An Air-Rechargeable Zn Battery Enabled by Organic–Inorganic Hybrid Cathode
Corresponding Author: Yihua Gao
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 53
Abstract
Self-charging power systems collecting energy harvesting technology and batteries are attracting extensive attention. To solve the disadvantages of the traditional integrated system, such as highly dependent on energy supply and complex structure, an air-rechargeable Zn battery based on MoS2/PANI cathode is reported. Benefited from the excellent conductivity desolvation shield of PANI, the MoS2/PANI cathode exhibits ultra-high capacity (304.98 mAh g−1 in N2 and 351.25 mAh g−1 in air). In particular, this battery has the ability to collect, convert and store energy simultaneously by an air-rechargeable process of the spontaneous redox reaction between the discharged cathode and O2 from air. The air-rechargeable Zn batteries display a high open-circuit voltage (1.15 V), an unforgettable discharge capacity (316.09 mAh g−1 and the air-rechargeable depth is 89.99%) and good air-recharging stability (291.22 mAh g−1 after 50 air recharging/galvanostatic current discharge cycle). Most importantly, both our quasi-solid zinc ion batteries and batteries modules have excellent performance and practicability. This work will provide a promising research direction for the material design and device assembly of the next-generation self-powered system.
Highlights:
1 The excellent performance of MoS2/PANI cathode is due to better conductivity and desolvation shielding.
2 The self-charging zinc battery was successfully assembled that achieve deep self-discharge and long cycle life.
3 The quasi solid state battery and battery module have excellent performance and practicability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Zichittella, J. Perez-Ramirez, Status and prospects of the decentralised valorisation of natural gas into energy and energy carriers. Chem. Soc. Rev. 50(5), 2984–3012 (2021). https://doi.org/10.1039/d0cs01506g
- P. Veers, K. Dykes, E. Lantz, S. Barth, C.L. Bottasso et al., Grand challenges in the science of wind energy. Science 366(6464), 443 (2019). https://doi.org/10.1126/science.aau2027
- Z. Li, Y. Gao, Z. Zhang, Q. Xiong, L. Deng et al., cPCN-regulated SnO2 composites enables perovskite solar cell with efficiency beyond 23%. Nano-Micro Lett. 13, 101 (2021). https://doi.org/10.1007/s40820-021-00636-0
- N. Zhang, F. Huang, S. Zhao, X. Lv, Y. Zhou et al., Photo-rechargeable fabrics as sustainable and robust power sources for wearable bioelectronics. Matter 2(5), 1260–1269 (2020). https://doi.org/10.1016/j.matt.2020.01.022
- P. Peng, J. Zhou, L. Liang, X. Huang, H. Lv et al., Regulating thermogalvanic effect and mechanical robustness via redox ions for flexible quasi-solid-state thermocells. Nano-Micro Lett. 14, 81 (2022). https://doi.org/10.1007/s40820-022-00824-6
- Z. Li, Y. Xu, L. Wu, Y. An, Y. Sun et al., Zinc ion thermal charging cell for low-grade heat conversion and energy storage. Nat. Commun. 13, 132 (2022). https://doi.org/10.1038/s41467-021-27755-x
- Q. Zhang, Q. Liang, D.K. Nandakumar, H. Qu, Q. Shi et al., Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean. Nat. Commun. 12, 616 (2021). https://doi.org/10.1038/s41467-021-20919-9
- K. Zhao, Y. Wang, L. Han, Y. Wang, X. Luo et al., Nanogenerator-based self-charging energy storage devices. Nano-Micro Lett. 11, 19 (2019). https://doi.org/10.1007/s40820-019-0251-7
- P. Chen, T.T. Li, Y.B. Yang, G.R. Li, X.P. Gao, Coupling aqueous zinc batteries and perovskite solar cells for simultaneous energy harvest, conversion and storage. Nat. Commun. 13, 64 (2022). https://doi.org/10.1038/s41467-021-27791-7
- X. Wang, Y.T. Huang, C. Liu, K. Mu, K.H. Li et al., Direct thermal charging cell for converting low-grade heat to electricity. Nat. Commun. 10, 4151 (2019). https://doi.org/10.1038/s41467-019-12144-2
- G. Conta, A. Libanori, T. Tat, G. Chen, J. Chen, Triboelectric nanogenerators for therapeutic electrical stimulation. Adv. Mater. 33(26), 2007502 (2021). https://doi.org/10.1002/adma.202007502
- T. Liu, J. Wang, Y. Xu, Y. Zhang, Y. Wang, Dendrite-free and stable lithium metal battery achieved by a model of stepwise lithium deposition and stripping. Nano-Micro Lett. 13, 170 (2021). https://doi.org/10.1007/s40820-021-00687-3
- H. He, H. Zhang, D. Huang, W. Kuang, X. Li et al., Harnessing plasma-assisted doping engineering to stabilize metallic phase MoSe2 for fast and durable sodium-ion storage. Adv. Mater. 34(15), 2200397 (2022). https://doi.org/10.1002/adma.202200397
- Q. Xiong, H. He, M. Zhang, Design of flexible films based on kinked carbon nanofibers for high rate and stable potassium-ion storage. Nano-Micro Lett. 14, 47 (2022). https://doi.org/10.1007/s40820-022-00791-y
- L. Zhao, Z. Liu, D. Chen, F. Liu, Z. Yang et al., Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett. 13, 49 (2021). https://doi.org/10.1007/s40820-020-00577-0
- Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
- X. Li, Y. Ma, Y. Yue, G. Li, C. Zhang et al., A flexible Zn-ion hybrid micro-supercapacitor based on MXene anode and V2O5 cathode with high capacitance. Chem. Eng. J. 428, 130965 (2022). https://doi.org/10.1016/j.cej.2021.130965
- D. Lin, Y. Li, Recent advances of aqueous rechargeable zinc-iodine batteries: challenges, solutions, and prospects. Adv. Mater. 34(23), 2108856 (2022). https://doi.org/10.1002/adma.202108856
- S. Zhao, X. Luo, Y. Cheng, Z. Shi, T. Huang et al., A flexible zinc ion hybrid capacitor integrated system with layers-dependent V2CTx MXene. Chem. Eng. J. 454, 140360 (2023). https://doi.org/10.1016/j.cej.2022.140360
- D. Adekoya, S. Qian, X. Gu, W. Wen, D. Li et al., DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review. Nano-Micro Lett. 13, 13 (2020). https://doi.org/10.1007/s40820-020-00522-1
- K. Chen, S. Kim, M. Je, H. Choi, Z. Shi et al., Ultrasonic plasma engineering toward facile synthesis of single-atom M-N4/N-doped carbon (M = Fe, Co) as superior oxygen electrocatalyst in rechargeable zinc-air batteries. Nano-Micro Lett. 13, 60 (2021). https://doi.org/10.1007/s40820-020-00581-4
- F. Dong, M. Wu, Z. Chen, X. Liu, G. Zhang et al., Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: recent advances and future perspectives. Nano-Micro Lett. 14, 36 (2021). https://doi.org/10.1007/s40820-021-00768-3
- Y. Niu, X. Teng, S. Gong, M. Xu, S.G. Sun et al., Engineering two-phase bifunctional oxygen electrocatalysts with tunable and synergetic components for flexible Zn-air batteries. Nano-Micro Lett. 13, 126 (2021). https://doi.org/10.1007/s40820-021-00650-2
- Y. Zhang, F. Wan, S. Huang, S. Wang, Z. Niu et al., A chemically self-charging aqueous zinc-ion battery. Nat. Commun. 11, 2199 (2020). https://doi.org/10.1038/s41467-020-16039-5
- L. Yan, Y. Zhang, Z. Ni, Y. Zhang, J. Xu et al., Chemically self-charging aqueous zinc-organic battery. J. Am. Chem. Soc. 143(37), 15369–15377 (2021). https://doi.org/10.1021/jacs.1c06936
- W. Li, C. Han, Q. Gu, S.L. Chou, J.Z. Wang et al., Electron delocalization and dissolution-restraint in vanadium oxide superlattices to boost electrochemical performance of aqueous zinc-ion batteries. Adv. Energy Mater. 10(48), 2001852 (2020). https://doi.org/10.1002/aenm.202001852
- S. Liu, H. Zhu, B. Zhang, G. Li, H. Zhu et al., Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv. Mater. 32(26), e2001113 (2020). https://doi.org/10.1002/adma.202001113
- J. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu et al., Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 9, 2906 (2018). https://doi.org/10.1038/s41467-018-04949-4
- X. Ma, X. Cao, M. Yao, L. Shan, X. Shi et al., Organic-inorganic hybrid cathode with dual energy-storage mechanism for ultrahigh-rate and ultralong-life aqueous zinc-ion batteries. Adv. Mater. 34(6), e2105452 (2022). https://doi.org/10.1002/adma.202105452
- Z. Yao, Q. Wu, K. Chen, J. Liu, C. Li, Shallow-layer pillaring of a conductive polymer in monolithic grains to drive superior zinc storage via a cascading effect. Energy Environ. Sci. 13(9), 3149–3163 (2020). https://doi.org/10.1039/d0ee01531h
- D. Bin, W. Huo, Y. Yuan, J. Huang, Y. Liu et al., Organic-inorganic-induced polymer intercalation into layered composites for aqueous zinc-ion battery. Chem 6(4), 968–984 (2020). https://doi.org/10.1016/j.chempr.2020.02.001
- W. Bi, G. Gao, G. Wu, M. Atif, M.S. AlSalhi et al., Sodium vanadate/PEDOT nanocables rich with oxygen vacancies for high energy conversion efficiency zinc ion batteries. Energy Storage Mater. 40, 209–218 (2021). https://doi.org/10.1016/j.ensm.2021.05.003
- Z. Zhang, B. Xi, X. Wang, X. Ma, W. Chen et al., Oxygen defects engineering of VO2·xH2O nanosheets via in situ polypyrrole polymerization for efficient aqueous zinc ion storage. Adv. Funct. Mater. 31(34), 2103070 (2021). https://doi.org/10.1002/adfm.202103070
- L. Hu, Z. Wu, C. Lu, F. Ye, Q. Liu et al., Principles of interlayer-spacing regulation of layered vanadium phosphates for superior zinc-ion batteries. Energy Environ. Sci. 14(7), 4095–4106 (2021). https://doi.org/10.1039/d1ee01158h
- S. Li, Y. Liu, X. Zhao, K. Cui, Q. Shen et al., Molecular engineering on MoS2 enables large interlayers and unlocked basal planes for high-performance aqueous Zn-ion storage. Angew. Chem. Int. Ed. 60(37), 20286–20293 (2021). https://doi.org/10.1002/anie.202108317
- H. Liang, Z. Cao, F. Ming, W. Zhang, D.H. Anjum et al., Aqueous zinc-ion storage in MoS2 by tuning the intercalation energy. Nano Lett. 19(5), 3199–3206 (2019). https://doi.org/10.1021/acs.nanolett.9b00697
- J. Liu, P. Xu, J. Liang, H. Liu, W. Peng et al., Boosting aqueous zinc-ion storage in MoS2 via controllable phase. Chem. Eng. J. 389, 124405 (2020). https://doi.org/10.1016/j.cej.2020.124405
- H. Liu, J.G. Wang, W. Hua, Z. You, Z. Hou et al., Boosting zinc-ion intercalation in hydrated MoS2 nanosheets toward substantially improved performance. Energy Storage Mater. 35, 731–738 (2021). https://doi.org/10.1016/j.ensm.2020.12.010
- W. Xu, C. Sun, K. Zhao, X. Cheng, S. Rawal et al., Defect engineering activating (boosting) zinc storage capacity of MoS2. Energy Storage Mater. 16, 527–534 (2019). https://doi.org/10.1016/j.ensm.2018.09.009
- H. Li, Q. Yang, F. Mo, G. Liang, Z. Liu et al., MoS2 nanosheets with expanded interlayer spacing for rechargeable aqueous Zn-ion batteries. Energy Storage Mater. 19, 94–101 (2019). https://doi.org/10.1016/j.ensm.2018.10.005
- S. Li, Y. Liu, X. Zhao, Q. Shen, W. Zhao et al., Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries. Adv. Mater. 33(12), e2007480 (2021). https://doi.org/10.1002/adma.202007480
- C. Li, C. Liu, Y. Wang, Y. Lu, L. Zhu et al., Drastically-enlarged interlayer-spacing MoS2 nanocages by inserted carbon motifs as high performance cathodes for aqueous zinc-ion batteries. Energy Storage Mater. 49, 144–152 (2022). https://doi.org/10.1016/j.ensm.2022.03.048
- J. Jiang, Z. Chen, Y. Hu, Y. Xiang, L. Zhang et al., Flexo-photovoltaic effect in MoS2. Nat. Nanotechnol. 16(8), 894 (2021). https://doi.org/10.1038/s41565-021-00919-y
- X. Zhang, Q. Liao, S. Liu, Z. Kang, Z. Zhang et al., Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. Nat. Commun. 8, 15881 (2017). https://doi.org/10.1038/ncomms15881
- W. Zhang, Y. Liu, X. Pei, Z. Yuan, Y. Zhang et al., Stretchable MoS2 artificial photoreceptors for e-skin. Adv. Funct. Mater. 32(10), 2107524 (2022). https://doi.org/10.1002/adfm.202107524
- J. Shi, S. Wang, X. Chen, Z. Chen, X. Du et al., An ultrahigh energy density quasi-solid-state zinc ion microbattery with excellent flexibility and thermostability. Adv. Energy Mater. 9(37), 1901957 (2019). https://doi.org/10.1002/aenm.201901957
- J. Shi, S. Wang, Q. Wang, X. Chen, X. Du et al., A new flexible zinc-ion capacitor based on δ-MnO2@carbon cloth battery-type cathode and MXene@cotton cloth capacitor-type anode. J. Power Sour. 446, 227345 (2020). https://doi.org/10.1016/j.jpowsour.2019.227345
- F. Cui, D. Wang, F. Hu, X. Yu, C. Guan et al., Deficiency and surface engineering boosting electronic and ionic kinetics in NH4V4O10 for high-performance aqueous zinc-ion battery. Energy Storage Mater. 44, 197–205 (2022). https://doi.org/10.1016/j.ensm.2021.10.001
- J. Shi, Y. Hou, Z. Liu, Y. Zheng, L. Wen et al., The high-performance MoO3−x/MXene cathodes for zinc-ion batteries based on oxygen vacancies and electrolyte engineering. Nano Energy 91, 106651 (2022). https://doi.org/10.1016/j.nanoen.2021.106651
- P. Zheng, T. Li, K. Chi, C. Xiao, J. Fan et al., DFT insights into the formation of sulfur vacancies over corner/edge site of Co/Ni-promoted MoS2 and WS2 under the hydrodesulfurization conditions. Appl. Catal. B Environ. 257, 117937 (2019). https://doi.org/10.1016/j.apcatb.2019.117937
- Y. Tian, L. Xu, M. Li, D. Yuan, X. Liu et al., Interface engineering of CoS/CoO@N-doped graphene nanocomposite for high-performance rechargeable Zn-air batteries. Nano-Micro Lett. 13, 3 (2020). https://doi.org/10.1007/s40820-020-00526-x
- N.K. Wagh, S.S. Shinde, C.H. Lee, S.H. Kim, D.H. Kim et al., Supramolecular polymer intertwined free-standing bifunctional membrane catalysts for all-temperature flexible Zn-air batteries. Nano-Micro Lett. 14, 190 (2022). https://doi.org/10.1007/s40820-022-00927-0
- W.S.V. Lee, T. Xiong, X. Wang, J. Xue, Unraveling MoS2 and transition metal dichalcogenides as functional zinc-ion battery cathode: a perspective. Small Methods 5(1), e2000815 (2021). https://doi.org/10.1002/smtd.202000815
- H. Zhang, W. Wu, Q. Liu, F. Yang, X. Shi et al., Interlayer engineering of alpha-MoO3 modulates selective hydronium intercalation in neutral aqueous electrolyte. Angew. Chem. Int. Ed. 60(2), 896–903 (2021). https://doi.org/10.1002/anie.202010073
- Y. Xue, Y. Guo, Q. Zhang, Z. Xie, J. Wei et al., MOF-derived Co and Fe species loaded on N-doped carbon networks as efficient oxygen electrocatalysts for Zn-air batteries. Nano-Micro Lett. 14, 162 (2022). https://doi.org/10.1007/s40820-022-00890-w
- Y. Zhu, K. Yue, C. Xia, S. Zaman, H. Yang et al., Recent advances on MOF derivatives for non-noble metal oxygen electrocatalysts in zinc-air batteries. Nano-Micro Lett. 13, 137 (2021). https://doi.org/10.1007/s40820-021-00669-5
- T. Jain, B.C. Rasera, R.J.S. Guerrero, M.S.H. Boutilier, S.C. O’Hern et al., Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores. Nat. Nanotechnol. 10(12), 1053 (2015). https://doi.org/10.1038/nnano.2015.222
- W. Xin, J. Fu, Y. Qian, L. Fu, X.Y. Kong et al., Biomimetic KcsA channels with ultra-selective K+ transport for monovalent ion sieving. Nat. Commun. 13, 1701 (2022). https://doi.org/10.1038/s41467-022-29382-6
References
G. Zichittella, J. Perez-Ramirez, Status and prospects of the decentralised valorisation of natural gas into energy and energy carriers. Chem. Soc. Rev. 50(5), 2984–3012 (2021). https://doi.org/10.1039/d0cs01506g
P. Veers, K. Dykes, E. Lantz, S. Barth, C.L. Bottasso et al., Grand challenges in the science of wind energy. Science 366(6464), 443 (2019). https://doi.org/10.1126/science.aau2027
Z. Li, Y. Gao, Z. Zhang, Q. Xiong, L. Deng et al., cPCN-regulated SnO2 composites enables perovskite solar cell with efficiency beyond 23%. Nano-Micro Lett. 13, 101 (2021). https://doi.org/10.1007/s40820-021-00636-0
N. Zhang, F. Huang, S. Zhao, X. Lv, Y. Zhou et al., Photo-rechargeable fabrics as sustainable and robust power sources for wearable bioelectronics. Matter 2(5), 1260–1269 (2020). https://doi.org/10.1016/j.matt.2020.01.022
P. Peng, J. Zhou, L. Liang, X. Huang, H. Lv et al., Regulating thermogalvanic effect and mechanical robustness via redox ions for flexible quasi-solid-state thermocells. Nano-Micro Lett. 14, 81 (2022). https://doi.org/10.1007/s40820-022-00824-6
Z. Li, Y. Xu, L. Wu, Y. An, Y. Sun et al., Zinc ion thermal charging cell for low-grade heat conversion and energy storage. Nat. Commun. 13, 132 (2022). https://doi.org/10.1038/s41467-021-27755-x
Q. Zhang, Q. Liang, D.K. Nandakumar, H. Qu, Q. Shi et al., Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean. Nat. Commun. 12, 616 (2021). https://doi.org/10.1038/s41467-021-20919-9
K. Zhao, Y. Wang, L. Han, Y. Wang, X. Luo et al., Nanogenerator-based self-charging energy storage devices. Nano-Micro Lett. 11, 19 (2019). https://doi.org/10.1007/s40820-019-0251-7
P. Chen, T.T. Li, Y.B. Yang, G.R. Li, X.P. Gao, Coupling aqueous zinc batteries and perovskite solar cells for simultaneous energy harvest, conversion and storage. Nat. Commun. 13, 64 (2022). https://doi.org/10.1038/s41467-021-27791-7
X. Wang, Y.T. Huang, C. Liu, K. Mu, K.H. Li et al., Direct thermal charging cell for converting low-grade heat to electricity. Nat. Commun. 10, 4151 (2019). https://doi.org/10.1038/s41467-019-12144-2
G. Conta, A. Libanori, T. Tat, G. Chen, J. Chen, Triboelectric nanogenerators for therapeutic electrical stimulation. Adv. Mater. 33(26), 2007502 (2021). https://doi.org/10.1002/adma.202007502
T. Liu, J. Wang, Y. Xu, Y. Zhang, Y. Wang, Dendrite-free and stable lithium metal battery achieved by a model of stepwise lithium deposition and stripping. Nano-Micro Lett. 13, 170 (2021). https://doi.org/10.1007/s40820-021-00687-3
H. He, H. Zhang, D. Huang, W. Kuang, X. Li et al., Harnessing plasma-assisted doping engineering to stabilize metallic phase MoSe2 for fast and durable sodium-ion storage. Adv. Mater. 34(15), 2200397 (2022). https://doi.org/10.1002/adma.202200397
Q. Xiong, H. He, M. Zhang, Design of flexible films based on kinked carbon nanofibers for high rate and stable potassium-ion storage. Nano-Micro Lett. 14, 47 (2022). https://doi.org/10.1007/s40820-022-00791-y
L. Zhao, Z. Liu, D. Chen, F. Liu, Z. Yang et al., Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett. 13, 49 (2021). https://doi.org/10.1007/s40820-020-00577-0
Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
X. Li, Y. Ma, Y. Yue, G. Li, C. Zhang et al., A flexible Zn-ion hybrid micro-supercapacitor based on MXene anode and V2O5 cathode with high capacitance. Chem. Eng. J. 428, 130965 (2022). https://doi.org/10.1016/j.cej.2021.130965
D. Lin, Y. Li, Recent advances of aqueous rechargeable zinc-iodine batteries: challenges, solutions, and prospects. Adv. Mater. 34(23), 2108856 (2022). https://doi.org/10.1002/adma.202108856
S. Zhao, X. Luo, Y. Cheng, Z. Shi, T. Huang et al., A flexible zinc ion hybrid capacitor integrated system with layers-dependent V2CTx MXene. Chem. Eng. J. 454, 140360 (2023). https://doi.org/10.1016/j.cej.2022.140360
D. Adekoya, S. Qian, X. Gu, W. Wen, D. Li et al., DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review. Nano-Micro Lett. 13, 13 (2020). https://doi.org/10.1007/s40820-020-00522-1
K. Chen, S. Kim, M. Je, H. Choi, Z. Shi et al., Ultrasonic plasma engineering toward facile synthesis of single-atom M-N4/N-doped carbon (M = Fe, Co) as superior oxygen electrocatalyst in rechargeable zinc-air batteries. Nano-Micro Lett. 13, 60 (2021). https://doi.org/10.1007/s40820-020-00581-4
F. Dong, M. Wu, Z. Chen, X. Liu, G. Zhang et al., Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: recent advances and future perspectives. Nano-Micro Lett. 14, 36 (2021). https://doi.org/10.1007/s40820-021-00768-3
Y. Niu, X. Teng, S. Gong, M. Xu, S.G. Sun et al., Engineering two-phase bifunctional oxygen electrocatalysts with tunable and synergetic components for flexible Zn-air batteries. Nano-Micro Lett. 13, 126 (2021). https://doi.org/10.1007/s40820-021-00650-2
Y. Zhang, F. Wan, S. Huang, S. Wang, Z. Niu et al., A chemically self-charging aqueous zinc-ion battery. Nat. Commun. 11, 2199 (2020). https://doi.org/10.1038/s41467-020-16039-5
L. Yan, Y. Zhang, Z. Ni, Y. Zhang, J. Xu et al., Chemically self-charging aqueous zinc-organic battery. J. Am. Chem. Soc. 143(37), 15369–15377 (2021). https://doi.org/10.1021/jacs.1c06936
W. Li, C. Han, Q. Gu, S.L. Chou, J.Z. Wang et al., Electron delocalization and dissolution-restraint in vanadium oxide superlattices to boost electrochemical performance of aqueous zinc-ion batteries. Adv. Energy Mater. 10(48), 2001852 (2020). https://doi.org/10.1002/aenm.202001852
S. Liu, H. Zhu, B. Zhang, G. Li, H. Zhu et al., Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv. Mater. 32(26), e2001113 (2020). https://doi.org/10.1002/adma.202001113
J. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu et al., Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 9, 2906 (2018). https://doi.org/10.1038/s41467-018-04949-4
X. Ma, X. Cao, M. Yao, L. Shan, X. Shi et al., Organic-inorganic hybrid cathode with dual energy-storage mechanism for ultrahigh-rate and ultralong-life aqueous zinc-ion batteries. Adv. Mater. 34(6), e2105452 (2022). https://doi.org/10.1002/adma.202105452
Z. Yao, Q. Wu, K. Chen, J. Liu, C. Li, Shallow-layer pillaring of a conductive polymer in monolithic grains to drive superior zinc storage via a cascading effect. Energy Environ. Sci. 13(9), 3149–3163 (2020). https://doi.org/10.1039/d0ee01531h
D. Bin, W. Huo, Y. Yuan, J. Huang, Y. Liu et al., Organic-inorganic-induced polymer intercalation into layered composites for aqueous zinc-ion battery. Chem 6(4), 968–984 (2020). https://doi.org/10.1016/j.chempr.2020.02.001
W. Bi, G. Gao, G. Wu, M. Atif, M.S. AlSalhi et al., Sodium vanadate/PEDOT nanocables rich with oxygen vacancies for high energy conversion efficiency zinc ion batteries. Energy Storage Mater. 40, 209–218 (2021). https://doi.org/10.1016/j.ensm.2021.05.003
Z. Zhang, B. Xi, X. Wang, X. Ma, W. Chen et al., Oxygen defects engineering of VO2·xH2O nanosheets via in situ polypyrrole polymerization for efficient aqueous zinc ion storage. Adv. Funct. Mater. 31(34), 2103070 (2021). https://doi.org/10.1002/adfm.202103070
L. Hu, Z. Wu, C. Lu, F. Ye, Q. Liu et al., Principles of interlayer-spacing regulation of layered vanadium phosphates for superior zinc-ion batteries. Energy Environ. Sci. 14(7), 4095–4106 (2021). https://doi.org/10.1039/d1ee01158h
S. Li, Y. Liu, X. Zhao, K. Cui, Q. Shen et al., Molecular engineering on MoS2 enables large interlayers and unlocked basal planes for high-performance aqueous Zn-ion storage. Angew. Chem. Int. Ed. 60(37), 20286–20293 (2021). https://doi.org/10.1002/anie.202108317
H. Liang, Z. Cao, F. Ming, W. Zhang, D.H. Anjum et al., Aqueous zinc-ion storage in MoS2 by tuning the intercalation energy. Nano Lett. 19(5), 3199–3206 (2019). https://doi.org/10.1021/acs.nanolett.9b00697
J. Liu, P. Xu, J. Liang, H. Liu, W. Peng et al., Boosting aqueous zinc-ion storage in MoS2 via controllable phase. Chem. Eng. J. 389, 124405 (2020). https://doi.org/10.1016/j.cej.2020.124405
H. Liu, J.G. Wang, W. Hua, Z. You, Z. Hou et al., Boosting zinc-ion intercalation in hydrated MoS2 nanosheets toward substantially improved performance. Energy Storage Mater. 35, 731–738 (2021). https://doi.org/10.1016/j.ensm.2020.12.010
W. Xu, C. Sun, K. Zhao, X. Cheng, S. Rawal et al., Defect engineering activating (boosting) zinc storage capacity of MoS2. Energy Storage Mater. 16, 527–534 (2019). https://doi.org/10.1016/j.ensm.2018.09.009
H. Li, Q. Yang, F. Mo, G. Liang, Z. Liu et al., MoS2 nanosheets with expanded interlayer spacing for rechargeable aqueous Zn-ion batteries. Energy Storage Mater. 19, 94–101 (2019). https://doi.org/10.1016/j.ensm.2018.10.005
S. Li, Y. Liu, X. Zhao, Q. Shen, W. Zhao et al., Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries. Adv. Mater. 33(12), e2007480 (2021). https://doi.org/10.1002/adma.202007480
C. Li, C. Liu, Y. Wang, Y. Lu, L. Zhu et al., Drastically-enlarged interlayer-spacing MoS2 nanocages by inserted carbon motifs as high performance cathodes for aqueous zinc-ion batteries. Energy Storage Mater. 49, 144–152 (2022). https://doi.org/10.1016/j.ensm.2022.03.048
J. Jiang, Z. Chen, Y. Hu, Y. Xiang, L. Zhang et al., Flexo-photovoltaic effect in MoS2. Nat. Nanotechnol. 16(8), 894 (2021). https://doi.org/10.1038/s41565-021-00919-y
X. Zhang, Q. Liao, S. Liu, Z. Kang, Z. Zhang et al., Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. Nat. Commun. 8, 15881 (2017). https://doi.org/10.1038/ncomms15881
W. Zhang, Y. Liu, X. Pei, Z. Yuan, Y. Zhang et al., Stretchable MoS2 artificial photoreceptors for e-skin. Adv. Funct. Mater. 32(10), 2107524 (2022). https://doi.org/10.1002/adfm.202107524
J. Shi, S. Wang, X. Chen, Z. Chen, X. Du et al., An ultrahigh energy density quasi-solid-state zinc ion microbattery with excellent flexibility and thermostability. Adv. Energy Mater. 9(37), 1901957 (2019). https://doi.org/10.1002/aenm.201901957
J. Shi, S. Wang, Q. Wang, X. Chen, X. Du et al., A new flexible zinc-ion capacitor based on δ-MnO2@carbon cloth battery-type cathode and MXene@cotton cloth capacitor-type anode. J. Power Sour. 446, 227345 (2020). https://doi.org/10.1016/j.jpowsour.2019.227345
F. Cui, D. Wang, F. Hu, X. Yu, C. Guan et al., Deficiency and surface engineering boosting electronic and ionic kinetics in NH4V4O10 for high-performance aqueous zinc-ion battery. Energy Storage Mater. 44, 197–205 (2022). https://doi.org/10.1016/j.ensm.2021.10.001
J. Shi, Y. Hou, Z. Liu, Y. Zheng, L. Wen et al., The high-performance MoO3−x/MXene cathodes for zinc-ion batteries based on oxygen vacancies and electrolyte engineering. Nano Energy 91, 106651 (2022). https://doi.org/10.1016/j.nanoen.2021.106651
P. Zheng, T. Li, K. Chi, C. Xiao, J. Fan et al., DFT insights into the formation of sulfur vacancies over corner/edge site of Co/Ni-promoted MoS2 and WS2 under the hydrodesulfurization conditions. Appl. Catal. B Environ. 257, 117937 (2019). https://doi.org/10.1016/j.apcatb.2019.117937
Y. Tian, L. Xu, M. Li, D. Yuan, X. Liu et al., Interface engineering of CoS/CoO@N-doped graphene nanocomposite for high-performance rechargeable Zn-air batteries. Nano-Micro Lett. 13, 3 (2020). https://doi.org/10.1007/s40820-020-00526-x
N.K. Wagh, S.S. Shinde, C.H. Lee, S.H. Kim, D.H. Kim et al., Supramolecular polymer intertwined free-standing bifunctional membrane catalysts for all-temperature flexible Zn-air batteries. Nano-Micro Lett. 14, 190 (2022). https://doi.org/10.1007/s40820-022-00927-0
W.S.V. Lee, T. Xiong, X. Wang, J. Xue, Unraveling MoS2 and transition metal dichalcogenides as functional zinc-ion battery cathode: a perspective. Small Methods 5(1), e2000815 (2021). https://doi.org/10.1002/smtd.202000815
H. Zhang, W. Wu, Q. Liu, F. Yang, X. Shi et al., Interlayer engineering of alpha-MoO3 modulates selective hydronium intercalation in neutral aqueous electrolyte. Angew. Chem. Int. Ed. 60(2), 896–903 (2021). https://doi.org/10.1002/anie.202010073
Y. Xue, Y. Guo, Q. Zhang, Z. Xie, J. Wei et al., MOF-derived Co and Fe species loaded on N-doped carbon networks as efficient oxygen electrocatalysts for Zn-air batteries. Nano-Micro Lett. 14, 162 (2022). https://doi.org/10.1007/s40820-022-00890-w
Y. Zhu, K. Yue, C. Xia, S. Zaman, H. Yang et al., Recent advances on MOF derivatives for non-noble metal oxygen electrocatalysts in zinc-air batteries. Nano-Micro Lett. 13, 137 (2021). https://doi.org/10.1007/s40820-021-00669-5
T. Jain, B.C. Rasera, R.J.S. Guerrero, M.S.H. Boutilier, S.C. O’Hern et al., Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores. Nat. Nanotechnol. 10(12), 1053 (2015). https://doi.org/10.1038/nnano.2015.222
W. Xin, J. Fu, Y. Qian, L. Fu, X.Y. Kong et al., Biomimetic KcsA channels with ultra-selective K+ transport for monovalent ion sieving. Nat. Commun. 13, 1701 (2022). https://doi.org/10.1038/s41467-022-29382-6