Intracellular Delivery of mRNA in Adherent and Suspension Cells by Vapor Nanobubble Photoporation
Corresponding Author: Kevin Braeckmans
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 185
Abstract
Efficient and safe cell engineering by transfection of nucleic acids remains one of the long-standing hurdles for fundamental biomedical research and many new therapeutic applications, such as CAR T cell-based therapies. mRNA has recently gained increasing attention as a more safe and versatile alternative tool over viral- or DNA transposon-based approaches for the generation of adoptive T cells. However, limitations associated with existing nonviral mRNA delivery approaches hamper progress on genetic engineering of these hard-to-transfect immune cells. In this study, we demonstrate that gold nanoparticle-mediated vapor nanobubble (VNB) photoporation is a promising upcoming physical transfection method capable of delivering mRNA in both adherent and suspension cells. Initial transfection experiments on HeLa cells showed the importance of transfection buffer and cargo concentration, while the technology was furthermore shown to be effective for mRNA delivery in Jurkat T cells with transfection efficiencies up to 45%. Importantly, compared to electroporation, which is the reference technology for nonviral transfection of T cells, a fivefold increase in the number of transfected viable Jurkat T cells was observed. Altogether, our results point toward the use of VNB photoporation as a more gentle and efficient technology for intracellular mRNA delivery in adherent and suspension cells, with promising potential for the future engineering of cells in therapeutic and fundamental research applications.
Highlights:
1 Vapor nanobubble (VNB) photoporation represents a promising physical technique for mRNA transfection of adherent and suspension cells.
2 A multitude of parameters related to the VNB photoporation procedure were optimized to enable efficient mRNA transfection.
3 VNB photoporation was found to yield five times more living, transfected Jurkat T cells as compared to electroporation, i.e., currently the standard nonviral transfection technique for T cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- U. Sahin, K. Karikó, Ö. Türeci, mRNA-based therapeutics-developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014). https://doi.org/10.1038/nrd4278
- J.B. Foster, D.M. Barrett, K. Karikó, The emerging role of in vitro-transcribed mRNA in adoptive T cell immunotherapy. Mol. Ther. 27, 747–756 (2019). https://doi.org/10.1016/j.ymthe.2019.01.018
- Y. Granot-Matok, E. Kon, N. Dammes, G. Mechtinger, D. Peer, Therapeutic mRNA delivery to leukocytes. J. Control. Release 305, 165–175 (2019). https://doi.org/10.1016/j.jconrel.2019.05.032
- S.V. Lint, D. Renmans, K. Broos, H. Dewitte, I. Lentacker et al., The ReNAissanCe of mRNA-based cancer therapy. Expert Rev. Vaccines 14, 235–251 (2015). https://doi.org/10.1586/14760584.2015.957685
- J. Devoldere, H. Dewitte, S.C. De Smedt, K. Remaut, Evading innate immunity in nonviral mRNA delivery: don’t shoot the messenger. Drug Discov. Today 21, 11–25 (2016). https://doi.org/10.1016/j.drudis.2015.07.009
- S.L. Maude, T.W. Laetsch, J. Buechner, S. Rives, M. Boyer et al., Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018). https://doi.org/10.1056/NEJMoa1709866
- S.S. Neelapu, F.L. Locke, N.L. Bartlett, L.J. Lekakis, D.B. Miklos et al., Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017). https://doi.org/10.1056/NEJMoa1707447
- S.J. Schuster, J. Svoboda, E.A. Chong, S.D. Nasta, A.R. Mato et al., Chimeric antigen receptor T cells in refractory B-cell lymphomas. N. Engl. J. Med. 377, 2545–2554 (2017). https://doi.org/10.1056/NEJMoa1708566
- A. Aijaz, M. Li, D. Smith, D. Khong, C. Leblon et al., Biomanufacturing for clinically advanced cell therapies. Nat. Biomed. Eng. 2, 362–376 (2018). https://doi.org/10.1038/s41551-018-0246-6
- M.S. Goldberg, Improving cancer immunotherapy through nanotechnology. Nat. Rev. Cancer 19, 587–602 (2019). https://doi.org/10.1038/s41568-019-0186-9
- B.L. Levine, J. Miskin, K. Wonnacott, C. Keir, Global manufacturing of CAR T cell therapy. Mol. Ther. Methods Clin. Dev. 4, 92–101 (2017). https://doi.org/10.1016/j.omtm.2016.12.006
- J. Tchou, Y. Zhao, B.L. Levine, P.J. Zhang, M.M. Davis et al., Safety and efficacy of intratumoral injections of chimeric antigen receptor (CAR) T cells in metastatic breast cancer. Cancer Immunol. Res. 5, 1152–1161 (2017). https://doi.org/10.1158/2326-6066.CIR-17-0189
- X. Wang, I. Rivière, Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol. Ther. Oncolytics 3, 16015 (2016). https://doi.org/10.1038/mto.2016.15
- J.B. Foster, N. Choudhari, J. Perazzelli, J. Storm, T.J. Hofmann et al., Purification of mRNA encoding chimeric antigen receptor is critical for generation of a robust T-cell response. Hum. Gene Ther. 30, 168–178 (2018). https://doi.org/10.1089/hum.2018.145
- A. Hendel, R.O. Bak, J.T. Clark, A.B. Kennedy, D.E. Ryan et al., Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33, 985–989 (2015). https://doi.org/10.1038/nbt.3290
- Q. Gao, X. Dong, Q. Xu, L. Zhu, F. Wang, Y. Hou, C. Chao, Therapeutic potential of CRISPR/Cas9 gene editing in engineered T-cell therapy. Cancer Med. 8, 4254–4264 (2019). https://doi.org/10.1002/cam4.2257
- M.P. Stewart, R. Langer, K.F. Jensen, Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem. Rev. 118, 7409–7531 (2018). https://doi.org/10.1021/acs.chemrev.7b00678
- C. Bao, J. Conde, E. Polo, P. del Pino, M. Moros et al., A promising road with challenges: where are gold nanoparticles in translational research? Nanomedicine 9, 2353–2370 (2014). https://doi.org/10.2217/nnm.14.155
- J. Conde, C. Bao, Y. Tan, D. Cui, E.R. Edelman et al., Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumour-associated macrophages and cancer cells. Adv. Funct. Mater. 25, 4183–4194 (2015). https://doi.org/10.1002/adfm.201501283
- J. Conde, F. Tian, Y. Hernandez, C. Bao, P.V. Baptista et al., RNAi-based glyconanoparticles trigger apoptotic pathways for in vitro and in vivo enhanced cancer-cell killing. Nanoscale 7, 9083–9091 (2015). https://doi.org/10.1039/c4nr05742b
- C. Zhang, C. Li, Y. Liu, J. Zhang, C. Bao et al., Gold nanoclusters-based nanoprobes for simultaneous fluorescence imaging and targeted photodynamic therapy with superior penetration and retention behavior in tumors. Adv. Funct. Mater. 25, 1314–1325 (2015). https://doi.org/10.1002/adfm.201403095
- D. Pissuwan, T. Niidome, M.B. Cortie, The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J. Control. Release 149, 65–71 (2011). https://doi.org/10.1016/j.jconrel.2009.12.006
- J.C. Fraire, G. Houthaeve, J. Liu, L. Raes, L. Vermeulen et al., Vapor nanobubble is the more reliable photothermal mechanism for inducing endosomal escape of siRNA without disturbing cell homeostasis. J. Control. Release 319, 262–275 (2020). https://doi.org/10.1016/j.jconrel.2019.12.050
- L.M.P. Vermeulen, J.C. Fraire, L. Raes, E. De Meester, S. De Keulenaer et al., Photothermally triggered endosomal escape and its influence on transfection efficiency of gold-functionalized JetPEI/pDNA nanoparticles. Int. J. Mol. Sci. 19, 2400 (2018). https://doi.org/10.3390/ijms19082400
- M.P. Stewart, A. Sharei, X. Ding, G. Sahay, R. Langer, K.F. Jensen, In vitro and ex vivo strategies for intracellular delivery. Nature 538, 183–192 (2016). https://doi.org/10.1038/nature19764
- P. Aksoy, B.A. Aksoy, E. Czech, J. Hammerbacher, Viable and efficient electroporation-based genetic manipulation of unstimulated human T cells. BioRxiv (2019). https://doi.org/10.1101/466243
- T. DiTommaso, J.M. Cole, L. Cassereau, J.A. Buggé, J.L.S. Hanson et al., Cell engineering with microfluidic squeezing preserves functionality of primary immune cells in vivo. Proc. Natl. Acad. Sci. 115, E10907–E10914 (2018). https://doi.org/10.1073/pnas.1809671115
- M. Zhang, Z. Ma, N. Selliah, G. Weiss, A. Genin, T.H. Finkel, R.Q. Cron, The impact of Nucleofection® on the activation state of primary human CD4 T cells. J. Immunol. Methods 408, 123–131 (2014). https://doi.org/10.1016/j.jim.2014.05.014
- B.R. Anderson, K. Karikó, D. Weissman, Nucleofection induces transient eIF2α phosphorylation by GCN2 and PERK. Gene Ther. 20, 136–142 (2013). https://doi.org/10.1038/gt.2012.5
- L. Liu, C. Johnson, S. Fujimura, F. Teque, J.A. Levy, Transfection optimization for primary human CD8+ cells. J. Immunol. Methods 372, 22–29 (2011). https://doi.org/10.1016/j.jim.2011.06.026
- R. Xiong, S.K. Samal, J. Demeester, A.G. Skirtach, S.C.D. Smedt, K. Braeckmans, Laser-assisted photoporation: fundamentals, technological advances and applications. Adv. Phys. X 1, 596–620 (2016). https://doi.org/10.1080/23746149.2016.1228476
- L. Wayteck, R. Xiong, K. Braeckmans, S.C. De Smedt, K. Raemdonck, Comparing photoporation and nucleofection for delivery of small interfering RNA to cytotoxic T cells. J. Control. Release 267, 154–162 (2017). https://doi.org/10.1016/j.jconrel.2017.08.002
- L.E. Barrett, J.-Y. Sul, H. Takano, E.J. Van Bockstaele, P.G. Haydon, J.H. Eberwine, Region-directed phototransfection reveals the functional significance of a dendritically synthesized transcription factor. Nat. Methods 3, 455–460 (2006). https://doi.org/10.1038/nmeth885
- D.J. Stevenson, F.J. Gunn-Moore, P. Campbell, K. Dholakia, Single cell optical transfection. J. Royal Soc. Interface 7, 863–871 (2010). https://doi.org/10.1098/rsif.2009.0463
- Y. Hosokawa, H. Ochi, T. Iino, A. Hiraoka, M. Tanaka, Photoporation of biomolecules into single cells in living vertebrate embryos induced by a femtosecond laser amplifier. PLoS ONE 6, 0027677 (2011). https://doi.org/10.1371/journal.pone.0027677
- S. Kalies, T. Birr, D. Heinemann, M. Schomaker, T. Ripken, A. Heisterkamp, H. Meyer, Enhancement of extracellular molecule uptake in plasmonic laser perforation. J. Biophotonics 7, 474–482 (2014). https://doi.org/10.1002/jbio.201200200
- E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee et al., Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. ACS Nano 4, 2109–2123 (2010). https://doi.org/10.1021/nn1000222
- R. Xiong, K. Raemdonck, K. Peynshaert, I. Lentacker, I. De Cock et al., Comparison of gold nanoparticle mediated photoporation: vapor nanobubbles outperform direct heating for delivering macromolecules in live cells. ACS Nano 8, 6288–6296 (2014). https://doi.org/10.1021/nn5017742
- E. Teirlinck, R. Xiong, T. Brans, K. Forier, J. Fraire et al., Laser-induced vapour nanobubbles improve drug diffusion and efficiency in bacterial biofilms. Nat. Commun. 9, 4518 (2018). https://doi.org/10.1038/s41467-018-06884-w
- J. Liu, R. Xiong, T. Brans, S. Lippens, E. Parthoens et al., Repeated photoporation with graphene quantum dots enables homogeneous labeling of live cells with extrinsic markers for fluorescence microscopy. Light Sci. Appl. 7, 47 (2018). https://doi.org/10.1038/s41377-018-0048-3
- P. Chakravarty, W. Qian, M.A. El-Sayed, M.R. Prausnitz, Delivery of molecules into cells using carbon nanoparticles activated by femtosecond laser pulses. Nat. Nanotechnol. 5, 607–611 (2010). https://doi.org/10.1038/nnano.2010.126
- R. Lachaine, C. Boutopoulos, P.-Y. Lajoie, É. Boulais, M. Meunier, Rational design of plasmonic nanoparticles for enhanced cavitation and cell perforation. Nano Lett. 16, 3187–3194 (2016). https://doi.org/10.1021/acs.nanolett.6b00562
- L. Van Hoecke, L. Raes, S. Stremersch, T. Brans, J.C. Fraire et al., Delivery of mixed-lineage kinase domain-like protein by vapor nanobubble photoporation induces necroptotic-like cell death in tumor cells. Int. J. Mol. Sci. 20, 4254 (2019). https://doi.org/10.3390/ijms20174254
- L. Raes, C. Van Hecke, J. Michiels, S. Stremersch, J.C. Fraire et al., Gold nanoparticle-mediated photoporation enables delivery of macromolecules over a wide range of molecular weights in human CD4+ T cells. Crystals 9, 411 (2019). https://doi.org/10.3390/cryst9080411
- R. Xiong, C. Drullion, P. Verstraelen, J. Demeester, A.G. Skirtach, Fast spatial-selective delivery into live cells. J. Control. Release 266, 198–204 (2017). https://doi.org/10.1016/j.jconrel.2017.09.033
- R. Xiong, P. Verstraelen, J. Demeester, A.G. Skirtach, J.-P. Timmermans et al., Selective labeling of individual neurons in dense cultured networks with nanoparticle-enhanced photoporation. Front. Cell. Neurosci. 12, 00080 (2018). https://doi.org/10.3389/fncel.2018.00080
- R.T. Abraham, A. Weiss, Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat. Rev. Immunol. 4, 301 (2004). https://doi.org/10.1038/nri1330
- C.P.M. Duong, J.A. Westwood, C.S.M. Yong, A. Murphy, C. Devaud et al., Engineering T cell function using chimeric antigen receptors identified using a DNA library approach. PLoS ONE 8, 0063037 (2013). https://doi.org/10.1371/journal.pone.0063037
- K.T. Roybal, L.J. Rupp, L. Morsut, W.J. Walker, K.A. McNally, J.S. Park, W.A. Lim, Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164, 770–779 (2016). https://doi.org/10.1016/j.cell.2016.01.011
- J. Rydzek, T. Nerreter, H. Peng, S. Jutz, J. Leitner et al., Chimeric antigen receptor library screening using a novel NF-κB/NFAT reporter cell platform. Mol. Ther. 27, 287–299 (2019). https://doi.org/10.1016/j.ymthe.2018.11.015
- H. Köksal, E. Baken, D.J. Warren, G.Å. Løset, E.M. Inderberg, S. Wälchli, Chimeric antigen receptor preparation from hybridoma to T-cell expression. Antib. Ther. 2, 56–63 (2019). https://doi.org/10.1093/abt/tbz007
- D. Bloemberg, T. Nguyen, S. MacLean, A. Zafer, C. Gadoury et al., A high-throughput method for characterizing novel chimeric antigen receptors in jurkat cells. Mol. Ther. Methods Clin. Dev. 16, 238–254 (2020). https://doi.org/10.1016/j.omtm.2020.01.012
- L. Van Hoecke, S. Van Lint, K. Roose, A. Van Parys, P. Vandenabeele et al., Treatment with mRNA coding for the necroptosis mediator MLKL induces antitumor immunity directed against neo-epitopes. Nat. Commun. 9, 3417 (2018). https://doi.org/10.1038/s41467-018-05979-8
- D. Wang, P. Cheng, X. Quan, Photothermal nanobubble nucleation on a plasmonic nanoparticle: A 3D lattice Boltzmann simulation. Int. J. Heat Mass Transf. 140, 786–797 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.096
- R. Xiong, F. Joris, S. Liang, R. De Rycke, S. Lippens et al., Cytosolic delivery of nanolabels prevents their asymmetric inheritance and enables extended quantitative in vivo cell imaging. Nano Lett. 16, 5975–5986 (2016). https://doi.org/10.1021/acs.nanolett.6b01411
- M. MacKay, E. Afshinnekoo, J. Rub, C. Hassan, M. Khunte et al., The therapeutic landscape for cells engineered with chimeric antigen receptors. Nat. Biotechnol. 38, 233–244 (2020). https://doi.org/10.1038/s41587-019-0329-2
- P. Vormittag, R. Gunn, S. Ghorashian, F.S. Veraitch, A guide to manufacturing CAR T cell therapies. Curr. Opin. Biotechnol. 53, 164–181 (2018). https://doi.org/10.1016/j.copbio.2018.01.025
- S.L. Maude, N. Frey, P.A. Shaw, R. Aplenc, D.M. Barrett et al., Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014). https://doi.org/10.1056/NEJMoa1407222
- E.A. Stadtmauer, J.A. Fraietta, M.M. Davis, A.D. Cohen, K.L. Weber, CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020). https://doi.org/10.1126/science.aba7365
- D.W. Lee, J.N. Kochenderfer, M. Stetler-Stevenson, Y.K. Cui, C. Delbrook et al., T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015). https://doi.org/10.1016/S0140-6736(14)61403-3
- M. Moenner, E. Hatzi, J. Badet, Secretion of ribonucleases by normal and immortalized cells grown in serum-free culture conditions. Vitro Cell. Dev. Biol. Anim. 33, 553–561 (1997). https://doi.org/10.1007/s11626-997-0098-y
- A.A. Davis, M.J. Farrar, N. Nishimura, M.M. Jin, C.B. Schaffer, Optoporation and genetic manipulation of cells using femtosecond laser pulses. Biophys. J. 105, 862–871 (2013). https://doi.org/10.1016/j.bpj.2013.07.012
- A. Sharei, R. Poceviciute, E.L. Jackson, N. Cho, S. Mao et al., Plasma membrane recovery kinetics of a microfluidic intracellular delivery platform. Integr. Biol. 6, 470–475 (2014). https://doi.org/10.1039/c3ib40215k
- W.P.R. Verdurmen, R. Wallbrecher, S. Schmidt, J. Eilander, P. Bovee-Geurts et al., Cell surface clustering of heparan sulfate proteoglycans by amphipathic cell-penetrating peptides does not contribute to uptake. J. Control. Release 170, 83–91 (2013). https://doi.org/10.1016/j.jconrel.2013.05.001
- B.R. Olden, Y. Cheng, J.L. Yu, S.H. Pun, Cationic polymers for non-viral gene delivery to human T cells. J. Control. Release 282, 140–147 (2018). https://doi.org/10.1016/j.jconrel.2018.02.043
- Y. Zhao, E. Moon, C. Carpenito, C.M. Paulos, X. Liu et al., Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res. 70, 9053–9061 (2010). https://doi.org/10.1158/0008-5472.CAN-10-2880
- Y. Zhao, Z. Zheng, C.J. Cohen, L. Gattinoni, D.C. Palmer, N.P. Restifo, S.A. Rosenberg, R.A. Morgan, High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Mol. Ther. 13, 151–159 (2006). https://doi.org/10.1016/j.ymthe.2005.07.688
- S.H. Yoon, J.M. Lee, H.I. Cho, E.K. Kim, H.S. Kim, M.Y. Park, T.G. Kim, Adoptive immunotherapy using human peripheral blood lymphocytes transferred with RNA encoding Her-2/neu-specific chimeric immune receptor in ovarian cancer xenograft model. Cancer Gene Ther. 16, 489–497 (2009). https://doi.org/10.1038/cgt.2008.98
- D.A. Mitchell, I. Karikari, X. Cui, W. Xie, R. Schmittling, J.H. Sampson, Selective modification of antigen-specific T cells by RNA electroporation. Hum. Gene Ther. 19, 511–521 (2008). https://doi.org/10.1089/hum.2007.115
- J.A. Jarrell, A.A. Twite, K.H.W.J. Lau, M.N. Kashani, A.A. Lievano et al., Intracellular delivery of mRNA to human primary T cells with microfluidic vortex shedding. Sci. Rep. 9, 3214 (2019). https://doi.org/10.1038/s41598-019-40147-y
- Y. Peng, D.A. Martin, J. Kenkel, K. Zhang, C.A. Ogden, K.B. Elkon, Innate and adaptive immune response to apoptotic cells. J. Autoimmun. 29, 303–309 (2007). https://doi.org/10.1016/j.jaut.2007.07.017
References
U. Sahin, K. Karikó, Ö. Türeci, mRNA-based therapeutics-developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014). https://doi.org/10.1038/nrd4278
J.B. Foster, D.M. Barrett, K. Karikó, The emerging role of in vitro-transcribed mRNA in adoptive T cell immunotherapy. Mol. Ther. 27, 747–756 (2019). https://doi.org/10.1016/j.ymthe.2019.01.018
Y. Granot-Matok, E. Kon, N. Dammes, G. Mechtinger, D. Peer, Therapeutic mRNA delivery to leukocytes. J. Control. Release 305, 165–175 (2019). https://doi.org/10.1016/j.jconrel.2019.05.032
S.V. Lint, D. Renmans, K. Broos, H. Dewitte, I. Lentacker et al., The ReNAissanCe of mRNA-based cancer therapy. Expert Rev. Vaccines 14, 235–251 (2015). https://doi.org/10.1586/14760584.2015.957685
J. Devoldere, H. Dewitte, S.C. De Smedt, K. Remaut, Evading innate immunity in nonviral mRNA delivery: don’t shoot the messenger. Drug Discov. Today 21, 11–25 (2016). https://doi.org/10.1016/j.drudis.2015.07.009
S.L. Maude, T.W. Laetsch, J. Buechner, S. Rives, M. Boyer et al., Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018). https://doi.org/10.1056/NEJMoa1709866
S.S. Neelapu, F.L. Locke, N.L. Bartlett, L.J. Lekakis, D.B. Miklos et al., Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017). https://doi.org/10.1056/NEJMoa1707447
S.J. Schuster, J. Svoboda, E.A. Chong, S.D. Nasta, A.R. Mato et al., Chimeric antigen receptor T cells in refractory B-cell lymphomas. N. Engl. J. Med. 377, 2545–2554 (2017). https://doi.org/10.1056/NEJMoa1708566
A. Aijaz, M. Li, D. Smith, D. Khong, C. Leblon et al., Biomanufacturing for clinically advanced cell therapies. Nat. Biomed. Eng. 2, 362–376 (2018). https://doi.org/10.1038/s41551-018-0246-6
M.S. Goldberg, Improving cancer immunotherapy through nanotechnology. Nat. Rev. Cancer 19, 587–602 (2019). https://doi.org/10.1038/s41568-019-0186-9
B.L. Levine, J. Miskin, K. Wonnacott, C. Keir, Global manufacturing of CAR T cell therapy. Mol. Ther. Methods Clin. Dev. 4, 92–101 (2017). https://doi.org/10.1016/j.omtm.2016.12.006
J. Tchou, Y. Zhao, B.L. Levine, P.J. Zhang, M.M. Davis et al., Safety and efficacy of intratumoral injections of chimeric antigen receptor (CAR) T cells in metastatic breast cancer. Cancer Immunol. Res. 5, 1152–1161 (2017). https://doi.org/10.1158/2326-6066.CIR-17-0189
X. Wang, I. Rivière, Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol. Ther. Oncolytics 3, 16015 (2016). https://doi.org/10.1038/mto.2016.15
J.B. Foster, N. Choudhari, J. Perazzelli, J. Storm, T.J. Hofmann et al., Purification of mRNA encoding chimeric antigen receptor is critical for generation of a robust T-cell response. Hum. Gene Ther. 30, 168–178 (2018). https://doi.org/10.1089/hum.2018.145
A. Hendel, R.O. Bak, J.T. Clark, A.B. Kennedy, D.E. Ryan et al., Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33, 985–989 (2015). https://doi.org/10.1038/nbt.3290
Q. Gao, X. Dong, Q. Xu, L. Zhu, F. Wang, Y. Hou, C. Chao, Therapeutic potential of CRISPR/Cas9 gene editing in engineered T-cell therapy. Cancer Med. 8, 4254–4264 (2019). https://doi.org/10.1002/cam4.2257
M.P. Stewart, R. Langer, K.F. Jensen, Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem. Rev. 118, 7409–7531 (2018). https://doi.org/10.1021/acs.chemrev.7b00678
C. Bao, J. Conde, E. Polo, P. del Pino, M. Moros et al., A promising road with challenges: where are gold nanoparticles in translational research? Nanomedicine 9, 2353–2370 (2014). https://doi.org/10.2217/nnm.14.155
J. Conde, C. Bao, Y. Tan, D. Cui, E.R. Edelman et al., Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumour-associated macrophages and cancer cells. Adv. Funct. Mater. 25, 4183–4194 (2015). https://doi.org/10.1002/adfm.201501283
J. Conde, F. Tian, Y. Hernandez, C. Bao, P.V. Baptista et al., RNAi-based glyconanoparticles trigger apoptotic pathways for in vitro and in vivo enhanced cancer-cell killing. Nanoscale 7, 9083–9091 (2015). https://doi.org/10.1039/c4nr05742b
C. Zhang, C. Li, Y. Liu, J. Zhang, C. Bao et al., Gold nanoclusters-based nanoprobes for simultaneous fluorescence imaging and targeted photodynamic therapy with superior penetration and retention behavior in tumors. Adv. Funct. Mater. 25, 1314–1325 (2015). https://doi.org/10.1002/adfm.201403095
D. Pissuwan, T. Niidome, M.B. Cortie, The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J. Control. Release 149, 65–71 (2011). https://doi.org/10.1016/j.jconrel.2009.12.006
J.C. Fraire, G. Houthaeve, J. Liu, L. Raes, L. Vermeulen et al., Vapor nanobubble is the more reliable photothermal mechanism for inducing endosomal escape of siRNA without disturbing cell homeostasis. J. Control. Release 319, 262–275 (2020). https://doi.org/10.1016/j.jconrel.2019.12.050
L.M.P. Vermeulen, J.C. Fraire, L. Raes, E. De Meester, S. De Keulenaer et al., Photothermally triggered endosomal escape and its influence on transfection efficiency of gold-functionalized JetPEI/pDNA nanoparticles. Int. J. Mol. Sci. 19, 2400 (2018). https://doi.org/10.3390/ijms19082400
M.P. Stewart, A. Sharei, X. Ding, G. Sahay, R. Langer, K.F. Jensen, In vitro and ex vivo strategies for intracellular delivery. Nature 538, 183–192 (2016). https://doi.org/10.1038/nature19764
P. Aksoy, B.A. Aksoy, E. Czech, J. Hammerbacher, Viable and efficient electroporation-based genetic manipulation of unstimulated human T cells. BioRxiv (2019). https://doi.org/10.1101/466243
T. DiTommaso, J.M. Cole, L. Cassereau, J.A. Buggé, J.L.S. Hanson et al., Cell engineering with microfluidic squeezing preserves functionality of primary immune cells in vivo. Proc. Natl. Acad. Sci. 115, E10907–E10914 (2018). https://doi.org/10.1073/pnas.1809671115
M. Zhang, Z. Ma, N. Selliah, G. Weiss, A. Genin, T.H. Finkel, R.Q. Cron, The impact of Nucleofection® on the activation state of primary human CD4 T cells. J. Immunol. Methods 408, 123–131 (2014). https://doi.org/10.1016/j.jim.2014.05.014
B.R. Anderson, K. Karikó, D. Weissman, Nucleofection induces transient eIF2α phosphorylation by GCN2 and PERK. Gene Ther. 20, 136–142 (2013). https://doi.org/10.1038/gt.2012.5
L. Liu, C. Johnson, S. Fujimura, F. Teque, J.A. Levy, Transfection optimization for primary human CD8+ cells. J. Immunol. Methods 372, 22–29 (2011). https://doi.org/10.1016/j.jim.2011.06.026
R. Xiong, S.K. Samal, J. Demeester, A.G. Skirtach, S.C.D. Smedt, K. Braeckmans, Laser-assisted photoporation: fundamentals, technological advances and applications. Adv. Phys. X 1, 596–620 (2016). https://doi.org/10.1080/23746149.2016.1228476
L. Wayteck, R. Xiong, K. Braeckmans, S.C. De Smedt, K. Raemdonck, Comparing photoporation and nucleofection for delivery of small interfering RNA to cytotoxic T cells. J. Control. Release 267, 154–162 (2017). https://doi.org/10.1016/j.jconrel.2017.08.002
L.E. Barrett, J.-Y. Sul, H. Takano, E.J. Van Bockstaele, P.G. Haydon, J.H. Eberwine, Region-directed phototransfection reveals the functional significance of a dendritically synthesized transcription factor. Nat. Methods 3, 455–460 (2006). https://doi.org/10.1038/nmeth885
D.J. Stevenson, F.J. Gunn-Moore, P. Campbell, K. Dholakia, Single cell optical transfection. J. Royal Soc. Interface 7, 863–871 (2010). https://doi.org/10.1098/rsif.2009.0463
Y. Hosokawa, H. Ochi, T. Iino, A. Hiraoka, M. Tanaka, Photoporation of biomolecules into single cells in living vertebrate embryos induced by a femtosecond laser amplifier. PLoS ONE 6, 0027677 (2011). https://doi.org/10.1371/journal.pone.0027677
S. Kalies, T. Birr, D. Heinemann, M. Schomaker, T. Ripken, A. Heisterkamp, H. Meyer, Enhancement of extracellular molecule uptake in plasmonic laser perforation. J. Biophotonics 7, 474–482 (2014). https://doi.org/10.1002/jbio.201200200
E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee et al., Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. ACS Nano 4, 2109–2123 (2010). https://doi.org/10.1021/nn1000222
R. Xiong, K. Raemdonck, K. Peynshaert, I. Lentacker, I. De Cock et al., Comparison of gold nanoparticle mediated photoporation: vapor nanobubbles outperform direct heating for delivering macromolecules in live cells. ACS Nano 8, 6288–6296 (2014). https://doi.org/10.1021/nn5017742
E. Teirlinck, R. Xiong, T. Brans, K. Forier, J. Fraire et al., Laser-induced vapour nanobubbles improve drug diffusion and efficiency in bacterial biofilms. Nat. Commun. 9, 4518 (2018). https://doi.org/10.1038/s41467-018-06884-w
J. Liu, R. Xiong, T. Brans, S. Lippens, E. Parthoens et al., Repeated photoporation with graphene quantum dots enables homogeneous labeling of live cells with extrinsic markers for fluorescence microscopy. Light Sci. Appl. 7, 47 (2018). https://doi.org/10.1038/s41377-018-0048-3
P. Chakravarty, W. Qian, M.A. El-Sayed, M.R. Prausnitz, Delivery of molecules into cells using carbon nanoparticles activated by femtosecond laser pulses. Nat. Nanotechnol. 5, 607–611 (2010). https://doi.org/10.1038/nnano.2010.126
R. Lachaine, C. Boutopoulos, P.-Y. Lajoie, É. Boulais, M. Meunier, Rational design of plasmonic nanoparticles for enhanced cavitation and cell perforation. Nano Lett. 16, 3187–3194 (2016). https://doi.org/10.1021/acs.nanolett.6b00562
L. Van Hoecke, L. Raes, S. Stremersch, T. Brans, J.C. Fraire et al., Delivery of mixed-lineage kinase domain-like protein by vapor nanobubble photoporation induces necroptotic-like cell death in tumor cells. Int. J. Mol. Sci. 20, 4254 (2019). https://doi.org/10.3390/ijms20174254
L. Raes, C. Van Hecke, J. Michiels, S. Stremersch, J.C. Fraire et al., Gold nanoparticle-mediated photoporation enables delivery of macromolecules over a wide range of molecular weights in human CD4+ T cells. Crystals 9, 411 (2019). https://doi.org/10.3390/cryst9080411
R. Xiong, C. Drullion, P. Verstraelen, J. Demeester, A.G. Skirtach, Fast spatial-selective delivery into live cells. J. Control. Release 266, 198–204 (2017). https://doi.org/10.1016/j.jconrel.2017.09.033
R. Xiong, P. Verstraelen, J. Demeester, A.G. Skirtach, J.-P. Timmermans et al., Selective labeling of individual neurons in dense cultured networks with nanoparticle-enhanced photoporation. Front. Cell. Neurosci. 12, 00080 (2018). https://doi.org/10.3389/fncel.2018.00080
R.T. Abraham, A. Weiss, Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat. Rev. Immunol. 4, 301 (2004). https://doi.org/10.1038/nri1330
C.P.M. Duong, J.A. Westwood, C.S.M. Yong, A. Murphy, C. Devaud et al., Engineering T cell function using chimeric antigen receptors identified using a DNA library approach. PLoS ONE 8, 0063037 (2013). https://doi.org/10.1371/journal.pone.0063037
K.T. Roybal, L.J. Rupp, L. Morsut, W.J. Walker, K.A. McNally, J.S. Park, W.A. Lim, Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164, 770–779 (2016). https://doi.org/10.1016/j.cell.2016.01.011
J. Rydzek, T. Nerreter, H. Peng, S. Jutz, J. Leitner et al., Chimeric antigen receptor library screening using a novel NF-κB/NFAT reporter cell platform. Mol. Ther. 27, 287–299 (2019). https://doi.org/10.1016/j.ymthe.2018.11.015
H. Köksal, E. Baken, D.J. Warren, G.Å. Løset, E.M. Inderberg, S. Wälchli, Chimeric antigen receptor preparation from hybridoma to T-cell expression. Antib. Ther. 2, 56–63 (2019). https://doi.org/10.1093/abt/tbz007
D. Bloemberg, T. Nguyen, S. MacLean, A. Zafer, C. Gadoury et al., A high-throughput method for characterizing novel chimeric antigen receptors in jurkat cells. Mol. Ther. Methods Clin. Dev. 16, 238–254 (2020). https://doi.org/10.1016/j.omtm.2020.01.012
L. Van Hoecke, S. Van Lint, K. Roose, A. Van Parys, P. Vandenabeele et al., Treatment with mRNA coding for the necroptosis mediator MLKL induces antitumor immunity directed against neo-epitopes. Nat. Commun. 9, 3417 (2018). https://doi.org/10.1038/s41467-018-05979-8
D. Wang, P. Cheng, X. Quan, Photothermal nanobubble nucleation on a plasmonic nanoparticle: A 3D lattice Boltzmann simulation. Int. J. Heat Mass Transf. 140, 786–797 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.096
R. Xiong, F. Joris, S. Liang, R. De Rycke, S. Lippens et al., Cytosolic delivery of nanolabels prevents their asymmetric inheritance and enables extended quantitative in vivo cell imaging. Nano Lett. 16, 5975–5986 (2016). https://doi.org/10.1021/acs.nanolett.6b01411
M. MacKay, E. Afshinnekoo, J. Rub, C. Hassan, M. Khunte et al., The therapeutic landscape for cells engineered with chimeric antigen receptors. Nat. Biotechnol. 38, 233–244 (2020). https://doi.org/10.1038/s41587-019-0329-2
P. Vormittag, R. Gunn, S. Ghorashian, F.S. Veraitch, A guide to manufacturing CAR T cell therapies. Curr. Opin. Biotechnol. 53, 164–181 (2018). https://doi.org/10.1016/j.copbio.2018.01.025
S.L. Maude, N. Frey, P.A. Shaw, R. Aplenc, D.M. Barrett et al., Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014). https://doi.org/10.1056/NEJMoa1407222
E.A. Stadtmauer, J.A. Fraietta, M.M. Davis, A.D. Cohen, K.L. Weber, CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020). https://doi.org/10.1126/science.aba7365
D.W. Lee, J.N. Kochenderfer, M. Stetler-Stevenson, Y.K. Cui, C. Delbrook et al., T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015). https://doi.org/10.1016/S0140-6736(14)61403-3
M. Moenner, E. Hatzi, J. Badet, Secretion of ribonucleases by normal and immortalized cells grown in serum-free culture conditions. Vitro Cell. Dev. Biol. Anim. 33, 553–561 (1997). https://doi.org/10.1007/s11626-997-0098-y
A.A. Davis, M.J. Farrar, N. Nishimura, M.M. Jin, C.B. Schaffer, Optoporation and genetic manipulation of cells using femtosecond laser pulses. Biophys. J. 105, 862–871 (2013). https://doi.org/10.1016/j.bpj.2013.07.012
A. Sharei, R. Poceviciute, E.L. Jackson, N. Cho, S. Mao et al., Plasma membrane recovery kinetics of a microfluidic intracellular delivery platform. Integr. Biol. 6, 470–475 (2014). https://doi.org/10.1039/c3ib40215k
W.P.R. Verdurmen, R. Wallbrecher, S. Schmidt, J. Eilander, P. Bovee-Geurts et al., Cell surface clustering of heparan sulfate proteoglycans by amphipathic cell-penetrating peptides does not contribute to uptake. J. Control. Release 170, 83–91 (2013). https://doi.org/10.1016/j.jconrel.2013.05.001
B.R. Olden, Y. Cheng, J.L. Yu, S.H. Pun, Cationic polymers for non-viral gene delivery to human T cells. J. Control. Release 282, 140–147 (2018). https://doi.org/10.1016/j.jconrel.2018.02.043
Y. Zhao, E. Moon, C. Carpenito, C.M. Paulos, X. Liu et al., Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res. 70, 9053–9061 (2010). https://doi.org/10.1158/0008-5472.CAN-10-2880
Y. Zhao, Z. Zheng, C.J. Cohen, L. Gattinoni, D.C. Palmer, N.P. Restifo, S.A. Rosenberg, R.A. Morgan, High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Mol. Ther. 13, 151–159 (2006). https://doi.org/10.1016/j.ymthe.2005.07.688
S.H. Yoon, J.M. Lee, H.I. Cho, E.K. Kim, H.S. Kim, M.Y. Park, T.G. Kim, Adoptive immunotherapy using human peripheral blood lymphocytes transferred with RNA encoding Her-2/neu-specific chimeric immune receptor in ovarian cancer xenograft model. Cancer Gene Ther. 16, 489–497 (2009). https://doi.org/10.1038/cgt.2008.98
D.A. Mitchell, I. Karikari, X. Cui, W. Xie, R. Schmittling, J.H. Sampson, Selective modification of antigen-specific T cells by RNA electroporation. Hum. Gene Ther. 19, 511–521 (2008). https://doi.org/10.1089/hum.2007.115
J.A. Jarrell, A.A. Twite, K.H.W.J. Lau, M.N. Kashani, A.A. Lievano et al., Intracellular delivery of mRNA to human primary T cells with microfluidic vortex shedding. Sci. Rep. 9, 3214 (2019). https://doi.org/10.1038/s41598-019-40147-y
Y. Peng, D.A. Martin, J. Kenkel, K. Zhang, C.A. Ogden, K.B. Elkon, Innate and adaptive immune response to apoptotic cells. J. Autoimmun. 29, 303–309 (2007). https://doi.org/10.1016/j.jaut.2007.07.017