Recent Advances in Wide-Bandgap Organic–Inorganic Halide Perovskite Solar Cells and Tandem Application
Corresponding Author: Shengzhong (Frank) Liu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 70
Abstract
Perovskite-based tandem solar cells have attracted increasing interest because of its great potential to surpass the Shockley–Queisser limit set for single-junction solar cells. In the tandem architectures, the wide-bandgap (WBG) perovskites act as the front absorber to offer higher open-circuit voltage (VOC) for reduced thermalization losses. Taking advantage of tunable bandgap of the perovskite materials, the WBG perovskites can be easily obtained by substituting halide iodine with bromine, and substituting organic ions FA and MA with Cs. To date, the most concerned issues for the WBG perovskite solar cells (PSCs) are huge VOC deficit and severe photo-induced phase separation. Reducing VOC loss and improving photostability of the WBG PSCs are crucial for further efficiency breakthrough. Recently, scientists have made great efforts to overcome these key issues with tremendous progresses. In this review, we first summarize the recent progress of WBG perovskites from the aspects of compositions, additives, charge transport layers, interfaces and preparation methods. The key factors affecting efficiency and stability are then carefully discussed, which would provide decent guidance to develop highly efficient and stable WBG PSCs for tandem application.
Highlights:
1 Wide-bandgap perovskite solar cells are reviewed in detail from the views of compositions, additives, charge transport layers, interfaces and preparation methods.
2 The key factors affecting open-circuit voltage and photostability are carefully discussed.
3 The future directions and challenges in developing wide-bandgap perovskite solar cells are highlighted.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- National Renewable Energy Laboratory, Best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html
- Y. Zhao, F. Ma, Z.H. Qu, S.Q. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377(6605), 531–534 (2022). https://doi.org/10.1126/science.abp8873
- T.K. Zhang, F. Wang, H.B. Kim, I.W. Choi, C.F. Wang et al., Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science 377(6605), 495–501 (2022). https://doi.org/10.1126/science.abo2757
- M. Kim, J. Jeong, H. Lu, T.K. Lee, F.T. Eickemeyer et al., Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375(6578), 302–306 (2022). https://doi.org/10.1126/science.abh1885
- T.A.S. Doherty, S. Nagane, D.J. Kubicki, Y.K. Jung, D.N. Johnstone et al., Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases. Science 374(6575), 1598–1605 (2021). https://doi.org/10.1126/science.abl4890
- Q. Jiang, J. Tong, Y. Xian, R.A. Kerner, S.P. Dunfield et al., Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611(7935), 278–283 (2022). https://doi.org/10.1038/s41586-022-05268-x
- T. Wu, Z. Qin, Y. Wang, Y. Wu, W. Chen et al., The main progress of perovskite solar cells in 2020–2021. Nano-Micro Lett. 13, 152 (2021). https://doi.org/10.1007/s40820-021-00672-w
- L. Wang, H. Zai, Y. Duan, G. Liu, X. Niu et al., Cost analysis of perovskite/Cu(In, Ga)Se2 tandem photovoltaic with module replacement. ACS Energy Lett. 7(6), 1920–1925 (2022). https://doi.org/10.1021/acsenergylett.2c00886
- Q.F. Han, Y.T. Hsieh, L. Meng, J.L. Wu, P.Y. Sun et al., High-performance perovskite/Cu(In, Ga)Se2 monolithic tandem solar cells. Science 361(6405), 904–908 (2018). https://doi.org/10.1126/science.aat5055
- Z.M. Fang, Q. Zeng, C.T. Zuo, L.X. Zhang, H.R. Xiao et al., Perovskite-based tandem solar cells. Sci. Bull. 66(6), 621–636 (2021). https://doi.org/10.1016/j.scib.2020.11.006
- H. Li, W. Zhang, Perovskite tandem solar cells: from fundamentals to commercial deployment. Chem. Rev. 120(18), 9835–9950 (2020). https://doi.org/10.1021/acs.chemrev.9b00780
- F. Fu, J. Li, T.C. Yang, H. Liang, A. Faes et al., Monolithic perovskite-silicon tandem solar cells: from the lab to fab? Adv. Mater. 34(24), 2106540 (2022). https://doi.org/10.1002/adma.202106540
- J. Liu, M. Bastiani, E. Aydin, G.T. Harrison, Y.J. Gao et al., Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science 377(6603), 302–306 (2022). https://doi.org/10.1126/science.abn8910
- R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A.S. Subbiah et al., Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376(6588), 73–77 (2022). https://doi.org/10.1126/science.abm5784
- K.O. Brinkmann, T. Becker, F. Zimmermann, C. Kreusel, T. Gahlmann et al., Perovskite-organic tandem solar cells with indium oxide interconnect. Nature 604(7905), 280–286 (2022). https://doi.org/10.1038/s41586-022-04455-0
- R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang et al., Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy 4(10), 864–873 (2019). https://doi.org/10.1038/s41560-019-0466-3
- K. Xiao, R. Lin, Q. Han, Y. Hou, Z. Qin et al., All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5(11), 870–880 (2020). https://doi.org/10.1038/s41560-020-00705-5
- C.C. Chen, S.H. Bae, W.H. Chang, Z. Hong, G. Li et al., Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process. Mater. Horiz. 2(2), 203–211 (2015). https://doi.org/10.1039/c4mh00237g
- Y. Liu, L.A. Renna, M. Bag, Z.A. Page, P. Kim et al., High efficiency tandem thin-perovskite/polymer solar cells with a graded recombination layer. ACS Appl. Mater. Interfaces 8(11), 7070–7076 (2016). https://doi.org/10.1021/acsami.5b12740
- K. Xiao, J. Wen, Q.L. Han, R.X. Lin, Y. Gao et al., Solution-processed monolithic all-perovskite triple-junction solar cells with efficiency exceeding 20%. ACS Energy Lett. 5(9), 2819–2826 (2020). https://doi.org/10.1021/acsenergylett.0c01184
- J. Tong, Q. Jiang, F. Zhang, S.B. Kang, D.H. Kim et al., Wide-bandgap metal halide perovskites for tandem solar cells. ACS Energy Lett. 6(1), 232–248 (2020). https://doi.org/10.1021/acsenergylett.0c02105
- R. Wang, T.Y. Huang, J.J. Xue, J.H. Tong, K. Zhu et al., Prospects for metal halide perovskite-based tandem solar cells. Nat. Photon. 15(6), 411–425 (2021). https://doi.org/10.1038/s41566-021-00809-8
- J.H. Zheng, G.L. Wang, W.Y. Duan, M.A. Mahmud, H.M. Yi et al., Monolithic perovskite-perovskite-silicon triple-junction tandem solar cell with an efficiency of over 20%. ACS Energy Lett. 7(9), 3003–3005 (2022). https://doi.org/10.1021/acsenergylett.2c01556
- J. Wang, V. Zardetto, K. Datta, D. Zhang, M.M. Wienk et al., 16.8% monolithic all-perovskite triple-junction solar cells via a universal two-step solution process. Nat. Commun. 11, 5254 (2020). https://doi.org/10.1038/s41467-020-19062-8
- X. Chen, Z.Y. Jia, Z. Chen, T.M. Jiang, L.Z. Bai et al., Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers. Joule 4(7), 1594–1606 (2020). https://doi.org/10.1016/j.joule.2020.06.006
- S. Jiang, Y.M. Bai, Z.W. Ma, S.L. Jin, C. Zou et al., Recent advances of monolithic all-perovskite tandem solar cells: From materials to devices. Chinese J. Chem. 40(7), 856–871 (2022). https://doi.org/10.1002/cjoc.202100672
- Q. Guo, C.Y. Wang, T. Hayat, A. Alsaedi, J.X. Yao et al., Recent advances in perovskite/organic integrated solar cells. Rare Met. 40(10), 2763–2777 (2021). https://doi.org/10.1007/s12598-020-01703-y
- Y. Bai, K. Lang, C. Zhao, Q. Guo, R. Zeng et al., Strategies toward extending the near-infrared photovoltaic response of perovskite solar cells. Sol. RRL 4(2), 1900280 (2019). https://doi.org/10.1002/solr.201900280
- M. Jošt, E. Köhnen, A. Al-Ashouri, T. Bertram, Š Tomšič et al., Perovskite/CIGS tandem solar cells: from certified 24.2% toward 30% and beyond. ACS Energy Lett. 7(4), 1298–1307 (2022). https://doi.org/10.1021/acsenergylett.2c00274
- W. Chen, Y. Zhu, J. Xiu, G. Chen, H. Liang et al., Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nat. Energy 7(3), 229–237 (2022). https://doi.org/10.1038/s41560-021-00966-8
- M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis et al., Solar cell efficiency tables (version 60). Prog. Photovolt. Res. Appl. 30(7), 687–701 (2022). https://doi.org/10.1002/pip.3595
- D. Yang, X. Zhang, Y. Hou, K. Wang, T. Ye et al., 28.3%-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell. Nano Energy 84, 105934 (2021). https://doi.org/10.1016/j.nanoen.2021.105934
- C. Gao, D.X. Du, D. Ding, F.Y. Qiao, W.Z. Shen, A review on monolithic perovskite/c-Si tandem solar cells: progress, challenges, and opportunities. J. Mater. Chem. A 10(20), 10811–10828 (2022). https://doi.org/10.1039/d2ta01470j
- Y. Yao, P. Hang, B. Li, Z. Hu, C. Kan et al., Phase-stable wide-bandgap perovskites for four-terminal perovskite/silicon tandem solar cells with over 30% efficiency. Small 18(38), 2203319 (2022). https://doi.org/10.1002/smll.202203319
- R. He, S. Ren, C. Chen, Z. Yi, Y. Luo et al., Wide-bandgap organic-inorganic hybrid and all-inorganic perovskite solar cells and their application in all-perovskite tandem solar cells. Energy Environ. Sci. 14(11), 5723–5759 (2021). https://doi.org/10.1039/d1ee01562a
- Y. Zhou, Y. Zhao, Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci. 12(5), 1495–1511 (2019). https://doi.org/10.1039/c8ee03559h
- G. Kieslich, S.J. Sun, A.K. Cheetham, Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog. Chem. Sci. 5(12), 4712–4715 (2014). https://doi.org/10.1039/c4sc02211d
- W. Travis, E.N.K. Glover, H. Bronstein, D.O. Scanlon, R.G. Palgrave, On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem. Sci. 7(7), 4548–4556 (2016). https://doi.org/10.1039/c5sc04845a
- M. Becker, T. Kluner, M. Wark, Formation of hybrid ABX3 perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors. Dalton Trans. 46(11), 3500–3509 (2017). https://doi.org/10.1039/c6dt04796c
- W.J. Yin, T.T. Shi, Y.F. Yan, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104(6), 063903 (2014). https://doi.org/10.1063/1.4864778
- E. Mosconi, A. Amat, M.K. Nazeeruddin, M. Gratzel, F.D. Angelis, First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 117(27), 13902–13913 (2013). https://doi.org/10.1021/jp4048659
- S.N. Yun, X. Zhou, J. Even, A. Hagfeldt, Theoretical treatment of CH3NH3PbI3 perovskite solar cells. Angew. Chem. Int. Ed. 56(50), 15806–15817 (2017). https://doi.org/10.1002/anie.201702660
- A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari et al., Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. Nano Lett. 14(6), 3608–3616 (2014). https://doi.org/10.1021/nl5012992
- A. Goyal, S. McKechnie, D. Pashov, W. Tumas, M. Schilfgaarde et al., Origin of pronounced nonlinear band gap behavior in lead–tin hybrid perovskite alloys. Chem. Mater. 30(11), 3920–3928 (2018). https://doi.org/10.1021/acs.chemmater.8b01695
- Z. Fan, K. Sun, J. Wang, Perovskites for photovoltaics: a combined review of organic-inorganic halide perovskites and ferroelectric oxide perovskites. J. Mater. Chem. A 3(37), 18809–18828 (2015). https://doi.org/10.1039/c5ta04235f
- A. Buin, R. Comin, J.X. Xu, A.H. Ip, E.H. Sargent, Halide-dependent electronic structure of organolead perovskite materials. Chem. Mater. 27(12), 4405–4412 (2015). https://doi.org/10.1021/acs.chemmater.5b01909
- S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). https://doi.org/10.1126/science.1243982
- Q. Ye, Y. Zhao, S. Mu, F. Ma, F. Gao et al., Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination. Adv. Mater. 31(49), 1905143 (2019). https://doi.org/10.1002/adma.201905143
- M. Ren, S. Cao, J. Zhao, B. Zou, R. Zeng, Advances and challenges in two-dimensional organic-inorganic hybrid perovskites toward high-performance light-emitting diodes. Nano-Micro Lett. 13, 163 (2021). https://doi.org/10.1007/s40820-021-00685-5
- Y. Han, S. Yue, B.B. Cui, Low-dimensional metal halide perovskite crystal materials: structure strategies and luminescence applications. Adv. Sci. 8(15), 2004805 (2021). https://doi.org/10.1002/advs.202004805
- C. Huo, B. Cai, Z. Yuan, B. Ma, H. Zeng, Two-dimensional metal halide perovskites: theory, synthesis, and optoelectronics. Small Methods 1(3), 1600018 (2017). https://doi.org/10.1002/smtd.201600018
- J.P. Mailoa, C.D. Bailie, E.C. Johlin, E.T. Hoke, A.J. Akey et al., A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 106(12), 121105 (2015). https://doi.org/10.1063/1.4914179
- Z. Zhang, Z. Li, L. Meng, S.Y. Lien, P. Gao, Perovskite-based tandem solar cells: get the most out of the sun. Adv. Funct. Mater. 30(38), 2001904 (2020). https://doi.org/10.1002/adfm.202001904
- M. Jošt, L. Kegelmann, L. Korte, S. Albrecht, Monolithic perovskite tandem solar cells: a review of the present status and advanced characterization methods toward 30% efficiency. Adv. Energy Mater. 10(26), 1904102 (2020). https://doi.org/10.1002/aenm.201904102
- T. Leijtens, K.A. Bush, R. Prasanna, M.D. McGehee, Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3(10), 828–838 (2018). https://doi.org/10.1038/s41560-018-0190-4
- R. Lin, J. Xu, M. Wei, Y. Wang, Z. Qin et al., All-perovskite tandem solar cells with improved grain surface passivation. Nature 603(7899), 73–78 (2022). https://doi.org/10.1038/s41586-021-04372-8
- S. Mahesh, J.M. Ball, R.D.J. Oliver, D.P. McMeekin, P.K. Nayak et al., Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 13(1), 258–267 (2020). https://doi.org/10.1039/c9ee02162k
- J. Huang, Y. Yuan, Y. Shao, Y. Yan, Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2(7), 17042 (2017). https://doi.org/10.1038/natrevmats.2017.42
- C.M. Wolff, P. Caprioglio, M. Stolterfoht, D. Neher, Nonradiative recombination in perovskite solar cells: the role of interfaces. Adv. Mater. 31(52), 1902762 (2019). https://doi.org/10.1002/adma.201902762
- D.Y. Luo, R. Su, W. Zhang, Q.H. Gong, R. Zhu, Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5(1), 44–60 (2020). https://doi.org/10.1038/s41578-019-0151-y
- B. Chen, P.N. Rudd, S. Yang, Y.B. Yuan, J.S. Huang, Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48(14), 3842–3867 (2019). https://doi.org/10.1039/c8cs00853a
- S.J. Yoon, S. Draguta, J.S. Manser, O. Sharia, W.F. Schneider et al., Tracking iodide and bromide ion segregation in mixed halide lead perovskites during photoirradiation. ACS Energy Lett. 1(1), 290–296 (2016). https://doi.org/10.1021/acsenergylett.6b00158
- A.J. Knight, L.M. Herz, Preventing phase segregation in mixed-halide perovskites: a perspective. Energy Environ. Sci. 13(7), 2024–2046 (2020). https://doi.org/10.1039/d0ee00788a
- A.J. Knight, A.D. Wright, J.B. Patel, D.P. McMeekin, H.J. Snaith et al., Electronic traps and phase segregation in lead mixed-halide perovskite. ACS Energy Lett. 4(1), 75–84 (2018). https://doi.org/10.1021/acsenergylett.8b02002
- Z. Xu, R.A. Kerner, J.J. Berry, B.P. Rand, Iodine electrochemistry dictates voltage-induced halide segregation thresholds in mixed-halide perovskite devices. Adv. Funct. Mater. 32(33), 2203432 (2022). https://doi.org/10.1002/adfm.202203432
- D.J. Slotcavage, H.I. Karunadasa, M.D. McGehee, Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1(6), 1199–1205 (2016). https://doi.org/10.1021/acsenergylett.6b00495
- T. Duong, H.K. Mulmudi, Y. Wu, X. Fu, H. Shen et al., Light and electrically induced phase segregation and its impact on the stability of quadruple cation high bandgap perovskite solar cells. ACS Appl. Mater. Interfaces 9(32), 26859–26866 (2017). https://doi.org/10.1021/acsami.7b06816
- S.G. Motti, J.B. Patel, R.D.J. Oliver, H.J. Snaith, M.B. Johnston et al., Phase segregation in mixed-halide perovskites affects charge-carrier dynamics while preserving mobility. Nat. Commun. 12, 6955 (2021). https://doi.org/10.1038/s41467-021-26930-4
- L. Wang, Q. Song, F. Pei, Y. Chen, J. Dou et al., Strain modulation for light-stable n-i-p perovskite/silicon tandem solar cells. Adv. Mater. 34(26), 2201315 (2022). https://doi.org/10.1002/adma.202201315
- E. Ruggeri, M. Anaya, K. Galkowski, A. Abfalterer, Y.H. Chiang et al., Halide remixing under device operation imparts stability on mixed-cation mixed-halide perovskite solar cells. Adv. Mater. 34(36), 2202163 (2022). https://doi.org/10.1002/adma.202202163
- Z. Wang, Z. Zhang, L. Xie, S. Wang, C. Yang et al., Recent advances and perspectives of photostability for halide perovskite solar cells. Adv. Opt. Mater. 10(3), 2101822 (2021). https://doi.org/10.1002/adom.202101822
- J. Wen, Y.C. Zhao, Z. Liu, H. Gao, R.X. Lin et al., Steric engineering enables efficient and photostable wide-bandgap perovskites for all-perovskite tandem solar cells. Adv. Mater. 34(26), 2110356 (2022). https://doi.org/10.1002/adma.202110356
- C. Liu, Y.B. Cheng, Z. Ge, Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chem. Soc. Rev. 49(6), 1653–1687 (2020). https://doi.org/10.1039/c9cs00711c
- Q. Fu, X. Tang, B. Huang, T. Hu, L. Tan et al., Recent progress on the long-term stability of perovskite solar cells. Adv. Sci. 5(5), 1700387 (2018). https://doi.org/10.1002/advs.201700387
- G. Nazir, S.Y. Lee, J.H. Lee, A. Rehman, J.K. Lee et al., Stabilization of perovskite solar cells: recent developments and future perspectives. Adv. Mater. 34(50), 2204380 (2022). https://doi.org/10.1002/adma.202204380
- C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119(5), 3418–3451 (2019). https://doi.org/10.1021/acs.chemrev.8b00336
- J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, N.G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120(15), 7867–7918 (2020). https://doi.org/10.1021/acs.chemrev.0c00107
- F.H. Isikgor, S. Zhumagali, L.V.T. Merino, M.D. Bastiani, I. McCulloch et al., Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. (2022). https://doi.org/10.1038/s41578-022-00503-3
- C.U. Kim, J.C. Yu, E.D. Jung, I.Y. Choi, W. Park et al., Optimization of device design for low cost and high efficiency planar monolithic perovskite/silicon tandem solar cells. Nano Energy 60, 213–221 (2019). https://doi.org/10.1016/j.nanoen.2019.03.056
- Y.M. Xie, Q. Yao, Z. Zeng, Q. Xue, T. Niu et al., Homogeneous grain boundary passivation in wide-bandgap perovskite films enables fabrication of monolithic perovskite/organic tandem solar cells with over 21% efficiency. Adv. Funct. Mater. 32(19), 2112126 (2022). https://doi.org/10.1002/adfm.202112126
- H.X. Dang, K. Wang, M. Ghasemi, M.C. Tang, M.D. Bastiani et al., Multi-cation synergy suppresses phase segregation in mixed-halide perovskites. Joule 3(7), 1746–1764 (2019). https://doi.org/10.1016/j.joule.2019.05.016
- A.F. Palmstrom, G.E. Eperon, T. Leijtens, R. Prasanna, S.N. Habisreutinger et al., Enabling flexible all-perovskite tandem solar cells. Joule 3(9), 2193–2204 (2019). https://doi.org/10.1016/j.joule.2019.05.009
- M. Suri, A. Hazarika, B.W. Larson, Q. Zhao, M. Vallés-Pelarda et al., Enhanced open-circuit voltage of wide-bandgap perovskite photovoltaics by using alloyed (FA1–xCsx)Pb(I1–xBrx)3 quantum dots. ACS Energy Lett. 4(8), 1954–1960 (2019). https://doi.org/10.1021/acsenergylett.9b01030
- D. Zhao, C. Wang, Z. Song, Y. Yu, C. Chen et al., Four-terminal all-perovskite tandem solar cells achieving power conversion efficiencies exceeding 23%. ACS Energy Lett. 3(2), 305–306 (2018). https://doi.org/10.1021/acsenergylett.7b01287
- Y.M. Xie, Z. Zeng, X. Xu, C. Ma, Y. Ma et al., FA-assistant iodide coordination in organic-inorganic wide-bandgap perovskite with mixed halides. Small 16(10), 1907226 (2020). https://doi.org/10.1002/smll.201907226
- J.H. Heo, S.H. Im, CH3NH3PbBr3-CH3NH3PbI3 perovskite-perovskite tandem solar cells with exceeding 2.2 V open circuit voltage. Adv. Mater. 28(25), 5121–5125 (2016). https://doi.org/10.1002/adma.201501629
- C. Bi, Y. Yuan, Y. Fang, J. Huang, Low-temperature fabrication of efficient wide-bandgap organolead trihalide perovskite solar cells. Adv. Energy Mater. 5(6), 1401616 (2015). https://doi.org/10.1002/aenm.201401616
- W. Zhu, C. Bao, F. Li, X. Zhou, J. Yang et al., An efficient planar-heterojunction solar cell based on wide-bandgap CH3NH3PbI2.1Br0.9 perovskite film for tandem cell application. Chem. Commun. 52(2), 304–307 (2016). https://doi.org/10.1039/c5cc07673k
- N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015). https://doi.org/10.1038/nature14133
- M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu et al., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354(6309), 206–209 (2016). https://doi.org/10.1126/science.aah5557
- M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016). https://doi.org/10.1039/c5ee03874j
- G. Kapil, T. Bessho, C.H. Ng, K. Hamada, M. Pandey et al., Strain relaxation and light management in tin-lead perovskite solar cells to achieve high efficiencies. ACS Energy Lett. 4(8), 1991–1998 (2019). https://doi.org/10.1021/acsenergylett.9b01237
- D. Forgács, L. Gil-Escrig, D. Pérez-Del-Rey, C. Momblona, J. Werner et al., Efficient monolithic perovskite/perovskite tandem solar cells. Adv. Energy Mater. 7(8), 1602121 (2017). https://doi.org/10.1002/aenm.201602121
- Y. Zhou, M. Yang, O.S. Game, W. Wu, J. Kwun et al., Manipulating crystallization of organolead mixed-halide thin films in antisolvent baths for wide-bandgap perovskite solar cells. ACS Appl. Mater. Interfaces 8(3), 2232–2237 (2016). https://doi.org/10.1021/acsami.5b10987
- D. Forgács, D. Pérez-del-Rey, J. Ávila, C. Momblona, L. Gil-Escrig et al., Efficient wide bandgap double cation-double halide perovskite solar cells. J. Mater. Chem. A 5(7), 3203–3207 (2017). https://doi.org/10.1039/c6ta10727c
- D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba et al., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351(6269), 151–155 (2016). https://doi.org/10.1126/science.aad5845
- M. Yang, D.H. Kim, Y. Yu, Z. Li, O.G. Reid et al., Effect of non-stoichiometric solution chemistry on improving the performance of wide-bandgap perovskite solar cells. Mater. Today Energy 7, 232–238 (2018). https://doi.org/10.1016/j.mtener.2017.10.001
- K.A. Bush, K. Frohna, R. Prasanna, R.E. Beal, T. Leijtens et al., Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation. ACS Energy Lett. 3(2), 428–435 (2018). https://doi.org/10.1021/acsenergylett.7b01255
- J. Xu, C.C. Boyd, Z.J. Yu, A.F. Palmstrom, D.J. Witter et al., Triple-halide wide-bandgap perovskites with suppressed phase segregation for efficient tandems. Science 367(6482), 1097–1104 (2020). https://doi.org/10.1126/science.aaz5074
- R. Li, B. Chen, N. Ren, P. Wang, B. Shi et al., CsPbCl3-cluster-widened bandgap and inhibited phase segregation in a wide-bandgap perovskite and its application to NiOx-based perovskite/silicon tandem solar cells. Adv. Mater. 34(27), 2201451 (2022). https://doi.org/10.1002/adma.202201451
- Z. Qiu, Z. Xu, N. Li, N. Zhou, Y. Chen et al., Monolithic perovskite/Si tandem solar cells exceeding 22% efficiency via optimizing top cell absorber. Nano Energy 53, 798–807 (2018). https://doi.org/10.1016/j.nanoen.2018.09.052
- S. Chen, Y. Hou, H. Chen, X. Tang, S. Langner et al., Exploring the stability of novel wide bandgap perovskites by a robot based high throughput approach. Adv. Energy Mater. 8(6), 1701543 (2018). https://doi.org/10.1002/aenm.201701543
- X.Y. Zhu, V. Podzorov, Charge carriers in hybrid organic-inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 6(23), 4758–4761 (2015). https://doi.org/10.1021/acs.jpclett.5b02462
- Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu et al., Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science 356(6333), 59–62 (2017). https://doi.org/10.1126/science.aam7744
- G.J. Nan, X. Zhang, M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S.D. Stranks et al., How methylammonium cations and chlorine dopants heal defects in lead iodide perovskites. Adv. Energy Mater. 8(13), 1702754 (2018). https://doi.org/10.1002/aenm.201702754
- H. Tan, F. Che, M. Wei, Y. Zhao, M.I. Saidaminov et al., Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites. Nat. Commun. 9, 3100 (2018). https://doi.org/10.1038/s41467-018-05531-8
- A. Al-Ashouri, E. Kohnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with > 29% efficiency by enhanced hole extraction. Science 370(6522), 1300–1309 (2020). https://doi.org/10.1126/science.abd4016
- R. Prasanna, A. Gold-Parker, T. Leijtens, B. Conings, A. Babayigit et al., Bandgap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J. Am. Chem. Soc. 139(32), 11117–11124 (2017). https://doi.org/10.1021/jacs.7b04981
- R.J. Stoddard, A. Rajagopal, R.L. Palmer, I.L. Braly, A.K.Y. Jen et al., Enhancing defect tolerance and phase stability of high-bandgap perovskites via guanidinium alloying. ACS Energy Lett. 3(6), 1261–1268 (2018). https://doi.org/10.1021/acsenergylett.8b00576
- K. Xiao, Y.H. Lin, M. Zhang, R.D.J. Oliver, X. Wang et al., Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science 376(6594), 762–767 (2022). https://doi.org/10.1126/science.abn7696
- S.G. Ji, I.J. Park, H. Chang, J.H. Park, G.P. Hong et al., Stable pure-iodide wide-band-gap perovskites for efficient Si tandem cells via kinetically controlled phase evolution. Joule 6(10), 2390–2405 (2022). https://doi.org/10.1016/j.joule.2022.08.006
- S. Xie, R. Xia, Z. Chen, J. Tian, L. Yan et al., Efficient monolithic perovskite/organic tandem solar cells and their efficiency potential. Nano Energy 78, 105238 (2020). https://doi.org/10.1016/j.nanoen.2020.105238
- P. Wang, W. Li, O.J. Sandberg, C.H. Guo, R. Sun et al., Tuning of the interconnecting layer for monolithic perovskite/organic tandem solar cells with record efficiency exceeding 21%. Nano Lett. 21(18), 7845–7854 (2021). https://doi.org/10.1021/acs.nanolett.1c02897
- X. Gu, X. Lai, Y. Zhang, T. Wang, W.L. Tan et al., Organic solar cell with efficiency over 20% and voc exceeding 2.1V enabled by tandem with all-inorganic perovskite and thermal annealing-free process. Adv. Sci. 9(28), 2200445 (2022). https://doi.org/10.1002/advs.202200445
- H. Aqoma, I.F. Imran, F.T.A. Wibowo, N.V. Krishna, W. Lee et al., High-efficiency solution-processed two-terminal hybrid tandem solar cells using spectrally matched inorganic and organic photoactive materials. Adv. Energy Mater. 10(37), 2001188 (2020). https://doi.org/10.1002/aenm.202001188
- K. Lang, Q. Guo, Z.W. He, Y.M. Bai, J.X. Yao et al., High performance tandem solar cells with inorganic perovskite and organic conjugated molecules to realize complementary absorption. J. Phys. Chem. Lett. 11(22), 9596–9604 (2020). https://doi.org/10.1021/acs.jpclett.0c02794
- Q. Zeng, L. Liu, Z. Xiao, F. Liu, Y. Hua et al., A two-terminal all-inorganic perovskite/organic tandem solar cell. Sci. Bull. 64(13), 885–887 (2019). https://doi.org/10.1016/j.scib.2019.05.015
- L. Liu, Z. Xiao, C. Zuo, L. Ding, Inorganic perovskite/organic tandem solar cells with efficiency over 20%. J. Semicond. 42(2), 020501 (2021). https://doi.org/10.1088/1674-4926/42/2/020501
- Y. Ding, Q. Guo, Y. Geng, Z. Dai, Z. Wang et al., A low-cost hole transport layer enables CsPbI2Br single-junction and tandem perovskite solar cells with record efficiencies of 17.8% and 21.4%. Nano Today 46, 101586 (2022). https://doi.org/10.1016/j.nantod.2022.101586
- W. Chen, D. Li, X. Chen, H. Chen, S. Liu et al., Surface reconstruction for stable monolithic all-inorganic perovskite/organic tandem solar cells with over 21% efficiency. Adv. Funct. Mater. 32(5), 2109321 (2021). https://doi.org/10.1002/adfm.202109321
- X. Yang, Y. Fu, R. Su, Y. Zheng, Y. Zhang et al., Superior carrier lifetimes exceeding 6 micros in polycrystalline halide perovskites. Adv. Mater. 32(39), 2002585 (2020). https://doi.org/10.1002/adma.202002585
- S.W. Liu, X.Y. Guan, W.S. Xiao, R. Chen, J. Zhou et al., Effective passivation with size-matched alkyldiammonium iodide for high-performance inverted perovskite solar cells. Adv. Funct. Mater. 32(38), 2205009 (2022). https://doi.org/10.1002/adfm.202205009
- C.H. Li, Y.M. Pan, J.L. Hu, S.D. Qiu, C.L. Zhang et al., Vertically aligned 2D/3D Pb-Sn perovskites with enhanced charge extraction and suppressed phase segregation for efficient printable solar cells. ACS Energy Lett. 5(5), 1386–1395 (2020). https://doi.org/10.1021/acsenergylett.0c00634
- S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan et al., Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571(7764), 245–250 (2019). https://doi.org/10.1038/s41586-019-1357-2
- Z.M. Fang, N. Yan, S. Liu, Modulating preferred crystal orientation for efficient and stable perovskite solar cells-from progress to perspectives. InfoMat 4(10), e12369 (2022). https://doi.org/10.1002/inf2.12369
- Z. Tang, T. Bessho, F. Awai, T. Kinoshita, M.M. Maitani et al., Hysteresis-free perovskite solar cells made of potassium-doped organometal halide perovskite. Sci. Rep. 7(1), 12183 (2017). https://doi.org/10.1038/s41598-017-12436-x
- T. Bu, X. Liu, Y. Zhou, J. Yi, X. Huang et al., A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environ. Sci. 10(12), 2509–2515 (2017). https://doi.org/10.1039/c7ee02634j
- D.Y. Son, S.G. Kim, J.Y. Seo, S.H. Lee, H. Shin et al., Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J. Am. Chem. Soc. 140(4), 1358–1364 (2018). https://doi.org/10.1021/jacs.7b10430
- J. Cao, S.X. Tao, P.A. Bobbert, C.P. Wong, N. Zhao, Interstitial occupancy by extrinsic alkali cations in perovskites and its impact on ion migration. Adv. Mater. 30(26), 1707350 (2018). https://doi.org/10.1002/adma.201707350
- M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe et al., Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555(7697), 497–501 (2018). https://doi.org/10.1038/nature25989
- D.J. Kubicki, D. Prochowicz, A. Hofstetter, S.M. Zakeeruddin, M. Gratzel et al., Phase segregation in potassium-doped lead halide perovskites from 39K solid-state NMR at 21.1T. J. Am. Chem. Soc. 140(23), 7232–7238 (2018). https://doi.org/10.1021/jacs.8b03191
- F. Zheng, W. Chen, T. Bu, K.P. Ghiggino, F. Huang et al., Triggering the passivation effect of potassium doping in mixed-cation mixed-halide perovskite by light illumination. Adv. Energy Mater. 9(24), 1901016 (2019). https://doi.org/10.1002/aenm.201901016
- L. Wang, G. Wang, Z. Yan, J. Qiu, C. Jia et al., Potassium-induced phase stability enables stable and efficient wide-bandgap perovskite solar cells. Sol. RRL 4(7), 2000098 (2020). https://doi.org/10.1002/solr.202000098
- J. Liang, C. Chen, X. Hu, Z. Chen, X. Zheng et al., Suppressing the phase segregation with potassium for highly efficient and photostable inverted wide-bandgap halide perovskite solar cells. ACS Appl. Mater. Interfaces 12(43), 48458–48466 (2020). https://doi.org/10.1021/acsami.0c10310
- T. Duong, Y. Wu, H. Shen, J. Peng, X. Fu et al., Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv. Energy Mater. 7(14), 1700228 (2017). https://doi.org/10.1002/aenm.201700228
- J. Kim, M.I. Saidaminov, H. Tan, Y. Zhao, Y. Kim et al., Amide-catalyzed phase-selective crystallization reduces defect density in wide-bandgap perovskites. Adv. Mater. 30(13), 1706275 (2018). https://doi.org/10.1002/adma.201706275
- L. Tao, X. Du, J. Hu, S. Wang, C. Lin et al., Stabilizing wide-bandgap halide perovskites through hydrogen bonding. Sci. China Chem. 65(8), 1650–1660 (2022). https://doi.org/10.1007/s11426-021-1306-4
- Y. Zhou, Y.H. Jia, H.H. Fang, M.A. Loi, F.Y. Xie et al., Composition-tuned wide bandgap perovskites: from grain engineering to stability and performance improvement. Adv. Funct. Mater. 28(35), 1803130 (2018). https://doi.org/10.1002/adfm.201803130
- Y.M. Xie, X. Xu, C. Ma, M. Li, Y. Ma et al., Synergistic effect of pseudo-halide thiocyanate anion and cesium cation on realizing high-performance pinhole-free MA-based wide-bandgap perovskites. ACS Appl. Mater. Interfaces 11(29), 25909–25916 (2019). https://doi.org/10.1021/acsami.9b06315
- D.H. Kim, C.P. Muzzillo, J.H. Tong, A.F. Palmstrom, B.W. Larson et al., Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with CIGS. Joule 3(7), 1734–1745 (2019). https://doi.org/10.1016/j.joule.2019.04.012
- B. Chen, Z.S. Yu, K. Liu, X.P. Zheng, Y. Liu et al., Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%. Joule 3(1), 177–190 (2019). https://doi.org/10.1016/j.joule.2018.10.003
- X. Jiang, J. Zhang, X. Liu, Z. Wang, X. Guo et al., Deeper insight into the role of organic ammonium cations in reducing surface defects of the perovskite film. Angew. Chem. Int. Ed. 61(12), e202115663 (2022). https://doi.org/10.1002/anie.202115663
- C.L. Zhang, S.H. Wu, L.M. Tao, G.M. Arumugam, C. Liu et al., Fabrication strategy for efficient 2D/3D perovskite solar cells enabled by diffusion passivation and strain compensation. Adv. Energy Mater. 10(43), 2002004 (2020). https://doi.org/10.1002/aenm.202002004
- J.Y. Ye, J. Tong, J. Hu, C. Xiao, H. Lu et al., Enhancing charge transport of 2D perovskite passivation agent for wide-bandgap perovskite solar cells beyond 21%. Sol. RRL 4(6), 2000082 (2020). https://doi.org/10.1002/solr.202000082
- X. Huo, Y. Li, Y. Lu, J. Dong, Y. Zhang et al., Suppressed halide segregation and defects in wide bandgap perovskite solar cells enabled by doping organic bromide salt with moderate chain length. J. Phys. Chem. C 126(4), 1711–1720 (2022). https://doi.org/10.1021/acs.jpcc.1c09739
- H. Xu, Z. Liang, J. Ye, S. Xu, Z. Wang et al., Guanidinium-assisted crystallization modulation and reduction of open-circuit voltage deficit for efficient planar FAPbBr3 perovskite solar cells. Chem. Eng. J. 437, 135181 (2022). https://doi.org/10.1016/j.cej.2022.135181
- G. Yang, Z. Ni, Z.J. Yu, B.W. Larson, Z. Yu et al., Defect engineering in wide-bandgap perovskites for efficient perovskite-silicon tandem solar cells. Nat. Photon. 16(8), 588–594 (2022). https://doi.org/10.1038/s41566-022-01033-8
- S. Qin, C. Lu, Z. Jia, Y. Wang, S. Li et al., Constructing monolithic perovskite/organic tandem solar cell with efficiency of 22.0% via reduced open-circuit voltage loss and broadened absorption spectra. Adv. Mater. 34(11), 2108829 (2022). https://doi.org/10.1002/adma.202108829
- D. Kim, H.J. Jung, I.J. Park, B.W. Larson, S.P. Dunfield et al., Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 368(6487), 155–160 (2020). https://doi.org/10.1126/science.aba3433
- Y. Cai, J. Cui, M. Chen, M. Zhang, Y. Han et al., Multifunctional enhancement for highly stable and efficient perovskite solar cells. Adv. Funct. Mater. 31(7), 2005776 (2020). https://doi.org/10.1002/adfm.202005776
- F. Gao, Y. Zhao, X. Zhang, J. You, Recent progresses on defect passivation toward efficient perovskite solar cells. Adv. Energy Mater. 10(13), 1902650 (2019). https://doi.org/10.1002/aenm.201902650
- M. Kim, S.G. Motti, R. Sorrentino, A. Petrozza, Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film. Energy Environ. Sci. 11(9), 2609–2619 (2018). https://doi.org/10.1039/c8ee01101j
- X.J. Gu, W.C. Xiang, Q.W. Tian, S.Z. Liu, Rational surface-defect control via designed passivation for high-efficiency inorganic perovskite solar cells. Angew. Chem. Int. Ed. 60(43), 23164–23170 (2021). https://doi.org/10.1002/anie.202109724
- R. Wang, J. Xue, K.L. Wang, Z.K. Wang, Y. Luo et al., Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366(6472), 1509–1513 (2019). https://doi.org/10.1126/science.aay9698
- X. Li, W. Zhang, X. Guo, C. Lu, J. Wei et al., Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375(6579), 434–437 (2022). https://doi.org/10.1126/science.abl5676
- J. Liu, E. Aydin, J. Yin, M.D. Bastiani, F.H. Isikgor et al., 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule 5(12), 3169–3186 (2021). https://doi.org/10.1016/j.joule.2021.11.003
- Y. Zheng, X. Wu, J. Liang, Z. Zhang, J. Jiang et al., Downward homogenized crystallization for inverted wide-bandgap mixed-halide perovskite solar cells with 21% efficiency and suppressed photo-induced halide segregation. Adv. Funct. Mater. 32(29), 2200431 (2022). https://doi.org/10.1002/adfm.202200431
- R.D.J. Oliver, P. Caprioglio, F. Peña-Camargo, L.R.V. Buizza, F. Zu et al., Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cells. Energy Environ. Sci. 15(2), 714–726 (2022). https://doi.org/10.1039/d1ee02650j
- Z. Li, B. Li, X. Wu, S.A. Sheppard, S. Zhang et al., Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376(6591), 416–420 (2022). https://doi.org/10.1126/science.abm8566
- B. Chen, N. Ren, Y. Li, L. Yan, S. Mazumdar et al., Insights into the development of monolithic perovskite/silicon tandem solar cells. Adv. Energy Mater. 12(4), 2003628 (2021). https://doi.org/10.1002/aenm.202003628
- H.D. Pham, T.C.J. Yang, S.M. Jain, G.J. Wilson, P. Sonar, Development of dopant-free organic hole transporting materials for perovskite solar cells. Adv. Energy Mater. 10(13), 1903326 (2020). https://doi.org/10.1002/aenm.201903326
- A.K. Jena, A. Kulkarni, T. Miyasaka, Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119(5), 3036–3103 (2019). https://doi.org/10.1021/acs.chemrev.8b00539
- T.H. Wu, X. Liu, X.H. Luo, X.S. Lin, D.Y. Cui et al., Lead-free tin perovskite solar cells. Joule 5(4), 863–886 (2021). https://doi.org/10.1016/j.joule.2021.03.001
- Y. Han, H. Zhao, C. Duan, S. Yang, Z. Yang et al., Controlled n-doping in air-stable CsPbI2Br perovskite solar cells with a record efficiency of 16.79%. Adv. Funct. Mater. 30(12), 1909972 (2020). https://doi.org/10.1002/adfm.201909972
- J.R. Zhang, Y.K. Fang, W.G. Zhao, R.J. Han, J.L. Wen et al., Molten-salt-assisted CsPbI3 perovskite crystallization for nearly 20%-efficiency solar cells. Adv. Mater. 33(45), 2103770 (2021). https://doi.org/10.1002/adma.202103770
- P. Mahajan, B. Padha, S. Verma, V. Gupta, R. Datt et al., Review of current progress in hole-transporting materials for perovskite solar cells. J. Energy Chem. 68, 330–386 (2022). https://doi.org/10.1016/j.jechem.2021.12.003
- F.M. Rombach, S.A. Haque, T.J. Macdonald, Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ. Sci. 14(10), 5161–5190 (2021). https://doi.org/10.1039/d1ee02095a
- F. Ma, Y. Zhao, J.H. Li, X.W. Zhang, H.S. Gu et al., Nickel oxide for inverted structure perovskite solar cells. J. Energy Chem. 52, 393–411 (2021). https://doi.org/10.1016/j.jechem.2020.04.027
- K. Valadi, S. Gharibi, R. Taheri-Ledari, S. Akin, A. Maleki et al., Metal oxide electron transport materials for perovskite solar cells: a review. Environ. Chem. Lett. 19(3), 2185–2207 (2021). https://doi.org/10.1007/s10311-020-01171-x
- C.L. Wang, Y. Zhao, T.S. Ma, Y.D. An, R. He et al., A universal close-space annealing strategy towards high-quality perovskite absorbers enabling efficient all-perovskite tandem solar cells. Nat. Energy 7(8), 744–753 (2022). https://doi.org/10.1038/s41560-022-01076-9
- J. Xu, J. Cui, S. Yang, Y. Han, X. Guo et al., Unraveling passivation mechanism of imidazolium-based ionic liquids on inorganic perovskite to achieve near-record-efficiency CsPbI2Br solar cells. Nano-Micro Lett. 14, 7 (2021). https://doi.org/10.1007/s40820-021-00763-8
- M. Shahiduzzaman, M.I. Hossain, S. Visal, T. Kaneko, W. Qarony et al., Spray pyrolyzed TiO2 embedded multi-layer front contact design for high-efficiency perovskite solar cells. Nano-Micro Lett. 13, 36 (2021). https://doi.org/10.1007/s40820-020-00559-2
- J. Tao, X. Liu, J. Shen, S. Han, L. Guan et al., F-type pseudo-halide anions for high-efficiency and stable wide-band-gap inverted perovskite solar cells with fill factor exceeding 84. ACS Nano 16(7), 10798–10810 (2022). https://doi.org/10.1021/acsnano.2c02876
- M.A. Mahmud, J. Zheng, S. Tang, G. Wang, J. Bing et al., Cation-diffusion-based simultaneous bulk and surface passivations for high bandgap inverted perovskite solar cell producing record fill factor and efficiency. Adv. Energy Mater. 12(36), 2201672 (2022). https://doi.org/10.1002/aenm.202201672
- Z. Zhu, K. Mao, K. Zhang, W. Peng, J. Zhang et al., Correlating the perovskite/polymer multi-mode reactions with deep-level traps in perovskite solar cells. Joule 6(12), 2849–2868 (2022). https://doi.org/10.1016/j.joule.2022.10.007
- M. Hu, C. Bi, Y. Yuan, Y. Bai, J. Huang, Stabilized wide bandgap MAPbBrxI3-x perovskite by enhanced grain size and improved crystallinity. Adv. Sci. 3(6), 1500301 (2016). https://doi.org/10.1002/advs.201500301
- X. Zheng, J. Liu, T. Liu, E. Aydin, M. Chen et al., Photoactivated p-doping of organic interlayer enables efficient perovskite/silicon tandem solar cells. ACS Energy Lett. 7(6), 1987–1993 (2022). https://doi.org/10.1021/acsenergylett.2c00780
- K.A. Bush, S. Manzoor, K. Frohna, Z.J. Yu, J.A. Raiford et al., Minimizing current and voltage losses to reach 25% efficient monolithic two-termina perovskite-silicon tandem solar cells. ACS Energy Lett. 3(9), 2173–2180 (2018). https://doi.org/10.1021/acsenergylett.8b01201
- A.S. Subbiah, F.H. Isikgor, C.T. Howells, M.D. Bastiani, J. Liu et al., High-performance perovskite single-junction and textured perovskite/silicon tandem solar cells via slot-die-coating. ACS Energy Lett. 5(9), 3034–3040 (2020). https://doi.org/10.1021/acsenergylett.0c01297
- B. Chen, Z.S.J. Yu, S. Manzoor, S. Wang, W. Weigand et al., Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule 4(4), 850–864 (2020). https://doi.org/10.1016/j.joule.2020.01.008
- F. Ali, C. Roldán-Carmona, M. Sohail, M.K. Nazeeruddin, Applications of self-assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability. Adv. Energy Mater. 10(48), 2002989 (2020). https://doi.org/10.1002/aenm.202002989
- S.Y. Kim, S.J. Cho, S.E. Byeon, X. He, H.J. Yoon, Self-assembled monolayers as interface engineering nanomaterials in perovskite solar cells. Adv. Energy Mater. 10(44), 2002606 (2020). https://doi.org/10.1002/aenm.202002606
- A. Al-Ashouri, A. Magomedov, M. Roß, M. Jošt, M. Talaikis et al., Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12(11), 3356–3369 (2019). https://doi.org/10.1039/c9ee02268f
- Y. Lin, Y. Firdaus, F.H. Isikgor, M.I. Nugraha, E. Yengel et al., Self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability. ACS Energy Lett. 5(9), 2935–2944 (2020). https://doi.org/10.1021/acsenergylett.0c01421
- I.M. Hermes, Y. Hou, V.W. Bergmann, C.J. Brabec, S.A.L. Weber, The interplay of contact layers: how the electron transport layer influences interfacial recombination and hole extraction in perovskite solar cells. J. Phys. Chem. Lett. 9(21), 6249–6256 (2018). https://doi.org/10.1021/acs.jpclett.8b02824
- H.G. Lai, J.C. Luo, Y. Zwirner, S. Olthof, A. Wieczorek et al., High-performance flexible all-perovskite tandem solar cells with reduced VOC-deficit in wide-bandgap subcell. Adv. Energy Mater. 12(45), 2202438 (2022). https://doi.org/10.1002/aenm.202202438
- Z. Liu, C. Zhu, H. Luo, W. Kong, X. Luo et al., Grain regrowth and bifacial passivation for high-efficiency wide-bandgap perovskite solar cells. Adv. Energy Mater. 13(2), 2203230 (2022). https://doi.org/10.1002/aenm.202203230
- L. Mao, T. Yang, H. Zhang, J. Shi, Y. Hu et al., Fully textured, production-line compatible monolithic perovskite/silicon tandem solar cells approaching 29% efficiency. Adv. Mater. 34(40), 2206193 (2022). https://doi.org/10.1002/adma.202206193
- H. Chen, A. Maxwell, C. Li, S. Teale, B. Chen et al., Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2023). https://doi.org/10.1038/s41586-022-05541-z
- L. Zheng, Y. Xuan, J. Wang, S. Bao, X. Liu et al., Inverted perovskite/silicon V-shaped tandem solar cells with 27.6% efficiency via self-assembled monolayer-modified nickel oxide layer. J. Mater. Chem. A 10(13), 7251–7262 (2022). https://doi.org/10.1039/d1ta10313j
- Y. Wang, S. Gu, G. Liu, L. Zhang, Z. Liu et al., Cross-linked hole transport layers for high-efficiency perovskite tandem solar cells. Sci. China Chem. 64(11), 2025–2034 (2021). https://doi.org/10.1007/s11426-021-1059-1
- Q. Xu, B. Shi, Y. Li, L. Yan, W. Duan et al., Conductive passivator for efficient monolithic perovskite/silicon tandem solar cell on commercially textured silicon. Adv. Energy Mater. 12(46), 2202404 (2022). https://doi.org/10.1002/aenm.202202404
- F. Sahli, J. Werner, B.A. Kamino, M. Brauninger, R. Monnard et al., Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17(9), 820–826 (2018). https://doi.org/10.1038/s41563-018-0115-4
- Y. Li, B. Shi, Q. Xu, L. Yan, N. Ren et al., Wide bandgap interface layer induced stabilized perovskite/silicon tandem solar cells with stability over ten thousand hours. Adv. Energy Mater. 11(48), 2102046 (2021). https://doi.org/10.1002/aenm.202102046
- E. Aydin, T.G. Allen, M.D. Bastiani, L.J. Xu, J. Avila et al., Interplay between temperature and bandgap energies on the outdoor performance of perovskite/silicon tandem solar cells. Nat. Energy 5(11), 851–859 (2020). https://doi.org/10.1038/s41560-020-00687-4
- Y. Lin, B. Chen, F. Zhao, X. Zheng, Y. Deng et al., Matching charge extraction contact for wide-bandgap perovskite solar cells. Adv. Mater. 29(26), 1700607 (2017). https://doi.org/10.1002/adma.201700607
- D.B. Khadka, Y. Shirai, M. Yanagida, T. Noda, K. Miyano, Tailoring the open-circuit voltage deficit of wide-band-gap perovskite solar cells using alkyl chain-substituted fullerene derivatives. ACS Appl. Mater. Interfaces 10(26), 22074–22082 (2018). https://doi.org/10.1021/acsami.8b04439
- E. Aydin, J. Liu, E. Ugur, R. Azmi, G.T. Harrison et al., Ligand-bridged charge extraction and enhanced quantum efficiency enable efficient n–i–p perovskite/silicon tandem solar cells. Energy Environ. Sci. 14(8), 4377–4390 (2021). https://doi.org/10.1039/d1ee01206a
- Z. Yu, Z. Yang, Z. Ni, Y. Shao, B. Chen et al., Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nat. Energy 5(9), 657–665 (2020). https://doi.org/10.1038/s41560-020-0657-y
- Z.Q. Lin, H.J. Lian, B. Ge, Z. Zhou, H. Yuan et al., Mediating the local oxygen-bridge interactions of oxysalt/perovskite interface for defect passivation of perovskite photovoltaics. Nano-Micro Lett. 13, 177 (2021). https://doi.org/10.1007/s40820-021-00683-7
- C. Jiang, J. Zhou, H. Li, L. Tan, M. Li et al., Double layer composite electrode strategy for efficient perovskite solar cells with excellent reverse-bias stability. Nano-Micro Lett. 15, 12 (2022). https://doi.org/10.1007/s40820-022-00985-4
- W. Dong, W. Qiao, S. Xiong, J. Yang, X. Wang et al., Surface passivation and energetic modification suppress nonradiative recombination in perovskite solar cells. Nano-Micro Lett. 14, 108 (2022). https://doi.org/10.1007/s40820-022-00854-0
- S. Cacovich, G. Vidon, M. Degani, M. Legrand, L. Gouda et al., Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces. Nat. Commun. 13, 2868 (2022). https://doi.org/10.1038/s41467-022-30426-0
- S.D. Stranks, Nonradiative losses in metal halide perovskites. ACS Energy Lett. 2(7), 1515–1525 (2017). https://doi.org/10.1021/acsenergylett.7b00239
- Z.M. Fang, L.B. Jia, N. Yan, X.F. Jiang, X.D. Ren et al., Proton-transfer-induced in situ defect passivation for highly efficient wide-bandgap inverted perovskite solar cells. InfoMat 4(6), e12307 (2022). https://doi.org/10.1002/inf2.12307
- S. Gharibzadeh, P. Fassl, I.M. Hossain, P. Rohrbeck, M. Frericks et al., Two birds with one stone: dual grain-boundary and interface passivation enables > 22% efficient inverted methylammonium-free perovskite solar cells. Energy Environ. Sci. 14(11), 5875–5893 (2021). https://doi.org/10.1039/d1ee01508g
- P. Wang, B. Chen, R. Li, S. Wang, Y. Li et al., 2D perovskite or organic material matter? Targeted growth for efficient perovskite solar cells with efficiency exceeding 24%. Nano Energy 94, 106914 (2022). https://doi.org/10.1016/j.nanoen.2021.106914
- S. Gharibzadeh, I.M. Hossain, P. Fassl, B.A. Nejand, T. Abzieher et al., 2D/3D heterostructure for semitransparent perovskite solar cells with engineered bandgap enables efficiencies exceeding 25% in four-terminal tandems with silicon and cigs. Adv. Funct. Mater. 30(19), 1909919 (2020). https://doi.org/10.1002/adfm.201909919
- L.P. Wang, Z. Yan, J.H. Qiu, J.B. Wu, C. Zhen et al., Interface regulation enables hysteresis free wide-bandgap perovskite solar cells with low Voc deficit and high stability. Nano Energy 90, 106537 (2021). https://doi.org/10.1016/j.nanoen.2021.106537
- D. Wang, H. Guo, X. Wu, X. Deng, F. Li et al., Interfacial engineering of wide-bandgap perovskites for efficient perovskite/cztsse tandem solar cells. Adv. Funct. Mater. 32(2), 2107359 (2021). https://doi.org/10.1002/adfm.202107359
- Y. Zhou, F. Wang, Y. Cao, J.P. Wang, H.H. Fang et al., Benzylamine-treated wide-bandgap perovskite with high thermal-photostability and photovoltaic performance. Adv. Energy Mater. 7(22), 1701048 (2017). https://doi.org/10.1002/aenm.201701048
- S. Gharibzadeh, B.A. Nejand, M. Jakoby, T. Abzieher, D. Hauschild et al., Record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure. Adv. Energy Mater. 9(21), 1803699 (2019). https://doi.org/10.1002/aenm.201803699
- T. Duong, H. Pham, T.C. Kho, P. Phang, K.C. Fong et al., High efficiency perovskite-silicon tandem solar cells: effect of surface coating versus bulk incorporation of 2D perovskite. Adv. Energy Mater. 10(9), 1903553 (2020). https://doi.org/10.1002/aenm.201903553
- T. Bu, J. Li, Q. Lin, D.P. McMeekin, J. Sun et al., Structure engineering of hierarchical layered perovskite interface for efficient and stable wide bandgap photovoltaics. Nano Energy 75, 104917 (2020). https://doi.org/10.1016/j.nanoen.2020.104917
- C. Chen, J.W. Liang, J.J. Zhang, X.X. Liu, X.X. Yin et al., Interfacial engineering of a thiophene-based 2D/3D perovskite heterojunction for efficient and stable inverted wide-bandgap perovskite solar cells. Nano Energy 90, 106608 (2021). https://doi.org/10.1016/j.nanoen.2021.106608
- R. He, Z. Yi, Y. Luo, J. Luo, Q. Wei et al., Pure 2D perovskite formation by interfacial engineering yields a high open-circuit voltage beyond 1.28 V for 1.77-eV wide-bandgap perovskite solar cells. Adv. Sci. 9(36), 2203210 (2022). https://doi.org/10.1002/advs.202203210
- C. Chen, Z. Song, C. Xiao, D. Zhao, N. Shrestha et al., Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction. Nano Energy 61, 141–147 (2019). https://doi.org/10.1016/j.nanoen.2019.04.069
- C. Chen, Z.N. Song, C.X. Xiao, R.A. Awni, C.L. Yao et al., Arylammonium-assisted reduction of the open-circuit voltage deficit in wide-bandgap perovskite solar cells: the role of suppressed ion migration. ACS Energy Lett. 5(8), 2560–2568 (2020). https://doi.org/10.1021/acsenergylett.0c01350
- T. Duong, H. Pham, Y. Yin, J. Peng, M.A. Mahmud et al., Efficient and stable wide bandgap perovskite solar cells through surface passivation with long alkyl chain organic cations. J. Mater. Chem. A 9(34), 18454–18465 (2021). https://doi.org/10.1039/d1ta05699a
- M. Jaysankar, B.A.L. Raul, J. Bastos, C. Burgess, C. Weijtens et al., Minimizing voltage loss in wide-bandgap perovskites for tandem solar cells. ACS Energy Lett. 4(1), 259–264 (2018). https://doi.org/10.1021/acsenergylett.8b02179
- T. Huang, R. Wang, S. Nuryyeva, S. Tan, J. Xue et al., Wide-gap perovskite via synergetic surface passivation and its application toward efficient stacked tandem photovoltaics. Small 18(8), 2103887 (2022). https://doi.org/10.1002/smll.202103887
- R. Xia, Y. Xu, B. Chen, H. Kanda, M. Franckevičius et al., Interfacial passivation of wide-bandgap perovskite solar cells and tandem solar cells. J. Mater. Chem. A 9(38), 21939–21947 (2021). https://doi.org/10.1039/d1ta04330g
- R.A. Belisle, K.A. Bush, L. Bertoluzzi, A. Gold-Parker, M.F. Toney et al., Impact of surfaces on photoinduced halide segregation in mixed-halide perovskites. ACS Energy Lett. 3(11), 2694–2700 (2018). https://doi.org/10.1021/acsenergylett.8b01562
- F.H. Isikgor, F. Furlan, J. Liu, E. Ugur, M.K. Eswaran et al., Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation. Joule 5(6), 1566–1586 (2021). https://doi.org/10.1016/j.joule.2021.05.013
- M. Stolterfoht, P. Caprioglio, C.M. Wolff, J.A. Márquez, J. Nordmann et al., The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12(9), 2778–2788 (2019). https://doi.org/10.1039/c9ee02020a
- M. Stolterfoht, C.M. Wolff, J.A. Márquez, S. Zhang, C.J. Hages et al., Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3(10), 847–854 (2018). https://doi.org/10.1038/s41560-018-0219-8
- D. Menzel, A. Al-Ashouri, A. Tejada, I. Levine, J.A. Guerra et al., Field effect passivation in perovskite solar cells by a LiF interlayer. Adv. Energy Mater. 12(30), 2201109 (2022). https://doi.org/10.1002/aenm.202201109
- B.W. Park, H.W. Kwon, Y. Lee, D.Y. Lee, M.G. Kim et al., Stabilization of formamidinium lead triiodide alpha-phase with isopropylammonium chloride for perovskite solar cells. Nat. Energy 6(4), 419–428 (2021). https://doi.org/10.1038/s41560-021-00802-z
- H. Lu, Y. Liu, P. Ahlawat, A. Mishra, W.R. Tress et al., Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 370(6512), eabb8985 (2020). https://doi.org/10.1126/science.abb8985
- N.G. Park, K. Zhu, Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 5(5), 333–350 (2020). https://doi.org/10.1038/s41578-019-0176-2
- F. Yang, D. Jang, L.R. Dong, S.D. Qiu, A. Distler et al., Upscaling solution-processed perovskite photovoltaics. Adv. Energy Mater. 11(42), 2101973 (2021). https://doi.org/10.1002/aenm.202101973
- H. Li, C. Zuo, D. Angmo, H. Weerasinghe, M. Gao et al., Fully roll-to-roll processed efficient perovskite solar cells via precise control on the morphology of PbI2:CsI layer. Nano-Micro Lett. 14, 79 (2022). https://doi.org/10.1007/s40820-022-00815-7
- M. Jaysankar, W. Qiu, J. Bastos, J.G. Tait, M. Debucquoy et al., Crystallisation dynamics in wide-bandgap perovskite films. J. Mater. Chem. A 4(27), 10524–10531 (2016). https://doi.org/10.1039/c6ta02769e
- Y.M. Xie, C. Ma, X. Xu, M. Li, Y. Ma et al., Revealing the crystallization process and realizing uniform 1.8 eV MA-based wide-bandgap mixed-halide perovskites via solution engineering. Nano Res. 12(5), 1033–1039 (2019). https://doi.org/10.1007/s12274-019-2336-5
- T. Huang, S. Tan, S. Nuryyeva, I. Yavuz, F. Babbe et al., Performance-limiting formation dynamics in mixed-halide perovskites. Sci. Adv. 7(46), eabj1799 (2021). https://doi.org/10.1126/sciadv.abj1799
- Z. Xiong, X. Chen, B. Zhang, G.O. Odunmbaku, Z. Ou et al., Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%. Adv. Mater. 34(8), 2106118 (2022). https://doi.org/10.1002/adma.202106118
- X. Liu, Z. Wu, X. Fu, L. Tang, J. Li et al., Highly efficient wide-band-gap perovskite solar cells fabricated by sequential deposition method. Nano Energy 86, 106114 (2021). https://doi.org/10.1016/j.nanoen.2021.106114
- B.B. Chen, P.Y. Wang, R.J. Li, N.Y. Ren, W. Han et al., A two-step solution-processed wide-bandgap perovskite for monolithic silicon-based tandem solar cells with > 27% efficiency. ACS Energy Lett. 7(8), 2771–2780 (2022). https://doi.org/10.1021/acsenergylett.2c01488
- G. Longo, C. Momblona, M.G. La-Placa, L. Gil-Escrig, M. Sessolo et al., Fully vacuum-processed wide bandgap mixed-halide perovskite solar cells. ACS Energy Lett. 3(1), 214–219 (2017). https://doi.org/10.1021/acsenergylett.7b01217
- J. Ávila, C. Momblona, P. Boix, M. Sessolo, M. Anaya et al., High voltage vacuum-deposited CH3NH3PbI3-CH3NH3PbI3 tandem solar cells. Energy Environ. Sci. 11(11), 3292–3297 (2018). https://doi.org/10.1039/c8ee01936c
- M. Roß, S. Severin, M.B. Stutz, P. Wagner, H. Köbler et al., Co-evaporated formamidinium lead iodide based perovskites with 1000 h constant stability for fully textured monolithic perovskite/silicon tandem solar cells. Adv. Energy Mater. 11(35), 2101460 (2021). https://doi.org/10.1002/aenm.202101460
- M. Ross, M.B. Stutz, S. Albrecht, Revealing the role of methylammonium iodide purity on the vapor-phase deposition process of perovskites. Sol. RRL 6(10), 2200500 (2022). https://doi.org/10.1002/solr.202200500
- Y. Hou, E. Aydin, M.D. Bastiani, C.X. Xiao, F.H. Isikgor et al., Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367(6482), 1135–1140 (2020). https://doi.org/10.1126/science.aaz3691
- M. Jung, S.G. Ji, G. Kim, S.I. Seok, Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chem. Soc. Rev. 48(7), 2011–2038 (2019). https://doi.org/10.1039/c8cs00656c
- T. Wang, F. Zheng, G. Tang, J. Cao, P. You et al., 2D WSe2 flakes for synergistic modulation of grain growth and charge transfer in tin-based perovskite solar cells. Adv. Sci. 8(11), 2004315 (2021). https://doi.org/10.1002/advs.202004315
- B. Wang, J. Iocozzia, M. Zhang, M.D. Ye, S.C. Yan et al., The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells. Chem. Soc. Rev. 48(18), 4854–4891 (2019). https://doi.org/10.1039/c9cs00254e
- A. Ren, H. Lai, X. Hao, Z. Tang, H. Xu et al., Efficient perovskite solar modules with minimized nonradiative recombination and local carrier transport losses. Joule 4(6), 1263–1277 (2020). https://doi.org/10.1016/j.joule.2020.04.013
- G. Tong, L.K. Ono, Y. Liu, H. Zhang, T. Bu et al., Up-scalable fabrication of SnO2 with multifunctional interface for high performance perovskite solar modules. Nano-Micro Lett. 13, 155 (2021). https://doi.org/10.1007/s40820-021-00675-7
- W. Meng, K.C. Zhang, A. Osvet, J.Y. Zhang, W. Gruber et al., Revealing the strain-associated physical mechanisms impacting the performance and of solar cells. Joule 6(2), 458–475 (2022). https://doi.org/10.1016/j.joule.2022.01.011
- X.X. Cui, J.J. Jin, Q.D. Tai, F. Yan, Recent progress on the phase stabilization of FAPbI3 for high-performance perovskite solar cells. Sol. RRL 6(10), 2200497 (2022). https://doi.org/10.1002/solr.202200497
- T. Wang, Y. Zhang, W. Kong, L. Qiao, B. Peng et al., Transporting holes stably under iodide invasion in efficient perovskite solar cells. Science 377(6611), 1227–1232 (2022). https://doi.org/10.1126/science.abq6235
References
National Renewable Energy Laboratory, Best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html
Y. Zhao, F. Ma, Z.H. Qu, S.Q. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377(6605), 531–534 (2022). https://doi.org/10.1126/science.abp8873
T.K. Zhang, F. Wang, H.B. Kim, I.W. Choi, C.F. Wang et al., Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science 377(6605), 495–501 (2022). https://doi.org/10.1126/science.abo2757
M. Kim, J. Jeong, H. Lu, T.K. Lee, F.T. Eickemeyer et al., Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375(6578), 302–306 (2022). https://doi.org/10.1126/science.abh1885
T.A.S. Doherty, S. Nagane, D.J. Kubicki, Y.K. Jung, D.N. Johnstone et al., Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases. Science 374(6575), 1598–1605 (2021). https://doi.org/10.1126/science.abl4890
Q. Jiang, J. Tong, Y. Xian, R.A. Kerner, S.P. Dunfield et al., Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611(7935), 278–283 (2022). https://doi.org/10.1038/s41586-022-05268-x
T. Wu, Z. Qin, Y. Wang, Y. Wu, W. Chen et al., The main progress of perovskite solar cells in 2020–2021. Nano-Micro Lett. 13, 152 (2021). https://doi.org/10.1007/s40820-021-00672-w
L. Wang, H. Zai, Y. Duan, G. Liu, X. Niu et al., Cost analysis of perovskite/Cu(In, Ga)Se2 tandem photovoltaic with module replacement. ACS Energy Lett. 7(6), 1920–1925 (2022). https://doi.org/10.1021/acsenergylett.2c00886
Q.F. Han, Y.T. Hsieh, L. Meng, J.L. Wu, P.Y. Sun et al., High-performance perovskite/Cu(In, Ga)Se2 monolithic tandem solar cells. Science 361(6405), 904–908 (2018). https://doi.org/10.1126/science.aat5055
Z.M. Fang, Q. Zeng, C.T. Zuo, L.X. Zhang, H.R. Xiao et al., Perovskite-based tandem solar cells. Sci. Bull. 66(6), 621–636 (2021). https://doi.org/10.1016/j.scib.2020.11.006
H. Li, W. Zhang, Perovskite tandem solar cells: from fundamentals to commercial deployment. Chem. Rev. 120(18), 9835–9950 (2020). https://doi.org/10.1021/acs.chemrev.9b00780
F. Fu, J. Li, T.C. Yang, H. Liang, A. Faes et al., Monolithic perovskite-silicon tandem solar cells: from the lab to fab? Adv. Mater. 34(24), 2106540 (2022). https://doi.org/10.1002/adma.202106540
J. Liu, M. Bastiani, E. Aydin, G.T. Harrison, Y.J. Gao et al., Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science 377(6603), 302–306 (2022). https://doi.org/10.1126/science.abn8910
R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A.S. Subbiah et al., Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376(6588), 73–77 (2022). https://doi.org/10.1126/science.abm5784
K.O. Brinkmann, T. Becker, F. Zimmermann, C. Kreusel, T. Gahlmann et al., Perovskite-organic tandem solar cells with indium oxide interconnect. Nature 604(7905), 280–286 (2022). https://doi.org/10.1038/s41586-022-04455-0
R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang et al., Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy 4(10), 864–873 (2019). https://doi.org/10.1038/s41560-019-0466-3
K. Xiao, R. Lin, Q. Han, Y. Hou, Z. Qin et al., All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5(11), 870–880 (2020). https://doi.org/10.1038/s41560-020-00705-5
C.C. Chen, S.H. Bae, W.H. Chang, Z. Hong, G. Li et al., Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process. Mater. Horiz. 2(2), 203–211 (2015). https://doi.org/10.1039/c4mh00237g
Y. Liu, L.A. Renna, M. Bag, Z.A. Page, P. Kim et al., High efficiency tandem thin-perovskite/polymer solar cells with a graded recombination layer. ACS Appl. Mater. Interfaces 8(11), 7070–7076 (2016). https://doi.org/10.1021/acsami.5b12740
K. Xiao, J. Wen, Q.L. Han, R.X. Lin, Y. Gao et al., Solution-processed monolithic all-perovskite triple-junction solar cells with efficiency exceeding 20%. ACS Energy Lett. 5(9), 2819–2826 (2020). https://doi.org/10.1021/acsenergylett.0c01184
J. Tong, Q. Jiang, F. Zhang, S.B. Kang, D.H. Kim et al., Wide-bandgap metal halide perovskites for tandem solar cells. ACS Energy Lett. 6(1), 232–248 (2020). https://doi.org/10.1021/acsenergylett.0c02105
R. Wang, T.Y. Huang, J.J. Xue, J.H. Tong, K. Zhu et al., Prospects for metal halide perovskite-based tandem solar cells. Nat. Photon. 15(6), 411–425 (2021). https://doi.org/10.1038/s41566-021-00809-8
J.H. Zheng, G.L. Wang, W.Y. Duan, M.A. Mahmud, H.M. Yi et al., Monolithic perovskite-perovskite-silicon triple-junction tandem solar cell with an efficiency of over 20%. ACS Energy Lett. 7(9), 3003–3005 (2022). https://doi.org/10.1021/acsenergylett.2c01556
J. Wang, V. Zardetto, K. Datta, D. Zhang, M.M. Wienk et al., 16.8% monolithic all-perovskite triple-junction solar cells via a universal two-step solution process. Nat. Commun. 11, 5254 (2020). https://doi.org/10.1038/s41467-020-19062-8
X. Chen, Z.Y. Jia, Z. Chen, T.M. Jiang, L.Z. Bai et al., Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers. Joule 4(7), 1594–1606 (2020). https://doi.org/10.1016/j.joule.2020.06.006
S. Jiang, Y.M. Bai, Z.W. Ma, S.L. Jin, C. Zou et al., Recent advances of monolithic all-perovskite tandem solar cells: From materials to devices. Chinese J. Chem. 40(7), 856–871 (2022). https://doi.org/10.1002/cjoc.202100672
Q. Guo, C.Y. Wang, T. Hayat, A. Alsaedi, J.X. Yao et al., Recent advances in perovskite/organic integrated solar cells. Rare Met. 40(10), 2763–2777 (2021). https://doi.org/10.1007/s12598-020-01703-y
Y. Bai, K. Lang, C. Zhao, Q. Guo, R. Zeng et al., Strategies toward extending the near-infrared photovoltaic response of perovskite solar cells. Sol. RRL 4(2), 1900280 (2019). https://doi.org/10.1002/solr.201900280
M. Jošt, E. Köhnen, A. Al-Ashouri, T. Bertram, Š Tomšič et al., Perovskite/CIGS tandem solar cells: from certified 24.2% toward 30% and beyond. ACS Energy Lett. 7(4), 1298–1307 (2022). https://doi.org/10.1021/acsenergylett.2c00274
W. Chen, Y. Zhu, J. Xiu, G. Chen, H. Liang et al., Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nat. Energy 7(3), 229–237 (2022). https://doi.org/10.1038/s41560-021-00966-8
M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis et al., Solar cell efficiency tables (version 60). Prog. Photovolt. Res. Appl. 30(7), 687–701 (2022). https://doi.org/10.1002/pip.3595
D. Yang, X. Zhang, Y. Hou, K. Wang, T. Ye et al., 28.3%-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell. Nano Energy 84, 105934 (2021). https://doi.org/10.1016/j.nanoen.2021.105934
C. Gao, D.X. Du, D. Ding, F.Y. Qiao, W.Z. Shen, A review on monolithic perovskite/c-Si tandem solar cells: progress, challenges, and opportunities. J. Mater. Chem. A 10(20), 10811–10828 (2022). https://doi.org/10.1039/d2ta01470j
Y. Yao, P. Hang, B. Li, Z. Hu, C. Kan et al., Phase-stable wide-bandgap perovskites for four-terminal perovskite/silicon tandem solar cells with over 30% efficiency. Small 18(38), 2203319 (2022). https://doi.org/10.1002/smll.202203319
R. He, S. Ren, C. Chen, Z. Yi, Y. Luo et al., Wide-bandgap organic-inorganic hybrid and all-inorganic perovskite solar cells and their application in all-perovskite tandem solar cells. Energy Environ. Sci. 14(11), 5723–5759 (2021). https://doi.org/10.1039/d1ee01562a
Y. Zhou, Y. Zhao, Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci. 12(5), 1495–1511 (2019). https://doi.org/10.1039/c8ee03559h
G. Kieslich, S.J. Sun, A.K. Cheetham, Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog. Chem. Sci. 5(12), 4712–4715 (2014). https://doi.org/10.1039/c4sc02211d
W. Travis, E.N.K. Glover, H. Bronstein, D.O. Scanlon, R.G. Palgrave, On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem. Sci. 7(7), 4548–4556 (2016). https://doi.org/10.1039/c5sc04845a
M. Becker, T. Kluner, M. Wark, Formation of hybrid ABX3 perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors. Dalton Trans. 46(11), 3500–3509 (2017). https://doi.org/10.1039/c6dt04796c
W.J. Yin, T.T. Shi, Y.F. Yan, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104(6), 063903 (2014). https://doi.org/10.1063/1.4864778
E. Mosconi, A. Amat, M.K. Nazeeruddin, M. Gratzel, F.D. Angelis, First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 117(27), 13902–13913 (2013). https://doi.org/10.1021/jp4048659
S.N. Yun, X. Zhou, J. Even, A. Hagfeldt, Theoretical treatment of CH3NH3PbI3 perovskite solar cells. Angew. Chem. Int. Ed. 56(50), 15806–15817 (2017). https://doi.org/10.1002/anie.201702660
A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari et al., Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. Nano Lett. 14(6), 3608–3616 (2014). https://doi.org/10.1021/nl5012992
A. Goyal, S. McKechnie, D. Pashov, W. Tumas, M. Schilfgaarde et al., Origin of pronounced nonlinear band gap behavior in lead–tin hybrid perovskite alloys. Chem. Mater. 30(11), 3920–3928 (2018). https://doi.org/10.1021/acs.chemmater.8b01695
Z. Fan, K. Sun, J. Wang, Perovskites for photovoltaics: a combined review of organic-inorganic halide perovskites and ferroelectric oxide perovskites. J. Mater. Chem. A 3(37), 18809–18828 (2015). https://doi.org/10.1039/c5ta04235f
A. Buin, R. Comin, J.X. Xu, A.H. Ip, E.H. Sargent, Halide-dependent electronic structure of organolead perovskite materials. Chem. Mater. 27(12), 4405–4412 (2015). https://doi.org/10.1021/acs.chemmater.5b01909
S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). https://doi.org/10.1126/science.1243982
Q. Ye, Y. Zhao, S. Mu, F. Ma, F. Gao et al., Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination. Adv. Mater. 31(49), 1905143 (2019). https://doi.org/10.1002/adma.201905143
M. Ren, S. Cao, J. Zhao, B. Zou, R. Zeng, Advances and challenges in two-dimensional organic-inorganic hybrid perovskites toward high-performance light-emitting diodes. Nano-Micro Lett. 13, 163 (2021). https://doi.org/10.1007/s40820-021-00685-5
Y. Han, S. Yue, B.B. Cui, Low-dimensional metal halide perovskite crystal materials: structure strategies and luminescence applications. Adv. Sci. 8(15), 2004805 (2021). https://doi.org/10.1002/advs.202004805
C. Huo, B. Cai, Z. Yuan, B. Ma, H. Zeng, Two-dimensional metal halide perovskites: theory, synthesis, and optoelectronics. Small Methods 1(3), 1600018 (2017). https://doi.org/10.1002/smtd.201600018
J.P. Mailoa, C.D. Bailie, E.C. Johlin, E.T. Hoke, A.J. Akey et al., A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 106(12), 121105 (2015). https://doi.org/10.1063/1.4914179
Z. Zhang, Z. Li, L. Meng, S.Y. Lien, P. Gao, Perovskite-based tandem solar cells: get the most out of the sun. Adv. Funct. Mater. 30(38), 2001904 (2020). https://doi.org/10.1002/adfm.202001904
M. Jošt, L. Kegelmann, L. Korte, S. Albrecht, Monolithic perovskite tandem solar cells: a review of the present status and advanced characterization methods toward 30% efficiency. Adv. Energy Mater. 10(26), 1904102 (2020). https://doi.org/10.1002/aenm.201904102
T. Leijtens, K.A. Bush, R. Prasanna, M.D. McGehee, Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3(10), 828–838 (2018). https://doi.org/10.1038/s41560-018-0190-4
R. Lin, J. Xu, M. Wei, Y. Wang, Z. Qin et al., All-perovskite tandem solar cells with improved grain surface passivation. Nature 603(7899), 73–78 (2022). https://doi.org/10.1038/s41586-021-04372-8
S. Mahesh, J.M. Ball, R.D.J. Oliver, D.P. McMeekin, P.K. Nayak et al., Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 13(1), 258–267 (2020). https://doi.org/10.1039/c9ee02162k
J. Huang, Y. Yuan, Y. Shao, Y. Yan, Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2(7), 17042 (2017). https://doi.org/10.1038/natrevmats.2017.42
C.M. Wolff, P. Caprioglio, M. Stolterfoht, D. Neher, Nonradiative recombination in perovskite solar cells: the role of interfaces. Adv. Mater. 31(52), 1902762 (2019). https://doi.org/10.1002/adma.201902762
D.Y. Luo, R. Su, W. Zhang, Q.H. Gong, R. Zhu, Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5(1), 44–60 (2020). https://doi.org/10.1038/s41578-019-0151-y
B. Chen, P.N. Rudd, S. Yang, Y.B. Yuan, J.S. Huang, Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48(14), 3842–3867 (2019). https://doi.org/10.1039/c8cs00853a
S.J. Yoon, S. Draguta, J.S. Manser, O. Sharia, W.F. Schneider et al., Tracking iodide and bromide ion segregation in mixed halide lead perovskites during photoirradiation. ACS Energy Lett. 1(1), 290–296 (2016). https://doi.org/10.1021/acsenergylett.6b00158
A.J. Knight, L.M. Herz, Preventing phase segregation in mixed-halide perovskites: a perspective. Energy Environ. Sci. 13(7), 2024–2046 (2020). https://doi.org/10.1039/d0ee00788a
A.J. Knight, A.D. Wright, J.B. Patel, D.P. McMeekin, H.J. Snaith et al., Electronic traps and phase segregation in lead mixed-halide perovskite. ACS Energy Lett. 4(1), 75–84 (2018). https://doi.org/10.1021/acsenergylett.8b02002
Z. Xu, R.A. Kerner, J.J. Berry, B.P. Rand, Iodine electrochemistry dictates voltage-induced halide segregation thresholds in mixed-halide perovskite devices. Adv. Funct. Mater. 32(33), 2203432 (2022). https://doi.org/10.1002/adfm.202203432
D.J. Slotcavage, H.I. Karunadasa, M.D. McGehee, Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1(6), 1199–1205 (2016). https://doi.org/10.1021/acsenergylett.6b00495
T. Duong, H.K. Mulmudi, Y. Wu, X. Fu, H. Shen et al., Light and electrically induced phase segregation and its impact on the stability of quadruple cation high bandgap perovskite solar cells. ACS Appl. Mater. Interfaces 9(32), 26859–26866 (2017). https://doi.org/10.1021/acsami.7b06816
S.G. Motti, J.B. Patel, R.D.J. Oliver, H.J. Snaith, M.B. Johnston et al., Phase segregation in mixed-halide perovskites affects charge-carrier dynamics while preserving mobility. Nat. Commun. 12, 6955 (2021). https://doi.org/10.1038/s41467-021-26930-4
L. Wang, Q. Song, F. Pei, Y. Chen, J. Dou et al., Strain modulation for light-stable n-i-p perovskite/silicon tandem solar cells. Adv. Mater. 34(26), 2201315 (2022). https://doi.org/10.1002/adma.202201315
E. Ruggeri, M. Anaya, K. Galkowski, A. Abfalterer, Y.H. Chiang et al., Halide remixing under device operation imparts stability on mixed-cation mixed-halide perovskite solar cells. Adv. Mater. 34(36), 2202163 (2022). https://doi.org/10.1002/adma.202202163
Z. Wang, Z. Zhang, L. Xie, S. Wang, C. Yang et al., Recent advances and perspectives of photostability for halide perovskite solar cells. Adv. Opt. Mater. 10(3), 2101822 (2021). https://doi.org/10.1002/adom.202101822
J. Wen, Y.C. Zhao, Z. Liu, H. Gao, R.X. Lin et al., Steric engineering enables efficient and photostable wide-bandgap perovskites for all-perovskite tandem solar cells. Adv. Mater. 34(26), 2110356 (2022). https://doi.org/10.1002/adma.202110356
C. Liu, Y.B. Cheng, Z. Ge, Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chem. Soc. Rev. 49(6), 1653–1687 (2020). https://doi.org/10.1039/c9cs00711c
Q. Fu, X. Tang, B. Huang, T. Hu, L. Tan et al., Recent progress on the long-term stability of perovskite solar cells. Adv. Sci. 5(5), 1700387 (2018). https://doi.org/10.1002/advs.201700387
G. Nazir, S.Y. Lee, J.H. Lee, A. Rehman, J.K. Lee et al., Stabilization of perovskite solar cells: recent developments and future perspectives. Adv. Mater. 34(50), 2204380 (2022). https://doi.org/10.1002/adma.202204380
C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119(5), 3418–3451 (2019). https://doi.org/10.1021/acs.chemrev.8b00336
J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, N.G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120(15), 7867–7918 (2020). https://doi.org/10.1021/acs.chemrev.0c00107
F.H. Isikgor, S. Zhumagali, L.V.T. Merino, M.D. Bastiani, I. McCulloch et al., Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. (2022). https://doi.org/10.1038/s41578-022-00503-3
C.U. Kim, J.C. Yu, E.D. Jung, I.Y. Choi, W. Park et al., Optimization of device design for low cost and high efficiency planar monolithic perovskite/silicon tandem solar cells. Nano Energy 60, 213–221 (2019). https://doi.org/10.1016/j.nanoen.2019.03.056
Y.M. Xie, Q. Yao, Z. Zeng, Q. Xue, T. Niu et al., Homogeneous grain boundary passivation in wide-bandgap perovskite films enables fabrication of monolithic perovskite/organic tandem solar cells with over 21% efficiency. Adv. Funct. Mater. 32(19), 2112126 (2022). https://doi.org/10.1002/adfm.202112126
H.X. Dang, K. Wang, M. Ghasemi, M.C. Tang, M.D. Bastiani et al., Multi-cation synergy suppresses phase segregation in mixed-halide perovskites. Joule 3(7), 1746–1764 (2019). https://doi.org/10.1016/j.joule.2019.05.016
A.F. Palmstrom, G.E. Eperon, T. Leijtens, R. Prasanna, S.N. Habisreutinger et al., Enabling flexible all-perovskite tandem solar cells. Joule 3(9), 2193–2204 (2019). https://doi.org/10.1016/j.joule.2019.05.009
M. Suri, A. Hazarika, B.W. Larson, Q. Zhao, M. Vallés-Pelarda et al., Enhanced open-circuit voltage of wide-bandgap perovskite photovoltaics by using alloyed (FA1–xCsx)Pb(I1–xBrx)3 quantum dots. ACS Energy Lett. 4(8), 1954–1960 (2019). https://doi.org/10.1021/acsenergylett.9b01030
D. Zhao, C. Wang, Z. Song, Y. Yu, C. Chen et al., Four-terminal all-perovskite tandem solar cells achieving power conversion efficiencies exceeding 23%. ACS Energy Lett. 3(2), 305–306 (2018). https://doi.org/10.1021/acsenergylett.7b01287
Y.M. Xie, Z. Zeng, X. Xu, C. Ma, Y. Ma et al., FA-assistant iodide coordination in organic-inorganic wide-bandgap perovskite with mixed halides. Small 16(10), 1907226 (2020). https://doi.org/10.1002/smll.201907226
J.H. Heo, S.H. Im, CH3NH3PbBr3-CH3NH3PbI3 perovskite-perovskite tandem solar cells with exceeding 2.2 V open circuit voltage. Adv. Mater. 28(25), 5121–5125 (2016). https://doi.org/10.1002/adma.201501629
C. Bi, Y. Yuan, Y. Fang, J. Huang, Low-temperature fabrication of efficient wide-bandgap organolead trihalide perovskite solar cells. Adv. Energy Mater. 5(6), 1401616 (2015). https://doi.org/10.1002/aenm.201401616
W. Zhu, C. Bao, F. Li, X. Zhou, J. Yang et al., An efficient planar-heterojunction solar cell based on wide-bandgap CH3NH3PbI2.1Br0.9 perovskite film for tandem cell application. Chem. Commun. 52(2), 304–307 (2016). https://doi.org/10.1039/c5cc07673k
N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015). https://doi.org/10.1038/nature14133
M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu et al., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354(6309), 206–209 (2016). https://doi.org/10.1126/science.aah5557
M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016). https://doi.org/10.1039/c5ee03874j
G. Kapil, T. Bessho, C.H. Ng, K. Hamada, M. Pandey et al., Strain relaxation and light management in tin-lead perovskite solar cells to achieve high efficiencies. ACS Energy Lett. 4(8), 1991–1998 (2019). https://doi.org/10.1021/acsenergylett.9b01237
D. Forgács, L. Gil-Escrig, D. Pérez-Del-Rey, C. Momblona, J. Werner et al., Efficient monolithic perovskite/perovskite tandem solar cells. Adv. Energy Mater. 7(8), 1602121 (2017). https://doi.org/10.1002/aenm.201602121
Y. Zhou, M. Yang, O.S. Game, W. Wu, J. Kwun et al., Manipulating crystallization of organolead mixed-halide thin films in antisolvent baths for wide-bandgap perovskite solar cells. ACS Appl. Mater. Interfaces 8(3), 2232–2237 (2016). https://doi.org/10.1021/acsami.5b10987
D. Forgács, D. Pérez-del-Rey, J. Ávila, C. Momblona, L. Gil-Escrig et al., Efficient wide bandgap double cation-double halide perovskite solar cells. J. Mater. Chem. A 5(7), 3203–3207 (2017). https://doi.org/10.1039/c6ta10727c
D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba et al., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351(6269), 151–155 (2016). https://doi.org/10.1126/science.aad5845
M. Yang, D.H. Kim, Y. Yu, Z. Li, O.G. Reid et al., Effect of non-stoichiometric solution chemistry on improving the performance of wide-bandgap perovskite solar cells. Mater. Today Energy 7, 232–238 (2018). https://doi.org/10.1016/j.mtener.2017.10.001
K.A. Bush, K. Frohna, R. Prasanna, R.E. Beal, T. Leijtens et al., Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation. ACS Energy Lett. 3(2), 428–435 (2018). https://doi.org/10.1021/acsenergylett.7b01255
J. Xu, C.C. Boyd, Z.J. Yu, A.F. Palmstrom, D.J. Witter et al., Triple-halide wide-bandgap perovskites with suppressed phase segregation for efficient tandems. Science 367(6482), 1097–1104 (2020). https://doi.org/10.1126/science.aaz5074
R. Li, B. Chen, N. Ren, P. Wang, B. Shi et al., CsPbCl3-cluster-widened bandgap and inhibited phase segregation in a wide-bandgap perovskite and its application to NiOx-based perovskite/silicon tandem solar cells. Adv. Mater. 34(27), 2201451 (2022). https://doi.org/10.1002/adma.202201451
Z. Qiu, Z. Xu, N. Li, N. Zhou, Y. Chen et al., Monolithic perovskite/Si tandem solar cells exceeding 22% efficiency via optimizing top cell absorber. Nano Energy 53, 798–807 (2018). https://doi.org/10.1016/j.nanoen.2018.09.052
S. Chen, Y. Hou, H. Chen, X. Tang, S. Langner et al., Exploring the stability of novel wide bandgap perovskites by a robot based high throughput approach. Adv. Energy Mater. 8(6), 1701543 (2018). https://doi.org/10.1002/aenm.201701543
X.Y. Zhu, V. Podzorov, Charge carriers in hybrid organic-inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 6(23), 4758–4761 (2015). https://doi.org/10.1021/acs.jpclett.5b02462
Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu et al., Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science 356(6333), 59–62 (2017). https://doi.org/10.1126/science.aam7744
G.J. Nan, X. Zhang, M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S.D. Stranks et al., How methylammonium cations and chlorine dopants heal defects in lead iodide perovskites. Adv. Energy Mater. 8(13), 1702754 (2018). https://doi.org/10.1002/aenm.201702754
H. Tan, F. Che, M. Wei, Y. Zhao, M.I. Saidaminov et al., Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites. Nat. Commun. 9, 3100 (2018). https://doi.org/10.1038/s41467-018-05531-8
A. Al-Ashouri, E. Kohnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with > 29% efficiency by enhanced hole extraction. Science 370(6522), 1300–1309 (2020). https://doi.org/10.1126/science.abd4016
R. Prasanna, A. Gold-Parker, T. Leijtens, B. Conings, A. Babayigit et al., Bandgap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J. Am. Chem. Soc. 139(32), 11117–11124 (2017). https://doi.org/10.1021/jacs.7b04981
R.J. Stoddard, A. Rajagopal, R.L. Palmer, I.L. Braly, A.K.Y. Jen et al., Enhancing defect tolerance and phase stability of high-bandgap perovskites via guanidinium alloying. ACS Energy Lett. 3(6), 1261–1268 (2018). https://doi.org/10.1021/acsenergylett.8b00576
K. Xiao, Y.H. Lin, M. Zhang, R.D.J. Oliver, X. Wang et al., Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science 376(6594), 762–767 (2022). https://doi.org/10.1126/science.abn7696
S.G. Ji, I.J. Park, H. Chang, J.H. Park, G.P. Hong et al., Stable pure-iodide wide-band-gap perovskites for efficient Si tandem cells via kinetically controlled phase evolution. Joule 6(10), 2390–2405 (2022). https://doi.org/10.1016/j.joule.2022.08.006
S. Xie, R. Xia, Z. Chen, J. Tian, L. Yan et al., Efficient monolithic perovskite/organic tandem solar cells and their efficiency potential. Nano Energy 78, 105238 (2020). https://doi.org/10.1016/j.nanoen.2020.105238
P. Wang, W. Li, O.J. Sandberg, C.H. Guo, R. Sun et al., Tuning of the interconnecting layer for monolithic perovskite/organic tandem solar cells with record efficiency exceeding 21%. Nano Lett. 21(18), 7845–7854 (2021). https://doi.org/10.1021/acs.nanolett.1c02897
X. Gu, X. Lai, Y. Zhang, T. Wang, W.L. Tan et al., Organic solar cell with efficiency over 20% and voc exceeding 2.1V enabled by tandem with all-inorganic perovskite and thermal annealing-free process. Adv. Sci. 9(28), 2200445 (2022). https://doi.org/10.1002/advs.202200445
H. Aqoma, I.F. Imran, F.T.A. Wibowo, N.V. Krishna, W. Lee et al., High-efficiency solution-processed two-terminal hybrid tandem solar cells using spectrally matched inorganic and organic photoactive materials. Adv. Energy Mater. 10(37), 2001188 (2020). https://doi.org/10.1002/aenm.202001188
K. Lang, Q. Guo, Z.W. He, Y.M. Bai, J.X. Yao et al., High performance tandem solar cells with inorganic perovskite and organic conjugated molecules to realize complementary absorption. J. Phys. Chem. Lett. 11(22), 9596–9604 (2020). https://doi.org/10.1021/acs.jpclett.0c02794
Q. Zeng, L. Liu, Z. Xiao, F. Liu, Y. Hua et al., A two-terminal all-inorganic perovskite/organic tandem solar cell. Sci. Bull. 64(13), 885–887 (2019). https://doi.org/10.1016/j.scib.2019.05.015
L. Liu, Z. Xiao, C. Zuo, L. Ding, Inorganic perovskite/organic tandem solar cells with efficiency over 20%. J. Semicond. 42(2), 020501 (2021). https://doi.org/10.1088/1674-4926/42/2/020501
Y. Ding, Q. Guo, Y. Geng, Z. Dai, Z. Wang et al., A low-cost hole transport layer enables CsPbI2Br single-junction and tandem perovskite solar cells with record efficiencies of 17.8% and 21.4%. Nano Today 46, 101586 (2022). https://doi.org/10.1016/j.nantod.2022.101586
W. Chen, D. Li, X. Chen, H. Chen, S. Liu et al., Surface reconstruction for stable monolithic all-inorganic perovskite/organic tandem solar cells with over 21% efficiency. Adv. Funct. Mater. 32(5), 2109321 (2021). https://doi.org/10.1002/adfm.202109321
X. Yang, Y. Fu, R. Su, Y. Zheng, Y. Zhang et al., Superior carrier lifetimes exceeding 6 micros in polycrystalline halide perovskites. Adv. Mater. 32(39), 2002585 (2020). https://doi.org/10.1002/adma.202002585
S.W. Liu, X.Y. Guan, W.S. Xiao, R. Chen, J. Zhou et al., Effective passivation with size-matched alkyldiammonium iodide for high-performance inverted perovskite solar cells. Adv. Funct. Mater. 32(38), 2205009 (2022). https://doi.org/10.1002/adfm.202205009
C.H. Li, Y.M. Pan, J.L. Hu, S.D. Qiu, C.L. Zhang et al., Vertically aligned 2D/3D Pb-Sn perovskites with enhanced charge extraction and suppressed phase segregation for efficient printable solar cells. ACS Energy Lett. 5(5), 1386–1395 (2020). https://doi.org/10.1021/acsenergylett.0c00634
S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan et al., Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571(7764), 245–250 (2019). https://doi.org/10.1038/s41586-019-1357-2
Z.M. Fang, N. Yan, S. Liu, Modulating preferred crystal orientation for efficient and stable perovskite solar cells-from progress to perspectives. InfoMat 4(10), e12369 (2022). https://doi.org/10.1002/inf2.12369
Z. Tang, T. Bessho, F. Awai, T. Kinoshita, M.M. Maitani et al., Hysteresis-free perovskite solar cells made of potassium-doped organometal halide perovskite. Sci. Rep. 7(1), 12183 (2017). https://doi.org/10.1038/s41598-017-12436-x
T. Bu, X. Liu, Y. Zhou, J. Yi, X. Huang et al., A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environ. Sci. 10(12), 2509–2515 (2017). https://doi.org/10.1039/c7ee02634j
D.Y. Son, S.G. Kim, J.Y. Seo, S.H. Lee, H. Shin et al., Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J. Am. Chem. Soc. 140(4), 1358–1364 (2018). https://doi.org/10.1021/jacs.7b10430
J. Cao, S.X. Tao, P.A. Bobbert, C.P. Wong, N. Zhao, Interstitial occupancy by extrinsic alkali cations in perovskites and its impact on ion migration. Adv. Mater. 30(26), 1707350 (2018). https://doi.org/10.1002/adma.201707350
M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe et al., Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555(7697), 497–501 (2018). https://doi.org/10.1038/nature25989
D.J. Kubicki, D. Prochowicz, A. Hofstetter, S.M. Zakeeruddin, M. Gratzel et al., Phase segregation in potassium-doped lead halide perovskites from 39K solid-state NMR at 21.1T. J. Am. Chem. Soc. 140(23), 7232–7238 (2018). https://doi.org/10.1021/jacs.8b03191
F. Zheng, W. Chen, T. Bu, K.P. Ghiggino, F. Huang et al., Triggering the passivation effect of potassium doping in mixed-cation mixed-halide perovskite by light illumination. Adv. Energy Mater. 9(24), 1901016 (2019). https://doi.org/10.1002/aenm.201901016
L. Wang, G. Wang, Z. Yan, J. Qiu, C. Jia et al., Potassium-induced phase stability enables stable and efficient wide-bandgap perovskite solar cells. Sol. RRL 4(7), 2000098 (2020). https://doi.org/10.1002/solr.202000098
J. Liang, C. Chen, X. Hu, Z. Chen, X. Zheng et al., Suppressing the phase segregation with potassium for highly efficient and photostable inverted wide-bandgap halide perovskite solar cells. ACS Appl. Mater. Interfaces 12(43), 48458–48466 (2020). https://doi.org/10.1021/acsami.0c10310
T. Duong, Y. Wu, H. Shen, J. Peng, X. Fu et al., Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv. Energy Mater. 7(14), 1700228 (2017). https://doi.org/10.1002/aenm.201700228
J. Kim, M.I. Saidaminov, H. Tan, Y. Zhao, Y. Kim et al., Amide-catalyzed phase-selective crystallization reduces defect density in wide-bandgap perovskites. Adv. Mater. 30(13), 1706275 (2018). https://doi.org/10.1002/adma.201706275
L. Tao, X. Du, J. Hu, S. Wang, C. Lin et al., Stabilizing wide-bandgap halide perovskites through hydrogen bonding. Sci. China Chem. 65(8), 1650–1660 (2022). https://doi.org/10.1007/s11426-021-1306-4
Y. Zhou, Y.H. Jia, H.H. Fang, M.A. Loi, F.Y. Xie et al., Composition-tuned wide bandgap perovskites: from grain engineering to stability and performance improvement. Adv. Funct. Mater. 28(35), 1803130 (2018). https://doi.org/10.1002/adfm.201803130
Y.M. Xie, X. Xu, C. Ma, M. Li, Y. Ma et al., Synergistic effect of pseudo-halide thiocyanate anion and cesium cation on realizing high-performance pinhole-free MA-based wide-bandgap perovskites. ACS Appl. Mater. Interfaces 11(29), 25909–25916 (2019). https://doi.org/10.1021/acsami.9b06315
D.H. Kim, C.P. Muzzillo, J.H. Tong, A.F. Palmstrom, B.W. Larson et al., Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with CIGS. Joule 3(7), 1734–1745 (2019). https://doi.org/10.1016/j.joule.2019.04.012
B. Chen, Z.S. Yu, K. Liu, X.P. Zheng, Y. Liu et al., Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%. Joule 3(1), 177–190 (2019). https://doi.org/10.1016/j.joule.2018.10.003
X. Jiang, J. Zhang, X. Liu, Z. Wang, X. Guo et al., Deeper insight into the role of organic ammonium cations in reducing surface defects of the perovskite film. Angew. Chem. Int. Ed. 61(12), e202115663 (2022). https://doi.org/10.1002/anie.202115663
C.L. Zhang, S.H. Wu, L.M. Tao, G.M. Arumugam, C. Liu et al., Fabrication strategy for efficient 2D/3D perovskite solar cells enabled by diffusion passivation and strain compensation. Adv. Energy Mater. 10(43), 2002004 (2020). https://doi.org/10.1002/aenm.202002004
J.Y. Ye, J. Tong, J. Hu, C. Xiao, H. Lu et al., Enhancing charge transport of 2D perovskite passivation agent for wide-bandgap perovskite solar cells beyond 21%. Sol. RRL 4(6), 2000082 (2020). https://doi.org/10.1002/solr.202000082
X. Huo, Y. Li, Y. Lu, J. Dong, Y. Zhang et al., Suppressed halide segregation and defects in wide bandgap perovskite solar cells enabled by doping organic bromide salt with moderate chain length. J. Phys. Chem. C 126(4), 1711–1720 (2022). https://doi.org/10.1021/acs.jpcc.1c09739
H. Xu, Z. Liang, J. Ye, S. Xu, Z. Wang et al., Guanidinium-assisted crystallization modulation and reduction of open-circuit voltage deficit for efficient planar FAPbBr3 perovskite solar cells. Chem. Eng. J. 437, 135181 (2022). https://doi.org/10.1016/j.cej.2022.135181
G. Yang, Z. Ni, Z.J. Yu, B.W. Larson, Z. Yu et al., Defect engineering in wide-bandgap perovskites for efficient perovskite-silicon tandem solar cells. Nat. Photon. 16(8), 588–594 (2022). https://doi.org/10.1038/s41566-022-01033-8
S. Qin, C. Lu, Z. Jia, Y. Wang, S. Li et al., Constructing monolithic perovskite/organic tandem solar cell with efficiency of 22.0% via reduced open-circuit voltage loss and broadened absorption spectra. Adv. Mater. 34(11), 2108829 (2022). https://doi.org/10.1002/adma.202108829
D. Kim, H.J. Jung, I.J. Park, B.W. Larson, S.P. Dunfield et al., Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 368(6487), 155–160 (2020). https://doi.org/10.1126/science.aba3433
Y. Cai, J. Cui, M. Chen, M. Zhang, Y. Han et al., Multifunctional enhancement for highly stable and efficient perovskite solar cells. Adv. Funct. Mater. 31(7), 2005776 (2020). https://doi.org/10.1002/adfm.202005776
F. Gao, Y. Zhao, X. Zhang, J. You, Recent progresses on defect passivation toward efficient perovskite solar cells. Adv. Energy Mater. 10(13), 1902650 (2019). https://doi.org/10.1002/aenm.201902650
M. Kim, S.G. Motti, R. Sorrentino, A. Petrozza, Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film. Energy Environ. Sci. 11(9), 2609–2619 (2018). https://doi.org/10.1039/c8ee01101j
X.J. Gu, W.C. Xiang, Q.W. Tian, S.Z. Liu, Rational surface-defect control via designed passivation for high-efficiency inorganic perovskite solar cells. Angew. Chem. Int. Ed. 60(43), 23164–23170 (2021). https://doi.org/10.1002/anie.202109724
R. Wang, J. Xue, K.L. Wang, Z.K. Wang, Y. Luo et al., Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366(6472), 1509–1513 (2019). https://doi.org/10.1126/science.aay9698
X. Li, W. Zhang, X. Guo, C. Lu, J. Wei et al., Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375(6579), 434–437 (2022). https://doi.org/10.1126/science.abl5676
J. Liu, E. Aydin, J. Yin, M.D. Bastiani, F.H. Isikgor et al., 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule 5(12), 3169–3186 (2021). https://doi.org/10.1016/j.joule.2021.11.003
Y. Zheng, X. Wu, J. Liang, Z. Zhang, J. Jiang et al., Downward homogenized crystallization for inverted wide-bandgap mixed-halide perovskite solar cells with 21% efficiency and suppressed photo-induced halide segregation. Adv. Funct. Mater. 32(29), 2200431 (2022). https://doi.org/10.1002/adfm.202200431
R.D.J. Oliver, P. Caprioglio, F. Peña-Camargo, L.R.V. Buizza, F. Zu et al., Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cells. Energy Environ. Sci. 15(2), 714–726 (2022). https://doi.org/10.1039/d1ee02650j
Z. Li, B. Li, X. Wu, S.A. Sheppard, S. Zhang et al., Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376(6591), 416–420 (2022). https://doi.org/10.1126/science.abm8566
B. Chen, N. Ren, Y. Li, L. Yan, S. Mazumdar et al., Insights into the development of monolithic perovskite/silicon tandem solar cells. Adv. Energy Mater. 12(4), 2003628 (2021). https://doi.org/10.1002/aenm.202003628
H.D. Pham, T.C.J. Yang, S.M. Jain, G.J. Wilson, P. Sonar, Development of dopant-free organic hole transporting materials for perovskite solar cells. Adv. Energy Mater. 10(13), 1903326 (2020). https://doi.org/10.1002/aenm.201903326
A.K. Jena, A. Kulkarni, T. Miyasaka, Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119(5), 3036–3103 (2019). https://doi.org/10.1021/acs.chemrev.8b00539
T.H. Wu, X. Liu, X.H. Luo, X.S. Lin, D.Y. Cui et al., Lead-free tin perovskite solar cells. Joule 5(4), 863–886 (2021). https://doi.org/10.1016/j.joule.2021.03.001
Y. Han, H. Zhao, C. Duan, S. Yang, Z. Yang et al., Controlled n-doping in air-stable CsPbI2Br perovskite solar cells with a record efficiency of 16.79%. Adv. Funct. Mater. 30(12), 1909972 (2020). https://doi.org/10.1002/adfm.201909972
J.R. Zhang, Y.K. Fang, W.G. Zhao, R.J. Han, J.L. Wen et al., Molten-salt-assisted CsPbI3 perovskite crystallization for nearly 20%-efficiency solar cells. Adv. Mater. 33(45), 2103770 (2021). https://doi.org/10.1002/adma.202103770
P. Mahajan, B. Padha, S. Verma, V. Gupta, R. Datt et al., Review of current progress in hole-transporting materials for perovskite solar cells. J. Energy Chem. 68, 330–386 (2022). https://doi.org/10.1016/j.jechem.2021.12.003
F.M. Rombach, S.A. Haque, T.J. Macdonald, Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ. Sci. 14(10), 5161–5190 (2021). https://doi.org/10.1039/d1ee02095a
F. Ma, Y. Zhao, J.H. Li, X.W. Zhang, H.S. Gu et al., Nickel oxide for inverted structure perovskite solar cells. J. Energy Chem. 52, 393–411 (2021). https://doi.org/10.1016/j.jechem.2020.04.027
K. Valadi, S. Gharibi, R. Taheri-Ledari, S. Akin, A. Maleki et al., Metal oxide electron transport materials for perovskite solar cells: a review. Environ. Chem. Lett. 19(3), 2185–2207 (2021). https://doi.org/10.1007/s10311-020-01171-x
C.L. Wang, Y. Zhao, T.S. Ma, Y.D. An, R. He et al., A universal close-space annealing strategy towards high-quality perovskite absorbers enabling efficient all-perovskite tandem solar cells. Nat. Energy 7(8), 744–753 (2022). https://doi.org/10.1038/s41560-022-01076-9
J. Xu, J. Cui, S. Yang, Y. Han, X. Guo et al., Unraveling passivation mechanism of imidazolium-based ionic liquids on inorganic perovskite to achieve near-record-efficiency CsPbI2Br solar cells. Nano-Micro Lett. 14, 7 (2021). https://doi.org/10.1007/s40820-021-00763-8
M. Shahiduzzaman, M.I. Hossain, S. Visal, T. Kaneko, W. Qarony et al., Spray pyrolyzed TiO2 embedded multi-layer front contact design for high-efficiency perovskite solar cells. Nano-Micro Lett. 13, 36 (2021). https://doi.org/10.1007/s40820-020-00559-2
J. Tao, X. Liu, J. Shen, S. Han, L. Guan et al., F-type pseudo-halide anions for high-efficiency and stable wide-band-gap inverted perovskite solar cells with fill factor exceeding 84. ACS Nano 16(7), 10798–10810 (2022). https://doi.org/10.1021/acsnano.2c02876
M.A. Mahmud, J. Zheng, S. Tang, G. Wang, J. Bing et al., Cation-diffusion-based simultaneous bulk and surface passivations for high bandgap inverted perovskite solar cell producing record fill factor and efficiency. Adv. Energy Mater. 12(36), 2201672 (2022). https://doi.org/10.1002/aenm.202201672
Z. Zhu, K. Mao, K. Zhang, W. Peng, J. Zhang et al., Correlating the perovskite/polymer multi-mode reactions with deep-level traps in perovskite solar cells. Joule 6(12), 2849–2868 (2022). https://doi.org/10.1016/j.joule.2022.10.007
M. Hu, C. Bi, Y. Yuan, Y. Bai, J. Huang, Stabilized wide bandgap MAPbBrxI3-x perovskite by enhanced grain size and improved crystallinity. Adv. Sci. 3(6), 1500301 (2016). https://doi.org/10.1002/advs.201500301
X. Zheng, J. Liu, T. Liu, E. Aydin, M. Chen et al., Photoactivated p-doping of organic interlayer enables efficient perovskite/silicon tandem solar cells. ACS Energy Lett. 7(6), 1987–1993 (2022). https://doi.org/10.1021/acsenergylett.2c00780
K.A. Bush, S. Manzoor, K. Frohna, Z.J. Yu, J.A. Raiford et al., Minimizing current and voltage losses to reach 25% efficient monolithic two-termina perovskite-silicon tandem solar cells. ACS Energy Lett. 3(9), 2173–2180 (2018). https://doi.org/10.1021/acsenergylett.8b01201
A.S. Subbiah, F.H. Isikgor, C.T. Howells, M.D. Bastiani, J. Liu et al., High-performance perovskite single-junction and textured perovskite/silicon tandem solar cells via slot-die-coating. ACS Energy Lett. 5(9), 3034–3040 (2020). https://doi.org/10.1021/acsenergylett.0c01297
B. Chen, Z.S.J. Yu, S. Manzoor, S. Wang, W. Weigand et al., Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule 4(4), 850–864 (2020). https://doi.org/10.1016/j.joule.2020.01.008
F. Ali, C. Roldán-Carmona, M. Sohail, M.K. Nazeeruddin, Applications of self-assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability. Adv. Energy Mater. 10(48), 2002989 (2020). https://doi.org/10.1002/aenm.202002989
S.Y. Kim, S.J. Cho, S.E. Byeon, X. He, H.J. Yoon, Self-assembled monolayers as interface engineering nanomaterials in perovskite solar cells. Adv. Energy Mater. 10(44), 2002606 (2020). https://doi.org/10.1002/aenm.202002606
A. Al-Ashouri, A. Magomedov, M. Roß, M. Jošt, M. Talaikis et al., Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12(11), 3356–3369 (2019). https://doi.org/10.1039/c9ee02268f
Y. Lin, Y. Firdaus, F.H. Isikgor, M.I. Nugraha, E. Yengel et al., Self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability. ACS Energy Lett. 5(9), 2935–2944 (2020). https://doi.org/10.1021/acsenergylett.0c01421
I.M. Hermes, Y. Hou, V.W. Bergmann, C.J. Brabec, S.A.L. Weber, The interplay of contact layers: how the electron transport layer influences interfacial recombination and hole extraction in perovskite solar cells. J. Phys. Chem. Lett. 9(21), 6249–6256 (2018). https://doi.org/10.1021/acs.jpclett.8b02824
H.G. Lai, J.C. Luo, Y. Zwirner, S. Olthof, A. Wieczorek et al., High-performance flexible all-perovskite tandem solar cells with reduced VOC-deficit in wide-bandgap subcell. Adv. Energy Mater. 12(45), 2202438 (2022). https://doi.org/10.1002/aenm.202202438
Z. Liu, C. Zhu, H. Luo, W. Kong, X. Luo et al., Grain regrowth and bifacial passivation for high-efficiency wide-bandgap perovskite solar cells. Adv. Energy Mater. 13(2), 2203230 (2022). https://doi.org/10.1002/aenm.202203230
L. Mao, T. Yang, H. Zhang, J. Shi, Y. Hu et al., Fully textured, production-line compatible monolithic perovskite/silicon tandem solar cells approaching 29% efficiency. Adv. Mater. 34(40), 2206193 (2022). https://doi.org/10.1002/adma.202206193
H. Chen, A. Maxwell, C. Li, S. Teale, B. Chen et al., Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2023). https://doi.org/10.1038/s41586-022-05541-z
L. Zheng, Y. Xuan, J. Wang, S. Bao, X. Liu et al., Inverted perovskite/silicon V-shaped tandem solar cells with 27.6% efficiency via self-assembled monolayer-modified nickel oxide layer. J. Mater. Chem. A 10(13), 7251–7262 (2022). https://doi.org/10.1039/d1ta10313j
Y. Wang, S. Gu, G. Liu, L. Zhang, Z. Liu et al., Cross-linked hole transport layers for high-efficiency perovskite tandem solar cells. Sci. China Chem. 64(11), 2025–2034 (2021). https://doi.org/10.1007/s11426-021-1059-1
Q. Xu, B. Shi, Y. Li, L. Yan, W. Duan et al., Conductive passivator for efficient monolithic perovskite/silicon tandem solar cell on commercially textured silicon. Adv. Energy Mater. 12(46), 2202404 (2022). https://doi.org/10.1002/aenm.202202404
F. Sahli, J. Werner, B.A. Kamino, M. Brauninger, R. Monnard et al., Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17(9), 820–826 (2018). https://doi.org/10.1038/s41563-018-0115-4
Y. Li, B. Shi, Q. Xu, L. Yan, N. Ren et al., Wide bandgap interface layer induced stabilized perovskite/silicon tandem solar cells with stability over ten thousand hours. Adv. Energy Mater. 11(48), 2102046 (2021). https://doi.org/10.1002/aenm.202102046
E. Aydin, T.G. Allen, M.D. Bastiani, L.J. Xu, J. Avila et al., Interplay between temperature and bandgap energies on the outdoor performance of perovskite/silicon tandem solar cells. Nat. Energy 5(11), 851–859 (2020). https://doi.org/10.1038/s41560-020-00687-4
Y. Lin, B. Chen, F. Zhao, X. Zheng, Y. Deng et al., Matching charge extraction contact for wide-bandgap perovskite solar cells. Adv. Mater. 29(26), 1700607 (2017). https://doi.org/10.1002/adma.201700607
D.B. Khadka, Y. Shirai, M. Yanagida, T. Noda, K. Miyano, Tailoring the open-circuit voltage deficit of wide-band-gap perovskite solar cells using alkyl chain-substituted fullerene derivatives. ACS Appl. Mater. Interfaces 10(26), 22074–22082 (2018). https://doi.org/10.1021/acsami.8b04439
E. Aydin, J. Liu, E. Ugur, R. Azmi, G.T. Harrison et al., Ligand-bridged charge extraction and enhanced quantum efficiency enable efficient n–i–p perovskite/silicon tandem solar cells. Energy Environ. Sci. 14(8), 4377–4390 (2021). https://doi.org/10.1039/d1ee01206a
Z. Yu, Z. Yang, Z. Ni, Y. Shao, B. Chen et al., Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nat. Energy 5(9), 657–665 (2020). https://doi.org/10.1038/s41560-020-0657-y
Z.Q. Lin, H.J. Lian, B. Ge, Z. Zhou, H. Yuan et al., Mediating the local oxygen-bridge interactions of oxysalt/perovskite interface for defect passivation of perovskite photovoltaics. Nano-Micro Lett. 13, 177 (2021). https://doi.org/10.1007/s40820-021-00683-7
C. Jiang, J. Zhou, H. Li, L. Tan, M. Li et al., Double layer composite electrode strategy for efficient perovskite solar cells with excellent reverse-bias stability. Nano-Micro Lett. 15, 12 (2022). https://doi.org/10.1007/s40820-022-00985-4
W. Dong, W. Qiao, S. Xiong, J. Yang, X. Wang et al., Surface passivation and energetic modification suppress nonradiative recombination in perovskite solar cells. Nano-Micro Lett. 14, 108 (2022). https://doi.org/10.1007/s40820-022-00854-0
S. Cacovich, G. Vidon, M. Degani, M. Legrand, L. Gouda et al., Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces. Nat. Commun. 13, 2868 (2022). https://doi.org/10.1038/s41467-022-30426-0
S.D. Stranks, Nonradiative losses in metal halide perovskites. ACS Energy Lett. 2(7), 1515–1525 (2017). https://doi.org/10.1021/acsenergylett.7b00239
Z.M. Fang, L.B. Jia, N. Yan, X.F. Jiang, X.D. Ren et al., Proton-transfer-induced in situ defect passivation for highly efficient wide-bandgap inverted perovskite solar cells. InfoMat 4(6), e12307 (2022). https://doi.org/10.1002/inf2.12307
S. Gharibzadeh, P. Fassl, I.M. Hossain, P. Rohrbeck, M. Frericks et al., Two birds with one stone: dual grain-boundary and interface passivation enables > 22% efficient inverted methylammonium-free perovskite solar cells. Energy Environ. Sci. 14(11), 5875–5893 (2021). https://doi.org/10.1039/d1ee01508g
P. Wang, B. Chen, R. Li, S. Wang, Y. Li et al., 2D perovskite or organic material matter? Targeted growth for efficient perovskite solar cells with efficiency exceeding 24%. Nano Energy 94, 106914 (2022). https://doi.org/10.1016/j.nanoen.2021.106914
S. Gharibzadeh, I.M. Hossain, P. Fassl, B.A. Nejand, T. Abzieher et al., 2D/3D heterostructure for semitransparent perovskite solar cells with engineered bandgap enables efficiencies exceeding 25% in four-terminal tandems with silicon and cigs. Adv. Funct. Mater. 30(19), 1909919 (2020). https://doi.org/10.1002/adfm.201909919
L.P. Wang, Z. Yan, J.H. Qiu, J.B. Wu, C. Zhen et al., Interface regulation enables hysteresis free wide-bandgap perovskite solar cells with low Voc deficit and high stability. Nano Energy 90, 106537 (2021). https://doi.org/10.1016/j.nanoen.2021.106537
D. Wang, H. Guo, X. Wu, X. Deng, F. Li et al., Interfacial engineering of wide-bandgap perovskites for efficient perovskite/cztsse tandem solar cells. Adv. Funct. Mater. 32(2), 2107359 (2021). https://doi.org/10.1002/adfm.202107359
Y. Zhou, F. Wang, Y. Cao, J.P. Wang, H.H. Fang et al., Benzylamine-treated wide-bandgap perovskite with high thermal-photostability and photovoltaic performance. Adv. Energy Mater. 7(22), 1701048 (2017). https://doi.org/10.1002/aenm.201701048
S. Gharibzadeh, B.A. Nejand, M. Jakoby, T. Abzieher, D. Hauschild et al., Record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure. Adv. Energy Mater. 9(21), 1803699 (2019). https://doi.org/10.1002/aenm.201803699
T. Duong, H. Pham, T.C. Kho, P. Phang, K.C. Fong et al., High efficiency perovskite-silicon tandem solar cells: effect of surface coating versus bulk incorporation of 2D perovskite. Adv. Energy Mater. 10(9), 1903553 (2020). https://doi.org/10.1002/aenm.201903553
T. Bu, J. Li, Q. Lin, D.P. McMeekin, J. Sun et al., Structure engineering of hierarchical layered perovskite interface for efficient and stable wide bandgap photovoltaics. Nano Energy 75, 104917 (2020). https://doi.org/10.1016/j.nanoen.2020.104917
C. Chen, J.W. Liang, J.J. Zhang, X.X. Liu, X.X. Yin et al., Interfacial engineering of a thiophene-based 2D/3D perovskite heterojunction for efficient and stable inverted wide-bandgap perovskite solar cells. Nano Energy 90, 106608 (2021). https://doi.org/10.1016/j.nanoen.2021.106608
R. He, Z. Yi, Y. Luo, J. Luo, Q. Wei et al., Pure 2D perovskite formation by interfacial engineering yields a high open-circuit voltage beyond 1.28 V for 1.77-eV wide-bandgap perovskite solar cells. Adv. Sci. 9(36), 2203210 (2022). https://doi.org/10.1002/advs.202203210
C. Chen, Z. Song, C. Xiao, D. Zhao, N. Shrestha et al., Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction. Nano Energy 61, 141–147 (2019). https://doi.org/10.1016/j.nanoen.2019.04.069
C. Chen, Z.N. Song, C.X. Xiao, R.A. Awni, C.L. Yao et al., Arylammonium-assisted reduction of the open-circuit voltage deficit in wide-bandgap perovskite solar cells: the role of suppressed ion migration. ACS Energy Lett. 5(8), 2560–2568 (2020). https://doi.org/10.1021/acsenergylett.0c01350
T. Duong, H. Pham, Y. Yin, J. Peng, M.A. Mahmud et al., Efficient and stable wide bandgap perovskite solar cells through surface passivation with long alkyl chain organic cations. J. Mater. Chem. A 9(34), 18454–18465 (2021). https://doi.org/10.1039/d1ta05699a
M. Jaysankar, B.A.L. Raul, J. Bastos, C. Burgess, C. Weijtens et al., Minimizing voltage loss in wide-bandgap perovskites for tandem solar cells. ACS Energy Lett. 4(1), 259–264 (2018). https://doi.org/10.1021/acsenergylett.8b02179
T. Huang, R. Wang, S. Nuryyeva, S. Tan, J. Xue et al., Wide-gap perovskite via synergetic surface passivation and its application toward efficient stacked tandem photovoltaics. Small 18(8), 2103887 (2022). https://doi.org/10.1002/smll.202103887
R. Xia, Y. Xu, B. Chen, H. Kanda, M. Franckevičius et al., Interfacial passivation of wide-bandgap perovskite solar cells and tandem solar cells. J. Mater. Chem. A 9(38), 21939–21947 (2021). https://doi.org/10.1039/d1ta04330g
R.A. Belisle, K.A. Bush, L. Bertoluzzi, A. Gold-Parker, M.F. Toney et al., Impact of surfaces on photoinduced halide segregation in mixed-halide perovskites. ACS Energy Lett. 3(11), 2694–2700 (2018). https://doi.org/10.1021/acsenergylett.8b01562
F.H. Isikgor, F. Furlan, J. Liu, E. Ugur, M.K. Eswaran et al., Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation. Joule 5(6), 1566–1586 (2021). https://doi.org/10.1016/j.joule.2021.05.013
M. Stolterfoht, P. Caprioglio, C.M. Wolff, J.A. Márquez, J. Nordmann et al., The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12(9), 2778–2788 (2019). https://doi.org/10.1039/c9ee02020a
M. Stolterfoht, C.M. Wolff, J.A. Márquez, S. Zhang, C.J. Hages et al., Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3(10), 847–854 (2018). https://doi.org/10.1038/s41560-018-0219-8
D. Menzel, A. Al-Ashouri, A. Tejada, I. Levine, J.A. Guerra et al., Field effect passivation in perovskite solar cells by a LiF interlayer. Adv. Energy Mater. 12(30), 2201109 (2022). https://doi.org/10.1002/aenm.202201109
B.W. Park, H.W. Kwon, Y. Lee, D.Y. Lee, M.G. Kim et al., Stabilization of formamidinium lead triiodide alpha-phase with isopropylammonium chloride for perovskite solar cells. Nat. Energy 6(4), 419–428 (2021). https://doi.org/10.1038/s41560-021-00802-z
H. Lu, Y. Liu, P. Ahlawat, A. Mishra, W.R. Tress et al., Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 370(6512), eabb8985 (2020). https://doi.org/10.1126/science.abb8985
N.G. Park, K. Zhu, Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 5(5), 333–350 (2020). https://doi.org/10.1038/s41578-019-0176-2
F. Yang, D. Jang, L.R. Dong, S.D. Qiu, A. Distler et al., Upscaling solution-processed perovskite photovoltaics. Adv. Energy Mater. 11(42), 2101973 (2021). https://doi.org/10.1002/aenm.202101973
H. Li, C. Zuo, D. Angmo, H. Weerasinghe, M. Gao et al., Fully roll-to-roll processed efficient perovskite solar cells via precise control on the morphology of PbI2:CsI layer. Nano-Micro Lett. 14, 79 (2022). https://doi.org/10.1007/s40820-022-00815-7
M. Jaysankar, W. Qiu, J. Bastos, J.G. Tait, M. Debucquoy et al., Crystallisation dynamics in wide-bandgap perovskite films. J. Mater. Chem. A 4(27), 10524–10531 (2016). https://doi.org/10.1039/c6ta02769e
Y.M. Xie, C. Ma, X. Xu, M. Li, Y. Ma et al., Revealing the crystallization process and realizing uniform 1.8 eV MA-based wide-bandgap mixed-halide perovskites via solution engineering. Nano Res. 12(5), 1033–1039 (2019). https://doi.org/10.1007/s12274-019-2336-5
T. Huang, S. Tan, S. Nuryyeva, I. Yavuz, F. Babbe et al., Performance-limiting formation dynamics in mixed-halide perovskites. Sci. Adv. 7(46), eabj1799 (2021). https://doi.org/10.1126/sciadv.abj1799
Z. Xiong, X. Chen, B. Zhang, G.O. Odunmbaku, Z. Ou et al., Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%. Adv. Mater. 34(8), 2106118 (2022). https://doi.org/10.1002/adma.202106118
X. Liu, Z. Wu, X. Fu, L. Tang, J. Li et al., Highly efficient wide-band-gap perovskite solar cells fabricated by sequential deposition method. Nano Energy 86, 106114 (2021). https://doi.org/10.1016/j.nanoen.2021.106114
B.B. Chen, P.Y. Wang, R.J. Li, N.Y. Ren, W. Han et al., A two-step solution-processed wide-bandgap perovskite for monolithic silicon-based tandem solar cells with > 27% efficiency. ACS Energy Lett. 7(8), 2771–2780 (2022). https://doi.org/10.1021/acsenergylett.2c01488
G. Longo, C. Momblona, M.G. La-Placa, L. Gil-Escrig, M. Sessolo et al., Fully vacuum-processed wide bandgap mixed-halide perovskite solar cells. ACS Energy Lett. 3(1), 214–219 (2017). https://doi.org/10.1021/acsenergylett.7b01217
J. Ávila, C. Momblona, P. Boix, M. Sessolo, M. Anaya et al., High voltage vacuum-deposited CH3NH3PbI3-CH3NH3PbI3 tandem solar cells. Energy Environ. Sci. 11(11), 3292–3297 (2018). https://doi.org/10.1039/c8ee01936c
M. Roß, S. Severin, M.B. Stutz, P. Wagner, H. Köbler et al., Co-evaporated formamidinium lead iodide based perovskites with 1000 h constant stability for fully textured monolithic perovskite/silicon tandem solar cells. Adv. Energy Mater. 11(35), 2101460 (2021). https://doi.org/10.1002/aenm.202101460
M. Ross, M.B. Stutz, S. Albrecht, Revealing the role of methylammonium iodide purity on the vapor-phase deposition process of perovskites. Sol. RRL 6(10), 2200500 (2022). https://doi.org/10.1002/solr.202200500
Y. Hou, E. Aydin, M.D. Bastiani, C.X. Xiao, F.H. Isikgor et al., Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367(6482), 1135–1140 (2020). https://doi.org/10.1126/science.aaz3691
M. Jung, S.G. Ji, G. Kim, S.I. Seok, Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chem. Soc. Rev. 48(7), 2011–2038 (2019). https://doi.org/10.1039/c8cs00656c
T. Wang, F. Zheng, G. Tang, J. Cao, P. You et al., 2D WSe2 flakes for synergistic modulation of grain growth and charge transfer in tin-based perovskite solar cells. Adv. Sci. 8(11), 2004315 (2021). https://doi.org/10.1002/advs.202004315
B. Wang, J. Iocozzia, M. Zhang, M.D. Ye, S.C. Yan et al., The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells. Chem. Soc. Rev. 48(18), 4854–4891 (2019). https://doi.org/10.1039/c9cs00254e
A. Ren, H. Lai, X. Hao, Z. Tang, H. Xu et al., Efficient perovskite solar modules with minimized nonradiative recombination and local carrier transport losses. Joule 4(6), 1263–1277 (2020). https://doi.org/10.1016/j.joule.2020.04.013
G. Tong, L.K. Ono, Y. Liu, H. Zhang, T. Bu et al., Up-scalable fabrication of SnO2 with multifunctional interface for high performance perovskite solar modules. Nano-Micro Lett. 13, 155 (2021). https://doi.org/10.1007/s40820-021-00675-7
W. Meng, K.C. Zhang, A. Osvet, J.Y. Zhang, W. Gruber et al., Revealing the strain-associated physical mechanisms impacting the performance and of solar cells. Joule 6(2), 458–475 (2022). https://doi.org/10.1016/j.joule.2022.01.011
X.X. Cui, J.J. Jin, Q.D. Tai, F. Yan, Recent progress on the phase stabilization of FAPbI3 for high-performance perovskite solar cells. Sol. RRL 6(10), 2200497 (2022). https://doi.org/10.1002/solr.202200497
T. Wang, Y. Zhang, W. Kong, L. Qiao, B. Peng et al., Transporting holes stably under iodide invasion in efficient perovskite solar cells. Science 377(6611), 1227–1232 (2022). https://doi.org/10.1126/science.abq6235