Screen-Printable Functional Nanomaterials for Flexible and Wearable Single-Enzyme-Based Energy-Harvesting and Self-Powered Biosensing Devices
Corresponding Author: Itthipon Jeerapan
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 85
Abstract
Developing flexible bioelectronics is essential to the realization of artificial intelligence devices and biomedical applications, such as wearables, but their potential is limited by sustainable energy supply. An enzymatic biofuel cell (BFC) is promising for power supply, but its use is limited by the challenges of incorporating multiple enzymes and rigid platforms. This paper shows the first example of screen-printable nanocomposite inks engineered for a single-enzyme-based energy-harvesting device and a self-powered biosensor driven by glucose on bioanode and biocathode. The anode ink is modified with naphthoquinone and multiwalled carbon nanotubes (MWCNTs), whereas the cathode ink is modified with Prussian blue/MWCNT hybrid before immobilizing with glucose oxidase. The flexible bioanode and the biocathode consume glucose. This BFC yields an open circuit voltage of 0.45 V and a maximum power density of 266 μW cm−2. The wearable device coupled with a wireless portable system can convert chemical energy into electric energy and detect glucose in artificial sweat. The self-powered sensor can detect glucose concentrations up to 10 mM. Common interfering substances, including lactate, uric acid, ascorbic acid, and creatinine, have no effect on this self-powered biosensor. Additionally, the device can endure multiple mechanical deformations. New advances in ink development and flexible platforms enable a wide range of applications, including on-body electronics, self-sustainable applications, and smart fabrics.
Highlights:
1 Screen-printable functional nanocomposite inks are engineered for flexible, single-enzyme-based energy-harvesting, and self-powered biosensing devices.
2 A BFC powered by the same biosubstrate (glucose) is developed to harvest energy in a biofluid model and act as a self-powered electrochemical glucose.
3 Customized inks are advantageous in terms of integrating with flexible materials, which can be integrated with a wide range of wearables and soft bioelectronics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Wu, Y. Zhang, A.L. Kjøniksen, X. Zhou, X. Zhou, Wearable biofuel cells: advances from fabrication to application. Adv. Funct. Mater. 31, 2103976 (2021). https://doi.org/10.1002/adfm.202103976
- R. Liu, Z.L. Wang, K. Fukuda, T. Someya, Flexible self-charging power sources. Nat. Rev. Mater. 7, 870–886 (2022). https://doi.org/10.1038/s41578-022-00441-0
- J. Janek, W.G. Zeier, A solid future for battery development. Nat. Energy 1, 16141 (2016). https://doi.org/10.1038/nenergy.2016.141
- I. Jeerapan, J.R. Sempionatto, J. Wang, On-body bioelectronics: wearable biofuel cells for bioenergy harvesting and self-powered biosensing. Adv. Funct. Mater. 30, 1906243 (2020). https://doi.org/10.1002/adfm.201906243
- A. Zebda, J.P. Alcaraz, P. Vadgama, S. Shleev, S.D. Minteer, F. Boucher et al., Challenges for successful implantation of biofuel cells. Bioelectrochemistry 124, 57–72 (2018). https://doi.org/10.1016/j.bioelechem.2018.05.011
- E. Paz, N.H. Maganti, A. Trifonov, I. Jeerapan, K. Mahato et al., A self-powered ingestible wireless biosensing system for real-time in situ monitoring of gastrointestinal tract metabolites. Nat. Commun. 13, 7405 (2022). https://doi.org/10.1038/s41467-022-35074-y
- A. Kausaite-Minkstimiene, A. Kaminskas, A. Ramanaviciene, Development of a membraneless single-enzyme biofuel cell powered by glucose. Biosens. Bioelectr. 216, 114657 (2022). https://doi.org/10.1016/j.bios.2022.114657
- A.N. Sekretaryova, V. Beni, M. Eriksson, A.A. Karyakin, A.P.F. Turner et al., Cholesterol self-powered biosensor. Anal. Chem. 86, 9540–9547 (2014). https://doi.org/10.1021/ac501699p
- W. Zhang, H. Guan, T. Zhong, T. Zhao, L. Xing et al., Wearable battery-free perspiration analyzing sites based on sweat flowing on zno nanoarrays. Nano-Micro Lett. 12, 105 (2020). https://doi.org/10.1007/s40820-020-00441-1
- V. Krikstolaityte, Y. Oztekin, J. Kuliesius, A. Ramanaviciene, Z. Yazicigil et al., Biofuel cell based on anode and cathode modified by glucose oxidase. Electroanalysis 25, 2677–2683 (2013). https://doi.org/10.1002/elan.201300482
- H. Lee, Y.J. Hong, S. Baik, T. Hyeon, D.H. Kim, Enzyme-based glucose sensor: from invasive to wearable device. Adv. Healthc. Mater. 7, e1701150 (2018). https://doi.org/10.1002/adhm.201701150
- W. Chen, S. Cai, Q.Q. Ren, W. Wen, Y.D. Zhao, Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137, 49–58 (2012). https://doi.org/10.1039/C1AN15738H
- J. Kim, R. Kumar, A.J. Bandodkar, J. Wang, Advanced materials for printed wearable electrochemical devices: a review. Adv. Electron. Mater. 3, 1600260 (2017). https://doi.org/10.1002/aelm.201600260
- D.D.L. Chung, Review graphite. J. Mater. Sci. 37, 1475–1489 (2002). https://doi.org/10.1023/A:1014915307738
- J. Wang, Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17, 7–14 (2005). https://doi.org/10.1002/elan.200403113
- B. Reuillard, A. Le Goff, C. Agnès, M. Holzinger, A. Zebda et al., High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3d matrix. Phys. Chem. Chem. Phys. 15, 4892–4896 (2013). https://doi.org/10.1039/C3CP50767J
- C. Han, H. Li, R. Shi, T. Zhang, J. Tong et al., Organic quinones towards advanced electrochemical energy storage: recent advances and challenges. J. Mater. Chem. A 7, 23378–23415 (2019). https://doi.org/10.1039/C9TA05252F
- K. Itaya, T. Ataka, S. Toshima, Spectroelectrochemistry and electrochemical preparation method of prussian blue modified electrodes. J. Am. Chem. Soc. 104, 4767–4772 (1982). https://doi.org/10.1021/ja00382a006
- S. Husmann, E. Nossol, A.J.G. Zarbin, Carbon nanotube/prussian blue paste electrodes: characterization and study of key parameters for application as sensors for determination of low concentration of hydrogen peroxide. Sens. Actuat. B Chem. 192, 782–790 (2014). https://doi.org/10.1016/j.snb.2013.10.074
- T.A. Vieira, J.R. Souza, D.T. Gimenes, R.A.A. Munoz, E. Nossol, Tuning electrochemical and morphological properties of prussian blue/carbon nanotubes films through scan rate in cyclic voltammetry. Solid State Ion. 338, 5–11 (2019). https://doi.org/10.1016/j.ssi.2019.04.026
- J. Zhai, Y. Zhai, D. Wen, S. Dong, Prussian blue/multiwalled carbon nanotube hybrids: synthesis, assembly and electrochemical behavior. Electroanalysis 21, 2207–2212 (2009). https://doi.org/10.1002/elan.200904680
- Y. Zhang, Y. Wen, Y. Liu, D. Li, J. Li, Functionalization of single-walled carbon nanotubes with prussian blue. Electrochem. Commun. 6, 1180–1184 (2004). https://doi.org/10.1016/j.elecom.2004.09.016
- D.T. Gimenes, E. Nossol, Effect of light source and applied potential in the electrochemical synthesis of prussian blue on carbon nanotubes. Electrochim. Acta 251, 513–521 (2017). https://doi.org/10.1016/j.electacta.2017.08.142
- L. Jiang, H. Hong, J. Hu, Facile thermoplastic polyurethane-based multi-walled carbon nanotube ink for fabrication of screen-printed fabric electrodes of wearable e-textiles with high adhesion and resistance stability under large deformation. Text. Res. J. 91, 2487–2499 (2021). https://doi.org/10.1177/00405175211008613
- B. Millington, S. Du, B.G. Pollet, The effect of materials on proton exchange membrane fuel cell electrode performance. J. Power Sour. 196, 9013–9017 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.043
- B. Li, Y. Liu, Y. Guo, D. Yang, D. Yang et al., Controlling the microscopic morphology and permeability of catalyst layers in proton exchange membrane fuel cells by adjusting catalyst ink agglomerates. Int. J. Hydrog. Energy 46, 32215–32225 (2021). https://doi.org/10.1016/j.ijhydene.2021.06.216
- I. Jeerapan, J.R. Sempionatto, A. Pavinatto, J.M. You, J. Wang, Stretchable biofuel cells as wearable textile-based self-powered sensors. J. Mater. Chem. A 4, 18342–18353 (2016). https://doi.org/10.1039/C6TA08358G
- W. Lai, Y. Wang, X. Wang, A. Nairan, C. Yang, Fabrication and engineering of nanostructured supercapacitor electrodes using electromagnetic field-based techniques. Adv. Mater. Technol. 3, 1700168 (2018). https://doi.org/10.1002/admt.201700168
- P. Pinyou, V. Blay, L.M. Muresan, T. Noguer, Enzyme-modified electrodes for biosensors and biofuel cells. Mater. Horiz. 6, 1336–1358 (2019). https://doi.org/10.1039/C9MH00013E
- K. Oka, S. Murao, K. Kobayashi, H. Nishide, K. Oyaizu, Charge- and proton-storage capability of naphthoquinone-substituted poly(allylamine) as electrode-active material for polymer–air secondary batteries. ACS Appl. Energy Mater. 3, 12019–12024 (2020). https://doi.org/10.1021/acsaem.0c02178
- Y. Yang, Y. Su, X. Zhu, D. Ye, R. Chen et al., Flexible enzymatic biofuel cell based on 1, 4-naphthoquinone/mwcnt-modified bio-anode and polyvinyl alcohol hydrogel electrolyte. Biosens. Bioelectron. 198, 113833 (2022). https://doi.org/10.1016/j.bios.2021.113833
- N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart et al., A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2018). https://doi.org/10.1021/acs.jchemed.7b00361
- S.M. Golabi, J.B. Raoof, Catalysis of dioxygen reduction to hydrogen peroxide at the surface of carbon paste electrodes modified by 1,4-naphthoquinone and some of its derivatives. J. Electroanal. Chem. 416, 75–82 (1996). https://doi.org/10.1016/S0022-0728(96)04728-6
- A.X. Oliveira, S.M. Silva, F.R.F. Leite, L.T. Kubota, F.S. Damos et al., Highly sensitive and selective basal plane pyrolytic graphite electrode modified with 1,4-naphthoquinone/mwcnt for simultaneous determination of dopamine, ascorbate and urate. Electroanalysis 25, 723–731 (2013). https://doi.org/10.1002/elan.201200515
- J. Zang, C.M. Li, X. Cui, J. Wang, X. Sun et al., Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanalysis 19, 1008–1014 (2007). https://doi.org/10.1002/elan.200603808
- Y. You, H.R. Yao, S. Xin, Y.X. Yin, T.T. Zuo et al., Subzero-temperature cathode for a sodium-ion battery. Adv. Mater. 28, 7243–7248 (2016). https://doi.org/10.1002/adma.201600846
- P.J. Kulesza, M.A. Malik, A. Denca, J. Strojek, In situ ft-ir/atr spectroelectrochemistry of prussian blue in the solid state. Anal. Chem. 68, 2442–2446 (1996). https://doi.org/10.1021/ac950380k
- L. Chang, S. Chang, W. Chen, W. Han, Z. Li et al., Facile one-pot synthesis of magnetic prussian blue core/shell nanops for radioactive cesium removal. RSC Adv. 6, 96223–96228 (2016). https://doi.org/10.1039/C6RA17525B
- F. Avilés, J.V. Cauich-Rodríguez, L. Moo-Tah, A. May-Pat, R. Vargas-Coronado, Evaluation of mild acid oxidation treatments for mwcnt functionalization. Carbon 47, 2970–2975 (2009). https://doi.org/10.1016/j.carbon.2009.06.044
- A.A. Karyakin, Prussian blue and its analogues: electrochemistry and analytical applications. Electroanalysis 13, 813–819 (2001). https://doi.org/10.1002/1521-4109(200106)13:10%3c813::AID-ELAN813%3e3.0.CO;2-Z
- B. Kong, C. Selomulya, G. Zheng, D. Zhao, New faces of porous prussian blue: interfacial assembly of integrated hetero-structures for sensing applications. Chem. Soc. Rev. 44, 7997–8018 (2015). https://doi.org/10.1039/C5CS00397K
- S. Cinti, F. Arduini, D. Moscone, G. Palleschi, A.J. Killard, Development of a hydrogen peroxide sensor based on screen-printed electrodes modified with inkjet-printed prussian blue nanops. Sensors (Basel) 14, 14222–14234 (2014). https://doi.org/10.3390/s140814222
- X. Che, R. Yuan, Y. Chai, J. Li, Z. Song et al., A glucose biosensor based on chitosan–prussian blue–multiwall carbon nanotubes–hollow ptco nanochains formed by one-step electrodeposition. Colloids Surf. B 84, 454–461 (2011). https://doi.org/10.1016/j.colsurfb.2011.01.041
- Z. Tian, X. Tong, G. Sheng, Y. Shao, L. Yu et al., Printable magnesium ion quasi-solid-state asymmetric supercapacitors for flexible solar-charging integrated units. Nat. Commun. 10, 4913 (2019). https://doi.org/10.1038/s41467-019-12900-4
- N. Mano, Engineering glucose oxidase for bioelectrochemical applications. Bioelectrochemistry 128, 218–240 (2019). https://doi.org/10.1016/j.bioelechem.2019.04.015
- J. Wang, Electrochemical glucose biosensors. Chem. Rev. 108, 814–825 (2008). https://doi.org/10.1021/cr068123a
- J. Moyer, D. Wilson, I. Finkelshtein, B. Wong, R. Potts, Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol. Ther. 14, 398–402 (2012). https://doi.org/10.1089/dia.2011.0262
- A.J. Bandodkar, P. Gutruf, J. Choi, K. Lee, Y. Sekine et al., Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 5, eaav3294 (2019). https://doi.org/10.1126/sciadv.aav3294
- A.J. Bandodkar, W. Jia, C. Yardımcı, X. Wang, J. Ramirez et al., Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal. Chem. 87, 394–398 (2015). https://doi.org/10.1021/ac504300n
- A.F. Yeknami, X. Wang, I. Jeerapan, S. Imani, A. Nikoofard et al., A 0.3–v cmos biofuel-cell-powered wireless glucose/lactate biosensing system. JSSC 53, 3126–3139 (2018). https://doi.org/10.1109/JSSC.2018.2869569
- E.S. Goda, S. Lee, M. Sohail, K.R. Yoon, Prussian blue and its analogues as advanced supercapacitor electrodes. J. Energy Chem. 50, 206–229 (2020). https://doi.org/10.1016/j.jechem.2020.03.031
- X. Li, D. Li, Y. Zhang, P. Lv, Q. Feng et al., Encapsulation of enzyme by metal-organic framework for single-enzymatic biofuel cell-based self-powered biosensor. Nano Energy 68, 104308 (2020). https://doi.org/10.1016/j.nanoen.2019.104308
- P. Pinyou, F. Conzuelo, K. Sliozberg, J. Vivekananthan, A. Contin et al., Coupling of an enzymatic biofuel cell to an electrochemical cell for self-powered glucose sensing with optical readout. Bioelectrochemistry 106, 22–27 (2015). https://doi.org/10.1016/j.bioelechem.2015.04.003
- C.J. Harvey, R.F. LeBouf, A.B. Stefaniak, Formulation and stability of a novel artificial human sweat under conditions of storage and use. Toxicol. Vitro 24, 1790–1796 (2010). https://doi.org/10.1016/j.tiv.2010.06.016
References
H. Wu, Y. Zhang, A.L. Kjøniksen, X. Zhou, X. Zhou, Wearable biofuel cells: advances from fabrication to application. Adv. Funct. Mater. 31, 2103976 (2021). https://doi.org/10.1002/adfm.202103976
R. Liu, Z.L. Wang, K. Fukuda, T. Someya, Flexible self-charging power sources. Nat. Rev. Mater. 7, 870–886 (2022). https://doi.org/10.1038/s41578-022-00441-0
J. Janek, W.G. Zeier, A solid future for battery development. Nat. Energy 1, 16141 (2016). https://doi.org/10.1038/nenergy.2016.141
I. Jeerapan, J.R. Sempionatto, J. Wang, On-body bioelectronics: wearable biofuel cells for bioenergy harvesting and self-powered biosensing. Adv. Funct. Mater. 30, 1906243 (2020). https://doi.org/10.1002/adfm.201906243
A. Zebda, J.P. Alcaraz, P. Vadgama, S. Shleev, S.D. Minteer, F. Boucher et al., Challenges for successful implantation of biofuel cells. Bioelectrochemistry 124, 57–72 (2018). https://doi.org/10.1016/j.bioelechem.2018.05.011
E. Paz, N.H. Maganti, A. Trifonov, I. Jeerapan, K. Mahato et al., A self-powered ingestible wireless biosensing system for real-time in situ monitoring of gastrointestinal tract metabolites. Nat. Commun. 13, 7405 (2022). https://doi.org/10.1038/s41467-022-35074-y
A. Kausaite-Minkstimiene, A. Kaminskas, A. Ramanaviciene, Development of a membraneless single-enzyme biofuel cell powered by glucose. Biosens. Bioelectr. 216, 114657 (2022). https://doi.org/10.1016/j.bios.2022.114657
A.N. Sekretaryova, V. Beni, M. Eriksson, A.A. Karyakin, A.P.F. Turner et al., Cholesterol self-powered biosensor. Anal. Chem. 86, 9540–9547 (2014). https://doi.org/10.1021/ac501699p
W. Zhang, H. Guan, T. Zhong, T. Zhao, L. Xing et al., Wearable battery-free perspiration analyzing sites based on sweat flowing on zno nanoarrays. Nano-Micro Lett. 12, 105 (2020). https://doi.org/10.1007/s40820-020-00441-1
V. Krikstolaityte, Y. Oztekin, J. Kuliesius, A. Ramanaviciene, Z. Yazicigil et al., Biofuel cell based on anode and cathode modified by glucose oxidase. Electroanalysis 25, 2677–2683 (2013). https://doi.org/10.1002/elan.201300482
H. Lee, Y.J. Hong, S. Baik, T. Hyeon, D.H. Kim, Enzyme-based glucose sensor: from invasive to wearable device. Adv. Healthc. Mater. 7, e1701150 (2018). https://doi.org/10.1002/adhm.201701150
W. Chen, S. Cai, Q.Q. Ren, W. Wen, Y.D. Zhao, Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137, 49–58 (2012). https://doi.org/10.1039/C1AN15738H
J. Kim, R. Kumar, A.J. Bandodkar, J. Wang, Advanced materials for printed wearable electrochemical devices: a review. Adv. Electron. Mater. 3, 1600260 (2017). https://doi.org/10.1002/aelm.201600260
D.D.L. Chung, Review graphite. J. Mater. Sci. 37, 1475–1489 (2002). https://doi.org/10.1023/A:1014915307738
J. Wang, Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17, 7–14 (2005). https://doi.org/10.1002/elan.200403113
B. Reuillard, A. Le Goff, C. Agnès, M. Holzinger, A. Zebda et al., High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3d matrix. Phys. Chem. Chem. Phys. 15, 4892–4896 (2013). https://doi.org/10.1039/C3CP50767J
C. Han, H. Li, R. Shi, T. Zhang, J. Tong et al., Organic quinones towards advanced electrochemical energy storage: recent advances and challenges. J. Mater. Chem. A 7, 23378–23415 (2019). https://doi.org/10.1039/C9TA05252F
K. Itaya, T. Ataka, S. Toshima, Spectroelectrochemistry and electrochemical preparation method of prussian blue modified electrodes. J. Am. Chem. Soc. 104, 4767–4772 (1982). https://doi.org/10.1021/ja00382a006
S. Husmann, E. Nossol, A.J.G. Zarbin, Carbon nanotube/prussian blue paste electrodes: characterization and study of key parameters for application as sensors for determination of low concentration of hydrogen peroxide. Sens. Actuat. B Chem. 192, 782–790 (2014). https://doi.org/10.1016/j.snb.2013.10.074
T.A. Vieira, J.R. Souza, D.T. Gimenes, R.A.A. Munoz, E. Nossol, Tuning electrochemical and morphological properties of prussian blue/carbon nanotubes films through scan rate in cyclic voltammetry. Solid State Ion. 338, 5–11 (2019). https://doi.org/10.1016/j.ssi.2019.04.026
J. Zhai, Y. Zhai, D. Wen, S. Dong, Prussian blue/multiwalled carbon nanotube hybrids: synthesis, assembly and electrochemical behavior. Electroanalysis 21, 2207–2212 (2009). https://doi.org/10.1002/elan.200904680
Y. Zhang, Y. Wen, Y. Liu, D. Li, J. Li, Functionalization of single-walled carbon nanotubes with prussian blue. Electrochem. Commun. 6, 1180–1184 (2004). https://doi.org/10.1016/j.elecom.2004.09.016
D.T. Gimenes, E. Nossol, Effect of light source and applied potential in the electrochemical synthesis of prussian blue on carbon nanotubes. Electrochim. Acta 251, 513–521 (2017). https://doi.org/10.1016/j.electacta.2017.08.142
L. Jiang, H. Hong, J. Hu, Facile thermoplastic polyurethane-based multi-walled carbon nanotube ink for fabrication of screen-printed fabric electrodes of wearable e-textiles with high adhesion and resistance stability under large deformation. Text. Res. J. 91, 2487–2499 (2021). https://doi.org/10.1177/00405175211008613
B. Millington, S. Du, B.G. Pollet, The effect of materials on proton exchange membrane fuel cell electrode performance. J. Power Sour. 196, 9013–9017 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.043
B. Li, Y. Liu, Y. Guo, D. Yang, D. Yang et al., Controlling the microscopic morphology and permeability of catalyst layers in proton exchange membrane fuel cells by adjusting catalyst ink agglomerates. Int. J. Hydrog. Energy 46, 32215–32225 (2021). https://doi.org/10.1016/j.ijhydene.2021.06.216
I. Jeerapan, J.R. Sempionatto, A. Pavinatto, J.M. You, J. Wang, Stretchable biofuel cells as wearable textile-based self-powered sensors. J. Mater. Chem. A 4, 18342–18353 (2016). https://doi.org/10.1039/C6TA08358G
W. Lai, Y. Wang, X. Wang, A. Nairan, C. Yang, Fabrication and engineering of nanostructured supercapacitor electrodes using electromagnetic field-based techniques. Adv. Mater. Technol. 3, 1700168 (2018). https://doi.org/10.1002/admt.201700168
P. Pinyou, V. Blay, L.M. Muresan, T. Noguer, Enzyme-modified electrodes for biosensors and biofuel cells. Mater. Horiz. 6, 1336–1358 (2019). https://doi.org/10.1039/C9MH00013E
K. Oka, S. Murao, K. Kobayashi, H. Nishide, K. Oyaizu, Charge- and proton-storage capability of naphthoquinone-substituted poly(allylamine) as electrode-active material for polymer–air secondary batteries. ACS Appl. Energy Mater. 3, 12019–12024 (2020). https://doi.org/10.1021/acsaem.0c02178
Y. Yang, Y. Su, X. Zhu, D. Ye, R. Chen et al., Flexible enzymatic biofuel cell based on 1, 4-naphthoquinone/mwcnt-modified bio-anode and polyvinyl alcohol hydrogel electrolyte. Biosens. Bioelectron. 198, 113833 (2022). https://doi.org/10.1016/j.bios.2021.113833
N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart et al., A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2018). https://doi.org/10.1021/acs.jchemed.7b00361
S.M. Golabi, J.B. Raoof, Catalysis of dioxygen reduction to hydrogen peroxide at the surface of carbon paste electrodes modified by 1,4-naphthoquinone and some of its derivatives. J. Electroanal. Chem. 416, 75–82 (1996). https://doi.org/10.1016/S0022-0728(96)04728-6
A.X. Oliveira, S.M. Silva, F.R.F. Leite, L.T. Kubota, F.S. Damos et al., Highly sensitive and selective basal plane pyrolytic graphite electrode modified with 1,4-naphthoquinone/mwcnt for simultaneous determination of dopamine, ascorbate and urate. Electroanalysis 25, 723–731 (2013). https://doi.org/10.1002/elan.201200515
J. Zang, C.M. Li, X. Cui, J. Wang, X. Sun et al., Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanalysis 19, 1008–1014 (2007). https://doi.org/10.1002/elan.200603808
Y. You, H.R. Yao, S. Xin, Y.X. Yin, T.T. Zuo et al., Subzero-temperature cathode for a sodium-ion battery. Adv. Mater. 28, 7243–7248 (2016). https://doi.org/10.1002/adma.201600846
P.J. Kulesza, M.A. Malik, A. Denca, J. Strojek, In situ ft-ir/atr spectroelectrochemistry of prussian blue in the solid state. Anal. Chem. 68, 2442–2446 (1996). https://doi.org/10.1021/ac950380k
L. Chang, S. Chang, W. Chen, W. Han, Z. Li et al., Facile one-pot synthesis of magnetic prussian blue core/shell nanops for radioactive cesium removal. RSC Adv. 6, 96223–96228 (2016). https://doi.org/10.1039/C6RA17525B
F. Avilés, J.V. Cauich-Rodríguez, L. Moo-Tah, A. May-Pat, R. Vargas-Coronado, Evaluation of mild acid oxidation treatments for mwcnt functionalization. Carbon 47, 2970–2975 (2009). https://doi.org/10.1016/j.carbon.2009.06.044
A.A. Karyakin, Prussian blue and its analogues: electrochemistry and analytical applications. Electroanalysis 13, 813–819 (2001). https://doi.org/10.1002/1521-4109(200106)13:10%3c813::AID-ELAN813%3e3.0.CO;2-Z
B. Kong, C. Selomulya, G. Zheng, D. Zhao, New faces of porous prussian blue: interfacial assembly of integrated hetero-structures for sensing applications. Chem. Soc. Rev. 44, 7997–8018 (2015). https://doi.org/10.1039/C5CS00397K
S. Cinti, F. Arduini, D. Moscone, G. Palleschi, A.J. Killard, Development of a hydrogen peroxide sensor based on screen-printed electrodes modified with inkjet-printed prussian blue nanops. Sensors (Basel) 14, 14222–14234 (2014). https://doi.org/10.3390/s140814222
X. Che, R. Yuan, Y. Chai, J. Li, Z. Song et al., A glucose biosensor based on chitosan–prussian blue–multiwall carbon nanotubes–hollow ptco nanochains formed by one-step electrodeposition. Colloids Surf. B 84, 454–461 (2011). https://doi.org/10.1016/j.colsurfb.2011.01.041
Z. Tian, X. Tong, G. Sheng, Y. Shao, L. Yu et al., Printable magnesium ion quasi-solid-state asymmetric supercapacitors for flexible solar-charging integrated units. Nat. Commun. 10, 4913 (2019). https://doi.org/10.1038/s41467-019-12900-4
N. Mano, Engineering glucose oxidase for bioelectrochemical applications. Bioelectrochemistry 128, 218–240 (2019). https://doi.org/10.1016/j.bioelechem.2019.04.015
J. Wang, Electrochemical glucose biosensors. Chem. Rev. 108, 814–825 (2008). https://doi.org/10.1021/cr068123a
J. Moyer, D. Wilson, I. Finkelshtein, B. Wong, R. Potts, Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol. Ther. 14, 398–402 (2012). https://doi.org/10.1089/dia.2011.0262
A.J. Bandodkar, P. Gutruf, J. Choi, K. Lee, Y. Sekine et al., Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 5, eaav3294 (2019). https://doi.org/10.1126/sciadv.aav3294
A.J. Bandodkar, W. Jia, C. Yardımcı, X. Wang, J. Ramirez et al., Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal. Chem. 87, 394–398 (2015). https://doi.org/10.1021/ac504300n
A.F. Yeknami, X. Wang, I. Jeerapan, S. Imani, A. Nikoofard et al., A 0.3–v cmos biofuel-cell-powered wireless glucose/lactate biosensing system. JSSC 53, 3126–3139 (2018). https://doi.org/10.1109/JSSC.2018.2869569
E.S. Goda, S. Lee, M. Sohail, K.R. Yoon, Prussian blue and its analogues as advanced supercapacitor electrodes. J. Energy Chem. 50, 206–229 (2020). https://doi.org/10.1016/j.jechem.2020.03.031
X. Li, D. Li, Y. Zhang, P. Lv, Q. Feng et al., Encapsulation of enzyme by metal-organic framework for single-enzymatic biofuel cell-based self-powered biosensor. Nano Energy 68, 104308 (2020). https://doi.org/10.1016/j.nanoen.2019.104308
P. Pinyou, F. Conzuelo, K. Sliozberg, J. Vivekananthan, A. Contin et al., Coupling of an enzymatic biofuel cell to an electrochemical cell for self-powered glucose sensing with optical readout. Bioelectrochemistry 106, 22–27 (2015). https://doi.org/10.1016/j.bioelechem.2015.04.003
C.J. Harvey, R.F. LeBouf, A.B. Stefaniak, Formulation and stability of a novel artificial human sweat under conditions of storage and use. Toxicol. Vitro 24, 1790–1796 (2010). https://doi.org/10.1016/j.tiv.2010.06.016