/j.joule.2022.02.001
J. Yao, S. Ding, R. Zhang, Y. Bai, Q. Zhou et al., Fluorinated perylene-diimides: cathode interlayers facilitating carrier collection for high-performance organic solar cells. Adv. Mater. 34(32), e2203690 (2022). https://doi.org/10.1002/adma.202203690
Z.Y. Wang, K. Gao, Y.Y. Kan, M. Zhang, C.Q. Qiu et al., The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances. Nat. Commun. 12(1), 14 (2021). https://doi.org/10.1038/s41467-020-20515-3
K. Weng, L. Ye, L. Zhu, J. Xu, J. Zhou et al., Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells. Nat. Commun. 11(1), 2855 (2020). https://doi.org/10.1038/s41467-020-16621-x
K. Jiang, J. Zhang, Z. Peng, F. Lin, S. Wu et al., Pseudo-bilayer architecture enables high-performance organic solar cells with enhanced exciton diffusion length. Nat. Commun. 12(1), 468 (2021). https://doi.org/10.1038/s41467-020-20791-z
R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu et al., A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency. Joule 4(2), 407–419 (2020). https://doi.org/10.1016/j.joule.2019.12.004
L. Zhan, S. Li, X. Xia, Y. Li, X. Lu et al., Layer-by-layer processed ternary organic photovoltaics with efficiency over 18. Adv. Mater. 33(12), e2007231 (2021). https://doi.org/10.1002/adma.202007231
H. Chen, T. Zhao, L. Li, P. Tan, H. Lai et al., 17.6%-efficient quasiplanar heterojunction organic solar cells from a chlorinated 3d network acceptor. Adv. Mater. 33(37), e2102778 (2021). https://doi.org/10.1002/adma.202102778
D.H. Kim, J. Mei, A.L. Ayzner, K. Schmidt, G. Giri et al., Sequentially solution-processed, nanostructured polymer photovoltaics using selective solvents. Energy Environ. Sci. 7(3), 1103–1109 (2014). https://doi.org/10.1039/c3ee43541e
M.T. Sajjad, A. Ruseckas, I.D.W. Samuel, Enhancing exciton diffusion length provides new opportunities for organic photovoltaics. Matter 3(2), 341–354 (2020). https://doi.org/10.1016/j.matt.2020.06.028
Y. Cui, S. Zhang, N. Liang, J. Kong, C. Yang et al., Toward efficient polymer solar cells processed by a solution-processed layer-by-layer approach. Adv. Mater. 30(34), 1802499 (2018). https://doi.org/10.1002/adma.201802499
R. Sun, J. Guo, C. Sun, T. Wang, Z. Luo et al., A universal layer-by-layer solution-processing approach for efficient non-fullerene organic solar cells. Energy Environ. Sci. 12(1), 384–395 (2019). https://doi.org/10.1039/C8EE02560F
D. Zhang, W. Zhong, L. Ying, B. Fan, M. Li et al., Overcoming incompatibility of donors and acceptors by constructing planar heterojunction organic solar cells. Nano Energy 85, 105957 (2021). https://doi.org/10.1016/j.nanoen.2021.105957
Y. Zhang, K. Liu, J. Huang, X. Xia, J. Cao et al., Graded bulk-heterojunction enables 17% binary organic solar cells via nonhalogenated open air coating. Nat. Commun. 12(1), 4815 (2021). https://doi.org/10.1038/s41467-021-25148-8
I. Riedel, J. Parisi, V. Dyakonov, L. Lutsen, D. Vanderzande et al., Effect of temperature and illumination on the electrical characteristics of polymer–fullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 14(1), 38–44 (2004). https://doi.org/10.1002/adfm.200304399
H. Fu, W. Gao, Y. Li, F. Lin, X. Wu et al., A generally applicable approach using sequential deposition to enable highly efficient organic solar cells. Small Methods 4(12), 2000687 (2020). https://doi.org/10.1002/smtd.202000687
M. Ren, G. Zhang, Z. Chen, J. Xiao, X. Jiao et al., High-performance ternary organic solar cells with controllable morphology via sequential layer-by-layer deposition. ACS Appl. Mater. Interfaces 12(11), 13077–13086 (2020). https://doi.org/10.1021/acsami.9b23011
X. Xu, L. Yu, H. Meng, L. Dai, H. Yan et al., Polymer solar cells with 18.74% efficiency: from bulk heterojunction to interdigitated bulk heterojunction. Adv. Funct. Mater. 32(4), 2108797 (2021). https://doi.org/10.1002/adfm.202108797
C. He, Y. Pan, G. Lu, B. Wu, X. Xia et al., Versatile sequential casting processing for highly efficient and stable binary organic photovoltaics. Adv. Mater. 34(33), e2203379 (2022). https://doi.org/10.1002/adma.202203379
Q.N. He, W.P. Sheng, M. Zhang, G.D. Xu, P.P. Zhu et al., Revealing morphology evolution in highly efficient bulk heterojunction and pseudo-planar heterojunction solar cells by additives treatment. Adv. Energy Mater. 11(7), 2003390 (2021). https://doi.org/10.1002/aenm.202003390
T. Liu, L.J. Huo, S. Chandrabose, K. Chen, G.C. Han et al., Optimized fibril network morphology by precise side-chain engineering to achieve high-performance bulk-heterojunction organic solar cells. Adv. Mater. 30(26), 8 (2018). https://doi.org/10.1002/adma.201707353
X. Xia, T.K. Lau, X. Guo, Y. Li, M. Qin et al., Uncovering the out-of-plane nanomorphology of organic photovoltaic bulk heterojunction by GTSAXS. Nat. Commun. 12(1), 6226 (2021). https://doi.org/10.1038/s41467-021-26510-6
D.K. Owens, R.C. Wendt, Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13(8), 1741–1747 (1969). https://doi.org/10.1002/app.1969.070130815
M. Zhang, L. Zhu, T. Hao, G. Zhou, C. Qiu et al., High-efficiency organic photovoltaics using eutectic acceptor fibrils to achieve current amplification. Adv. Mater. 33(18), e2007177 (2021). https://doi.org/10.1002/adma.202007177
Z. Chen, X. Chen, B. Qiu, G. Zhou, Z. Jia et al., Ultrafast hole transfer and carrier transport controlled by nanoscale-phase morphology in nonfullerene organic solar cells. J. Phys. Chem. Lett. 11(9), 3226–3233 (2020). https://doi.org/10.1021/acs.jpclett.0c00919
S. Li, L. Zhan, C. Sun, H. Zhu, G. Zhou, H. Chen et al., Highly efficient fullerene-free organic solar cells operate at near zero highest occupied molecular orbital offsets. J. Am. Chem. Soc. 141(7), 3073–3082 (2019). https://doi.org/10.1021/jacs.8b12126
Y. Cai, Q. Li, G. Lu, H.S. Ryu, Y. Li et al., Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers. Nat. Commun. 13(1), 2369 (2022). https://doi.org/10.1038/s41467-022-29803-6