Plasmonic Ag-Decorated Few-Layer MoS2 Nanosheets Vertically Grown on Graphene for Efficient Photoelectrochemical Water Splitting
Corresponding Author: Eui‑Tae Kim
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 172
Abstract
A controllable approach that combines surface plasmon resonance and two-dimensional (2D) graphene/MoS2 heterojunction has not been implemented despite its potential for efficient photoelectrochemical (PEC) water splitting. In this study, plasmonic Ag-decorated 2D MoS2 nanosheets were vertically grown on graphene substrates in a practical large-scale manner through metalorganic chemical vapor deposition of MoS2 and thermal evaporation of Ag. The plasmonic Ag-decorated MoS2 nanosheets on graphene yielded up to 10 times higher photo-to-dark current ratio than MoS2 nanosheets on indium tin oxide. The significantly enhanced PEC activity could be attributed to the synergetic effects of SPR and favorable graphene/2D MoS2 heterojunction. Plasmonic Ag nanoparticles not only increased visible-light and near-infrared absorption of 2D MoS2, but also induced highly amplified local electric field intensity in 2D MoS2. In addition, the vertically aligned 2D MoS2 on graphene acted as a desirable heterostructure for efficient separation and transportation of photo-generated carriers. This study provides a promising path for exploiting the full potential of 2D MoS2 for practical large-scale and efficient PEC water-splitting applications.
Highlights:
1 Controllable and large-scale practical growth of plasmonic Ag-decorated vertically aligned 2D MoS2 nanosheets on graphene.
2 Realization of the synergistic effects of surface plasmon resonance and favorable graphene/MoS2 heterojunction to enhance the photoelectrochemical reactivity of 2D MoS2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326
- Q. Ding, B. Song, P. Xu, S. Jin, Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds. Chem 1(5), 699–726 (2016). https://doi.org/10.1016/j.chempr.2016.10.007
- B. Han, Y.H. Hu, MoS2 as a co-catalyst for photocatalytic hydrogen production from water. Energy Sci. Eng. 4(5), 285–304 (2016). https://doi.org/10.1002/ese3.128
- B. Chen, Y. Meng, J. Sha, C. Zhong, W. Hu, N. Zhao, Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective. Nanoscale 10(1), 34–68 (2018). https://doi.org/10.1039/C7NR07366F
- Y.H. Chiu, T.F.M. Chang, C.Y. Chen, M. Sone, Y.J. Hsu, Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts 9(5), 430 (2019). https://doi.org/10.3390/catal9050430
- Y.H. Chiu, T.H. Lai, M.Y. Kuo, P.Y. Hsieh, Y.J. Hsu, Photoelectrochemical cells for solar hydrogen production: challenges and opportunities. APL Mater. 7(8), 080901 (2019). https://doi.org/10.1063/1.5109785
- M.J. Fang, C.W. Tsao, Y.J. Hsu, Semiconductor nanoheterostructures for photoconversion applications. J. Phys. D Appl. Phys. 53(14), 143001 (2020). https://doi.org/10.1088/1361-6463/ab5f25
- H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2: evolution of raman scattering. Adv. Funct. Mater. 22(7), 1385–1390 (2012). https://doi.org/10.1002/adfm.201102111
- K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010). https://doi.org/10.1103/PhysRevLett.105.136805
- C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5), 2695–2700 (2010). https://doi.org/10.1021/nn1003937
- H. He, J. Lin, W. Fu, X. Wang, H. Wang et al., MoS2/TiO2 edge-on heterostructure for efficient photocatalytic hydrogen evolution. Adv. Energy Mater. 6(14), 1600464 (2016). https://doi.org/10.1002/aenm.201600464
- T.N. Trung, D.B. Seo, N.D. Quang, D. Kim, E.T. Kim, Enhanced photoelectrochemical activity in the heterostructure of vertically aligned few-layer MoS2 flakes on ZnO. Electrochim. Acta 260, 150–156 (2018). https://doi.org/10.1016/j.electacta.2017.11.089
- D.B. Seo, S. Kim, T.N. Trung, D. Kim, E.T. Kim, Conformal growth of few-layer MoS2 flakes on closely-packed TiO2 nanowires and their enhanced photoelectrochemical reactivity. J. Alloys Compd. 770, 686–691 (2019). https://doi.org/10.1016/j.jallcom.2018.08.151
- K. Chang, Z. Mei, T. Wang, Q. Kang, S. Ouyang, J. Ye, MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 8(7), 7078–7087 (2014). https://doi.org/10.1021/nn5019945
- F. Carraro, L. Calvillo, M. Cattelan, M. Favaro, M. Righetto et al., Fast one-pot synthesis of MoS2/crumpled graphene p–n nanojunctions for enhanced photoelectrochemical hydrogen production. ACS Appl. Mater. Interfaces 7(46), 25685–25692 (2015). https://doi.org/10.1021/acsami.5b06668
- R.K. Biroju, D. Das, R. Sharma, S. Pal, L.P.L. Mawlong et al., Hydrogen evolution reaction activity of graphene–MoS2 van der waals heterostructures. ACS Energy Lett. 2(6), 1355–1361 (2017). https://doi.org/10.1021/acsenergylett.7b00349
- Z. Huang, W. Han, H. Tang, L. Ren, D.S. Chander, X. Qi, H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure. 2D Mater. 2(3), 035011 (2015). https://doi.org/10.1088/2053-1583/2/3/035011
- X. Yu, R. Du, B. Li, Y. Zhanga, H. Liu, J. Qu, X. An, Biomolecule-assisted self-assembly of CdS/MoS2/graphene hollow spheres as high-efficiency photocatalysts for hydrogen evolution without noble metals. Appl. Catal. B 182, 504–512 (2016). https://doi.org/10.1016/j.apcatb.2015.09.003
- W. Zhou, K. Zhou, D. Hou, X. Liu, G. Li et al., Three-dimensional hierarchical frameworks based on MoS2 nanosheets self-assembled on graphene oxide for efficient electrocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 6(23), 21534–21540 (2014). https://doi.org/10.1021/am506545g
- S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011). https://doi.org/10.1038/nmat3151
- S. Zu, B. Li, Y. Gong, Z. Li, P.M. Ajayan, Z. Fang, Active control of plasmon–exciton coupling in MoS2–Ag hybrid nanostructures. Adv. Opt. Mater. 4(10), 1463–1469 (2016). https://doi.org/10.1002/adom.201600188
- A. Ali, F.A. Mangrio, X. Chen, Y. Dai, K. Chen et al., Ultrathin MoS2 nanosheets for high-performance photoelectrochemical applications via plasmonic coupling with Au nanocrystals. Nanoscale 11(16), 7813–7824 (2019). https://doi.org/10.1039/C8NR10320H
- Y. Shi, J. Wang, C. Wang, T.-T. Zhai, W.-J. Bao et al., Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. J. Am. Chem. Soc. 137(23), 7365–7370 (2015). https://doi.org/10.1021/jacs.5b01732
- Y. Kang, S. Najmaei, Z. Liu, Y. Bao, Y. Wang et al., Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 26(37), 6467–6471 (2014). https://doi.org/10.1002/adma.201401802
- Y.H. Chiu, S.B. Naghadeh, S.A. Lindley, T.H. Lai, M.Y. Kuo et al., Yolk–shell nanostructures as an emerging photocatalyst paradigm for solar hydrogen generation. Nano Energy 62, 289–298 (2019). https://doi.org/10.1016/j.nanoen.2019.05.008
- Y.H. Chiu, K.D. Chang, Y.J. Hsu, Plasmon-mediated charge dynamics and photoactivity enhancement for Au-decorated ZnO nanocrystals. J. Mater. Chem. A 6(10), 4286–4296 (2018). https://doi.org/10.1039/C7TA08543E
- J.M. Li, H.Y. Cheng, Y.H. Chiua, Y.J. Hsu, ZnO–Au–SnO2 Z-scheme photoanodes for remarkable photoelectrochemical water splitting. Nanoscale 8(34), 15720–15729 (2016). https://doi.org/10.1039/C6NR05605A
- Y.L. Huang, W.S. Chang, C.N. Van, H.J. Liu, K.A. Tsai et al., Tunable photoelectrochemical performance of Au/BiFeO3 heterostructure. Nanoscale 8(34), 15795–15801 (2016). https://doi.org/10.1039/C6NR04997D
- C.N. Van, W.S. Chang, J.W. Chen, K.A. Tsai, W.Y. Tzeng et al., Heteroepitaxial approach to explore charge dynamics across Au/BiVO4 interface for photoactivity enhancement. Nano Energy 15, 625–633 (2015). https://doi.org/10.1016/j.nanoen.2015.05.024
- Y.C. Chen, T.C. Liu, Y.J. Hsu, ZnSe·0.5N2H4 hybrid nanostructures: a promising alternative photocatalyst for solar conversion. ACS Appl. Mater. Interfaces 7(3), 1616–1623 (2015). https://doi.org/10.1021/am507085u
- Y.C. Pu, G. Wang, K.D. Chang, Y. Ling, Y.K. Lin et al., Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV–visible region for photoelectrochemical water splitting. Nano Lett. 13(8), 3817–3823 (2013). https://doi.org/10.1021/nl4018385
- K.H. Chen, Y.C. Pu, K.D. Chang, Y.F. Liang, C.M. Liu et al., Ag-nanoparticle-decorated SiO2 nanospheres exhibiting remarkable plasmon-mediated photocatalytic properties. J. Phys. Chem. C 116(35), 19039–19045 (2012). https://doi.org/10.1021/jp306555j
- Y.Y. Li, J.H. Wang, Z.J. Luo, K. Chen, Z.Q. Cheng et al., Plasmon-enhanced photoelectrochemical current and hydrogen production of (MoS2–TiO2)/Au hybrids. Sci. Rep. 7, 7178 (2017). https://doi.org/10.1038/s41598-017-07601-1
- L.V. Nang, E.T. Kim, Controllable synthesis of high-quality graphene using inductively-coupled plasma chemical vapor deposition. J. Electrochem. Soc. 159(4), K93–K96 (2012). https://doi.org/10.1149/2.082204jes
- J. Jeon, S.K. Jang, S.M. Jeon, G. Yoo, Y.H. Jang, J.-H. Park, S. Lee, Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale 7(5), 1688–1695 (2015). https://doi.org/10.1039/C4NR04532G
- C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J.G. Lunney, G.S. Duesberg, Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry. Appl. Phys. Lett. 104(10), 103114 (2014). https://doi.org/10.1063/1.4868108
- L. Bai, X. Cai, J. Lu, L. Li, S. Zhong et al., Surface and interface engineering in Ag2S@MoS2 core–shell nanowire heterojunctions for enhanced visible photocatalytic hydrogen production. ChemCatChem 10(9), 2107–2114 (2018). https://doi.org/10.1002/cctc.201701998
- P. Zuo, L. Jiang, X. Li, B. Li, P. Ran et al., Metal (Ag, Pt)–MoS2 hybrids greenly prepared through photochemical reduction of femtosecond laser pulses for SERS and HER. ACS Sustain. Chem. Eng. 6(6), 7704–7714 (2018). https://doi.org/10.1021/acssuschemeng.8b00579
- J. Zhu, Z. Wang, H. Yu, N. Li, J. Zhang et al., Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc. 139(30), 10216–10219 (2017). https://doi.org/10.1021/jacs.7b05765
- J.D. Major, M. Al Turkestani, L. Bowen, M. Brossard, C. Li et al., In-depth analysis of chloride treatments for thin-film CdTe solar cells. Nat. Commun. 7, 13231 (2016). https://doi.org/10.1038/ncomms13231
- G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11(12), 5111–5116 (2011). https://doi.org/10.1021/nl201874w
- W.H. Lin, Y.H. Chiu, P.W. Shao, Y.J. Hsu, Metal-particle-decorated ZnO nanocrystals: photocatalysis and charge dynamics. ACS Appl. Mater. Interfaces 8(48), 32754–32763 (2016). https://doi.org/10.1021/acsami.6b08132
- Y.C. Chen, Y.C. Pu, Y.J. Hsu, Interfacial charge carrier dynamics of the three-component In2O3 − TiO2 − Pt heterojunction system. J. Phys. Chem. C 116(4), 2967–2975 (2012). https://doi.org/10.1021/jp210033y
- M. Jalali, R.S. Moakhar, T. Abdelfattah, E. Filine, S.S. Mahshid, S. Mahshid, Nanopattern-assisted direct growth of peony-like 3D MoS2/Au composite for nonenzymatic photoelectrochemical sensing. ACS Appl. Mater. Interfaces 12(6), 7411–7422 (2020). https://doi.org/10.1021/acsami.9b17449
- K.K. Patra, C.S. Gopinath, Bimetallic and plasmonic Ag–Au on TiO2 for solar water splitting: an active nanocomposite for entire visible-light-region absorption. ChemCatChem 8(20), 3294–3301 (2016). https://doi.org/10.1002/cctc.201600937
- C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105(4), 1025–1102 (2005). https://doi.org/10.1021/cr030063a
- H. Lee, S. Deshmukh, J. Wen, V.Z. Costa, J.S. Schuder et al., Layer-dependent interfacial transport and optoelectrical properties of MoS2 on ultraflat metals. ACS Appl. Mater. Interfaces 11(34), 31543–31550 (2019). https://doi.org/10.1021/acsami.9b09868
- Y.J. Yu, Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim, P. Kim, Tuning the graphene work function by electric field effect. Nano Lett. 9(10), 3430–3434 (2009). https://doi.org/10.1021/nl901572a
- D. Cao, W. Luo, J. Feng, X. Zhao, Z. Lia, Z. Zou, Cathodic shift of onset potential for water oxidation on a Ti4+ doped Fe2O3 photoanode by suppressing the back reaction. Energy Environ. Sci. 7(2), 752–759 (2014). https://doi.org/10.1039/C3EE42722F
- S.U.M. Khan, M. Al-Shahry, W.B. Ingler Jr., Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297(5590), 2243–2245 (2002). https://doi.org/10.1126/science.1075035
- X. Xu, G. Zhou, X. Dong, J. Hu, Interface band engineering charge transfer for 3D MoS2 photoanode to boost photoelectrochemical water splitting. ACS Sustain. Chem. Eng. 5(5), 3829–3836 (2017). https://doi.org/10.1021/acssuschemeng.6b02883
- Y. Pi, Z. Li, D. Xu, J. Liu, Y. Li et al., 1T-phase MoS2 nanosheets on TiO2 nanorod arrays: 3D photoanode with extraordinary catalytic performance. ACS Sustain. Chem. Eng. 5(6), 5175–5182 (2017). https://doi.org/10.1021/acssuschemeng.7b00518
- Q. Pan, C. Zhang, Y. Xiong, Q. Mi, D. Li et al., Boosting charge separation and transfer by plasmon-enhanced MoS2/BiVO4 p–n heterojunction composite for efficient photoelectrochemical water splitting. ACS Sustain. Chem. Eng. 6(5), 6378–6387 (2018). https://doi.org/10.1021/acssuschemeng.8b00170
- L. Zeng, X. Li, S. Fan, M. Zhang, Z. Yin, M. Tadé, S. Liu, Photo-driven bioelectrochemical photocathode with polydopamine-coated TiO2 nanotubes for self-sustaining MoS2 synthesis to facilitate hydrogen evolution. J. Power Sources 413, 310–317 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.054
- S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.-X. Guo, J. Tang, Visible-light driven heterojunction photocatalysts for water splitting—a critical review. Energy Environ. Sci. 8(3), 731–759 (2015). https://doi.org/10.1039/C4EE03271C
- C. Jiang, S.J.A. Moniz, A. Wang, T. Zhang, J. Tang, Photoelectrochemical devices for solar water splitting–materials and challenges. Chem. Soc. Rev. 46(15), 4645–4660 (2017). https://doi.org/10.1039/C6CS00306K
References
M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326
Q. Ding, B. Song, P. Xu, S. Jin, Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds. Chem 1(5), 699–726 (2016). https://doi.org/10.1016/j.chempr.2016.10.007
B. Han, Y.H. Hu, MoS2 as a co-catalyst for photocatalytic hydrogen production from water. Energy Sci. Eng. 4(5), 285–304 (2016). https://doi.org/10.1002/ese3.128
B. Chen, Y. Meng, J. Sha, C. Zhong, W. Hu, N. Zhao, Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective. Nanoscale 10(1), 34–68 (2018). https://doi.org/10.1039/C7NR07366F
Y.H. Chiu, T.F.M. Chang, C.Y. Chen, M. Sone, Y.J. Hsu, Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts 9(5), 430 (2019). https://doi.org/10.3390/catal9050430
Y.H. Chiu, T.H. Lai, M.Y. Kuo, P.Y. Hsieh, Y.J. Hsu, Photoelectrochemical cells for solar hydrogen production: challenges and opportunities. APL Mater. 7(8), 080901 (2019). https://doi.org/10.1063/1.5109785
M.J. Fang, C.W. Tsao, Y.J. Hsu, Semiconductor nanoheterostructures for photoconversion applications. J. Phys. D Appl. Phys. 53(14), 143001 (2020). https://doi.org/10.1088/1361-6463/ab5f25
H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2: evolution of raman scattering. Adv. Funct. Mater. 22(7), 1385–1390 (2012). https://doi.org/10.1002/adfm.201102111
K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010). https://doi.org/10.1103/PhysRevLett.105.136805
C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5), 2695–2700 (2010). https://doi.org/10.1021/nn1003937
H. He, J. Lin, W. Fu, X. Wang, H. Wang et al., MoS2/TiO2 edge-on heterostructure for efficient photocatalytic hydrogen evolution. Adv. Energy Mater. 6(14), 1600464 (2016). https://doi.org/10.1002/aenm.201600464
T.N. Trung, D.B. Seo, N.D. Quang, D. Kim, E.T. Kim, Enhanced photoelectrochemical activity in the heterostructure of vertically aligned few-layer MoS2 flakes on ZnO. Electrochim. Acta 260, 150–156 (2018). https://doi.org/10.1016/j.electacta.2017.11.089
D.B. Seo, S. Kim, T.N. Trung, D. Kim, E.T. Kim, Conformal growth of few-layer MoS2 flakes on closely-packed TiO2 nanowires and their enhanced photoelectrochemical reactivity. J. Alloys Compd. 770, 686–691 (2019). https://doi.org/10.1016/j.jallcom.2018.08.151
K. Chang, Z. Mei, T. Wang, Q. Kang, S. Ouyang, J. Ye, MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 8(7), 7078–7087 (2014). https://doi.org/10.1021/nn5019945
F. Carraro, L. Calvillo, M. Cattelan, M. Favaro, M. Righetto et al., Fast one-pot synthesis of MoS2/crumpled graphene p–n nanojunctions for enhanced photoelectrochemical hydrogen production. ACS Appl. Mater. Interfaces 7(46), 25685–25692 (2015). https://doi.org/10.1021/acsami.5b06668
R.K. Biroju, D. Das, R. Sharma, S. Pal, L.P.L. Mawlong et al., Hydrogen evolution reaction activity of graphene–MoS2 van der waals heterostructures. ACS Energy Lett. 2(6), 1355–1361 (2017). https://doi.org/10.1021/acsenergylett.7b00349
Z. Huang, W. Han, H. Tang, L. Ren, D.S. Chander, X. Qi, H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure. 2D Mater. 2(3), 035011 (2015). https://doi.org/10.1088/2053-1583/2/3/035011
X. Yu, R. Du, B. Li, Y. Zhanga, H. Liu, J. Qu, X. An, Biomolecule-assisted self-assembly of CdS/MoS2/graphene hollow spheres as high-efficiency photocatalysts for hydrogen evolution without noble metals. Appl. Catal. B 182, 504–512 (2016). https://doi.org/10.1016/j.apcatb.2015.09.003
W. Zhou, K. Zhou, D. Hou, X. Liu, G. Li et al., Three-dimensional hierarchical frameworks based on MoS2 nanosheets self-assembled on graphene oxide for efficient electrocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 6(23), 21534–21540 (2014). https://doi.org/10.1021/am506545g
S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011). https://doi.org/10.1038/nmat3151
S. Zu, B. Li, Y. Gong, Z. Li, P.M. Ajayan, Z. Fang, Active control of plasmon–exciton coupling in MoS2–Ag hybrid nanostructures. Adv. Opt. Mater. 4(10), 1463–1469 (2016). https://doi.org/10.1002/adom.201600188
A. Ali, F.A. Mangrio, X. Chen, Y. Dai, K. Chen et al., Ultrathin MoS2 nanosheets for high-performance photoelectrochemical applications via plasmonic coupling with Au nanocrystals. Nanoscale 11(16), 7813–7824 (2019). https://doi.org/10.1039/C8NR10320H
Y. Shi, J. Wang, C. Wang, T.-T. Zhai, W.-J. Bao et al., Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. J. Am. Chem. Soc. 137(23), 7365–7370 (2015). https://doi.org/10.1021/jacs.5b01732
Y. Kang, S. Najmaei, Z. Liu, Y. Bao, Y. Wang et al., Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 26(37), 6467–6471 (2014). https://doi.org/10.1002/adma.201401802
Y.H. Chiu, S.B. Naghadeh, S.A. Lindley, T.H. Lai, M.Y. Kuo et al., Yolk–shell nanostructures as an emerging photocatalyst paradigm for solar hydrogen generation. Nano Energy 62, 289–298 (2019). https://doi.org/10.1016/j.nanoen.2019.05.008
Y.H. Chiu, K.D. Chang, Y.J. Hsu, Plasmon-mediated charge dynamics and photoactivity enhancement for Au-decorated ZnO nanocrystals. J. Mater. Chem. A 6(10), 4286–4296 (2018). https://doi.org/10.1039/C7TA08543E
J.M. Li, H.Y. Cheng, Y.H. Chiua, Y.J. Hsu, ZnO–Au–SnO2 Z-scheme photoanodes for remarkable photoelectrochemical water splitting. Nanoscale 8(34), 15720–15729 (2016). https://doi.org/10.1039/C6NR05605A
Y.L. Huang, W.S. Chang, C.N. Van, H.J. Liu, K.A. Tsai et al., Tunable photoelectrochemical performance of Au/BiFeO3 heterostructure. Nanoscale 8(34), 15795–15801 (2016). https://doi.org/10.1039/C6NR04997D
C.N. Van, W.S. Chang, J.W. Chen, K.A. Tsai, W.Y. Tzeng et al., Heteroepitaxial approach to explore charge dynamics across Au/BiVO4 interface for photoactivity enhancement. Nano Energy 15, 625–633 (2015). https://doi.org/10.1016/j.nanoen.2015.05.024
Y.C. Chen, T.C. Liu, Y.J. Hsu, ZnSe·0.5N2H4 hybrid nanostructures: a promising alternative photocatalyst for solar conversion. ACS Appl. Mater. Interfaces 7(3), 1616–1623 (2015). https://doi.org/10.1021/am507085u
Y.C. Pu, G. Wang, K.D. Chang, Y. Ling, Y.K. Lin et al., Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV–visible region for photoelectrochemical water splitting. Nano Lett. 13(8), 3817–3823 (2013). https://doi.org/10.1021/nl4018385
K.H. Chen, Y.C. Pu, K.D. Chang, Y.F. Liang, C.M. Liu et al., Ag-nanoparticle-decorated SiO2 nanospheres exhibiting remarkable plasmon-mediated photocatalytic properties. J. Phys. Chem. C 116(35), 19039–19045 (2012). https://doi.org/10.1021/jp306555j
Y.Y. Li, J.H. Wang, Z.J. Luo, K. Chen, Z.Q. Cheng et al., Plasmon-enhanced photoelectrochemical current and hydrogen production of (MoS2–TiO2)/Au hybrids. Sci. Rep. 7, 7178 (2017). https://doi.org/10.1038/s41598-017-07601-1
L.V. Nang, E.T. Kim, Controllable synthesis of high-quality graphene using inductively-coupled plasma chemical vapor deposition. J. Electrochem. Soc. 159(4), K93–K96 (2012). https://doi.org/10.1149/2.082204jes
J. Jeon, S.K. Jang, S.M. Jeon, G. Yoo, Y.H. Jang, J.-H. Park, S. Lee, Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale 7(5), 1688–1695 (2015). https://doi.org/10.1039/C4NR04532G
C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J.G. Lunney, G.S. Duesberg, Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry. Appl. Phys. Lett. 104(10), 103114 (2014). https://doi.org/10.1063/1.4868108
L. Bai, X. Cai, J. Lu, L. Li, S. Zhong et al., Surface and interface engineering in Ag2S@MoS2 core–shell nanowire heterojunctions for enhanced visible photocatalytic hydrogen production. ChemCatChem 10(9), 2107–2114 (2018). https://doi.org/10.1002/cctc.201701998
P. Zuo, L. Jiang, X. Li, B. Li, P. Ran et al., Metal (Ag, Pt)–MoS2 hybrids greenly prepared through photochemical reduction of femtosecond laser pulses for SERS and HER. ACS Sustain. Chem. Eng. 6(6), 7704–7714 (2018). https://doi.org/10.1021/acssuschemeng.8b00579
J. Zhu, Z. Wang, H. Yu, N. Li, J. Zhang et al., Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc. 139(30), 10216–10219 (2017). https://doi.org/10.1021/jacs.7b05765
J.D. Major, M. Al Turkestani, L. Bowen, M. Brossard, C. Li et al., In-depth analysis of chloride treatments for thin-film CdTe solar cells. Nat. Commun. 7, 13231 (2016). https://doi.org/10.1038/ncomms13231
G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11(12), 5111–5116 (2011). https://doi.org/10.1021/nl201874w
W.H. Lin, Y.H. Chiu, P.W. Shao, Y.J. Hsu, Metal-particle-decorated ZnO nanocrystals: photocatalysis and charge dynamics. ACS Appl. Mater. Interfaces 8(48), 32754–32763 (2016). https://doi.org/10.1021/acsami.6b08132
Y.C. Chen, Y.C. Pu, Y.J. Hsu, Interfacial charge carrier dynamics of the three-component In2O3 − TiO2 − Pt heterojunction system. J. Phys. Chem. C 116(4), 2967–2975 (2012). https://doi.org/10.1021/jp210033y
M. Jalali, R.S. Moakhar, T. Abdelfattah, E. Filine, S.S. Mahshid, S. Mahshid, Nanopattern-assisted direct growth of peony-like 3D MoS2/Au composite for nonenzymatic photoelectrochemical sensing. ACS Appl. Mater. Interfaces 12(6), 7411–7422 (2020). https://doi.org/10.1021/acsami.9b17449
K.K. Patra, C.S. Gopinath, Bimetallic and plasmonic Ag–Au on TiO2 for solar water splitting: an active nanocomposite for entire visible-light-region absorption. ChemCatChem 8(20), 3294–3301 (2016). https://doi.org/10.1002/cctc.201600937
C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105(4), 1025–1102 (2005). https://doi.org/10.1021/cr030063a
H. Lee, S. Deshmukh, J. Wen, V.Z. Costa, J.S. Schuder et al., Layer-dependent interfacial transport and optoelectrical properties of MoS2 on ultraflat metals. ACS Appl. Mater. Interfaces 11(34), 31543–31550 (2019). https://doi.org/10.1021/acsami.9b09868
Y.J. Yu, Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim, P. Kim, Tuning the graphene work function by electric field effect. Nano Lett. 9(10), 3430–3434 (2009). https://doi.org/10.1021/nl901572a
D. Cao, W. Luo, J. Feng, X. Zhao, Z. Lia, Z. Zou, Cathodic shift of onset potential for water oxidation on a Ti4+ doped Fe2O3 photoanode by suppressing the back reaction. Energy Environ. Sci. 7(2), 752–759 (2014). https://doi.org/10.1039/C3EE42722F
S.U.M. Khan, M. Al-Shahry, W.B. Ingler Jr., Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297(5590), 2243–2245 (2002). https://doi.org/10.1126/science.1075035
X. Xu, G. Zhou, X. Dong, J. Hu, Interface band engineering charge transfer for 3D MoS2 photoanode to boost photoelectrochemical water splitting. ACS Sustain. Chem. Eng. 5(5), 3829–3836 (2017). https://doi.org/10.1021/acssuschemeng.6b02883
Y. Pi, Z. Li, D. Xu, J. Liu, Y. Li et al., 1T-phase MoS2 nanosheets on TiO2 nanorod arrays: 3D photoanode with extraordinary catalytic performance. ACS Sustain. Chem. Eng. 5(6), 5175–5182 (2017). https://doi.org/10.1021/acssuschemeng.7b00518
Q. Pan, C. Zhang, Y. Xiong, Q. Mi, D. Li et al., Boosting charge separation and transfer by plasmon-enhanced MoS2/BiVO4 p–n heterojunction composite for efficient photoelectrochemical water splitting. ACS Sustain. Chem. Eng. 6(5), 6378–6387 (2018). https://doi.org/10.1021/acssuschemeng.8b00170
L. Zeng, X. Li, S. Fan, M. Zhang, Z. Yin, M. Tadé, S. Liu, Photo-driven bioelectrochemical photocathode with polydopamine-coated TiO2 nanotubes for self-sustaining MoS2 synthesis to facilitate hydrogen evolution. J. Power Sources 413, 310–317 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.054
S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.-X. Guo, J. Tang, Visible-light driven heterojunction photocatalysts for water splitting—a critical review. Energy Environ. Sci. 8(3), 731–759 (2015). https://doi.org/10.1039/C4EE03271C
C. Jiang, S.J.A. Moniz, A. Wang, T. Zhang, J. Tang, Photoelectrochemical devices for solar water splitting–materials and challenges. Chem. Soc. Rev. 46(15), 4645–4660 (2017). https://doi.org/10.1039/C6CS00306K