Recent Advances in Nano-Enabled Seed Treatment Strategies for Sustainable Agriculture: Challenges, Risk Assessment, and Future Perspectives
Corresponding Author: Rajendra Patil
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 54
Abstract
Agro seeds are vulnerable to environmental stressors, adversely affecting seed vigor, crop growth, and crop productivity. Different agrochemical-based seed treatments enhance seed germination, but they can also cause damage to the environment; therefore, sustainable technologies such as nano-based agrochemicals are urgently needed. Nanoagrochemicals can reduce the dose-dependent toxicity of seed treatment, thereby improving seed viability and ensuring the controlled release of nanoagrochemical active ingredients However, the applications of nanoagrochemicals to plants in the field raise concerns about nanomaterial safety, exposure levels, and toxicological implications to the environment and human health. In the present comprehensive review, the development, scope, challenges, and risk assessments of nanoagrochemicals on seed treatment are discussed. Moreover, the implementation obstacles for nanoagrochemicals use in seed treatments, their commercialization potential, and the need for policy regulations to assess possible risks are also discussed. Based on our knowledge, this is the first time that we have presented legendary literature to readers in order to help them gain a deeper understanding of upcoming nanotechnologies that may enable the development of future generation seed treatment agrochemical formulations, their scope, and potential risks associated with seed treatment.
Highlights:
1 Novel insights on recent advances in nanotechnology-based agro seed treatment formulations.
2 Details on reducing the environmental impact of seed treatment by using nanoagrochemicals.
3 Applications of potential of nanopesticides and nanofertilizers for sustainable seed treatments.
4 Described scope of possible next-generation nanomaterials for seed treatment formulations with associated challenges and risks assessment methodologies.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Berners-Lee, C. Kennelly, R. Watson, C.N. Hewitt, Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elem. Sci. Anthrop. 6, 52 (2018). https://doi.org/10.1525/elementa.310
- J. Porter, L. Xie, A. Challinor, N. Chhetri, U. Nepal et al., Food security and food production systems, in Climate Change—Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution to the IPCC Fifth Assessment Report. ed. by C.B. Field, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea (Cambridge University Press, Cambridge, 2014), pp.485–534
- S. Yadav, P. Modi, A. Dave, A. Vijapura, D. Patel et al., (2020) Effect of abiotic stress on crops, in Sustainable Crop Production. ed. by M. Hasanuzzaman, M.C.M.T. Filho, M. Fujita, T.A.R. Nogueira (IntechOpen, London, 2020)
- Q.M. Imran, N. Falak, A. Hussain, B.-G. Mun, B.-W. Yun, Abiotic stress in plants; stress perception to molecular response and role of biotechnological tools in stress resistance. Agronomy 11, 1579 (2021). https://doi.org/10.3390/agronomy11081579
- M. He, C.-Q. He, N.-Z. Ding, Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Front. Plant Sci. 9, 1771 (2018). https://doi.org/10.3389/fpls.2018.01771
- A. Gupta, R. Kumar, Management of seed-borne diseases: an integrated approach, in Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis and Management. ed. by R. Kumar, A. Gupta (Springer, Singapore, 2020)
- M. Vojvodić, R. Bažok, Future of insecticide seed treatment. Sustainability 13(16), 8792 (2021). https://doi.org/10.3390/su13168792
- S.H. Nile, M. Thiruvengadam, Y. Wang, R. Samynathan, M.A. Shariati et al., Nano-priming as emerging seed priming technology for sustainable agriculture-recent developments and future perspectives. J. Nanobiotechnol. 20(1), 254 (2022). https://doi.org/10.1186/s12951-022-01423-8
- M.S. Ayesha, T.S. Suryanarayanan, K.N. Nataraja, S.R. Prasad, R.U. Shaanker, Seed treatment with systemic fungicides: time for review. Front. Plant Sci. 12, 654512 (2021). https://doi.org/10.3389/fpls.2021.654512
- J.M. Rajwade, R.G. Chikte, K.M. Paknikar, Nanomaterials: new weapons in a crusade against phytopathogens. Appl. Microbiol. Biotechnol. 104(4), 1437–1461 (2020). https://doi.org/10.1007/s00253-019-10334-y
- J. Mravlje, M. Regvar, K. Vogel-Mikuš, Development of cold plasma technologies for surface decontamination of seed fungal pathogens: present status and perspectives. J. Fungi 7(8), 650 (2021). https://doi.org/10.3390/jof7080650
- V. Mancini, G. Romanazzi, Seed treatments to control seedborne fungal pathogens of vegetable crops. Pest Manag. Sci. 70(6), 860–868 (2014). https://doi.org/10.1002/ps.3693
- A. Sharma, V. Kumar, B. Shahzad, M. Tanveer, G.P.S. Sidhu et al., Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 1(11), 1446 (2019). https://doi.org/10.1007/s42452-019-1485-1
- P.C. Abhilash, N. Singh, Pesticide use and application: an Indian scenario. J. Hazard. Mater. 165(1), 1–12 (2009). https://doi.org/10.1016/j.jhazmat.2008.10.061
- B.M. Sharma, G.K. Bharat, S. Tayal, L. Nizzetto, P. Čupr et al., Environment and human exposure to persistent organic pollutants (pops) in india: a systematic review of recent and historical data. Environ. Int. 66, 48–64 (2014). https://doi.org/10.1016/j.envint.2014.01.022
- K.K. Chan, S.H.K. Yap, K.-T. Yong, Biogreen synthesis of carbon dots for biotechnology and nanomedicine applications. Nano Micro Lett. 10(4), 72 (2018). https://doi.org/10.1007/s40820-018-0223-3
- K. Neme, A. Nafady, S. Uddin, Y.B. Tola, Application of nanotechnology in agriculture, postharvest loss reduction and food processing: food security implication and challenges. Heliyon 7(12), e08539 (2021). https://doi.org/10.1016/j.heliyon.2021.e08539
- D. Mittal, G. Kaur, P. Singh, K. Yadav, S.A. Ali, Nanop-based sustainable agriculture and food science: recent advances and future outlook. Front. Nanotechnol. 2, 579954 (2020). https://doi.org/10.3389/fnano.2020.579954
- Y. Shang, M.K. Hasan, G.J. Ahammed, M. Li, H. Yin et al., Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24(14), 2558 (2019). https://doi.org/10.3390/molecules24142558
- R. Prasad, A. Bhattacharyya, Q.D. Nguyen, Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front. Microbiol. 8, 1014 (2017). https://doi.org/10.3389/fmicb.2017.01014
- M. Usman, M. Farooq, A. Wakeel, A. Nawaz, S.A. Cheema et al., Nanotechnology in agriculture: current status, challenges and future opportunities. Sci. Total Environ. 721, 137778 (2020). https://doi.org/10.1016/j.scitotenv.2020.137778
- P. Fincheira, G. Tortella, A.B. Seabra, A. Quiroz, M.C. Diez et al., Nanotechnology advances for sustainable agriculture: current knowledge and prospects in plant growth modulation and nutrition. Planta 254(4), 66 (2021). https://doi.org/10.1007/s00425-021-03714-0
- M. Kamle, D.K. Mahato, S. Devi, R. Soni, V. Tripathi et al., Nanotechnological interventions for plant health improvement and sustainable agriculture. 3 Biotech 10(4), 168 (2020). https://doi.org/10.1007/s13205-020-2152-3
- C. Liu, H. Zhou, J. Zhou, The applications of nanotechnology in crop production. Molecules 26(23), 7070 (2021). https://doi.org/10.3390/molecules26237070
- T. Guha, G. Gopal, R. Kundu, A. Mukherjee, Nanocomposites for delivering agrochemicals: a comprehensive review. J. Agric. Food Chem. 68(12), 3691–3702 (2020). https://doi.org/10.1021/acs.jafc.9b06982
- S.H. Nile, V. Baskar, D. Selvaraj, A. Nile, J. Xiao et al., Nanotechnologies in food science: applications, recent trends, and future perspectives. Nano Micro Lett. 12(1), 45 (2020). https://doi.org/10.1007/s40820-020-0383-9
- H. Li, L. Chen, X. Li, D. Sun, H. Zhang, Recent progress on asymmetric carbon- and silica-based nanomaterials: from synthetic strategies to their applications. Nano Micro Lett. 14(1), 45 (2022). https://doi.org/10.1007/s40820-021-00789-y
- P. Pramanik, P. Krishnan, A. Maity, N. Mridha, A. Mukherjee et al., Application of nanotechnology in agriculture, in Environmental Nanotechnology Volume 4. Environmental Chemistry for a Sustainable World, vol. 32, ed. by N. Dasgupta, S. Ranjan, E. Lichtfouse (Springer, Cham, 2020), pp.317–348
- M. Jiang, Y. Song, M.K. Kanwar, G.J. Ahammed, S. Shao et al., Phytonanotechnology applications in modern agriculture. J. Nanobiotechnol. 19(1), 430 (2021). https://doi.org/10.1186/s12951-021-01176-w
- N.B. Chanu, M.C. Singh, Applications of nanotechnology in precision agriculture, in Nano-enabled Agrochemicals in Agriculture. ed. by M. Ghorbanpour, M.A. Shahid (Academic Press, Cambridge, 2022), p.175
- F. Pulizzi, Nano in the future of crops. Nat. Nanotechnol. 14(6), 507–507 (2019). https://doi.org/10.1038/s41565-019-0475-1
- Y. Wang, C. Dimkpa, C.Y. Deng, W.H. Elmer, J. Gardea-Torresdey et al., Impact of engineered nanomaterials on rice (Oryza sativa L.): a critical review of current knowledge. Environ. Pollut. 297, 118738 (2022). https://doi.org/10.1016/j.envpol.2021.118738
- R. Szőllősi, Á. Molnár, S. Kondak, Z. Kolbert, Dual effect of nanomaterials on germination and seedling growth: stimulation vs. phytotoxicity. Plants 9(12), 1745 (2020). https://doi.org/10.3390/plants9121745
- U. Chandrasekaran, X. Luo, Q. Wang, K. Shu, Are there unidentified factors involved in the germination of nanoprimed seeds? Front. Plant Sci. 11, 00832 (2020). https://doi.org/10.3389/fpls.2020.00832
- C. Shao, H. Zhao, P. Wang, Recent development in functional nanomaterials for sustainable and smart agricultural chemical technologies. Nano Converg. 9(1), 11 (2022). https://doi.org/10.1186/s40580-022-00302-0
- A. do Espirito Santo Pereira, H. Caixeta Oliveira, L. Fernandes Fraceto, C. Santaella, Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials 11(2), 267 (2021). https://doi.org/10.3390/nano11020267
- M. Rani Sarkar, M.H.-O. Rashid, A. Rahman, M.A. Kafi, M.I. Hosen et al., Recent advances in nanomaterials based sustainable agriculture: an overview. Environ. Nanotechnol. Monit. Manag. 18, 100687 (2022). https://doi.org/10.1016/j.enmm.2022.100687
- S. Agrawal, V. Kumar, S. Kumar, S.K. Shahi, Plant development and crop protection using phytonanotechnology: a new window for sustainable agriculture. Chemosphere 299, 134465 (2022). https://doi.org/10.1016/j.chemosphere.2022.134465
- R. Rienzie, N. Adassooriya, Toxicity of nanomaterials in agriculture and food, in Nanomaterials: Ecotoxicity, Safety, and Public Perception. ed. by M. Rai, J. Biswas (Springer, Cham, 2018)
- M. Murali, H.G. Gowtham, S.B. Singh, N. Shilpa, M. Aiyaz et al., Fate, bioaccumulation and toxicity of engineered nanomaterials in plants: current challenges and future prospects. Sci. Total Environ. 811, 152249 (2022). https://doi.org/10.1016/j.scitotenv.2021.152249
- J. Liu, B. Dhungana, G.P. Cobb, Environmental behavior, potential phytotoxicity, and accumulation of copper oxide nanops and arsenic in rice plants. Environ. Toxicol. Chem. 37(1), 11–20 (2018). https://doi.org/10.1002/etc.3945
- I. Iavicoli, V. Leso, D.H. Beezhold, A.A. Shvedova, Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicol. Appl. Pharmacol. 329, 96–111 (2017). https://doi.org/10.1016/j.taap.2017.05.025
- V. Rajput, T. Minkina, M. Mazarji, S. Shende, S. Sushkova et al., Accumulation of nanops in the soil-plant systems and their effects on human health. Ann. Agric. Sci. 65(2), 137–143 (2020). https://doi.org/10.1016/j.aoas.2020.08.001
- Y. Sun, J. Liang, L. Tang, H. Li, Y. Zhu et al., Nano-pesticides: a great challenge for biodiversity? Nano Today 28, 100757 (2019). https://doi.org/10.1016/j.nantod.2019.06.003
- E. Hotze, T. Phenrat, G. Lowry, Nanop aggregation: challenges to understanding transport and reactivity in the environment. J. Environ. Quality 39, 1909–1924 (2010). https://doi.org/10.2134/jeq2009.0462
- R.S. Meena, S. Kumar, R. Datta, R. Lal, V. Vijayakumar et al., Impact of agrochemicals on soil microbiota and management: a review. Land 9(2), 34 (2020). https://doi.org/10.3390/land9020034
- B. Sharma, U. Lakra, R. Sharma, S.R. Sharma, A comprehensive review on nanopesticides and nanofertilizers—a boon for agriculture, in Nano-enabled Agrochemicals in Agriculture. ed. by M. Ghorbanpour, M.A. Shahid (Academic Press, Cambridge, 2022), pp.273–290
- N. Fazelian, M. Yousefzadi, Nano-biofertilizers for enhanced nutrient use efficiency, in Nano-enabled Agrochemicals in Agriculture. ed. by M. Ghorbanpour, M.A. Shahid (Academic Press, Cambridge, 2022), pp.145–158
- K. Dziergowska, I. Michalak, The role of nanops in sustainable agriculture, in Smart Agrochemicals for Sustainable Agriculture. ed. by K. Chojnacka, A. Saeid (Academic Press, Cambridge, 2022), pp.225–278
- T.A. Shalaby, Y. Bayoumi, Y. Eid, H. Elbasiouny, F. Elbehiry et al., Can nanofertilizers mitigate multiple environmental stresses for higher crop productivity? Sustainability 14(6), 3480 (2022). https://doi.org/10.3390/su14063480
- D. Wang, N.B. Saleh, A. Byro, R. Zepp, E. Sahle-Demessie et al., Nano-enabled pesticides for sustainable agriculture and global food security. Nat. Nanotechnol. 17, 347–360 (2022). https://doi.org/10.1038/s41565-022-01082-8
- A. Shelar, A.V. Singh, P. Dietrich, R.S. Maharjan, A. Thissen et al., Emerging cold plasma treatment and machine learning prospects for seed priming: a step towards sustainable food production. RSC Adv. 12(17), 10467–10488 (2022). https://doi.org/10.1039/D2RA00809B
- A. Shelar, A.V. Singh, R.S. Maharjan, P. Laux, A. Luch et al., Sustainable agriculture through multidisciplinary seed nanopriming: prospects of opportunities and challenges. Cells 10(9), 2428 (2021). https://doi.org/10.3390/cells10092428
- Y. Sun, L. Zheng, Y. Yang, X. Qian, T. Fu et al., Metal–organic framework nanocarriers for drug delivery in biomedical applications. Nano Micro Lett. 12(1), 103 (2020). https://doi.org/10.1007/s40820-020-00423-3
- K.S. Siddiqi, A. Husen, Plant response to engineered metal oxide nanops. Nanoscale Res. Lett. 12(1), 92 (2017). https://doi.org/10.1186/s11671-017-1861-y
- H. Guo, Y. Liu, J. Chen, Y. Zhu, Z. Zhang, The effects of several metal nanops on seed germination and seedling growth: a meta-analysis. Coatings 12(2), 183 (2022). https://doi.org/10.3390/coatings12020183
- C. An, C. Sun, N. Li, B. Huang, J. Jiang et al., Nanomaterials and nanotechnology for the delivery of agrochemicals: strategies towards sustainable agriculture. J. Nanobiotechnol. 20(1), 11 (2022). https://doi.org/10.1186/s12951-021-01214-7
- M. Vurro, C. Miguel-Rojas, A. Pérez-de-Luque, Safe nanotechnologies for increasing the effectiveness of environmentally friendly natural agrochemicals. Pest Manag. Sci. 75(9), 2403–2412 (2019). https://doi.org/10.1002/ps.5348
- R.K. Mishra, S.K. Ha, K. Verma, S.K. Tiwari, Recent progress in selected bio-nanomaterials and their engineering applications: an overview. J. Sci. Adv. Mater. Dev. 3(3), 263–288 (2018). https://doi.org/10.1016/j.jsamd.2018.05.003
- A. Kalia, S.P. Sharma, H. Kaur, H. Kaur, Novel nanocomposite-based controlled-release fertilizer and pesticide formulations: prospects and challenges, in Micro and Nano Technologies, Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems. ed. by K.A. Abd-Elsalam (Elsevier, Amsterdam, 2020), pp.99–134
- A. Kumar, A. Choudhary, H. Kaur, S. Mehta, A. Husen, Smart nanomaterial and nanocomposite with advanced agrochemical activities. Nanoscale Res. Lett. 16(1), 156 (2021). https://doi.org/10.1186/s11671-021-03612-0
- C. Tarafder, M. Daizy, M.M. Alam, M.R. Ali, M.J. Islam et al., Formulation of a hybrid nanofertilizer for slow and sustainable release of micronutrients. ACS Omega 5(37), 23960–23966 (2020). https://doi.org/10.1021/acsomega.0c03233
- A. Nongbet, A.K. Mishra, Y.K. Mohanta, S. Mahanta, M.K. Ray et al., Nanofertilizers: a smart and sustainable attribute to modern agriculture. Plants 11(19), 2587 (2022). https://doi.org/10.3390/plants11192587
- M.A. Iqbal, Nano-fertilizers for sustainable crop production under changing climate: a global perspective, in Sustainable Crop Production. ed. by M. Hasanuzzaman, M.C.M.T. Filho, M. Fujita, T.A.R. Nogueira (IntechOpen, London, 2019)
- A.K. Bhardwaj, G. Arya, R. Kumar, L. Hamed, H. Pirasteh-Anosheh et al., Switching to nanonutrients for sustaining agroecosystems and environment: the challenges and benefits in moving up from ionic to p feeding. J. Nanobiotechn. 20(1), 19 (2022). https://doi.org/10.1186/s12951-021-01177-9
- H. Guo, J.C. White, Z. Wang, B. Xing, Nano-enabled fertilizers to control the release and use efficiency of nutrients. Curr. Opin. Environ. Sci. Health 6, 77–83 (2018). https://doi.org/10.1016/j.coesh.2018.07.009
- M.F. Seleiman, K.F. Almutairi, M. Alotaibi, A. Shami, B.A. Alhammad et al., Nano-fertilization as an emerging fertilization technique: Why can modern agriculture benefit from its use? Plants 10(1), 2 (2020). https://doi.org/10.3390/plants10010002
- A. Badran, I. Savin, Effect of nano-fertilizer on seed germination and first stages of bitter almond seedlings’ growth under saline conditions. BioNanoScience 8, 1–10 (2018). https://doi.org/10.1007/s12668-018-0531-6
- M. Esper Neto, D. Britt, K. Jackson, A. Braccini, T. Inoue et al., Early development of corn seedlings primed with synthetic tenorite nanofertilizer. J. Seed Sci. 42, e202042040 (2020). https://doi.org/10.1590/2317-1545v42240979
- H.M.M. Abdel-Aziz, M.N.A. Hasaneen, A.M. Omer, Impact of engineered nanomaterials either alone or loaded with npk on growth and productivity of French bean plants: seed priming vs. foliar application. South. Afr. J. Bot. 125, 102–108 (2019). https://doi.org/10.1016/j.sajb.2019.07.005
- C. Kumar Das, H. Jangir, J. Kumar, S. Verma, S. Mahapatra et al., Nano-pyrite seed dressing: a sustainable design for npk equivalent rice production. Nanotechnol. Environ. Eng. 3, 14 (2018). https://doi.org/10.1007/s41204-018-0043-1
- T. Guha, K.V.G. Ravikumar, A. Mukherjee, A. Mukherjee, R. Kundu, Nanopriming with zero valent iron (nzvi) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.). Plant Physiol. Biochem. 127, 403–413 (2018). https://doi.org/10.1016/j.plaphy.2018.04.014
- D. Kubavat, K. Trivedi, V. Pradip, K. Prasad, V.A. Gopalakrishnan et al., Characterization of chitosan based sustained release nano-fertilizer formulation as a soil conditioner whilst improving biomass production of Zea mays .L. Land Degrad. Dev. 31, 2734–2746 (2020). https://doi.org/10.1002/ldr.3629
- E. Yusefi-Tanha, S. Fallah, A. Rostamnejadi, L.R. Pokhrel, Zinc oxide nanops (ZnONPs) as a novel nanofertilizer: influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Sci. Total Environ. 738, 140240 (2020). https://doi.org/10.1016/j.scitotenv.2020.140240
- M. Rui, C. Ma, Y. Hao, J. Guo, Y. Rui et al., Iron oxide nanops as a potential iron fertilizer for peanut (Arachis hypogaea). Front. Plant Sci. 7, 815 (2016). https://doi.org/10.3389/fpls.2016.00815
- H. Singh, A. Sharma, S.K. Bhardwaj, S.K. Arya, N. Bhardwaj et al., Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. Environ. Sci. Process Impacts 23(2), 213–239 (2021). https://doi.org/10.1039/D0EM00404A
- S. Shekhar, S. Sharma, A. Kumar, A. Taneja, B. Sharma, The framework of nanopesticides: a paradigm in biodiversity. Mater. Adv. 2(20), 6569–6588 (2021). https://doi.org/10.1039/D1MA00329A
- M. Chaud, E.B. Souto, A. Zielinska, P. Severino, F. Batain et al., Nanopesticides in agriculture: benefits and challenge in agricultural productivity, toxicological risks to human health and environment. Toxics 9(6), 131 (2021). https://doi.org/10.3390/toxics9060131
- S.A.M. Zobir, A. Ali, F. Adzmi, M.R. Sulaiman, K. Ahmad, A review on nanopesticides for plant protection synthesized using the supramolecular chemistry of layered hydroxide hosts. Biology 10(11), 1077 (2021). https://doi.org/10.3390/biology10111077
- T.A. Roseline, M. Murugan, M.P. Sudhakar, K. Arunkumar, Nanopesticidal potential of silver nanocomposites synthesized from the aqueous extracts of red seaweeds. Environ. Techn. Innov. 13, 82–93 (2019). https://doi.org/10.1016/j.eti.2018.10.005
- M. El-Shetehy, A. Moradi, M. Maceroni, D. Reinhardt, A. Petri-Fink et al., Silica nanops enhance disease resistance in arabidopsis plants. Nat. Nanotechn. 16(3), 344–353 (2021). https://doi.org/10.1038/s41565-020-00812-0
- D. Tripathi, M. Singh, S. Pandey-Rai, Crosstalk of nanops and phytohormones regulate plant growth and metabolism under abiotic and biotic stress. Plant Stress 6, 100107 (2022). https://doi.org/10.1016/j.stress.2022.100107
- T.R. Lakshmeesha, M. Murali, M.A. Ansari, A.C. Udayashankar, M.A. Alzohairy et al., Biofabrication of zinc oxide nanops from melia azedarach and its potential in controlling soybean seed-borne phytopathogenic fungi. Saudi J. Biol. Sci. 27(8), 1923–1930 (2020). https://doi.org/10.1016/j.sjbs.2020.06.013
- K.S. Almaary, S.R.M. Sayed, O.H. Abd-Elkader, T.M. Dawoud, N.F. El Orabi et al., Complete green synthesis of silver-nanops applying seed-borne Penicillium duclauxii. Saudi J. Biol. Sci. 27(5), 1333–1339 (2020). https://doi.org/10.1016/j.sjbs.2019.12.022
- P. Kaur, J. Duhan, R. Thakur, Comparative pot studies of chitosan and chitosan-metal nanocomposites as nano-agrochemicals against fusarium wilt of chickpea (Cicer arietinum L.). Biocatal. Agric. Biotechnol. 14, 466–471 (2018). https://doi.org/10.1016/j.bcab.2018.04.014
- A. Sharma, A. Sidhu, P. Manchanda, R. Ahuja, 1,2,4-triazolyldithiocarbamate silver nano conjugate: potent seed priming agent against bakanae disease of rice (Oryzae sativa). Eur. J. Plant. Pathol. 162, 825–841 (2022). https://doi.org/10.1007/s10658-021-02439-w
- P.L. Chariou, N.F. Steinmetz, Delivery of pesticides to plant parasitic nematodes using tobacco mild green mosaic virus as a nanocarrier. ACS Nano 11(5), 4719–4730 (2017). https://doi.org/10.1021/acsnano.7b00823
- M. Sankar, A. Abideen, Pesticidal effect of green synthesized silver and lead nanops using Avicennia marina against grain storage pest Sitophilus oryzae. Dig. J. Nanomater. Biostruct. 5, 32–39 (2015)
- A. Thabet, H. Boraei, O. Galal, M. El-Samahy, K. Mousa et al., Silica nanops as pesticide against insects of different feeding types and their non-target attraction of predators. Sci. Rep. 11, 14484 (2021). https://doi.org/10.1038/s41598-021-93518-9
- G. Spadola, V. Sanna, J. Bartoli, M. Carcelli, G. Pelosi et al., Thiosemicarbazone nano-formulation for the control of aspergillus flavus. Environ. Sci. Pollut. Res. 27(16), 20125–20135 (2020). https://doi.org/10.1007/s11356-020-08532-7
- H.F. Maswada, M. Djanaguiraman, P.V.V. Prasad, Seed treatment with nano-iron (iii) oxide enhances germination, seeding growth and salinity tolerance of sorghum. J. Agro. Crop Sci. 204(6), 577–587 (2018). https://doi.org/10.1111/jac.12280
- D. Kasote, J. Lee, G. Jayaprakasha, B. Patil, Seed priming with iron oxide nanops modulate antioxidant potential and defense linked hormones in watermelon seedlings. ACS Sustain. Chem. Eng. 7(5), 5142–5151 (2019). https://doi.org/10.1021/acssuschemeng.8b06013
- R. Ahuja, A. Sidhu, A. Bala, Synthesis and evaluation of iron(ii) sulfide aqua nanops (FeS-NPs) against fusarium verticillioides causing sheath rot and seed discoloration of rice. Eur. J. Plant. Pathol. 155(1), 163–171 (2019). https://doi.org/10.1007/s10658-019-01758-3
- M. Haris, T. Hussain, H.I. Mohamed, A. Khan, M.S. Ansari et al., Nanotechnology - a new frontier of nano-farming in agricultural and food production and its development. Sci. Total Environ. 857(3), 159639 (2023). https://doi.org/10.1016/j.scitotenv.2022.159639
- N. Sundaria, M. Singh, P. Upreti, R.P. Chauhan, J.P. Jaiswal et al., Seed priming with iron oxide nanops triggers iron acquisition and biofortification in wheat (Triticum aestivum L.) grains. J. Plant Growth Regul. 38(1), 122–131 (2019). https://doi.org/10.1007/s00344-018-9818-7
- M. Rizwan, S. Ali, B. Ali, M. Adrees, M. Arshad et al., Zinc and iron oxide nanops improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214, 269–277 (2019). https://doi.org/10.1016/j.chemosphere.2018.09.120
- P. Itroutwar, K. Govindaraju, T. Selvaraj, M. Kannan, K. Raja et al., Seaweed-based biogenic ZnO nanops for improving agro-morphological characteristics of rice (Oryza sativa L.). J. Plant Growth Regul. 39, 717–728 (2020). https://doi.org/10.1007/s00344-019-10012-3
- S.M. Savassa, N.M. Duran, E.S. Rodrigues, E. de Almeida, C.A.M. van Gestel et al., Effects of ZnO nanops on Phaseolus vulgaris germination and seedling development determined by x-ray spectroscopy. ACS Appl. Nano Mater. 1(11), 6414–6426 (2018). https://doi.org/10.1021/acsanm.8b01619
- A.A.H. Abdel Latef, M.F. Abu Alhmad, K.E. Abdelfattah, The possible roles of priming with zno nanops in mitigation of salinity stress in lupine (Lupinus termis) plants. J. Plant Growth Regul. 36(1), 60–70 (2017). https://doi.org/10.1007/s00344-016-9618-x
- M. Nandhini, S.B. Rajini, A.C. Udayashankar, S.R. Niranjana, O.S. Lund et al., Biofabricated zinc oxide nanops as an eco-friendly alternative for growth promotion and management of downy mildew of pearl millet. Crop Prot. 121, 103–112 (2019). https://doi.org/10.1016/j.cropro.2019.03.015
- R.C. Choudhary, R.V. Kumaraswamy, S. Kumari, S.S. Sharma, A. Pal et al., Zinc encapsulated chitosan nanop to promote maize crop yield. Int. J. Biol. Macromol. 127, 126–135 (2019). https://doi.org/10.1016/j.ijbiomac.2018.12.274
- N.M. Duran, S.M. Savassa, R.G. Lima, E. de Almeida, F.S. Linhares et al., X-ray spectroscopy uncovering the effects of Cu based nanop concentration and structure on phaseolus vulgaris germination and seedling development. J. Agric. Food Chem. 65(36), 7874–7884 (2017). https://doi.org/10.1021/acs.jafc.7b03014
- F. Yasmeen, N.I. Raja, A. Razzaq, S. Komatsu, Proteomic and physiological analyses of wheat seeds exposed to copper and iron nanops. Biochim Biophys Acta (BBA) Proteins Proteom 1865(1), 28–42 (2017). https://doi.org/10.1016/j.bbapap.2016.10.001
- W. Wang, Y. Ren, J. He, L. Zhang, X. Wang et al., Impact of copper oxide nanops on the germination, seedling growth, and physiological responses in Brassica pekinensis L. Environ. Sci. Pollut. Res. Int. 27(25), 31505–31515 (2020). https://doi.org/10.1007/s11356-020-09338-3
- Y. Ye, K. Cota-Ruiz, J.A. Hernández-Viezcas, C. Valdés, I.A. Medina-Velo et al., Manganese nanops control salinity-modulated molecular responses in Capsicum annuum L. through priming: a sustainable approach for agriculture. ACS Sustain. Chem. Eng. 8(3), 1427–1436 (2020). https://doi.org/10.1021/acssuschemeng.9b05615
- D.M. Kasote, J.H.J. Lee, G.K. Jayaprakasha, B.S. Patil, Manganese oxide nanops as safer seed priming agent to improve chlorophyll and antioxidant profiles in watermelon seedlings. Nanomaterials 11(4), 1016 (2021). https://doi.org/10.3390/nano11041016
- K. Vijai Anand, A.R. Anugraga, M. Kannan, G. Singaravelu, K. Govindaraju, Bio-engineered magnesium oxide nanops as nano-priming agent for enhancing seed germination and seedling vigour of green gram (Vigna radiate L.). Mater Lett. 271, 127792 (2020). https://doi.org/10.1016/j.matlet.2020.127792
- D.D. Hong, H.T.L. Anh, L.T. Tam, P.L. Show, H.Y. Leong, Effects of nanoscale zerovalent cobalt on growth and photosynthetic parameters of soybean Glycine max (L.) merr. Dt26 at different stages. BMC Energy 1(1), 6 (2019). https://doi.org/10.1186/s42500-019-0007-4
- V. Krishnamoorthy, S. Rajiv, Potential seed coatings fabricated from electrospinning hexaaminocyclotriphosphazene and cobalt nanops incorporated polyvinylpyrrolidone for sustainable agriculture. ACS Sustain. Chem. Eng. 5, 146–152 (2017). https://doi.org/10.1021/acssuschemeng.6b01088
- A. Joshi, S. Kaur, P. Singh, K. Dharamvir, H. Nayyar et al., Tracking multi-walled carbon nanotubes inside oat (Avena sativa L.) plants and assessing their effect on growth, yield, and mammalian (human) cell viability. Appl. Nanosci. 8, 1399–1414 (2018). https://doi.org/10.1007/s13204-018-0801-1
- K. Pandey, M.H. Lahiani, V.K. Hicks, M.K. Hudson, M.J. Green et al., Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops. PLoS ONE 13(8), e0202274 (2018). https://doi.org/10.1371/journal.pone.0202274
- H. Baz, M. Creech, J. Chen, H. Gong, K. Bradford et al., Water-soluble carbon nanops improve seed germination and post-germination growth of lettuce under salinity stress. Agronomy 10(8), 1192 (2020). https://doi.org/10.3390/agronomy10081192
- L. Yin, Z. Wang, S. Wang, W. Xu, H. Bao, Effects of graphene oxide and/or Cd2+ on seed germination, seedling growth, and uptake to Cd2+ in solution culture. Water Air Soil Pollut. 229(5), 151 (2018). https://doi.org/10.1007/s11270-018-3809-y
- M.J. Kim, W. Kim, H. Chung, Effects of silver-graphene oxide on seed germination and early growth of crop species. Peer J. 8, e8387 (2020). https://doi.org/10.7717/peerj.8387
- J. Li, F. Wu, Q. Fang, Z. Wu, Q. Duan et al., The mutual effects of graphene oxide nanosheets and cadmium on the growth, cadmium uptake and accumulation in rice. Plant Physiol. Biochem. 147, 289–294 (2020). https://doi.org/10.1016/j.plaphy.2019.12.034
- M. Bravo Cadena, G.M. Preston, R.A.L. Van der Hoorn, N.A. Flanagan, H.E. Townley et al., Enhancing cinnamon essential oil activity by nanop encapsulation to control seed pathogens. Ind. Crops Prod. 124, 755–764 (2018). https://doi.org/10.1016/j.indcrop.2018.08.043
- A. Hussain, M. Rizwan, S. Ali, M.Z.U. Rehman, M.F. Qayyum et al., Combined use of different nanops effectively decreased cadmium (cd) concentration in grains of wheat grown in a field contaminated with cd. Ecotoxicol. Environ. Saf. 215, 112139 (2021). https://doi.org/10.1016/j.ecoenv.2021.112139
- S. Rahimi, M. Hatami, M. Ghorbanpour, Silicon-nanop mediated changes in seed germination and vigor index of marigold (Calendula officinalis L.) compared to silicate under peg-induced drought stress. Gesunde Pflanz. 73, 1–15 (2021). https://doi.org/10.1007/s10343-021-00579-x
- W. Mahakham, A.K. Sarmah, S. Maensiri, P. Theerakulpisut, Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanops. Sci. Rep. 7(1), 8263 (2017). https://doi.org/10.1038/s41598-017-08669-5
- P. Acharya, G.K. Jayaprakasha, K. Crosby, J. Jifon, B. Patil, Green-synthesized nanops enhanced seedling growth, yield, and quality of onion (Allium cepa L.). ACS Sustain. Chem. Eng. 7(17), 14580–14590 (2019). https://doi.org/10.1021/acssuschemeng.9b02180
- R. Kannaujia, C.M. Srivastava, V. Prasad, B.N. Singh, V. Pandey, Phyllanthus emblica fruit extract stabilized biogenic silver nanops as a growth promoter of wheat varieties by reducing ros toxicity. Plant Physiol. Biochem. 142, 460–471 (2019). https://doi.org/10.1016/j.plaphy.2019.08.008
- P. Acharya, G.K. Jayaprakasha, K.M. Crosby, J.L. Jifon, B.S. Patil, Nanop-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in texas. Sci. Rep. 10(1), 5037 (2020). https://doi.org/10.1038/s41598-020-61696-7
- F.N. Spagnoletti, C. Spedalieri, F. Kronberg, R. Giacometti, Extracellular biosynthesis of bactericidal Ag/AgCl nanops for crop protection using the fungus Macrophomina phaseolina. J. Environ. Manage. 231, 457–466 (2019). https://doi.org/10.1016/j.jenvman.2018.10.081
- W. Mahakham, P. Theerakulpisut, S. Maensiri, S. Phumying, A.K. Sarmah, Environmentally benign synthesis of phytochemicals-capped gold nanops as nanopriming agent for promoting maize seed germination. Sci. Total Environ. 573, 1089–1102 (2016). https://doi.org/10.1016/j.scitotenv.2016.08.120
- K. Gopinath, S. Gowri, V. Karthika, A. Arumugam, Green synthesis of gold nanops from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J. Nanostruc. Chem. 4(3), 115 (2014). https://doi.org/10.1007/s40097-014-0115-0
- N. Tsi Ndeh, S. Maensiri, D. Maensiri, The effect of green synthesized gold nanops on rice germination and roots. Adv. Nat. Sci: Nanosci. Nanotechnol. 8(3), 035008 (2017). https://doi.org/10.1088/2043-6254/aa724a
- S. Arora, P. Sharma, S. Kumar, R. Nayan, P. Khanna et al., Gold-nanop induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul. 66, 303–310 (2012). https://doi.org/10.1007/s10725-011-9649
- F. Fang, M. Li, J. Zhang, C.-S. Lee, Different strategies for organic nanop preparation in biomedicine. ACS Mater. Lett. 2(5), 531–549 (2020). https://doi.org/10.1021/acsmaterialslett.0c00078
- R. Li, J. He, H. Xie, W. Wang, S. Bose et al., Effects of chitosan nanops on seed germination and seedling growth of wheat (Triticum aestivum L.). Int. J. Biol. Macromol. 126, 91–100 (2018). https://doi.org/10.1016/j.ijbiomac.2018.12.118
- M. Sathiyabama, S. Muthukumar, Chitosan guar nanop preparation and its in vitro antimicrobial activity towards phytopathogens of rice. Int. J. Biol. Macromol. 153, 297–304 (2020). https://doi.org/10.1016/j.ijbiomac.2020.03.001
- K. Divya, S. Vijayan, S.J. Nair, M.S. Jisha, Optimization of chitosan nanop synthesis and its potential application as germination elicitor of Oryza sativa L. Int. J. Biol. Macromol. 124, 1053–1059 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.185
- C.N. Siddaiah, K.V.H. Prasanth, N.R. Satyanarayana, V. Mudili, V.K. Gupta et al., Chitosan nanops having higher degree of acetylation induce resistance against pearl millet downy mildew through nitric oxide generation. Sci. Rep. 8(1), 2485 (2018). https://doi.org/10.1038/s41598-017-19016-z
- V. Saharan, R.V. Kumaraswamy, R.C. Choudhary, S. Kumari, A. Pal et al., Cu-chitosan nanop mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. J. Agric. Food Chem. 64(31), 6148–6155 (2016). https://doi.org/10.1021/acs.jafc.6b02239
- T. Xu, C. Ma, Z. Aytac, X. Hu, K.W. Ng et al., Enhancing agrichemical delivery and seedling development with biodegradable, tunable, biopolymer-based nanofiber seed coatings. ACS Sustain. Chem. Eng. 8(25), 9537–9548 (2020). https://doi.org/10.1021/acssuschemeng.0c02696
- H. Zhang, M. Yang, Q. Luan, H. Tang, F. Huang et al., Cellulose anionic hydrogels based on cellulose nanofibers as natural stimulants for seed germination and seedling growth. J. Agric. Food Chem. 65(19), 3785–3791 (2017). https://doi.org/10.1021/acs.jafc.6b05815
- T. Kacsó, E.A. Hanna, F. Salinas, C.E. Astete, E. Bodoki et al., Zein and lignin-based nanops as soybean seed treatment: translocation and impact on seed and plant health. Appl. Nanosci. 12, 1557–1569 (2022). https://doi.org/10.1007/s13204-021-02307-3
- S. Falsini, I. Clemente, A. Papini, C. Tani, S. Schiff et al., When sustainable nanochemistry meets agriculture: lignin nanocapsules for bioactive compound delivery to plantlets. ACS Sustain. Chem. Eng. 7(24), 19935–19942 (2019). https://doi.org/10.1021/acssuschemeng.9b05462
- K. Sampathkumar, K.X. Tan, S.C.J. Loo, Developing nano-delivery systems for agriculture and food applications with nature-derived polymers. iScience 23(5), 101055 (2020). https://doi.org/10.1016/j.isci.2020.101055
- S. Shakiba, C.E. Astete, S. Paudel, C.M. Sabliov, D.F. Rodrigues et al., Emerging investigator series: polymeric nanocarriers for agricultural applications: synthesis, characterization, and environmental and biological interactions. Environ. Sci. Nano 7(1), 37–67 (2020). https://doi.org/10.1039/C9EN01127G
- S. Kumar, G. Bhanjana, A. Sharma, M. Sidhu, N. Dilbaghi, Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanops. Carbohydr. Polym. 101, 1061–1067 (2014). https://doi.org/10.1016/j.carbpol.2013.10.025
- S. Chuxiang, S. Ke, W. Wei, Y. Zhao, L. Tian et al., Encapsulation and controlled release of hydrophilic pesticide in shell cross-linked nanocapsules containing aqueous core. Int. J. Pharm. 463, 108–114 (2014). https://doi.org/10.1016/j.ijpharm.2013.12.050
- H. Chen, H. Zhi, J. Liang, M. Yu, B. Cui et al., Development of leaf-adhesive pesticide nanocapsules with pH-responsive release to enhance retention time on crop leaves and improve utilization efficiency. J. Mater. Chem. B 9(3), 783–792 (2021). https://doi.org/10.1039/D0TB02430A
- J. Cui, C. Sun, A. Wang, Y. Wang, H. Zhu et al., Dual-functionalized pesticide nanocapsule delivery system with improved spreading behavior and enhanced bioactivity. Nanomaterials 10(2), 220 (2020). https://doi.org/10.3390/nano10020220
- J.T. da Costa, M.R. Forim, E.S. Costa, J.R. De Souza, J.M. Mondego et al., Effects of different formulations of neem oil-based products on control Zabrotes subfasciatus (boheman, 1833) (coleoptera: Bruchidae) on beans. J. Stored Prod. Res. 56, 49–53 (2014). https://doi.org/10.1016/j.jspr.2013.10.004
- Y. Jiang, Y. Chen, D. Tian, F. Shen, X. Wan et al., Fabrication and characterization of lignin–xylan hybrid nanospheres as pesticide carriers with enzyme-mediated release property. Soft Matter 16(39), 9083–9093 (2020). https://doi.org/10.1039/D0SM01402H
- R. Li, M. Li, J. He, H. Xie, W. Wang et al., Preparation of pectin nanospheres and its effect on wheat (Triticum aestivum L.) seed germination and growth. J. Plant Growth Regul. 41, 3197–3207 (2022). https://doi.org/10.1007/s00344-021-10505-0
- Z.-J. Zhang, X.-F. Shang, L. Yang, Y.-B. Shi, Y.-Q. Liu et al., Engineering of peglayted camptothecin into nanomicelles and supramolecular hydrogels for pesticide combination control. Front. Chem. 7, 922 (2020). https://doi.org/10.3389/fchem.2019.00922
- T. Adak, J. Kumar, N.A. Shakil, S. Walia, Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. J. Environ. Sci. Health B 47(3), 217–225 (2012). https://doi.org/10.1080/03601234.2012.634365
- E. Dong, P. Li, C. Zhou, C. Wang, S. Li et al., PH-responsive ultrasonic self-assembly spinosad-loaded nanomicelles and their antifungal activity to fusarium oxysporum. React. Funct. Polym. 141, 123–132 (2019). https://doi.org/10.1016/j.reactfunctpolym.2019.05.004
- X. Lv, M. Yuan, Y. Pei, C. Liu, X. Wang et al., The enhancement of antiviral activity of chloroinconazide by aglinate-based nanogel and its plant growth promotion effect. J. Agric. Food Chem. 69(17), 4992–5002 (2021). https://doi.org/10.1021/acs.jafc.1c00941
- M. Ziaee, S. Moharramipour, A. Mohsenifar, MA-chitosan nanogel loaded with Cuminum cyminum essential oil for efficient management of two stored product beetle pests. J. Pest Sci. 87, 691–699 (2014). https://doi.org/10.1007/s10340-014-0590-6
- S. Meraz-Dávila, C.E. Pérez-García, A.A. Feregrino-Perez, Challenges and advantages of electrospun nanofibers in agriculture: a review. Mater. Res. Express 8(4), 042001 (2021). https://doi.org/10.1088/2053-1591/abee55
- B.V. Farias, T. Pirzada, R. Mathew, T.L. Sit, C. Opperman et al., Electrospun polymer nanofibers as seed coatings for crop protection. ACS Sustain. Chem. Eng. 7(24), 19848–19856 (2019). https://doi.org/10.1021/acssuschemeng.9b05200
- M. Noruzi, Electrospun nanofibres in agriculture and the food industry: A review. J. Sci. Food Agric. 96(14), 4663–4678 (2016). https://doi.org/10.1002/jsfa.7737
- T. Pirzada, B.V. de Farias, R. Mathew, R.H. Guenther, M.V. Byrd et al., Recent advances in biodegradable matrices for active ingredient release in crop protection: towards attaining sustainability in agriculture. Curr. Opin. Colloid Interface Sci. 48, 121–136 (2020). https://doi.org/10.1016/j.cocis.2020.05.002
- I.O. Adisa, V.L.R. Pullagurala, J.R. Peralta-Videa, C.O. Dimkpa, W.H. Elmer et al., Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environ. Sci. Nano 6(7), 2002–2030 (2019). https://doi.org/10.1039/C9EN00265K
- V. Krishnamoorthy, G. Elumalai, S. Rajiv, Environment friendly synthesis of polyvinylpyrrolidone nanofibers and their potential use as seed coats. New J. Chem. 40, 3268–3276 (2016). https://doi.org/10.1039/C5NJ03008K
- D. Sun, H.I. Hussain, Z. Yi, J.E. Rookes, L. Kong et al., Mesoporous silica nanops enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere 152, 81–91 (2016). https://doi.org/10.1016/j.chemosphere.2016.02.096
- S. Rangaraj, K. Gopalu, P. Periasamy, R. Venkatachalam, N. Kannan, Growth and physiological responses of maize (Zea mays L.) to porous silica nanops in soil. J. Nanopart. Res. 14, 1294 (2012). https://doi.org/10.1007/s11051-012-1294-6
- M. Sattary, J. Amini, R. Hallaj, Antifungal activity of the lemongrass and clove oil encapsulated in mesoporous silica nanops against wheat’s take-all disease. Pestic. Biochem. Physiol. 170, 104696 (2020). https://doi.org/10.1016/j.pestbp.2020.104696
- P. Zhao, C. Wang, S. Zhang, L. Zheng, F. Li et al., Fungicide-loaded mesoporous silica nanops promote rice seedling growth by regulating amino acid metabolic pathways. J. Hazard Mater. 425, 127892 (2022). https://doi.org/10.1016/j.jhazmat.2021.127892
- F. Zhu, X. Liu, L. Cao, C. Cao, F. Li et al., Uptake and distribution of fenoxanil-loaded mesoporous silica nanops in rice plants. Int. J. Mol. Sci. 19, 2854 (2018). https://doi.org/10.3390/ijms19102854
- P. Silva, L. Pereira, A. Lago, M. Reis, É. Rezende et al., Physical-mechanical and antifungal properties of pectin nanocomposites/neem oil nanoemulsion for seed coating. Food Biophys. 14, 456–466 (2019). https://doi.org/10.1007/s11483-019-09592-0
- N. Iqbal, D. Hazra, A. Purkait, N. Kumar, J. Kumar, Bioengineering of neem colloidal nano-emulsion formulation with adjuvant for better surface adhesion and long term activity in insect control. PREPRINT (Version 1) available at Research Square, (2020). https://doi.org/10.21203/rs.3.rs-116370/v1
- S. Kumar, N. Singh, L.S. Devi, S. Kumar, M. Kamle et al., Neem oil and its nanoemulsion in sustainable food preservation and packaging: Current status and future prospects. J. Agric. Food Res. 7, 100254 (2022). https://doi.org/10.1016/j.jafr.2021.100254
- P. Silva, L. Pereira, É. Rezende, M. Reis, A. Lago et al., Production and efficacy of neem nanoemulsion in the control of Aspergillus flavus and Penicillium citrinum in soybean seeds. Eur. J. Plant. Pathol. 155, 1105–1116 (2019). https://doi.org/10.1007/s10658-019-01838-4
- T. Adak, N. Barik, N. Patil, G.-P.-P. Govindharaj, B. Gowda Gadratagi et al., Nanoemulsion of eucalyptus oil: an alternative to synthetic pesticides against two major storage insects (Sitophilus oryzae (L.) and Tribolium castaneum (Herbst)) of rice. Ind. Crops Prod. 143, 111849 (2019). https://doi.org/10.1016/j.indcrop.2019.111849
- G.N.G. Saritha, T. Anju, A. Kumar, Nanotechnology—big impact: How nanotechnology is changing the future of agriculture? J. Agric. Food Res. 10, 100457 (2022). https://doi.org/10.1016/j.jafr.2022.100457
- M. Nuruzzaman, Y. Liu, J. Ren, M.M. Rahman, H. Zhang et al., Capability of organically modified montmorillonite nanoclay as a carrier for imidacloprid delivery. ACS Agric. Sci. Technol. 2(1), 57–68 (2022). https://doi.org/10.1021/acsagscitech.1c00125
- L. Wang, D. Cai, G. Zhang, C. Ge, Z. Wu et al., Improve the dispersion of nanoclay using biochar and biosilica-application to decrease the loss of pesticide. J. Nanosci. Nanotechnol. 16(6), 5869–5874 (2016). https://doi.org/10.1166/jnn.2016.12065
- N. Jahan, S. Aslam, K.U. rahman, T. Fazal, F. Anwar et al., Formulation and characterisation of nanosuspension of herbal extracts for enhanced antiradical potential. J. Exp. Nanosci. 11(1), 72–80 (2016). https://doi.org/10.1080/17458080.2015.1025303
- Z. Zhu, C. Shao, Y. Guo, J. Feng, C. Chen et al., Facile pathway to generate agrochemical nanosuspensions integrating super-high load, eco-friendly excipients, intensified preparation process, and enhanced potency. Nano Res. 14(7), 2179–2187 (2021). https://doi.org/10.1007/s12274-020-3177-y
- Y. Sasson, G. Levy-Ruso, O. Toledano, I. Ishaaya, Nanosuspensions: emerging novel agrochemical formulations, in Insecticides Design Using Advanced Technologies. ed. by I. Ishaaya, A.R. Horowitz, R. Nauen (Springer, Berlin, 2007), pp.1–39
- F. Corrias, A. Melis, A. Atzei, S. Marceddu, F. Dedola et al., Zoxamide accumulation and retention evaluation after nanosuspension technology application in tomato plant. Pest Manag. Sci. 77(7), 3508–3518 (2021). https://doi.org/10.1002/ps.6404
- B. Cui, Y. Lv, F. Gao, C. Wang, Z. Zeng et al., Improving abamectin bioavailability via nanosuspension constructed by wet milling technique. Pest Manag. Sci. 75(10), 2756–2764 (2019). https://doi.org/10.1002/ps.5386
- C.-P. Chin, H.-S. Wu, S. Wang, New approach to pesticide delivery using nanosuspensions: research and applications. Ind. Eng. Chem. Res. 50(12), 7637–7643 (2011). https://doi.org/10.1021/ie2001007
- S. Sharma, B. Shree, Aditika, A. Sharma, M. Irfan et al., Nanop-based toxicity in perishable vegetable crops: molecular insights, impact on human health and mitigation strategies for sustainable cultivation. Environ. Res. 212, 113168 (2022). https://doi.org/10.1016/j.envres.2022.113168
- P.C. Ray, H. Yu, P.P. Fu, Toxicity and environmental risks of nanomaterials: Challenges and future needs. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 27(1), 1–35 (2009). https://doi.org/10.1080/10590500802708267
- H. Bahadar, F. Maqbool, K. Niaz, M. Abdollahi, Toxicity of nanops and an overview of current experimental models. Iran Biomed. J. 20(1), 1–11 (2016). https://doi.org/10.7508/ibj.2016.01.001
- H.-J. Huang, Y.-H. Lee, Y.-H. Hsu, C.-T. Liao, Y.-F. Lin et al., Current strategies in assessment of nanotoxicity: alternatives to in vivo animal testing. Int. J. Mol. Sci. 22(8), 4216 (2021). https://doi.org/10.3390/ijms22084216
- E. Burello, A. Worth, Computational nanotoxicology: predicting toxicity of nanops. Nat. Nanotechnol. 6, 138–139 (2011). https://doi.org/10.1038/nnano.2011.27
- M.G. Tirumala, P. Anchi, S. Raja, M. Rachamalla, C. Godugu, Novel methods and approaches for safety evaluation of nanop formulations: a focus towards in vitro models and adverse outcome pathways. Front. Pharmacol. 12, 1612659 (2021). https://doi.org/10.3389/fphar.2021.612659
- A. Pérez-de-Luque, Interaction of nanomaterials with plants: What do we need for real applications in agriculture? Front. Environ. Sci. 5, 12 (2017). https://doi.org/10.3389/fenvs.2017.00012
- M. Zia-ur-Rehman, M.F. Qayyum, F. Akmal, M.A. Maqsood, M. Rizwan et al., (2018) Recent progress of nanotoxicology in plants, in Nanomaterials in Plants, Algae, and Microorganisms. ed. by D.K. Tripathi, P. Ahmad, S. Sharma, D.K. Chauhan, N.K. Dubey (Academic Press, Cambridge, 2018), pp.143–174
- M. Kumari, V. Ernest, A. Mukherjee, N. Chandrasekaran, In vivo nanotoxicity assays in plant models. Methods Mol. Biol. 926, 399–410 (2012). https://doi.org/10.1007/978-1-62703-002-1_26
- D. Lin, B. Xing, Phytotoxicity of nanops: inhibition of seed germination and root growth. Environ. Pollut. 150(2), 243–250 (2007). https://doi.org/10.1016/j.envpol.2007.01.016
- D.T. Savage, J.Z. Hilt, T.D. Dziubla, In vitro methods for assessing nanop toxicity, in Nanotoxicity. Methods in Molecular Biology, vol. 1894, ed. by Q. Zhang (Humana Press, New York, 2019), pp.1–29
- D. Verma, S. Patel, K. Kushwah, Effects of nanops on seed germination, growth, phytotoxicity and crop improvement. Agric. Rev. 42, 1–11 (2020). https://doi.org/10.18805/ag.R-1964
- C.W. Lee, S. Mahendra, K. Zodrow, D. Li, Y.-C. Tsai et al., Developmental phytotoxicity of metal oxide nanops to arabidopsis thaliana. Environ. Toxicol. Chem. 29(3), 669–675 (2010). https://doi.org/10.1002/etc.58
- H.B. Patisaul, Endocrine disruption by dietary phyto-oestrogens: Impact on dimorphic sexual systems and behaviours. Proc. Nutri. Soci. 76(2), 130–144 (2017). https://doi.org/10.1017/S0029665116000677
- S.T. Khan, S.F. Adil, M.R. Shaik, H.Z. Alkhathlan, M. Khan et al., Engineered nanomaterials in soil: their impact on soil microbiome and plant health. Plants 11(1), 109 (2021). https://doi.org/10.3390/plants11010109
- H. Tian, M. Kah, K. Kariman, Are nanops a threat to mycorrhizal and rhizobial symbioses? A critical review. Front. Microbiol. 10, 1660 (2019). https://doi.org/10.3389/fmicb.2019.01660
- H. Zhang, M. Huang, W. Zhang, J.L. Gardea-Torresdey, J.C. White et al., Silver nanops alter soil microbial community compositions and metabolite profiles in unplanted and cucumber-planted soils. Environ. Sci. Technol. 54(6), 3334–3342 (2020). https://doi.org/10.1021/acs.est.9b07562
- M. Li, P. Wang, F. Dang, D.-M. Zhou, The transformation and fate of silver nanops in paddy soil: effects of soil organic matter and redox conditions. Environ. Sci. Nano 4(4), 919–928 (2017). https://doi.org/10.1039/C6EN00682E
- M. Khan, M.S.A. Khan, K.K. Borah, Y. Goswami, K.R. Hakeem et al., The potential exposure and hazards of metal-based nanops on plants and environment, with special emphasis on ZnO NPs, TiO2 NPs, and AgNPs: a review. Environ. Adv. 6, 100128 (2021). https://doi.org/10.1016/j.envadv.2021.100128
- F. Ameen, K. Alsamhary, J.A. Alabdullatif, S. Alnadhari, A review on metal-based nanops and their toxicity to beneficial soil bacteria and fungi. Ecotoxicol. Environ. Saf. 213, 112027 (2021). https://doi.org/10.1016/j.ecoenv.2021.112027
- M.S. Rahman, A. Chakraborty, S. Mazumdar, N.C. Nandi, M.N.I. Bhuiyan et al., Effects of poly(vinylpyrrolidone) protected platinum nanops on seed germination and growth performance of Pisum sativum. Nano Struct. Nano Object 21, 100408 (2020). https://doi.org/10.1016/j.nanoso.2019.100408
- J. Metch, N. Burrows, C. Murphy, A. Pruden, P. Vikesland, Metagenomic analysis of microbial communities yields insight into impacts of nanop design. Nat. Nanotech. 13, 253–259 (2018). https://doi.org/10.1038/s41565-017-0029-3
- L.M. Skjolding, S.N. Sørensen, N.B. Hartmann, R. Hjorth, S.F. Hansen et al., Aquatic ecotoxicity testing of nanops-the quest to disclose nanop effects. Angew. Chem. Int. Ed. 55(49), 15224–15239 (2016). https://doi.org/10.1002/anie.201604964
- A. Schultz, D. Boyle, D. Chamot, K. Ong, K. Wilkinson et al., Aquatic toxicity of manufactured nanomaterials: challenges and recommendations for future toxicity testing. Environ. Chem. 11(3), 207–226 (2014). https://doi.org/10.1071/EN13221
- B.-V. Boros, V. Ostafe, Evaluation of ecotoxicology assessment methods of nanomaterials and their effects. Nanomaterials 10(4), 610 (2020). https://doi.org/10.3390/nano10040610
- J.M. Hillegass, A. Shukla, S.A. Lathrop, M.B. MacPherson, N.K. Fukagawa et al., Assessing nanotoxicity in cells in vitro. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2(3), 219–231 (2010). https://doi.org/10.1002/wnan.54
- V. Weissig, T.K. Pettinger, N. Murdock, Nanopharmaceuticals (part 1): products on the market. Int. J. Nanomed. 9, 4357–4373 (2014). https://doi.org/10.2147/IJN.S46900
- F. Lebre, N. Chatterjee, S. Costa, E. Fernández-de-Gortari, C. Lopes et al., Nanosafety: an evolving concept to bring the safest possible nanomaterials to society and environment. Nanomaterials 12(11), 1810 (2022). https://doi.org/10.3390/nano12111810
- M. Phenny, Risks, uncertainties, and ethics of nanotechnology in agriculture, in New Visions in Plant Science. ed. by Ö. Çelik (IntechOpen, London, 2018)
- J.E. Hutchison, The road to sustainable nanotechnology: challenges, progress and opportunities. ACS Sustain. Chem. Engin. 4(11), 5907–5914 (2016). https://doi.org/10.1021/acssuschemeng.6b02121
- S. Ying, Z. Guan, P.C. Ofoegbu, P. Clubb, C. Rico et al., Green synthesis of nanops: current developments and limitations. Environ. Techn. Innov. 26, 102336 (2022). https://doi.org/10.1016/j.eti.2022.102336
- M.J. Amorim, The daunting challenge of ensuring sustainable development of nanomaterials. Int. J. Environ. Res. Public Health 13(2), 245 (2016). https://doi.org/10.3390/ijerph13020245
- J. Allan, S. Belz, A. Hoeveler, M. Hugas, H. Okuda et al., Regulatory landscape of nanotechnology and nanoplastics from a global perspective. Regul. Toxicol. Pharmacol. 122, 104885 (2021). https://doi.org/10.1016/j.yrtph.2021.104885
- A.V. Singh, R.-S. Maharjan, A. Kanase, K. Siewert, D. Rosenkranz et al., Machine-learning-based approach to decode the influence of nanomaterial properties on their interaction with cells. ACS Appl. Mater. Interfaces 13(1), 1943–1955 (2021). https://doi.org/10.1021/acsami.0c18470
- D. Abdollahdokht, Y. Gao, S. Faramarz, A. Poustforoosh, M. Abbasi et al., Conventional agrochemicals towards nano-biopesticides: An overview on recent advances. Chem. Biol. Technol. Agric. 9(1), 13 (2022). https://doi.org/10.1186/s40538-021-00281-0
- T.N.V.K.V. Prasad, P. Sudhakar, Y. Sreenivasulu, P. Latha, V. Munaswamy et al., Effect of nanoscale zinc oxide ps on the germination, growth and yield of peanut. J. Plant Nutr. 35, 905–927 (2012). https://doi.org/10.1080/01904167.2012.663443
- C.O. Dimkpa, J.C. White, W.H. Elmer, J. Gardea-Torresdey, Nanop and ionic zn promote nutrient loading of sorghum grain under low npk fertilization. J. Agric. Food Chem. 65(39), 8552–8559 (2017). https://doi.org/10.1021/acs.jafc.7b02961
- L.V. Subbaiah, T.N.V.K.V. Prasad, T.G. Krishna, P. Sudhakar, B.R. Reddy et al., Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in maize (Zea mays L.). J. Agric. Food Chem. 64(19), 3778–3788 (2016). https://doi.org/10.1021/acs.jafc.6b00838
- S. Roghayyeh, S. Mohammad, S. Mehdi Tajbakhsh, S. Rauf Seyed, Effects of nano-iron oxide ps on agronomic traits of soybean. Not. Sci. Biol. 2(2), 112–113 (2010). https://doi.org/10.15835/nsb224667
- S.A. Hoang, L.Q. Nguyen, N.H. Nguyen, C.Q. Tran, D.V. Nguyen et al., Metal nanops as effective promotors for maize production. Sci. Rep. 9(1), 13925 (2019). https://doi.org/10.1038/s41598-019-50265-2
- L. Marchiol, A. Mattiello, F. Pošćić, G. Fellet, C. Zavalloni et al., Changes in physiological and agronomical parameters of barley (Hordeum vulgare) exposed to cerium and titanium dioxide nanops. Int. J. Environ. Res. Public Health. 13, 332 (2016). https://doi.org/10.3390/ijerph13030332
- H. Dağhan, N. Gulmezoglu, N. Köleli, B. Karakaya, Impact of titanium dioxide nanops (TiO2-NPs) on growth and mineral nutrient uptake of wheat (Triticum vulgare L.). Biotech. Studies 29(2), 69–76 (2020). https://doi.org/10.38042/biost.2020.29.02.03
- P. Singh, R. Singh, A. Borthakur, P. Srivastava, N. Srivastava et al., Effect of nanoscale TiO2-activated carbon composite on Solanum lycopersicum (L.) and Vigna radiata (L.) seeds germination. Energy Ecol. Environ. 1(3), 131–140 (2016). https://doi.org/10.1007/s40974-016-0009-8
- C. Ma, H. Liu, G. Chen, Q. Zhao, H. Guo et al., Dual roles of glutathione in silver nanop detoxification and enhancement of nitrogen assimilation in soybean (Glycine max (L.) merrill). Environ. Sci. Nano 7(7), 1954–1966 (2020). https://doi.org/10.1039/D0EN00147C
- M. Haghighi, M. Pessarakli, Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci. Hortic. 161, 111–117 (2013). https://doi.org/10.1016/j.scienta.2013.06.034
- P.S. Yerragopu, S. Hiregoudar, U. Nidoni, K.T. Ramappa, A. Sreenivas et al., Effect of plant-mediated synthesized silver nanops on pulse beetle, Callosobruchus chinensis (L.). Int. J. Curr. Microbiol. Appl. Sci. 8, 1965–1972 (2019). https://doi.org/10.1016/j.scienta.2013.06.034
- T.S. Tadler, G.P.L.Ó.G. Arcía, J.G.G. Itto, M.B. Uteler, Particulate nanoinsecticides: a new concept in insect pest management, in Insecticides—Agriculture and Toxicology. ed. by G. Begum (IntechOpen, London, 2017)
- M.E. El-Naggar, N.R. Abdelsalam, M.M.G. Fouda, M.I. Mackled, M.A.M. Al-Jaddadi et al., Soil application of nano silica on maize yield and its insecticidal activity against some stored insects after the post-harvest. Nanomaterials 10(4), 739 (2020). https://doi.org/10.3390/nano10040739
- C. Belhamel, L. Boulekbache-Makhlouf, S. Bedini, C. Tani, T. Lombardi et al., Nanostructured alumina as seed protectant against three stored-product insect pests. J. Stored Prod. Res. 87, 101607 (2020). https://doi.org/10.1016/j.jspr.2020.101607
- A. Diagne, B.N. Diop, P.M. Ndiaye, C. Andreazza, M. Sembene, Efficacy of silica nanops on groundnut bruchid, Caryedon serratus (Olivier) (coleoptera, bruchidae). Afr Crop Sci. J. 27, 229 (2019). https://doi.org/10.4314/acsj.v27i2.8
- T. Ismail, M.A. Salama, M. El-Ebiary, Entomotoxic effects of synthesized aluminum oxide nanops against sitophilus oryzae and their toxicological effects on albino rats. Toxicol. Ind. Health 37(10), 594–602 (2021). https://doi.org/10.1177/07482337211035000
- A.M. Mohammed, S.A. Aswd, Effect of some nanops on the stages biology of the southern cowpea beetle Callosobruchus maculatus (Fab.) (Coleoptera: Bruchidae). J. Edu. Sci. 28(3), 188–199 (2019). https://doi.org/10.33899/edusj.2019.162956
- H. Zhang, R. Wang, Z. Chen, P. Cui, H. Lu et al., The effect of zinc oxide nanops for enhancing rice (Oryza sativa L.) yield and quality. Agriculture 11(12), 1247 (2021). https://doi.org/10.3390/agriculture11121247
- G. Dileep Kumar, K. Raja, N. Natarajan, K. Govindaraju, K.S. Subramanian, Invigouration treatment of metal and metal oxide nanops for improving the seed quality of aged chilli seeds (Capsicum annum L.). Mater. Chem. Phys. 242, 122492 (2020). https://doi.org/10.1016/j.matchemphys.2019.122492
- M. Waqas Mazhar, M. Ishtiaq, M. Maqbool, R. Akram, A. Shahid et al., Seed priming with iron oxide nanops raises biomass production and agronomic profile of water-stressed flax plants. Agronomy 12(5), 982 (2022). https://doi.org/10.3390/agronomy12050982
- A. Joshi, S. Kaur, K. Dharamvir, H. Nayyar, G. Verma, Multi-walled carbon nanotubes applied through seed-priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.). J. Sci. Food Agric. 98(8), 3148–3160 (2018). https://doi.org/10.1002/jsfa.8818
- E.N. Shcherbakova, A.V. Shcherbakov, E.E. Andronov, L.N. Gonchar, S.M. Kalenskaya et al., Combined pre-seed treatment with microbial inoculants and mo nanops changes composition of root exudates and rhizosphere microbiome structure of chickpea (Cicer arietinum L.) plants. Symbiosis 73(1), 57–69 (2017). https://doi.org/10.1007/s13199-016-0472-1
- A. Hussain, M. Rizwan, Q. Ali, S. Ali, Seed priming with silicon nanops improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. Environ. Sci. Pollut. Res. 26(8), 7579–7588 (2019). https://doi.org/10.1007/s11356-019-04210-5
- A.M. Saad, A.Y.M. Alabdali, M. Ebaid, E. Salama, M.T. El-Saadony et al., Impact of green chitosan nanops fabricated from shrimp processing waste as a source of nano nitrogen fertilizers on the yield quantity and quality of wheat (Triticum aestivum L.) cultivars. Molecules 27(17), 5640 (2022). https://doi.org/10.3390/molecules27175640
- S. Muthukrishnan, I. Murugan, M. Selvaraj, Chitosan nanops loaded with thiamine stimulate growth and enhances protection against wilt disease in chickpea. Carbohydr. Polym. 212, 169–177 (2019). https://doi.org/10.1016/j.carbpol.2019.02.037
- M. Mondal, A. Puteh, N. Dafader, Foliar application of chitosan improved morpho-physiological attributes and yield in summer tomato (Solanum lycopersicum). Pak. J. Agric. Sci. 53, 339–344 (2016). https://doi.org/10.21162/PAKJAS/16.2011
- V.D. Rajput, A. Singh, T. Minkina, S. Rawat, S. Mandzhieva et al., Nano-enabled products: challenges and opportunities for sustainable agriculture. Plants 10(12), 2727 (2021). https://doi.org/10.3390/plants10122727
References
M. Berners-Lee, C. Kennelly, R. Watson, C.N. Hewitt, Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elem. Sci. Anthrop. 6, 52 (2018). https://doi.org/10.1525/elementa.310
J. Porter, L. Xie, A. Challinor, N. Chhetri, U. Nepal et al., Food security and food production systems, in Climate Change—Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution to the IPCC Fifth Assessment Report. ed. by C.B. Field, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea (Cambridge University Press, Cambridge, 2014), pp.485–534
S. Yadav, P. Modi, A. Dave, A. Vijapura, D. Patel et al., (2020) Effect of abiotic stress on crops, in Sustainable Crop Production. ed. by M. Hasanuzzaman, M.C.M.T. Filho, M. Fujita, T.A.R. Nogueira (IntechOpen, London, 2020)
Q.M. Imran, N. Falak, A. Hussain, B.-G. Mun, B.-W. Yun, Abiotic stress in plants; stress perception to molecular response and role of biotechnological tools in stress resistance. Agronomy 11, 1579 (2021). https://doi.org/10.3390/agronomy11081579
M. He, C.-Q. He, N.-Z. Ding, Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Front. Plant Sci. 9, 1771 (2018). https://doi.org/10.3389/fpls.2018.01771
A. Gupta, R. Kumar, Management of seed-borne diseases: an integrated approach, in Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis and Management. ed. by R. Kumar, A. Gupta (Springer, Singapore, 2020)
M. Vojvodić, R. Bažok, Future of insecticide seed treatment. Sustainability 13(16), 8792 (2021). https://doi.org/10.3390/su13168792
S.H. Nile, M. Thiruvengadam, Y. Wang, R. Samynathan, M.A. Shariati et al., Nano-priming as emerging seed priming technology for sustainable agriculture-recent developments and future perspectives. J. Nanobiotechnol. 20(1), 254 (2022). https://doi.org/10.1186/s12951-022-01423-8
M.S. Ayesha, T.S. Suryanarayanan, K.N. Nataraja, S.R. Prasad, R.U. Shaanker, Seed treatment with systemic fungicides: time for review. Front. Plant Sci. 12, 654512 (2021). https://doi.org/10.3389/fpls.2021.654512
J.M. Rajwade, R.G. Chikte, K.M. Paknikar, Nanomaterials: new weapons in a crusade against phytopathogens. Appl. Microbiol. Biotechnol. 104(4), 1437–1461 (2020). https://doi.org/10.1007/s00253-019-10334-y
J. Mravlje, M. Regvar, K. Vogel-Mikuš, Development of cold plasma technologies for surface decontamination of seed fungal pathogens: present status and perspectives. J. Fungi 7(8), 650 (2021). https://doi.org/10.3390/jof7080650
V. Mancini, G. Romanazzi, Seed treatments to control seedborne fungal pathogens of vegetable crops. Pest Manag. Sci. 70(6), 860–868 (2014). https://doi.org/10.1002/ps.3693
A. Sharma, V. Kumar, B. Shahzad, M. Tanveer, G.P.S. Sidhu et al., Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 1(11), 1446 (2019). https://doi.org/10.1007/s42452-019-1485-1
P.C. Abhilash, N. Singh, Pesticide use and application: an Indian scenario. J. Hazard. Mater. 165(1), 1–12 (2009). https://doi.org/10.1016/j.jhazmat.2008.10.061
B.M. Sharma, G.K. Bharat, S. Tayal, L. Nizzetto, P. Čupr et al., Environment and human exposure to persistent organic pollutants (pops) in india: a systematic review of recent and historical data. Environ. Int. 66, 48–64 (2014). https://doi.org/10.1016/j.envint.2014.01.022
K.K. Chan, S.H.K. Yap, K.-T. Yong, Biogreen synthesis of carbon dots for biotechnology and nanomedicine applications. Nano Micro Lett. 10(4), 72 (2018). https://doi.org/10.1007/s40820-018-0223-3
K. Neme, A. Nafady, S. Uddin, Y.B. Tola, Application of nanotechnology in agriculture, postharvest loss reduction and food processing: food security implication and challenges. Heliyon 7(12), e08539 (2021). https://doi.org/10.1016/j.heliyon.2021.e08539
D. Mittal, G. Kaur, P. Singh, K. Yadav, S.A. Ali, Nanop-based sustainable agriculture and food science: recent advances and future outlook. Front. Nanotechnol. 2, 579954 (2020). https://doi.org/10.3389/fnano.2020.579954
Y. Shang, M.K. Hasan, G.J. Ahammed, M. Li, H. Yin et al., Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24(14), 2558 (2019). https://doi.org/10.3390/molecules24142558
R. Prasad, A. Bhattacharyya, Q.D. Nguyen, Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front. Microbiol. 8, 1014 (2017). https://doi.org/10.3389/fmicb.2017.01014
M. Usman, M. Farooq, A. Wakeel, A. Nawaz, S.A. Cheema et al., Nanotechnology in agriculture: current status, challenges and future opportunities. Sci. Total Environ. 721, 137778 (2020). https://doi.org/10.1016/j.scitotenv.2020.137778
P. Fincheira, G. Tortella, A.B. Seabra, A. Quiroz, M.C. Diez et al., Nanotechnology advances for sustainable agriculture: current knowledge and prospects in plant growth modulation and nutrition. Planta 254(4), 66 (2021). https://doi.org/10.1007/s00425-021-03714-0
M. Kamle, D.K. Mahato, S. Devi, R. Soni, V. Tripathi et al., Nanotechnological interventions for plant health improvement and sustainable agriculture. 3 Biotech 10(4), 168 (2020). https://doi.org/10.1007/s13205-020-2152-3
C. Liu, H. Zhou, J. Zhou, The applications of nanotechnology in crop production. Molecules 26(23), 7070 (2021). https://doi.org/10.3390/molecules26237070
T. Guha, G. Gopal, R. Kundu, A. Mukherjee, Nanocomposites for delivering agrochemicals: a comprehensive review. J. Agric. Food Chem. 68(12), 3691–3702 (2020). https://doi.org/10.1021/acs.jafc.9b06982
S.H. Nile, V. Baskar, D. Selvaraj, A. Nile, J. Xiao et al., Nanotechnologies in food science: applications, recent trends, and future perspectives. Nano Micro Lett. 12(1), 45 (2020). https://doi.org/10.1007/s40820-020-0383-9
H. Li, L. Chen, X. Li, D. Sun, H. Zhang, Recent progress on asymmetric carbon- and silica-based nanomaterials: from synthetic strategies to their applications. Nano Micro Lett. 14(1), 45 (2022). https://doi.org/10.1007/s40820-021-00789-y
P. Pramanik, P. Krishnan, A. Maity, N. Mridha, A. Mukherjee et al., Application of nanotechnology in agriculture, in Environmental Nanotechnology Volume 4. Environmental Chemistry for a Sustainable World, vol. 32, ed. by N. Dasgupta, S. Ranjan, E. Lichtfouse (Springer, Cham, 2020), pp.317–348
M. Jiang, Y. Song, M.K. Kanwar, G.J. Ahammed, S. Shao et al., Phytonanotechnology applications in modern agriculture. J. Nanobiotechnol. 19(1), 430 (2021). https://doi.org/10.1186/s12951-021-01176-w
N.B. Chanu, M.C. Singh, Applications of nanotechnology in precision agriculture, in Nano-enabled Agrochemicals in Agriculture. ed. by M. Ghorbanpour, M.A. Shahid (Academic Press, Cambridge, 2022), p.175
F. Pulizzi, Nano in the future of crops. Nat. Nanotechnol. 14(6), 507–507 (2019). https://doi.org/10.1038/s41565-019-0475-1
Y. Wang, C. Dimkpa, C.Y. Deng, W.H. Elmer, J. Gardea-Torresdey et al., Impact of engineered nanomaterials on rice (Oryza sativa L.): a critical review of current knowledge. Environ. Pollut. 297, 118738 (2022). https://doi.org/10.1016/j.envpol.2021.118738
R. Szőllősi, Á. Molnár, S. Kondak, Z. Kolbert, Dual effect of nanomaterials on germination and seedling growth: stimulation vs. phytotoxicity. Plants 9(12), 1745 (2020). https://doi.org/10.3390/plants9121745
U. Chandrasekaran, X. Luo, Q. Wang, K. Shu, Are there unidentified factors involved in the germination of nanoprimed seeds? Front. Plant Sci. 11, 00832 (2020). https://doi.org/10.3389/fpls.2020.00832
C. Shao, H. Zhao, P. Wang, Recent development in functional nanomaterials for sustainable and smart agricultural chemical technologies. Nano Converg. 9(1), 11 (2022). https://doi.org/10.1186/s40580-022-00302-0
A. do Espirito Santo Pereira, H. Caixeta Oliveira, L. Fernandes Fraceto, C. Santaella, Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials 11(2), 267 (2021). https://doi.org/10.3390/nano11020267
M. Rani Sarkar, M.H.-O. Rashid, A. Rahman, M.A. Kafi, M.I. Hosen et al., Recent advances in nanomaterials based sustainable agriculture: an overview. Environ. Nanotechnol. Monit. Manag. 18, 100687 (2022). https://doi.org/10.1016/j.enmm.2022.100687
S. Agrawal, V. Kumar, S. Kumar, S.K. Shahi, Plant development and crop protection using phytonanotechnology: a new window for sustainable agriculture. Chemosphere 299, 134465 (2022). https://doi.org/10.1016/j.chemosphere.2022.134465
R. Rienzie, N. Adassooriya, Toxicity of nanomaterials in agriculture and food, in Nanomaterials: Ecotoxicity, Safety, and Public Perception. ed. by M. Rai, J. Biswas (Springer, Cham, 2018)
M. Murali, H.G. Gowtham, S.B. Singh, N. Shilpa, M. Aiyaz et al., Fate, bioaccumulation and toxicity of engineered nanomaterials in plants: current challenges and future prospects. Sci. Total Environ. 811, 152249 (2022). https://doi.org/10.1016/j.scitotenv.2021.152249
J. Liu, B. Dhungana, G.P. Cobb, Environmental behavior, potential phytotoxicity, and accumulation of copper oxide nanops and arsenic in rice plants. Environ. Toxicol. Chem. 37(1), 11–20 (2018). https://doi.org/10.1002/etc.3945
I. Iavicoli, V. Leso, D.H. Beezhold, A.A. Shvedova, Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicol. Appl. Pharmacol. 329, 96–111 (2017). https://doi.org/10.1016/j.taap.2017.05.025
V. Rajput, T. Minkina, M. Mazarji, S. Shende, S. Sushkova et al., Accumulation of nanops in the soil-plant systems and their effects on human health. Ann. Agric. Sci. 65(2), 137–143 (2020). https://doi.org/10.1016/j.aoas.2020.08.001
Y. Sun, J. Liang, L. Tang, H. Li, Y. Zhu et al., Nano-pesticides: a great challenge for biodiversity? Nano Today 28, 100757 (2019). https://doi.org/10.1016/j.nantod.2019.06.003
E. Hotze, T. Phenrat, G. Lowry, Nanop aggregation: challenges to understanding transport and reactivity in the environment. J. Environ. Quality 39, 1909–1924 (2010). https://doi.org/10.2134/jeq2009.0462
R.S. Meena, S. Kumar, R. Datta, R. Lal, V. Vijayakumar et al., Impact of agrochemicals on soil microbiota and management: a review. Land 9(2), 34 (2020). https://doi.org/10.3390/land9020034
B. Sharma, U. Lakra, R. Sharma, S.R. Sharma, A comprehensive review on nanopesticides and nanofertilizers—a boon for agriculture, in Nano-enabled Agrochemicals in Agriculture. ed. by M. Ghorbanpour, M.A. Shahid (Academic Press, Cambridge, 2022), pp.273–290
N. Fazelian, M. Yousefzadi, Nano-biofertilizers for enhanced nutrient use efficiency, in Nano-enabled Agrochemicals in Agriculture. ed. by M. Ghorbanpour, M.A. Shahid (Academic Press, Cambridge, 2022), pp.145–158
K. Dziergowska, I. Michalak, The role of nanops in sustainable agriculture, in Smart Agrochemicals for Sustainable Agriculture. ed. by K. Chojnacka, A. Saeid (Academic Press, Cambridge, 2022), pp.225–278
T.A. Shalaby, Y. Bayoumi, Y. Eid, H. Elbasiouny, F. Elbehiry et al., Can nanofertilizers mitigate multiple environmental stresses for higher crop productivity? Sustainability 14(6), 3480 (2022). https://doi.org/10.3390/su14063480
D. Wang, N.B. Saleh, A. Byro, R. Zepp, E. Sahle-Demessie et al., Nano-enabled pesticides for sustainable agriculture and global food security. Nat. Nanotechnol. 17, 347–360 (2022). https://doi.org/10.1038/s41565-022-01082-8
A. Shelar, A.V. Singh, P. Dietrich, R.S. Maharjan, A. Thissen et al., Emerging cold plasma treatment and machine learning prospects for seed priming: a step towards sustainable food production. RSC Adv. 12(17), 10467–10488 (2022). https://doi.org/10.1039/D2RA00809B
A. Shelar, A.V. Singh, R.S. Maharjan, P. Laux, A. Luch et al., Sustainable agriculture through multidisciplinary seed nanopriming: prospects of opportunities and challenges. Cells 10(9), 2428 (2021). https://doi.org/10.3390/cells10092428
Y. Sun, L. Zheng, Y. Yang, X. Qian, T. Fu et al., Metal–organic framework nanocarriers for drug delivery in biomedical applications. Nano Micro Lett. 12(1), 103 (2020). https://doi.org/10.1007/s40820-020-00423-3
K.S. Siddiqi, A. Husen, Plant response to engineered metal oxide nanops. Nanoscale Res. Lett. 12(1), 92 (2017). https://doi.org/10.1186/s11671-017-1861-y
H. Guo, Y. Liu, J. Chen, Y. Zhu, Z. Zhang, The effects of several metal nanops on seed germination and seedling growth: a meta-analysis. Coatings 12(2), 183 (2022). https://doi.org/10.3390/coatings12020183
C. An, C. Sun, N. Li, B. Huang, J. Jiang et al., Nanomaterials and nanotechnology for the delivery of agrochemicals: strategies towards sustainable agriculture. J. Nanobiotechnol. 20(1), 11 (2022). https://doi.org/10.1186/s12951-021-01214-7
M. Vurro, C. Miguel-Rojas, A. Pérez-de-Luque, Safe nanotechnologies for increasing the effectiveness of environmentally friendly natural agrochemicals. Pest Manag. Sci. 75(9), 2403–2412 (2019). https://doi.org/10.1002/ps.5348
R.K. Mishra, S.K. Ha, K. Verma, S.K. Tiwari, Recent progress in selected bio-nanomaterials and their engineering applications: an overview. J. Sci. Adv. Mater. Dev. 3(3), 263–288 (2018). https://doi.org/10.1016/j.jsamd.2018.05.003
A. Kalia, S.P. Sharma, H. Kaur, H. Kaur, Novel nanocomposite-based controlled-release fertilizer and pesticide formulations: prospects and challenges, in Micro and Nano Technologies, Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems. ed. by K.A. Abd-Elsalam (Elsevier, Amsterdam, 2020), pp.99–134
A. Kumar, A. Choudhary, H. Kaur, S. Mehta, A. Husen, Smart nanomaterial and nanocomposite with advanced agrochemical activities. Nanoscale Res. Lett. 16(1), 156 (2021). https://doi.org/10.1186/s11671-021-03612-0
C. Tarafder, M. Daizy, M.M. Alam, M.R. Ali, M.J. Islam et al., Formulation of a hybrid nanofertilizer for slow and sustainable release of micronutrients. ACS Omega 5(37), 23960–23966 (2020). https://doi.org/10.1021/acsomega.0c03233
A. Nongbet, A.K. Mishra, Y.K. Mohanta, S. Mahanta, M.K. Ray et al., Nanofertilizers: a smart and sustainable attribute to modern agriculture. Plants 11(19), 2587 (2022). https://doi.org/10.3390/plants11192587
M.A. Iqbal, Nano-fertilizers for sustainable crop production under changing climate: a global perspective, in Sustainable Crop Production. ed. by M. Hasanuzzaman, M.C.M.T. Filho, M. Fujita, T.A.R. Nogueira (IntechOpen, London, 2019)
A.K. Bhardwaj, G. Arya, R. Kumar, L. Hamed, H. Pirasteh-Anosheh et al., Switching to nanonutrients for sustaining agroecosystems and environment: the challenges and benefits in moving up from ionic to p feeding. J. Nanobiotechn. 20(1), 19 (2022). https://doi.org/10.1186/s12951-021-01177-9
H. Guo, J.C. White, Z. Wang, B. Xing, Nano-enabled fertilizers to control the release and use efficiency of nutrients. Curr. Opin. Environ. Sci. Health 6, 77–83 (2018). https://doi.org/10.1016/j.coesh.2018.07.009
M.F. Seleiman, K.F. Almutairi, M. Alotaibi, A. Shami, B.A. Alhammad et al., Nano-fertilization as an emerging fertilization technique: Why can modern agriculture benefit from its use? Plants 10(1), 2 (2020). https://doi.org/10.3390/plants10010002
A. Badran, I. Savin, Effect of nano-fertilizer on seed germination and first stages of bitter almond seedlings’ growth under saline conditions. BioNanoScience 8, 1–10 (2018). https://doi.org/10.1007/s12668-018-0531-6
M. Esper Neto, D. Britt, K. Jackson, A. Braccini, T. Inoue et al., Early development of corn seedlings primed with synthetic tenorite nanofertilizer. J. Seed Sci. 42, e202042040 (2020). https://doi.org/10.1590/2317-1545v42240979
H.M.M. Abdel-Aziz, M.N.A. Hasaneen, A.M. Omer, Impact of engineered nanomaterials either alone or loaded with npk on growth and productivity of French bean plants: seed priming vs. foliar application. South. Afr. J. Bot. 125, 102–108 (2019). https://doi.org/10.1016/j.sajb.2019.07.005
C. Kumar Das, H. Jangir, J. Kumar, S. Verma, S. Mahapatra et al., Nano-pyrite seed dressing: a sustainable design for npk equivalent rice production. Nanotechnol. Environ. Eng. 3, 14 (2018). https://doi.org/10.1007/s41204-018-0043-1
T. Guha, K.V.G. Ravikumar, A. Mukherjee, A. Mukherjee, R. Kundu, Nanopriming with zero valent iron (nzvi) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.). Plant Physiol. Biochem. 127, 403–413 (2018). https://doi.org/10.1016/j.plaphy.2018.04.014
D. Kubavat, K. Trivedi, V. Pradip, K. Prasad, V.A. Gopalakrishnan et al., Characterization of chitosan based sustained release nano-fertilizer formulation as a soil conditioner whilst improving biomass production of Zea mays .L. Land Degrad. Dev. 31, 2734–2746 (2020). https://doi.org/10.1002/ldr.3629
E. Yusefi-Tanha, S. Fallah, A. Rostamnejadi, L.R. Pokhrel, Zinc oxide nanops (ZnONPs) as a novel nanofertilizer: influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Sci. Total Environ. 738, 140240 (2020). https://doi.org/10.1016/j.scitotenv.2020.140240
M. Rui, C. Ma, Y. Hao, J. Guo, Y. Rui et al., Iron oxide nanops as a potential iron fertilizer for peanut (Arachis hypogaea). Front. Plant Sci. 7, 815 (2016). https://doi.org/10.3389/fpls.2016.00815
H. Singh, A. Sharma, S.K. Bhardwaj, S.K. Arya, N. Bhardwaj et al., Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. Environ. Sci. Process Impacts 23(2), 213–239 (2021). https://doi.org/10.1039/D0EM00404A
S. Shekhar, S. Sharma, A. Kumar, A. Taneja, B. Sharma, The framework of nanopesticides: a paradigm in biodiversity. Mater. Adv. 2(20), 6569–6588 (2021). https://doi.org/10.1039/D1MA00329A
M. Chaud, E.B. Souto, A. Zielinska, P. Severino, F. Batain et al., Nanopesticides in agriculture: benefits and challenge in agricultural productivity, toxicological risks to human health and environment. Toxics 9(6), 131 (2021). https://doi.org/10.3390/toxics9060131
S.A.M. Zobir, A. Ali, F. Adzmi, M.R. Sulaiman, K. Ahmad, A review on nanopesticides for plant protection synthesized using the supramolecular chemistry of layered hydroxide hosts. Biology 10(11), 1077 (2021). https://doi.org/10.3390/biology10111077
T.A. Roseline, M. Murugan, M.P. Sudhakar, K. Arunkumar, Nanopesticidal potential of silver nanocomposites synthesized from the aqueous extracts of red seaweeds. Environ. Techn. Innov. 13, 82–93 (2019). https://doi.org/10.1016/j.eti.2018.10.005
M. El-Shetehy, A. Moradi, M. Maceroni, D. Reinhardt, A. Petri-Fink et al., Silica nanops enhance disease resistance in arabidopsis plants. Nat. Nanotechn. 16(3), 344–353 (2021). https://doi.org/10.1038/s41565-020-00812-0
D. Tripathi, M. Singh, S. Pandey-Rai, Crosstalk of nanops and phytohormones regulate plant growth and metabolism under abiotic and biotic stress. Plant Stress 6, 100107 (2022). https://doi.org/10.1016/j.stress.2022.100107
T.R. Lakshmeesha, M. Murali, M.A. Ansari, A.C. Udayashankar, M.A. Alzohairy et al., Biofabrication of zinc oxide nanops from melia azedarach and its potential in controlling soybean seed-borne phytopathogenic fungi. Saudi J. Biol. Sci. 27(8), 1923–1930 (2020). https://doi.org/10.1016/j.sjbs.2020.06.013
K.S. Almaary, S.R.M. Sayed, O.H. Abd-Elkader, T.M. Dawoud, N.F. El Orabi et al., Complete green synthesis of silver-nanops applying seed-borne Penicillium duclauxii. Saudi J. Biol. Sci. 27(5), 1333–1339 (2020). https://doi.org/10.1016/j.sjbs.2019.12.022
P. Kaur, J. Duhan, R. Thakur, Comparative pot studies of chitosan and chitosan-metal nanocomposites as nano-agrochemicals against fusarium wilt of chickpea (Cicer arietinum L.). Biocatal. Agric. Biotechnol. 14, 466–471 (2018). https://doi.org/10.1016/j.bcab.2018.04.014
A. Sharma, A. Sidhu, P. Manchanda, R. Ahuja, 1,2,4-triazolyldithiocarbamate silver nano conjugate: potent seed priming agent against bakanae disease of rice (Oryzae sativa). Eur. J. Plant. Pathol. 162, 825–841 (2022). https://doi.org/10.1007/s10658-021-02439-w
P.L. Chariou, N.F. Steinmetz, Delivery of pesticides to plant parasitic nematodes using tobacco mild green mosaic virus as a nanocarrier. ACS Nano 11(5), 4719–4730 (2017). https://doi.org/10.1021/acsnano.7b00823
M. Sankar, A. Abideen, Pesticidal effect of green synthesized silver and lead nanops using Avicennia marina against grain storage pest Sitophilus oryzae. Dig. J. Nanomater. Biostruct. 5, 32–39 (2015)
A. Thabet, H. Boraei, O. Galal, M. El-Samahy, K. Mousa et al., Silica nanops as pesticide against insects of different feeding types and their non-target attraction of predators. Sci. Rep. 11, 14484 (2021). https://doi.org/10.1038/s41598-021-93518-9
G. Spadola, V. Sanna, J. Bartoli, M. Carcelli, G. Pelosi et al., Thiosemicarbazone nano-formulation for the control of aspergillus flavus. Environ. Sci. Pollut. Res. 27(16), 20125–20135 (2020). https://doi.org/10.1007/s11356-020-08532-7
H.F. Maswada, M. Djanaguiraman, P.V.V. Prasad, Seed treatment with nano-iron (iii) oxide enhances germination, seeding growth and salinity tolerance of sorghum. J. Agro. Crop Sci. 204(6), 577–587 (2018). https://doi.org/10.1111/jac.12280
D. Kasote, J. Lee, G. Jayaprakasha, B. Patil, Seed priming with iron oxide nanops modulate antioxidant potential and defense linked hormones in watermelon seedlings. ACS Sustain. Chem. Eng. 7(5), 5142–5151 (2019). https://doi.org/10.1021/acssuschemeng.8b06013
R. Ahuja, A. Sidhu, A. Bala, Synthesis and evaluation of iron(ii) sulfide aqua nanops (FeS-NPs) against fusarium verticillioides causing sheath rot and seed discoloration of rice. Eur. J. Plant. Pathol. 155(1), 163–171 (2019). https://doi.org/10.1007/s10658-019-01758-3
M. Haris, T. Hussain, H.I. Mohamed, A. Khan, M.S. Ansari et al., Nanotechnology - a new frontier of nano-farming in agricultural and food production and its development. Sci. Total Environ. 857(3), 159639 (2023). https://doi.org/10.1016/j.scitotenv.2022.159639
N. Sundaria, M. Singh, P. Upreti, R.P. Chauhan, J.P. Jaiswal et al., Seed priming with iron oxide nanops triggers iron acquisition and biofortification in wheat (Triticum aestivum L.) grains. J. Plant Growth Regul. 38(1), 122–131 (2019). https://doi.org/10.1007/s00344-018-9818-7
M. Rizwan, S. Ali, B. Ali, M. Adrees, M. Arshad et al., Zinc and iron oxide nanops improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214, 269–277 (2019). https://doi.org/10.1016/j.chemosphere.2018.09.120
P. Itroutwar, K. Govindaraju, T. Selvaraj, M. Kannan, K. Raja et al., Seaweed-based biogenic ZnO nanops for improving agro-morphological characteristics of rice (Oryza sativa L.). J. Plant Growth Regul. 39, 717–728 (2020). https://doi.org/10.1007/s00344-019-10012-3
S.M. Savassa, N.M. Duran, E.S. Rodrigues, E. de Almeida, C.A.M. van Gestel et al., Effects of ZnO nanops on Phaseolus vulgaris germination and seedling development determined by x-ray spectroscopy. ACS Appl. Nano Mater. 1(11), 6414–6426 (2018). https://doi.org/10.1021/acsanm.8b01619
A.A.H. Abdel Latef, M.F. Abu Alhmad, K.E. Abdelfattah, The possible roles of priming with zno nanops in mitigation of salinity stress in lupine (Lupinus termis) plants. J. Plant Growth Regul. 36(1), 60–70 (2017). https://doi.org/10.1007/s00344-016-9618-x
M. Nandhini, S.B. Rajini, A.C. Udayashankar, S.R. Niranjana, O.S. Lund et al., Biofabricated zinc oxide nanops as an eco-friendly alternative for growth promotion and management of downy mildew of pearl millet. Crop Prot. 121, 103–112 (2019). https://doi.org/10.1016/j.cropro.2019.03.015
R.C. Choudhary, R.V. Kumaraswamy, S. Kumari, S.S. Sharma, A. Pal et al., Zinc encapsulated chitosan nanop to promote maize crop yield. Int. J. Biol. Macromol. 127, 126–135 (2019). https://doi.org/10.1016/j.ijbiomac.2018.12.274
N.M. Duran, S.M. Savassa, R.G. Lima, E. de Almeida, F.S. Linhares et al., X-ray spectroscopy uncovering the effects of Cu based nanop concentration and structure on phaseolus vulgaris germination and seedling development. J. Agric. Food Chem. 65(36), 7874–7884 (2017). https://doi.org/10.1021/acs.jafc.7b03014
F. Yasmeen, N.I. Raja, A. Razzaq, S. Komatsu, Proteomic and physiological analyses of wheat seeds exposed to copper and iron nanops. Biochim Biophys Acta (BBA) Proteins Proteom 1865(1), 28–42 (2017). https://doi.org/10.1016/j.bbapap.2016.10.001
W. Wang, Y. Ren, J. He, L. Zhang, X. Wang et al., Impact of copper oxide nanops on the germination, seedling growth, and physiological responses in Brassica pekinensis L. Environ. Sci. Pollut. Res. Int. 27(25), 31505–31515 (2020). https://doi.org/10.1007/s11356-020-09338-3
Y. Ye, K. Cota-Ruiz, J.A. Hernández-Viezcas, C. Valdés, I.A. Medina-Velo et al., Manganese nanops control salinity-modulated molecular responses in Capsicum annuum L. through priming: a sustainable approach for agriculture. ACS Sustain. Chem. Eng. 8(3), 1427–1436 (2020). https://doi.org/10.1021/acssuschemeng.9b05615
D.M. Kasote, J.H.J. Lee, G.K. Jayaprakasha, B.S. Patil, Manganese oxide nanops as safer seed priming agent to improve chlorophyll and antioxidant profiles in watermelon seedlings. Nanomaterials 11(4), 1016 (2021). https://doi.org/10.3390/nano11041016
K. Vijai Anand, A.R. Anugraga, M. Kannan, G. Singaravelu, K. Govindaraju, Bio-engineered magnesium oxide nanops as nano-priming agent for enhancing seed germination and seedling vigour of green gram (Vigna radiate L.). Mater Lett. 271, 127792 (2020). https://doi.org/10.1016/j.matlet.2020.127792
D.D. Hong, H.T.L. Anh, L.T. Tam, P.L. Show, H.Y. Leong, Effects of nanoscale zerovalent cobalt on growth and photosynthetic parameters of soybean Glycine max (L.) merr. Dt26 at different stages. BMC Energy 1(1), 6 (2019). https://doi.org/10.1186/s42500-019-0007-4
V. Krishnamoorthy, S. Rajiv, Potential seed coatings fabricated from electrospinning hexaaminocyclotriphosphazene and cobalt nanops incorporated polyvinylpyrrolidone for sustainable agriculture. ACS Sustain. Chem. Eng. 5, 146–152 (2017). https://doi.org/10.1021/acssuschemeng.6b01088
A. Joshi, S. Kaur, P. Singh, K. Dharamvir, H. Nayyar et al., Tracking multi-walled carbon nanotubes inside oat (Avena sativa L.) plants and assessing their effect on growth, yield, and mammalian (human) cell viability. Appl. Nanosci. 8, 1399–1414 (2018). https://doi.org/10.1007/s13204-018-0801-1
K. Pandey, M.H. Lahiani, V.K. Hicks, M.K. Hudson, M.J. Green et al., Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops. PLoS ONE 13(8), e0202274 (2018). https://doi.org/10.1371/journal.pone.0202274
H. Baz, M. Creech, J. Chen, H. Gong, K. Bradford et al., Water-soluble carbon nanops improve seed germination and post-germination growth of lettuce under salinity stress. Agronomy 10(8), 1192 (2020). https://doi.org/10.3390/agronomy10081192
L. Yin, Z. Wang, S. Wang, W. Xu, H. Bao, Effects of graphene oxide and/or Cd2+ on seed germination, seedling growth, and uptake to Cd2+ in solution culture. Water Air Soil Pollut. 229(5), 151 (2018). https://doi.org/10.1007/s11270-018-3809-y
M.J. Kim, W. Kim, H. Chung, Effects of silver-graphene oxide on seed germination and early growth of crop species. Peer J. 8, e8387 (2020). https://doi.org/10.7717/peerj.8387
J. Li, F. Wu, Q. Fang, Z. Wu, Q. Duan et al., The mutual effects of graphene oxide nanosheets and cadmium on the growth, cadmium uptake and accumulation in rice. Plant Physiol. Biochem. 147, 289–294 (2020). https://doi.org/10.1016/j.plaphy.2019.12.034
M. Bravo Cadena, G.M. Preston, R.A.L. Van der Hoorn, N.A. Flanagan, H.E. Townley et al., Enhancing cinnamon essential oil activity by nanop encapsulation to control seed pathogens. Ind. Crops Prod. 124, 755–764 (2018). https://doi.org/10.1016/j.indcrop.2018.08.043
A. Hussain, M. Rizwan, S. Ali, M.Z.U. Rehman, M.F. Qayyum et al., Combined use of different nanops effectively decreased cadmium (cd) concentration in grains of wheat grown in a field contaminated with cd. Ecotoxicol. Environ. Saf. 215, 112139 (2021). https://doi.org/10.1016/j.ecoenv.2021.112139
S. Rahimi, M. Hatami, M. Ghorbanpour, Silicon-nanop mediated changes in seed germination and vigor index of marigold (Calendula officinalis L.) compared to silicate under peg-induced drought stress. Gesunde Pflanz. 73, 1–15 (2021). https://doi.org/10.1007/s10343-021-00579-x
W. Mahakham, A.K. Sarmah, S. Maensiri, P. Theerakulpisut, Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanops. Sci. Rep. 7(1), 8263 (2017). https://doi.org/10.1038/s41598-017-08669-5
P. Acharya, G.K. Jayaprakasha, K. Crosby, J. Jifon, B. Patil, Green-synthesized nanops enhanced seedling growth, yield, and quality of onion (Allium cepa L.). ACS Sustain. Chem. Eng. 7(17), 14580–14590 (2019). https://doi.org/10.1021/acssuschemeng.9b02180
R. Kannaujia, C.M. Srivastava, V. Prasad, B.N. Singh, V. Pandey, Phyllanthus emblica fruit extract stabilized biogenic silver nanops as a growth promoter of wheat varieties by reducing ros toxicity. Plant Physiol. Biochem. 142, 460–471 (2019). https://doi.org/10.1016/j.plaphy.2019.08.008
P. Acharya, G.K. Jayaprakasha, K.M. Crosby, J.L. Jifon, B.S. Patil, Nanop-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in texas. Sci. Rep. 10(1), 5037 (2020). https://doi.org/10.1038/s41598-020-61696-7
F.N. Spagnoletti, C. Spedalieri, F. Kronberg, R. Giacometti, Extracellular biosynthesis of bactericidal Ag/AgCl nanops for crop protection using the fungus Macrophomina phaseolina. J. Environ. Manage. 231, 457–466 (2019). https://doi.org/10.1016/j.jenvman.2018.10.081
W. Mahakham, P. Theerakulpisut, S. Maensiri, S. Phumying, A.K. Sarmah, Environmentally benign synthesis of phytochemicals-capped gold nanops as nanopriming agent for promoting maize seed germination. Sci. Total Environ. 573, 1089–1102 (2016). https://doi.org/10.1016/j.scitotenv.2016.08.120
K. Gopinath, S. Gowri, V. Karthika, A. Arumugam, Green synthesis of gold nanops from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J. Nanostruc. Chem. 4(3), 115 (2014). https://doi.org/10.1007/s40097-014-0115-0
N. Tsi Ndeh, S. Maensiri, D. Maensiri, The effect of green synthesized gold nanops on rice germination and roots. Adv. Nat. Sci: Nanosci. Nanotechnol. 8(3), 035008 (2017). https://doi.org/10.1088/2043-6254/aa724a
S. Arora, P. Sharma, S. Kumar, R. Nayan, P. Khanna et al., Gold-nanop induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul. 66, 303–310 (2012). https://doi.org/10.1007/s10725-011-9649
F. Fang, M. Li, J. Zhang, C.-S. Lee, Different strategies for organic nanop preparation in biomedicine. ACS Mater. Lett. 2(5), 531–549 (2020). https://doi.org/10.1021/acsmaterialslett.0c00078
R. Li, J. He, H. Xie, W. Wang, S. Bose et al., Effects of chitosan nanops on seed germination and seedling growth of wheat (Triticum aestivum L.). Int. J. Biol. Macromol. 126, 91–100 (2018). https://doi.org/10.1016/j.ijbiomac.2018.12.118
M. Sathiyabama, S. Muthukumar, Chitosan guar nanop preparation and its in vitro antimicrobial activity towards phytopathogens of rice. Int. J. Biol. Macromol. 153, 297–304 (2020). https://doi.org/10.1016/j.ijbiomac.2020.03.001
K. Divya, S. Vijayan, S.J. Nair, M.S. Jisha, Optimization of chitosan nanop synthesis and its potential application as germination elicitor of Oryza sativa L. Int. J. Biol. Macromol. 124, 1053–1059 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.185
C.N. Siddaiah, K.V.H. Prasanth, N.R. Satyanarayana, V. Mudili, V.K. Gupta et al., Chitosan nanops having higher degree of acetylation induce resistance against pearl millet downy mildew through nitric oxide generation. Sci. Rep. 8(1), 2485 (2018). https://doi.org/10.1038/s41598-017-19016-z
V. Saharan, R.V. Kumaraswamy, R.C. Choudhary, S. Kumari, A. Pal et al., Cu-chitosan nanop mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. J. Agric. Food Chem. 64(31), 6148–6155 (2016). https://doi.org/10.1021/acs.jafc.6b02239
T. Xu, C. Ma, Z. Aytac, X. Hu, K.W. Ng et al., Enhancing agrichemical delivery and seedling development with biodegradable, tunable, biopolymer-based nanofiber seed coatings. ACS Sustain. Chem. Eng. 8(25), 9537–9548 (2020). https://doi.org/10.1021/acssuschemeng.0c02696
H. Zhang, M. Yang, Q. Luan, H. Tang, F. Huang et al., Cellulose anionic hydrogels based on cellulose nanofibers as natural stimulants for seed germination and seedling growth. J. Agric. Food Chem. 65(19), 3785–3791 (2017). https://doi.org/10.1021/acs.jafc.6b05815
T. Kacsó, E.A. Hanna, F. Salinas, C.E. Astete, E. Bodoki et al., Zein and lignin-based nanops as soybean seed treatment: translocation and impact on seed and plant health. Appl. Nanosci. 12, 1557–1569 (2022). https://doi.org/10.1007/s13204-021-02307-3
S. Falsini, I. Clemente, A. Papini, C. Tani, S. Schiff et al., When sustainable nanochemistry meets agriculture: lignin nanocapsules for bioactive compound delivery to plantlets. ACS Sustain. Chem. Eng. 7(24), 19935–19942 (2019). https://doi.org/10.1021/acssuschemeng.9b05462
K. Sampathkumar, K.X. Tan, S.C.J. Loo, Developing nano-delivery systems for agriculture and food applications with nature-derived polymers. iScience 23(5), 101055 (2020). https://doi.org/10.1016/j.isci.2020.101055
S. Shakiba, C.E. Astete, S. Paudel, C.M. Sabliov, D.F. Rodrigues et al., Emerging investigator series: polymeric nanocarriers for agricultural applications: synthesis, characterization, and environmental and biological interactions. Environ. Sci. Nano 7(1), 37–67 (2020). https://doi.org/10.1039/C9EN01127G
S. Kumar, G. Bhanjana, A. Sharma, M. Sidhu, N. Dilbaghi, Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanops. Carbohydr. Polym. 101, 1061–1067 (2014). https://doi.org/10.1016/j.carbpol.2013.10.025
S. Chuxiang, S. Ke, W. Wei, Y. Zhao, L. Tian et al., Encapsulation and controlled release of hydrophilic pesticide in shell cross-linked nanocapsules containing aqueous core. Int. J. Pharm. 463, 108–114 (2014). https://doi.org/10.1016/j.ijpharm.2013.12.050
H. Chen, H. Zhi, J. Liang, M. Yu, B. Cui et al., Development of leaf-adhesive pesticide nanocapsules with pH-responsive release to enhance retention time on crop leaves and improve utilization efficiency. J. Mater. Chem. B 9(3), 783–792 (2021). https://doi.org/10.1039/D0TB02430A
J. Cui, C. Sun, A. Wang, Y. Wang, H. Zhu et al., Dual-functionalized pesticide nanocapsule delivery system with improved spreading behavior and enhanced bioactivity. Nanomaterials 10(2), 220 (2020). https://doi.org/10.3390/nano10020220
J.T. da Costa, M.R. Forim, E.S. Costa, J.R. De Souza, J.M. Mondego et al., Effects of different formulations of neem oil-based products on control Zabrotes subfasciatus (boheman, 1833) (coleoptera: Bruchidae) on beans. J. Stored Prod. Res. 56, 49–53 (2014). https://doi.org/10.1016/j.jspr.2013.10.004
Y. Jiang, Y. Chen, D. Tian, F. Shen, X. Wan et al., Fabrication and characterization of lignin–xylan hybrid nanospheres as pesticide carriers with enzyme-mediated release property. Soft Matter 16(39), 9083–9093 (2020). https://doi.org/10.1039/D0SM01402H
R. Li, M. Li, J. He, H. Xie, W. Wang et al., Preparation of pectin nanospheres and its effect on wheat (Triticum aestivum L.) seed germination and growth. J. Plant Growth Regul. 41, 3197–3207 (2022). https://doi.org/10.1007/s00344-021-10505-0
Z.-J. Zhang, X.-F. Shang, L. Yang, Y.-B. Shi, Y.-Q. Liu et al., Engineering of peglayted camptothecin into nanomicelles and supramolecular hydrogels for pesticide combination control. Front. Chem. 7, 922 (2020). https://doi.org/10.3389/fchem.2019.00922
T. Adak, J. Kumar, N.A. Shakil, S. Walia, Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. J. Environ. Sci. Health B 47(3), 217–225 (2012). https://doi.org/10.1080/03601234.2012.634365
E. Dong, P. Li, C. Zhou, C. Wang, S. Li et al., PH-responsive ultrasonic self-assembly spinosad-loaded nanomicelles and their antifungal activity to fusarium oxysporum. React. Funct. Polym. 141, 123–132 (2019). https://doi.org/10.1016/j.reactfunctpolym.2019.05.004
X. Lv, M. Yuan, Y. Pei, C. Liu, X. Wang et al., The enhancement of antiviral activity of chloroinconazide by aglinate-based nanogel and its plant growth promotion effect. J. Agric. Food Chem. 69(17), 4992–5002 (2021). https://doi.org/10.1021/acs.jafc.1c00941
M. Ziaee, S. Moharramipour, A. Mohsenifar, MA-chitosan nanogel loaded with Cuminum cyminum essential oil for efficient management of two stored product beetle pests. J. Pest Sci. 87, 691–699 (2014). https://doi.org/10.1007/s10340-014-0590-6
S. Meraz-Dávila, C.E. Pérez-García, A.A. Feregrino-Perez, Challenges and advantages of electrospun nanofibers in agriculture: a review. Mater. Res. Express 8(4), 042001 (2021). https://doi.org/10.1088/2053-1591/abee55
B.V. Farias, T. Pirzada, R. Mathew, T.L. Sit, C. Opperman et al., Electrospun polymer nanofibers as seed coatings for crop protection. ACS Sustain. Chem. Eng. 7(24), 19848–19856 (2019). https://doi.org/10.1021/acssuschemeng.9b05200
M. Noruzi, Electrospun nanofibres in agriculture and the food industry: A review. J. Sci. Food Agric. 96(14), 4663–4678 (2016). https://doi.org/10.1002/jsfa.7737
T. Pirzada, B.V. de Farias, R. Mathew, R.H. Guenther, M.V. Byrd et al., Recent advances in biodegradable matrices for active ingredient release in crop protection: towards attaining sustainability in agriculture. Curr. Opin. Colloid Interface Sci. 48, 121–136 (2020). https://doi.org/10.1016/j.cocis.2020.05.002
I.O. Adisa, V.L.R. Pullagurala, J.R. Peralta-Videa, C.O. Dimkpa, W.H. Elmer et al., Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environ. Sci. Nano 6(7), 2002–2030 (2019). https://doi.org/10.1039/C9EN00265K
V. Krishnamoorthy, G. Elumalai, S. Rajiv, Environment friendly synthesis of polyvinylpyrrolidone nanofibers and their potential use as seed coats. New J. Chem. 40, 3268–3276 (2016). https://doi.org/10.1039/C5NJ03008K
D. Sun, H.I. Hussain, Z. Yi, J.E. Rookes, L. Kong et al., Mesoporous silica nanops enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere 152, 81–91 (2016). https://doi.org/10.1016/j.chemosphere.2016.02.096
S. Rangaraj, K. Gopalu, P. Periasamy, R. Venkatachalam, N. Kannan, Growth and physiological responses of maize (Zea mays L.) to porous silica nanops in soil. J. Nanopart. Res. 14, 1294 (2012). https://doi.org/10.1007/s11051-012-1294-6
M. Sattary, J. Amini, R. Hallaj, Antifungal activity of the lemongrass and clove oil encapsulated in mesoporous silica nanops against wheat’s take-all disease. Pestic. Biochem. Physiol. 170, 104696 (2020). https://doi.org/10.1016/j.pestbp.2020.104696
P. Zhao, C. Wang, S. Zhang, L. Zheng, F. Li et al., Fungicide-loaded mesoporous silica nanops promote rice seedling growth by regulating amino acid metabolic pathways. J. Hazard Mater. 425, 127892 (2022). https://doi.org/10.1016/j.jhazmat.2021.127892
F. Zhu, X. Liu, L. Cao, C. Cao, F. Li et al., Uptake and distribution of fenoxanil-loaded mesoporous silica nanops in rice plants. Int. J. Mol. Sci. 19, 2854 (2018). https://doi.org/10.3390/ijms19102854
P. Silva, L. Pereira, A. Lago, M. Reis, É. Rezende et al., Physical-mechanical and antifungal properties of pectin nanocomposites/neem oil nanoemulsion for seed coating. Food Biophys. 14, 456–466 (2019). https://doi.org/10.1007/s11483-019-09592-0
N. Iqbal, D. Hazra, A. Purkait, N. Kumar, J. Kumar, Bioengineering of neem colloidal nano-emulsion formulation with adjuvant for better surface adhesion and long term activity in insect control. PREPRINT (Version 1) available at Research Square, (2020). https://doi.org/10.21203/rs.3.rs-116370/v1
S. Kumar, N. Singh, L.S. Devi, S. Kumar, M. Kamle et al., Neem oil and its nanoemulsion in sustainable food preservation and packaging: Current status and future prospects. J. Agric. Food Res. 7, 100254 (2022). https://doi.org/10.1016/j.jafr.2021.100254
P. Silva, L. Pereira, É. Rezende, M. Reis, A. Lago et al., Production and efficacy of neem nanoemulsion in the control of Aspergillus flavus and Penicillium citrinum in soybean seeds. Eur. J. Plant. Pathol. 155, 1105–1116 (2019). https://doi.org/10.1007/s10658-019-01838-4
T. Adak, N. Barik, N. Patil, G.-P.-P. Govindharaj, B. Gowda Gadratagi et al., Nanoemulsion of eucalyptus oil: an alternative to synthetic pesticides against two major storage insects (Sitophilus oryzae (L.) and Tribolium castaneum (Herbst)) of rice. Ind. Crops Prod. 143, 111849 (2019). https://doi.org/10.1016/j.indcrop.2019.111849
G.N.G. Saritha, T. Anju, A. Kumar, Nanotechnology—big impact: How nanotechnology is changing the future of agriculture? J. Agric. Food Res. 10, 100457 (2022). https://doi.org/10.1016/j.jafr.2022.100457
M. Nuruzzaman, Y. Liu, J. Ren, M.M. Rahman, H. Zhang et al., Capability of organically modified montmorillonite nanoclay as a carrier for imidacloprid delivery. ACS Agric. Sci. Technol. 2(1), 57–68 (2022). https://doi.org/10.1021/acsagscitech.1c00125
L. Wang, D. Cai, G. Zhang, C. Ge, Z. Wu et al., Improve the dispersion of nanoclay using biochar and biosilica-application to decrease the loss of pesticide. J. Nanosci. Nanotechnol. 16(6), 5869–5874 (2016). https://doi.org/10.1166/jnn.2016.12065
N. Jahan, S. Aslam, K.U. rahman, T. Fazal, F. Anwar et al., Formulation and characterisation of nanosuspension of herbal extracts for enhanced antiradical potential. J. Exp. Nanosci. 11(1), 72–80 (2016). https://doi.org/10.1080/17458080.2015.1025303
Z. Zhu, C. Shao, Y. Guo, J. Feng, C. Chen et al., Facile pathway to generate agrochemical nanosuspensions integrating super-high load, eco-friendly excipients, intensified preparation process, and enhanced potency. Nano Res. 14(7), 2179–2187 (2021). https://doi.org/10.1007/s12274-020-3177-y
Y. Sasson, G. Levy-Ruso, O. Toledano, I. Ishaaya, Nanosuspensions: emerging novel agrochemical formulations, in Insecticides Design Using Advanced Technologies. ed. by I. Ishaaya, A.R. Horowitz, R. Nauen (Springer, Berlin, 2007), pp.1–39
F. Corrias, A. Melis, A. Atzei, S. Marceddu, F. Dedola et al., Zoxamide accumulation and retention evaluation after nanosuspension technology application in tomato plant. Pest Manag. Sci. 77(7), 3508–3518 (2021). https://doi.org/10.1002/ps.6404
B. Cui, Y. Lv, F. Gao, C. Wang, Z. Zeng et al., Improving abamectin bioavailability via nanosuspension constructed by wet milling technique. Pest Manag. Sci. 75(10), 2756–2764 (2019). https://doi.org/10.1002/ps.5386
C.-P. Chin, H.-S. Wu, S. Wang, New approach to pesticide delivery using nanosuspensions: research and applications. Ind. Eng. Chem. Res. 50(12), 7637–7643 (2011). https://doi.org/10.1021/ie2001007
S. Sharma, B. Shree, Aditika, A. Sharma, M. Irfan et al., Nanop-based toxicity in perishable vegetable crops: molecular insights, impact on human health and mitigation strategies for sustainable cultivation. Environ. Res. 212, 113168 (2022). https://doi.org/10.1016/j.envres.2022.113168
P.C. Ray, H. Yu, P.P. Fu, Toxicity and environmental risks of nanomaterials: Challenges and future needs. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 27(1), 1–35 (2009). https://doi.org/10.1080/10590500802708267
H. Bahadar, F. Maqbool, K. Niaz, M. Abdollahi, Toxicity of nanops and an overview of current experimental models. Iran Biomed. J. 20(1), 1–11 (2016). https://doi.org/10.7508/ibj.2016.01.001
H.-J. Huang, Y.-H. Lee, Y.-H. Hsu, C.-T. Liao, Y.-F. Lin et al., Current strategies in assessment of nanotoxicity: alternatives to in vivo animal testing. Int. J. Mol. Sci. 22(8), 4216 (2021). https://doi.org/10.3390/ijms22084216
E. Burello, A. Worth, Computational nanotoxicology: predicting toxicity of nanops. Nat. Nanotechnol. 6, 138–139 (2011). https://doi.org/10.1038/nnano.2011.27
M.G. Tirumala, P. Anchi, S. Raja, M. Rachamalla, C. Godugu, Novel methods and approaches for safety evaluation of nanop formulations: a focus towards in vitro models and adverse outcome pathways. Front. Pharmacol. 12, 1612659 (2021). https://doi.org/10.3389/fphar.2021.612659
A. Pérez-de-Luque, Interaction of nanomaterials with plants: What do we need for real applications in agriculture? Front. Environ. Sci. 5, 12 (2017). https://doi.org/10.3389/fenvs.2017.00012
M. Zia-ur-Rehman, M.F. Qayyum, F. Akmal, M.A. Maqsood, M. Rizwan et al., (2018) Recent progress of nanotoxicology in plants, in Nanomaterials in Plants, Algae, and Microorganisms. ed. by D.K. Tripathi, P. Ahmad, S. Sharma, D.K. Chauhan, N.K. Dubey (Academic Press, Cambridge, 2018), pp.143–174
M. Kumari, V. Ernest, A. Mukherjee, N. Chandrasekaran, In vivo nanotoxicity assays in plant models. Methods Mol. Biol. 926, 399–410 (2012). https://doi.org/10.1007/978-1-62703-002-1_26
D. Lin, B. Xing, Phytotoxicity of nanops: inhibition of seed germination and root growth. Environ. Pollut. 150(2), 243–250 (2007). https://doi.org/10.1016/j.envpol.2007.01.016
D.T. Savage, J.Z. Hilt, T.D. Dziubla, In vitro methods for assessing nanop toxicity, in Nanotoxicity. Methods in Molecular Biology, vol. 1894, ed. by Q. Zhang (Humana Press, New York, 2019), pp.1–29
D. Verma, S. Patel, K. Kushwah, Effects of nanops on seed germination, growth, phytotoxicity and crop improvement. Agric. Rev. 42, 1–11 (2020). https://doi.org/10.18805/ag.R-1964
C.W. Lee, S. Mahendra, K. Zodrow, D. Li, Y.-C. Tsai et al., Developmental phytotoxicity of metal oxide nanops to arabidopsis thaliana. Environ. Toxicol. Chem. 29(3), 669–675 (2010). https://doi.org/10.1002/etc.58
H.B. Patisaul, Endocrine disruption by dietary phyto-oestrogens: Impact on dimorphic sexual systems and behaviours. Proc. Nutri. Soci. 76(2), 130–144 (2017). https://doi.org/10.1017/S0029665116000677
S.T. Khan, S.F. Adil, M.R. Shaik, H.Z. Alkhathlan, M. Khan et al., Engineered nanomaterials in soil: their impact on soil microbiome and plant health. Plants 11(1), 109 (2021). https://doi.org/10.3390/plants11010109
H. Tian, M. Kah, K. Kariman, Are nanops a threat to mycorrhizal and rhizobial symbioses? A critical review. Front. Microbiol. 10, 1660 (2019). https://doi.org/10.3389/fmicb.2019.01660
H. Zhang, M. Huang, W. Zhang, J.L. Gardea-Torresdey, J.C. White et al., Silver nanops alter soil microbial community compositions and metabolite profiles in unplanted and cucumber-planted soils. Environ. Sci. Technol. 54(6), 3334–3342 (2020). https://doi.org/10.1021/acs.est.9b07562
M. Li, P. Wang, F. Dang, D.-M. Zhou, The transformation and fate of silver nanops in paddy soil: effects of soil organic matter and redox conditions. Environ. Sci. Nano 4(4), 919–928 (2017). https://doi.org/10.1039/C6EN00682E
M. Khan, M.S.A. Khan, K.K. Borah, Y. Goswami, K.R. Hakeem et al., The potential exposure and hazards of metal-based nanops on plants and environment, with special emphasis on ZnO NPs, TiO2 NPs, and AgNPs: a review. Environ. Adv. 6, 100128 (2021). https://doi.org/10.1016/j.envadv.2021.100128
F. Ameen, K. Alsamhary, J.A. Alabdullatif, S. Alnadhari, A review on metal-based nanops and their toxicity to beneficial soil bacteria and fungi. Ecotoxicol. Environ. Saf. 213, 112027 (2021). https://doi.org/10.1016/j.ecoenv.2021.112027
M.S. Rahman, A. Chakraborty, S. Mazumdar, N.C. Nandi, M.N.I. Bhuiyan et al., Effects of poly(vinylpyrrolidone) protected platinum nanops on seed germination and growth performance of Pisum sativum. Nano Struct. Nano Object 21, 100408 (2020). https://doi.org/10.1016/j.nanoso.2019.100408
J. Metch, N. Burrows, C. Murphy, A. Pruden, P. Vikesland, Metagenomic analysis of microbial communities yields insight into impacts of nanop design. Nat. Nanotech. 13, 253–259 (2018). https://doi.org/10.1038/s41565-017-0029-3
L.M. Skjolding, S.N. Sørensen, N.B. Hartmann, R. Hjorth, S.F. Hansen et al., Aquatic ecotoxicity testing of nanops-the quest to disclose nanop effects. Angew. Chem. Int. Ed. 55(49), 15224–15239 (2016). https://doi.org/10.1002/anie.201604964
A. Schultz, D. Boyle, D. Chamot, K. Ong, K. Wilkinson et al., Aquatic toxicity of manufactured nanomaterials: challenges and recommendations for future toxicity testing. Environ. Chem. 11(3), 207–226 (2014). https://doi.org/10.1071/EN13221
B.-V. Boros, V. Ostafe, Evaluation of ecotoxicology assessment methods of nanomaterials and their effects. Nanomaterials 10(4), 610 (2020). https://doi.org/10.3390/nano10040610
J.M. Hillegass, A. Shukla, S.A. Lathrop, M.B. MacPherson, N.K. Fukagawa et al., Assessing nanotoxicity in cells in vitro. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2(3), 219–231 (2010). https://doi.org/10.1002/wnan.54
V. Weissig, T.K. Pettinger, N. Murdock, Nanopharmaceuticals (part 1): products on the market. Int. J. Nanomed. 9, 4357–4373 (2014). https://doi.org/10.2147/IJN.S46900
F. Lebre, N. Chatterjee, S. Costa, E. Fernández-de-Gortari, C. Lopes et al., Nanosafety: an evolving concept to bring the safest possible nanomaterials to society and environment. Nanomaterials 12(11), 1810 (2022). https://doi.org/10.3390/nano12111810
M. Phenny, Risks, uncertainties, and ethics of nanotechnology in agriculture, in New Visions in Plant Science. ed. by Ö. Çelik (IntechOpen, London, 2018)
J.E. Hutchison, The road to sustainable nanotechnology: challenges, progress and opportunities. ACS Sustain. Chem. Engin. 4(11), 5907–5914 (2016). https://doi.org/10.1021/acssuschemeng.6b02121
S. Ying, Z. Guan, P.C. Ofoegbu, P. Clubb, C. Rico et al., Green synthesis of nanops: current developments and limitations. Environ. Techn. Innov. 26, 102336 (2022). https://doi.org/10.1016/j.eti.2022.102336
M.J. Amorim, The daunting challenge of ensuring sustainable development of nanomaterials. Int. J. Environ. Res. Public Health 13(2), 245 (2016). https://doi.org/10.3390/ijerph13020245
J. Allan, S. Belz, A. Hoeveler, M. Hugas, H. Okuda et al., Regulatory landscape of nanotechnology and nanoplastics from a global perspective. Regul. Toxicol. Pharmacol. 122, 104885 (2021). https://doi.org/10.1016/j.yrtph.2021.104885
A.V. Singh, R.-S. Maharjan, A. Kanase, K. Siewert, D. Rosenkranz et al., Machine-learning-based approach to decode the influence of nanomaterial properties on their interaction with cells. ACS Appl. Mater. Interfaces 13(1), 1943–1955 (2021). https://doi.org/10.1021/acsami.0c18470
D. Abdollahdokht, Y. Gao, S. Faramarz, A. Poustforoosh, M. Abbasi et al., Conventional agrochemicals towards nano-biopesticides: An overview on recent advances. Chem. Biol. Technol. Agric. 9(1), 13 (2022). https://doi.org/10.1186/s40538-021-00281-0
T.N.V.K.V. Prasad, P. Sudhakar, Y. Sreenivasulu, P. Latha, V. Munaswamy et al., Effect of nanoscale zinc oxide ps on the germination, growth and yield of peanut. J. Plant Nutr. 35, 905–927 (2012). https://doi.org/10.1080/01904167.2012.663443
C.O. Dimkpa, J.C. White, W.H. Elmer, J. Gardea-Torresdey, Nanop and ionic zn promote nutrient loading of sorghum grain under low npk fertilization. J. Agric. Food Chem. 65(39), 8552–8559 (2017). https://doi.org/10.1021/acs.jafc.7b02961
L.V. Subbaiah, T.N.V.K.V. Prasad, T.G. Krishna, P. Sudhakar, B.R. Reddy et al., Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in maize (Zea mays L.). J. Agric. Food Chem. 64(19), 3778–3788 (2016). https://doi.org/10.1021/acs.jafc.6b00838
S. Roghayyeh, S. Mohammad, S. Mehdi Tajbakhsh, S. Rauf Seyed, Effects of nano-iron oxide ps on agronomic traits of soybean. Not. Sci. Biol. 2(2), 112–113 (2010). https://doi.org/10.15835/nsb224667
S.A. Hoang, L.Q. Nguyen, N.H. Nguyen, C.Q. Tran, D.V. Nguyen et al., Metal nanops as effective promotors for maize production. Sci. Rep. 9(1), 13925 (2019). https://doi.org/10.1038/s41598-019-50265-2
L. Marchiol, A. Mattiello, F. Pošćić, G. Fellet, C. Zavalloni et al., Changes in physiological and agronomical parameters of barley (Hordeum vulgare) exposed to cerium and titanium dioxide nanops. Int. J. Environ. Res. Public Health. 13, 332 (2016). https://doi.org/10.3390/ijerph13030332
H. Dağhan, N. Gulmezoglu, N. Köleli, B. Karakaya, Impact of titanium dioxide nanops (TiO2-NPs) on growth and mineral nutrient uptake of wheat (Triticum vulgare L.). Biotech. Studies 29(2), 69–76 (2020). https://doi.org/10.38042/biost.2020.29.02.03
P. Singh, R. Singh, A. Borthakur, P. Srivastava, N. Srivastava et al., Effect of nanoscale TiO2-activated carbon composite on Solanum lycopersicum (L.) and Vigna radiata (L.) seeds germination. Energy Ecol. Environ. 1(3), 131–140 (2016). https://doi.org/10.1007/s40974-016-0009-8
C. Ma, H. Liu, G. Chen, Q. Zhao, H. Guo et al., Dual roles of glutathione in silver nanop detoxification and enhancement of nitrogen assimilation in soybean (Glycine max (L.) merrill). Environ. Sci. Nano 7(7), 1954–1966 (2020). https://doi.org/10.1039/D0EN00147C
M. Haghighi, M. Pessarakli, Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci. Hortic. 161, 111–117 (2013). https://doi.org/10.1016/j.scienta.2013.06.034
P.S. Yerragopu, S. Hiregoudar, U. Nidoni, K.T. Ramappa, A. Sreenivas et al., Effect of plant-mediated synthesized silver nanops on pulse beetle, Callosobruchus chinensis (L.). Int. J. Curr. Microbiol. Appl. Sci. 8, 1965–1972 (2019). https://doi.org/10.1016/j.scienta.2013.06.034
T.S. Tadler, G.P.L.Ó.G. Arcía, J.G.G. Itto, M.B. Uteler, Particulate nanoinsecticides: a new concept in insect pest management, in Insecticides—Agriculture and Toxicology. ed. by G. Begum (IntechOpen, London, 2017)
M.E. El-Naggar, N.R. Abdelsalam, M.M.G. Fouda, M.I. Mackled, M.A.M. Al-Jaddadi et al., Soil application of nano silica on maize yield and its insecticidal activity against some stored insects after the post-harvest. Nanomaterials 10(4), 739 (2020). https://doi.org/10.3390/nano10040739
C. Belhamel, L. Boulekbache-Makhlouf, S. Bedini, C. Tani, T. Lombardi et al., Nanostructured alumina as seed protectant against three stored-product insect pests. J. Stored Prod. Res. 87, 101607 (2020). https://doi.org/10.1016/j.jspr.2020.101607
A. Diagne, B.N. Diop, P.M. Ndiaye, C. Andreazza, M. Sembene, Efficacy of silica nanops on groundnut bruchid, Caryedon serratus (Olivier) (coleoptera, bruchidae). Afr Crop Sci. J. 27, 229 (2019). https://doi.org/10.4314/acsj.v27i2.8
T. Ismail, M.A. Salama, M. El-Ebiary, Entomotoxic effects of synthesized aluminum oxide nanops against sitophilus oryzae and their toxicological effects on albino rats. Toxicol. Ind. Health 37(10), 594–602 (2021). https://doi.org/10.1177/07482337211035000
A.M. Mohammed, S.A. Aswd, Effect of some nanops on the stages biology of the southern cowpea beetle Callosobruchus maculatus (Fab.) (Coleoptera: Bruchidae). J. Edu. Sci. 28(3), 188–199 (2019). https://doi.org/10.33899/edusj.2019.162956
H. Zhang, R. Wang, Z. Chen, P. Cui, H. Lu et al., The effect of zinc oxide nanops for enhancing rice (Oryza sativa L.) yield and quality. Agriculture 11(12), 1247 (2021). https://doi.org/10.3390/agriculture11121247
G. Dileep Kumar, K. Raja, N. Natarajan, K. Govindaraju, K.S. Subramanian, Invigouration treatment of metal and metal oxide nanops for improving the seed quality of aged chilli seeds (Capsicum annum L.). Mater. Chem. Phys. 242, 122492 (2020). https://doi.org/10.1016/j.matchemphys.2019.122492
M. Waqas Mazhar, M. Ishtiaq, M. Maqbool, R. Akram, A. Shahid et al., Seed priming with iron oxide nanops raises biomass production and agronomic profile of water-stressed flax plants. Agronomy 12(5), 982 (2022). https://doi.org/10.3390/agronomy12050982
A. Joshi, S. Kaur, K. Dharamvir, H. Nayyar, G. Verma, Multi-walled carbon nanotubes applied through seed-priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.). J. Sci. Food Agric. 98(8), 3148–3160 (2018). https://doi.org/10.1002/jsfa.8818
E.N. Shcherbakova, A.V. Shcherbakov, E.E. Andronov, L.N. Gonchar, S.M. Kalenskaya et al., Combined pre-seed treatment with microbial inoculants and mo nanops changes composition of root exudates and rhizosphere microbiome structure of chickpea (Cicer arietinum L.) plants. Symbiosis 73(1), 57–69 (2017). https://doi.org/10.1007/s13199-016-0472-1
A. Hussain, M. Rizwan, Q. Ali, S. Ali, Seed priming with silicon nanops improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. Environ. Sci. Pollut. Res. 26(8), 7579–7588 (2019). https://doi.org/10.1007/s11356-019-04210-5
A.M. Saad, A.Y.M. Alabdali, M. Ebaid, E. Salama, M.T. El-Saadony et al., Impact of green chitosan nanops fabricated from shrimp processing waste as a source of nano nitrogen fertilizers on the yield quantity and quality of wheat (Triticum aestivum L.) cultivars. Molecules 27(17), 5640 (2022). https://doi.org/10.3390/molecules27175640
S. Muthukrishnan, I. Murugan, M. Selvaraj, Chitosan nanops loaded with thiamine stimulate growth and enhances protection against wilt disease in chickpea. Carbohydr. Polym. 212, 169–177 (2019). https://doi.org/10.1016/j.carbpol.2019.02.037
M. Mondal, A. Puteh, N. Dafader, Foliar application of chitosan improved morpho-physiological attributes and yield in summer tomato (Solanum lycopersicum). Pak. J. Agric. Sci. 53, 339–344 (2016). https://doi.org/10.21162/PAKJAS/16.2011
V.D. Rajput, A. Singh, T. Minkina, S. Rawat, S. Mandzhieva et al., Nano-enabled products: challenges and opportunities for sustainable agriculture. Plants 10(12), 2727 (2021). https://doi.org/10.3390/plants10122727