Ionic Liquid Assisted Imprint for Efficient and Stable Quasi-2D Perovskite Solar Cells with Controlled Phase Distribution
Corresponding Author: Yiwang Chen
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 91
Abstract
Although two-dimensional perovskite devices are highly stable, they also lead to a number of challenges. For instance, the introduction of large organic amines makes crystallization process complicated, causing problems such as generally small grain size and blocked charge transfer. In this work, imprint assisted with methylamine acetate were used to improve the morphology of the film, optimize the internal phase distribution, and enhance the charge transfer of the perovskite film. Specifically, imprint promoted the dispersion of spacer cations in the recrystallization process with the assistance of methylamine acetate, thus inhibited the formation of low-n phase induced by the aggregation of spacer cations and facilitated the formation of 3D-like phase. In this case, the corresponding quasi-2D perovskite solar cells delivered improved efficiency and exhibited superior stability. Our work provides an effective strategy to obtain uniform phase distribution for quasi-2D perovskite.
Highlights:
1 The strategy of imprint assisted with methylamine acetate effectively ameliorates the morphology of the film, optimize the internal phase distribution, and enhance the charge transfer of the perovskite film.
2 The combination of imprinting with additive engineering improves the phase distribution within quasi-2D perovskite and promote the carrier transport, resulting in a power conversion efficiency of 18.96% with specific good reproducibility.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Meng, Z. Xing, X. Hu, Y. Chen, Large-area flexible organic solar cells: printing technologies and modular design. Chinese J. Polym. Sci. 40, 1522–1566 (2022). https://doi.org/10.1007/s10118-022-2803-4
- H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
- Y. Zhuang, P. Ma, J. Shi, H. Lin, G. You et al., Stability Improvement of 2D perovskite by fluorinated-insulator. Adv. Mater. Interfaces 8(20), 2101343 (2021). https://doi.org/10.1002/admi.202101343
- L. Liu, H. Xiao, K. Jin, Z. Xiao, X. Du et al., 4-Terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency. Nano-Micro Lett. 15, 23 (2023). https://doi.org/10.1007/s40820-022-00995-2
- T.A. Berhe, W.N. Su, C.H. Chen, C.J. Pan, J.H. Cheng et al., Organometal halide perovskite solar cells: degradation and stability. Energy Environ. Sci. 9, 323–356 (2016). https://doi.org/10.1039/C5EE02733K
- Y. Wang, T. Wu, J. Barbaud, W. Kong, D. Cui et al., Stabilizing heterostructures of soft perovskite semiconductors. Science 365(6454), 687–691 (2019). https://doi.org/10.1126/science.aax8018
- Y. Wang, Y. Yue, X. Yang, L. Han, Toward long-term stable and highly efficient perovskite solar cells via effective charge transporting materials. Adv. Energy Mater. 8(22), 1800249 (2018). https://doi.org/10.1002/aenm.201800249
- T. Leijtens, G.E. Eperon, N.K. Noel, S.N. Habisreutinger, A. Petrozza et al., Stability of metal halide perovskite solar cells. Adv. Energy Mater. 5(22), 1500963 (2015). https://doi.org/10.1002/aenm.201500963
- B. Li, Z. Li, X. Wu, Z. Zhu, Interface functionalization in inverted perovskite solar cells: From material perspective. Nano Res. Energy 1, e9120011 (2022). https://doi.org/10.26599/NRE.2022.9120011
- G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee et al., One-Year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017). https://doi.org/10.1038/ncomms15684
- I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chemie - Int. Ed. 53(42), 11232–11235 (2014). https://doi.org/10.1002/anie.201406466
- Y. Chen, Y. Sun, J. Peng, J. Tang, K. Zheng et al., 2D ruddlesden–popper perovskites for optoelectronics. Adv. Mater. 30(2), 1703487 (2018). https://doi.org/10.1002/adma.201703487
- X. Tang, X. Wang, T. Hu, Q. Fu, X. Hu et al., Concerted regulation on vertical orientation and film quality of two-dimensional ruddlesden-popper perovskite layer for efficient solar cells. Sci. China Chem. 63, 1675–1683 (2020). https://doi.org/10.1007/s11426-020-9812-6
- C. Liu, Z. Fang, J. Sun, Q. Lou, J. Ge et al., Imidazolium ionic liquid as organic spacer for tuning the excitonic structure of 2D perovskite materials. ACS Energy Lett. 5(11), 3617–3627 (2020). https://doi.org/10.1021/acsenergylett.0c01784
- C. Jiang, J. Zhou, H. Li, L. Tan, M. Li et al., Double layer composite electrode strategy for efficient perovskite solar cells with excellent reverse-bias stability. Nano-Micro Lett. 15, 12 (2023). https://doi.org/10.1007/s40820-022-00985-4
- X. Lian, H. Wu, L. Zuo, G. Zhou, X. Wen et al., Stable quasi-2D perovskite solar cells with efficiency over 18% enabled by heat–light Co-treatment. Adv. Funct. Mater. 30(48), 2004188 (2020). https://doi.org/10.1002/adfm.202004188
- Z. Li, Z. Xing, H. Peng, X. Meng, D. Li et al., Reactive inhibition strategy for triple-cation mixed-halide perovskite ink with prolonged shelf-life. Adv. Energy Mater. 12(28), 2200650 (2022). https://doi.org/10.1002/aenm.202200650
- S. Yang, Y. Wang, P. Liu, Y.B. Cheng, H.J. Zhao et al., Functionalization of perovskite thin films with moisture-tolerant molecules. Nat. Energy 1, 15016 (2016). https://doi.org/10.1038/nenergy.2015.16
- B. Saparov, D.B. Mitzi, Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116(7), 4558–4596 (2016). https://doi.org/10.1021/acs.chemrev.5b00715
- W. Peng, J. Yin, K.T. Ho, O. Ouellette, M. De Bastiani et al., Ultralow self-doping in two-dimensional hybrid perovskite single crystals. Nano Lett. 17(8), 4759–4767 (2017). https://doi.org/10.1021/acs.nanolett.7b01475
- Z. Cheng, J. Lin, Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm 12(10), 2646–2662 (2010). https://doi.org/10.1039/C001929A
- Y. Lin, Y. Bai, Y. Fang, Z. Chen, S. Yang et al., Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures. J. Phys. Chem. Lett. 9(3), 654–658 (2018). https://doi.org/10.1021/acs.jpclett.7b02679
- C.C. Stoumpos, D.H. Cao, D.J. Clark, J. Young, J.M. Rondinelli et al., Ruddlesden–popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28(8), 2852–2867 (2016). https://doi.org/10.1021/acs.chemmater.6b00847
- M. Cinquino, A. Fieramosca, R. Mastria, L. Polimeno, A. Moliterni et al., Managing growth and dimensionality of quasi 2D perovskite single-crystalline flakes for tunable excitons orientation. Adv. Mater. 33(48), 2102326 (2021). https://doi.org/10.1002/adma.202102326
- W. Yan, S. Ye, Y. Li, W. Sun, H. Rao et al., Hole-transporting materials in inverted planar perovskite solar cells. Adv. Energy Mater. 6(17), 1600474 (2016). https://doi.org/10.1002/aenm.201600474
- J. Yang, C. Liu, C. Cai, X. Hu, Z. Huang et al., High-performance perovskite solar cells with excellent humidity and thermo-stability via fluorinated perylenediimide. Adv. Energy Mater. 9(18), 1900198 (2019). https://doi.org/10.1002/aenm.201900198
- H. Zheng, L. Zhu, L. Hu, S. Yang, S. Chen et al., Promoting perovskite crystal growth to achieve highly efficient and stable solar cells by introducing acetamide as an additive. J. Mater. Chem. A 6(21), 9930–9937 (2018). https://doi.org/10.1039/C8TA02121J
- J.W. Lee, S.H. Bae, Y.T. Hsieh, N. De Marco, M. Wang et al., A bifunctional lewis base additive for microscopic homogeneity in perovskite solar cells. Chem 3(2), 290–302 (2017). https://doi.org/10.1016/j.chempr.2017.05.020
- H.C. Weerasinghe, Y. Dkhissi, A.D. Scully, R.A. Caruso, Y.B. Cheng, Encapsulation for improving the lifetime of flexible perovskite solar cells. Nano Energy 18, 118–125 (2015). https://doi.org/10.1016/j.nanoen.2015.10.006
- D. Li, Z. Xing, L. Huang, X. Meng, X. Hu et al., Spontaneous formation of upper gradient 2D structure for efficient and stable quasi-2D perovskites. Adv. Mater. 33(34), 2101823 (2021). https://doi.org/10.1002/adma.202101823
- X. Zhang, G. Wu, W. Fu, M. Qin, W. Yang et al., Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11%. Adv. Energy Mater. 8(14), 1702498 (2018). https://doi.org/10.1002/aenm.201702498
- X. Zhang, G. Wu, S. Yang, W. Fu, Z. Zhang et al., Vertically oriented 2D layered perovskite solar cells with enhanced efficiency and good stability. Small 13(33), 1700611 (2017). https://doi.org/10.1002/smll.201700611
- M. Shao, T. Bie, L. Yang, Y. Gao, X. Jin et al., Over 21% Efficiency stable 2D perovskite solar cells. Adv. Mater. 34(1), 2107211 (2022). https://doi.org/10.1002/adma.202107211
- L. Kong, X. Zhang, Y. Li, H. Wang, Y. Jiang et al., Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nat. Commun. 12, 1246 (2021). https://doi.org/10.1038/s41467-021-21522-8
- C. Liang, H. Gu, Y. Xia, Z. Wang, X. Liu et al., Two-dimensional Ruddlesden-Popper layered perovskite solar cells based on phase-pure thin films. Nat. Energy 6, 38–45 (2021). https://doi.org/10.1038/s41560-020-00721-5
- W. Kim, M.S. Jung, S. Lee, Y.J. Choi, J.K. Kim et al., Oriented grains with preferred low-angle grain boundaries in halide perovskite films by pressure-induced crystallization. Adv. Energy Mater. 8(10), 1702369 (2018). https://doi.org/10.1002/aenm.201702369
- L. Huang, Z. Xing, X. Tang, D. Li, X. Meng et al., Toward efficient perovskite solar cells by planar imprint for improved perovskite film quality and granted bifunctional barrier. J. Mater. Chem. A 9(29), 16178–16186 (2021). https://doi.org/10.1039/d1ta04520b
- D.P. Mcmeekin, Z. Wang, W. Rehman, F. Pulvirenti, J.B. Patel et al., Crystallization kinetics and morphology control of formamidinium–cesium mixed-cation lead mixed-halide perovskite via tunability of the colloidal precursor solution. Adv. Mater. 29(29), 1607039 (2017). https://doi.org/10.1002/adma.201607039
- K. Yan, M. Long, T. Zhang, Z. Wei, H. Chen et al., Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. J. Am. Chem. Soc. 137(13), 4460–4468 (2015). https://doi.org/10.1021/jacs.5b00321
- G. Lv, L. Li, D. Lu, Z. Xu, Y. Dong et al., Multiple-noncovalent-interaction-stabilized layered dion–jacobson perovskite for efficient solar cells. Nano Lett. 21(13), 5788–5797 (2021). https://doi.org/10.1021/acs.nanolett.1c01505
- J. Liu, J. Leng, K. Wu, J. Zhang, S. Jin, Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films. J. Am. Chem. Soc. 139(4), 1432–1435 (2017). https://doi.org/10.1021/jacs.6b12581
- H. Tsai, R. Asadpour, J.C. Blancon, C.C. Stoumpos, J. Even et al., Design principles for electronic charge transport in solution-processed vertically stacked 2D perovskite quantum wells. Nat. Commun. 9, 2130 (2018). https://doi.org/10.1038/s41467-018-04430-2
- H. Tsai, W. Nie, J.C. Blancon, C.C. Stoumpos, R. Asadpour et al., High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 536, 312–316 (2016). https://doi.org/10.1038/nature18306
- L.N. Quan, M. Yuan, R. Comin, O. Voznyy, E.M. Beauregard et al., Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138(8), 2649–2655 (2016). https://doi.org/10.1021/jacs.5b11740
- H. Chen, S. Teale, B. Chen, Y. Hou, L. Grater et al., Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16, 352–358 (2022). https://doi.org/10.1038/s41566-022-00985-1
- S. Draguta, O. Sharia, S.J. Yoon, M.C. Brennan, Y.V. Morozov et al., Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites. Nat. Commun. 8, 200 (2017). https://doi.org/10.1038/s41467-017-00284-2
- S. Wu, J. Zhang, Z. Li, D. Liu, M. Qin et al., Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells. Joule 4(6), 1248–1262 (2020). https://doi.org/10.1016/j.joule.2020.04.001
- M.C. Brennan, S. Draguta, P.V. Kamat, M. Kuno, Light-induced anion phase segregation in mixed halide perovskites. ACS Energy Lett. 3(1), 204–213 (2018). https://doi.org/10.1021/acsenergylett.7b01151
- Y. Yang, C. Liu, O.A. Syzgantseva, M.A. Syzgantseva, S. Ma et al., Defect suppression in oriented 2D perovskite solar cells with efficiency over 18% via rerouting crystallization pathway. Adv. Energy Mater. 11(1), 2002966 (2021). https://doi.org/10.1002/aenm.202002966
- J. Li, L. Zuo, H. Wu, B. Niu, S. Shan et al., Universal bottom contact modification with diverse 2D spacers for high-performance inverted perovskite solar cells. Adv. Funct. Mater. 31(35), 2104036 (2021). https://doi.org/10.1002/adfm.202104036
- W. Wang, Z. Su, B. Sun, L. Tao, H. Gu et al., Toward efficient and stable perovskite solar cells by 2D interface energy band alignment. Adv. Mater. Interfaces 8(1), 2001683 (2021). https://doi.org/10.1002/admi.202001683
- H. Zheng, W. Wu, H. Xu, F. Zheng, G. Liu et al., Self-additive low-dimensional ruddlesden–popper perovskite by the incorporation of glycine hydrochloride for high-performance and stable solar cells. Adv. Funct. Mater. 30(15), 2000034 (2020). https://doi.org/10.1002/adfm.202000034
- H. Lai, B. Kan, T. Liu, N. Zheng, Z. Xie et al., Two-dimensional ruddlesden–popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%. J. Am. Chem. Soc. 140(37), 11639–11646 (2018). https://doi.org/10.1021/jacs.8b04604
- C. Gong, C. Zhang, Q. Zhuang, H. Li, H. Yang et al., Stabilizing buried interface via synergistic effect of fluorine and sulfonyl functional groups toward efficient and stable perovskite solar cells. Nano-Micro Lett. 15, 17 (2023). https://doi.org/10.1007/s40820-022-00992-5
References
X. Meng, Z. Xing, X. Hu, Y. Chen, Large-area flexible organic solar cells: printing technologies and modular design. Chinese J. Polym. Sci. 40, 1522–1566 (2022). https://doi.org/10.1007/s10118-022-2803-4
H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
Y. Zhuang, P. Ma, J. Shi, H. Lin, G. You et al., Stability Improvement of 2D perovskite by fluorinated-insulator. Adv. Mater. Interfaces 8(20), 2101343 (2021). https://doi.org/10.1002/admi.202101343
L. Liu, H. Xiao, K. Jin, Z. Xiao, X. Du et al., 4-Terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency. Nano-Micro Lett. 15, 23 (2023). https://doi.org/10.1007/s40820-022-00995-2
T.A. Berhe, W.N. Su, C.H. Chen, C.J. Pan, J.H. Cheng et al., Organometal halide perovskite solar cells: degradation and stability. Energy Environ. Sci. 9, 323–356 (2016). https://doi.org/10.1039/C5EE02733K
Y. Wang, T. Wu, J. Barbaud, W. Kong, D. Cui et al., Stabilizing heterostructures of soft perovskite semiconductors. Science 365(6454), 687–691 (2019). https://doi.org/10.1126/science.aax8018
Y. Wang, Y. Yue, X. Yang, L. Han, Toward long-term stable and highly efficient perovskite solar cells via effective charge transporting materials. Adv. Energy Mater. 8(22), 1800249 (2018). https://doi.org/10.1002/aenm.201800249
T. Leijtens, G.E. Eperon, N.K. Noel, S.N. Habisreutinger, A. Petrozza et al., Stability of metal halide perovskite solar cells. Adv. Energy Mater. 5(22), 1500963 (2015). https://doi.org/10.1002/aenm.201500963
B. Li, Z. Li, X. Wu, Z. Zhu, Interface functionalization in inverted perovskite solar cells: From material perspective. Nano Res. Energy 1, e9120011 (2022). https://doi.org/10.26599/NRE.2022.9120011
G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee et al., One-Year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017). https://doi.org/10.1038/ncomms15684
I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chemie - Int. Ed. 53(42), 11232–11235 (2014). https://doi.org/10.1002/anie.201406466
Y. Chen, Y. Sun, J. Peng, J. Tang, K. Zheng et al., 2D ruddlesden–popper perovskites for optoelectronics. Adv. Mater. 30(2), 1703487 (2018). https://doi.org/10.1002/adma.201703487
X. Tang, X. Wang, T. Hu, Q. Fu, X. Hu et al., Concerted regulation on vertical orientation and film quality of two-dimensional ruddlesden-popper perovskite layer for efficient solar cells. Sci. China Chem. 63, 1675–1683 (2020). https://doi.org/10.1007/s11426-020-9812-6
C. Liu, Z. Fang, J. Sun, Q. Lou, J. Ge et al., Imidazolium ionic liquid as organic spacer for tuning the excitonic structure of 2D perovskite materials. ACS Energy Lett. 5(11), 3617–3627 (2020). https://doi.org/10.1021/acsenergylett.0c01784
C. Jiang, J. Zhou, H. Li, L. Tan, M. Li et al., Double layer composite electrode strategy for efficient perovskite solar cells with excellent reverse-bias stability. Nano-Micro Lett. 15, 12 (2023). https://doi.org/10.1007/s40820-022-00985-4
X. Lian, H. Wu, L. Zuo, G. Zhou, X. Wen et al., Stable quasi-2D perovskite solar cells with efficiency over 18% enabled by heat–light Co-treatment. Adv. Funct. Mater. 30(48), 2004188 (2020). https://doi.org/10.1002/adfm.202004188
Z. Li, Z. Xing, H. Peng, X. Meng, D. Li et al., Reactive inhibition strategy for triple-cation mixed-halide perovskite ink with prolonged shelf-life. Adv. Energy Mater. 12(28), 2200650 (2022). https://doi.org/10.1002/aenm.202200650
S. Yang, Y. Wang, P. Liu, Y.B. Cheng, H.J. Zhao et al., Functionalization of perovskite thin films with moisture-tolerant molecules. Nat. Energy 1, 15016 (2016). https://doi.org/10.1038/nenergy.2015.16
B. Saparov, D.B. Mitzi, Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116(7), 4558–4596 (2016). https://doi.org/10.1021/acs.chemrev.5b00715
W. Peng, J. Yin, K.T. Ho, O. Ouellette, M. De Bastiani et al., Ultralow self-doping in two-dimensional hybrid perovskite single crystals. Nano Lett. 17(8), 4759–4767 (2017). https://doi.org/10.1021/acs.nanolett.7b01475
Z. Cheng, J. Lin, Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm 12(10), 2646–2662 (2010). https://doi.org/10.1039/C001929A
Y. Lin, Y. Bai, Y. Fang, Z. Chen, S. Yang et al., Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures. J. Phys. Chem. Lett. 9(3), 654–658 (2018). https://doi.org/10.1021/acs.jpclett.7b02679
C.C. Stoumpos, D.H. Cao, D.J. Clark, J. Young, J.M. Rondinelli et al., Ruddlesden–popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28(8), 2852–2867 (2016). https://doi.org/10.1021/acs.chemmater.6b00847
M. Cinquino, A. Fieramosca, R. Mastria, L. Polimeno, A. Moliterni et al., Managing growth and dimensionality of quasi 2D perovskite single-crystalline flakes for tunable excitons orientation. Adv. Mater. 33(48), 2102326 (2021). https://doi.org/10.1002/adma.202102326
W. Yan, S. Ye, Y. Li, W. Sun, H. Rao et al., Hole-transporting materials in inverted planar perovskite solar cells. Adv. Energy Mater. 6(17), 1600474 (2016). https://doi.org/10.1002/aenm.201600474
J. Yang, C. Liu, C. Cai, X. Hu, Z. Huang et al., High-performance perovskite solar cells with excellent humidity and thermo-stability via fluorinated perylenediimide. Adv. Energy Mater. 9(18), 1900198 (2019). https://doi.org/10.1002/aenm.201900198
H. Zheng, L. Zhu, L. Hu, S. Yang, S. Chen et al., Promoting perovskite crystal growth to achieve highly efficient and stable solar cells by introducing acetamide as an additive. J. Mater. Chem. A 6(21), 9930–9937 (2018). https://doi.org/10.1039/C8TA02121J
J.W. Lee, S.H. Bae, Y.T. Hsieh, N. De Marco, M. Wang et al., A bifunctional lewis base additive for microscopic homogeneity in perovskite solar cells. Chem 3(2), 290–302 (2017). https://doi.org/10.1016/j.chempr.2017.05.020
H.C. Weerasinghe, Y. Dkhissi, A.D. Scully, R.A. Caruso, Y.B. Cheng, Encapsulation for improving the lifetime of flexible perovskite solar cells. Nano Energy 18, 118–125 (2015). https://doi.org/10.1016/j.nanoen.2015.10.006
D. Li, Z. Xing, L. Huang, X. Meng, X. Hu et al., Spontaneous formation of upper gradient 2D structure for efficient and stable quasi-2D perovskites. Adv. Mater. 33(34), 2101823 (2021). https://doi.org/10.1002/adma.202101823
X. Zhang, G. Wu, W. Fu, M. Qin, W. Yang et al., Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11%. Adv. Energy Mater. 8(14), 1702498 (2018). https://doi.org/10.1002/aenm.201702498
X. Zhang, G. Wu, S. Yang, W. Fu, Z. Zhang et al., Vertically oriented 2D layered perovskite solar cells with enhanced efficiency and good stability. Small 13(33), 1700611 (2017). https://doi.org/10.1002/smll.201700611
M. Shao, T. Bie, L. Yang, Y. Gao, X. Jin et al., Over 21% Efficiency stable 2D perovskite solar cells. Adv. Mater. 34(1), 2107211 (2022). https://doi.org/10.1002/adma.202107211
L. Kong, X. Zhang, Y. Li, H. Wang, Y. Jiang et al., Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nat. Commun. 12, 1246 (2021). https://doi.org/10.1038/s41467-021-21522-8
C. Liang, H. Gu, Y. Xia, Z. Wang, X. Liu et al., Two-dimensional Ruddlesden-Popper layered perovskite solar cells based on phase-pure thin films. Nat. Energy 6, 38–45 (2021). https://doi.org/10.1038/s41560-020-00721-5
W. Kim, M.S. Jung, S. Lee, Y.J. Choi, J.K. Kim et al., Oriented grains with preferred low-angle grain boundaries in halide perovskite films by pressure-induced crystallization. Adv. Energy Mater. 8(10), 1702369 (2018). https://doi.org/10.1002/aenm.201702369
L. Huang, Z. Xing, X. Tang, D. Li, X. Meng et al., Toward efficient perovskite solar cells by planar imprint for improved perovskite film quality and granted bifunctional barrier. J. Mater. Chem. A 9(29), 16178–16186 (2021). https://doi.org/10.1039/d1ta04520b
D.P. Mcmeekin, Z. Wang, W. Rehman, F. Pulvirenti, J.B. Patel et al., Crystallization kinetics and morphology control of formamidinium–cesium mixed-cation lead mixed-halide perovskite via tunability of the colloidal precursor solution. Adv. Mater. 29(29), 1607039 (2017). https://doi.org/10.1002/adma.201607039
K. Yan, M. Long, T. Zhang, Z. Wei, H. Chen et al., Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. J. Am. Chem. Soc. 137(13), 4460–4468 (2015). https://doi.org/10.1021/jacs.5b00321
G. Lv, L. Li, D. Lu, Z. Xu, Y. Dong et al., Multiple-noncovalent-interaction-stabilized layered dion–jacobson perovskite for efficient solar cells. Nano Lett. 21(13), 5788–5797 (2021). https://doi.org/10.1021/acs.nanolett.1c01505
J. Liu, J. Leng, K. Wu, J. Zhang, S. Jin, Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films. J. Am. Chem. Soc. 139(4), 1432–1435 (2017). https://doi.org/10.1021/jacs.6b12581
H. Tsai, R. Asadpour, J.C. Blancon, C.C. Stoumpos, J. Even et al., Design principles for electronic charge transport in solution-processed vertically stacked 2D perovskite quantum wells. Nat. Commun. 9, 2130 (2018). https://doi.org/10.1038/s41467-018-04430-2
H. Tsai, W. Nie, J.C. Blancon, C.C. Stoumpos, R. Asadpour et al., High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 536, 312–316 (2016). https://doi.org/10.1038/nature18306
L.N. Quan, M. Yuan, R. Comin, O. Voznyy, E.M. Beauregard et al., Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138(8), 2649–2655 (2016). https://doi.org/10.1021/jacs.5b11740
H. Chen, S. Teale, B. Chen, Y. Hou, L. Grater et al., Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16, 352–358 (2022). https://doi.org/10.1038/s41566-022-00985-1
S. Draguta, O. Sharia, S.J. Yoon, M.C. Brennan, Y.V. Morozov et al., Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites. Nat. Commun. 8, 200 (2017). https://doi.org/10.1038/s41467-017-00284-2
S. Wu, J. Zhang, Z. Li, D. Liu, M. Qin et al., Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells. Joule 4(6), 1248–1262 (2020). https://doi.org/10.1016/j.joule.2020.04.001
M.C. Brennan, S. Draguta, P.V. Kamat, M. Kuno, Light-induced anion phase segregation in mixed halide perovskites. ACS Energy Lett. 3(1), 204–213 (2018). https://doi.org/10.1021/acsenergylett.7b01151
Y. Yang, C. Liu, O.A. Syzgantseva, M.A. Syzgantseva, S. Ma et al., Defect suppression in oriented 2D perovskite solar cells with efficiency over 18% via rerouting crystallization pathway. Adv. Energy Mater. 11(1), 2002966 (2021). https://doi.org/10.1002/aenm.202002966
J. Li, L. Zuo, H. Wu, B. Niu, S. Shan et al., Universal bottom contact modification with diverse 2D spacers for high-performance inverted perovskite solar cells. Adv. Funct. Mater. 31(35), 2104036 (2021). https://doi.org/10.1002/adfm.202104036
W. Wang, Z. Su, B. Sun, L. Tao, H. Gu et al., Toward efficient and stable perovskite solar cells by 2D interface energy band alignment. Adv. Mater. Interfaces 8(1), 2001683 (2021). https://doi.org/10.1002/admi.202001683
H. Zheng, W. Wu, H. Xu, F. Zheng, G. Liu et al., Self-additive low-dimensional ruddlesden–popper perovskite by the incorporation of glycine hydrochloride for high-performance and stable solar cells. Adv. Funct. Mater. 30(15), 2000034 (2020). https://doi.org/10.1002/adfm.202000034
H. Lai, B. Kan, T. Liu, N. Zheng, Z. Xie et al., Two-dimensional ruddlesden–popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%. J. Am. Chem. Soc. 140(37), 11639–11646 (2018). https://doi.org/10.1021/jacs.8b04604
C. Gong, C. Zhang, Q. Zhuang, H. Li, H. Yang et al., Stabilizing buried interface via synergistic effect of fluorine and sulfonyl functional groups toward efficient and stable perovskite solar cells. Nano-Micro Lett. 15, 17 (2023). https://doi.org/10.1007/s40820-022-00992-5