Recent Advances and Challenges Toward Application of Fibers and Textiles in Integrated Photovoltaic Energy Storage Devices
Corresponding Author: Amjid Rafique
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 40
Abstract
Flexible microelectronic devices have seen an increasing trend toward development of miniaturized, portable, and integrated devices as wearable electronics which have the requirement for being light weight, small in dimension, and suppleness. Traditional three-dimensional (3D) and two-dimensional (2D) electronics gadgets fail to effectively comply with these necessities owing to their stiffness and large weights. Investigations have come up with a new family of one-dimensional (1D) flexible and fiber-based electronic devices (FBEDs) comprising power storage, energy-scavenging, implantable sensing, and flexible displays gadgets. However, development and manufacturing are still a challenge owing to their small radius, flexibility, low weight, weave ability and integration in textile electronics. This paper will provide a detailed review on the importance of substrates in electronic devices, intrinsic property requirements, fabrication classification and applications in energy harvesting, energy storage and other flexible electronic devices. Fiber- and textile-based electronic devices for bulk/scalable fabrications, encapsulation, and testing are reviewed and presented future research ideas to enhance the commercialization of these fiber-based electronics devices.
Highlights:
1 Compelling aspects of fiber- and textile-based flexible electrodes are reviewed in detail from the point of view of fabrication, properties, and devices performance.
2 The advances of fibers and textile-based electrodes employed in flexible solar cells and flexible energy storage devices are discussed.
3 The outlook and challenges in employing and developing textile-based flexible electrodes are highlighted.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Rafique, A. Massa, M. Fontana, S. Bianco, A. Chiodoni et al., Highly uniform anodically deposited film of MnO2 nanoflakes on carbon fibers for flexible and wearable fiber-shaped supercapacitors. ACS Appl. Mater. Interfaces 9(34), 28386–28393 (2017). https://doi.org/10.1021/acsami.7b06311
- J. Liu, Y. Li, S. Yong, S. Arumugam, S. Beeby, Flexible printed monolithic-structured solid-state dye sensitized solar cells on woven glass fibre textile for wearable energy harvesting applications. Sci. Rep. 9, 1362 (2019). https://doi.org/10.1038/s41598-018-37590-8
- R. Das, X. He, Flexible, printed oled displays 2020–2030: forecasts, markets, technologies. IDTechEx, https://www.idtechex.com/en/research-report/flexible-printed-oled-displays-2020-2030-forecasts-markets-technologies/693#:~:text=In%202020%2C%20IDTechEx%20expect%20that,%2C%20Korea%2C%20Japan%20and%20Taiwan. Accessed 15 June 2022
- F.M. Research, Stretchable electronics market research report, https://www.researchandmarkets.com/reports/4845901. Accessed 15 June 2022
- J. Chen, I.A. Liu, Technology advances in flexible displays and substrates. IEEE Access 1, 150–158 (2013). https://doi.org/10.1109/ACCESS.2013.2260792
- A. Poor, A healthtech report. HealthTech V Annual Report, US AID (2014), https://pdf.usaid.gov/pdf_docs/PA00K7BF.pdf
- M. Hassan, G. Abbas, N. Li, A. Afzal, Z. Haider et al., Significance of flexible substrates for wearable and implantable devices: recent advances and perspectives. Adv. Mater. Technol. 7(3), 2100773 (2022). https://doi.org/10.1002/admt.202100773
- L. Wang, X. Fu, J. He, X. Shi, T. Chen et al., Application challenges in fiber and textile electronics. Adv. Mater. 32(5), 1901971 (2020). https://doi.org/10.1002/adma.201901971
- N.J. Smart, A survey of smartphone and tablet computer use by colorectal surgeons in the UK and continental Europe. Colorectal Dis. 14(9), e535–e538 (2012). https://doi.org/10.1111/j.1463-1318.2012.03161.x
- X. Li, Z.H. Lin, G. Cheng, X. Wen, Y. Liu et al., 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor. ACS Nano 8(10), 10674–10681 (2014). https://doi.org/10.1021/nn504243j
- D. Deahl, Google and Levi’s Smart Jacket Can Now Warn You If You’re About to Leave Your Phone Behind. The Verge (2018), https://www.theverge.com/2018/12/9/18131404/google-atap-levis-project-smart-jacket-jacquard-always-together
- E. Frackowiak, Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9(15), 1774–1785 (2007). https://doi.org/10.1039/B618139M
- G. Qian, X. Liao, Y. Zhu, F. Pan, X. Chen et al., Designing flexible lithium-ion batteries by structural engineering. ACS Energy Lett. 4(3), 690–701 (2019). https://doi.org/10.1021/acsenergylett.8b02496
- Z. Gao, Y. Zhang, N. Song, X. Li, Towards flexible lithium–sulfur battery from natural cotton textile. Electrochim. Acta 246, 507–516 (2017). https://doi.org/10.1016/j.electActa2017.06.069
- X. Lei, X. Liu, W. Ma, Z. Cao, Y. Wang et al., Flexible lithium–air battery in ambient air with an in situ formed gel electrolyte. Angew. Chem. Int. Ed. 57(49), 16131–16135 (2018). https://doi.org/10.1002/anie.201810882
- L. David, R. Bhandavat, G. Singh, MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8(2), 1759–1770 (2014). https://doi.org/10.1021/nn406156b
- C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 124(4), 957–959 (2012). https://doi.org/10.1002/ange.201106307
- K.T. Braam, S.K. Volkman, V. Subramanian, Characterization and optimization of a printed, primary silver–zinc battery. J. Power Sources 199, 367–372 (2012). https://doi.org/10.1016/j.jpowsour.2011.09.076
- S. Kwon, H. Kim, S. Choi, E.G. Jeong, D. Kim et al., Weavable and highly efficient organic light-emitting fibers for wearable electronics: a scalable, low-temperature process. Nano Lett. 18(1), 347–356 (2018). https://doi.org/10.1021/acs.nanolett.7b04204
- Z. Zhang, L. Cui, X. Shi, X. Tian, D. Wang et al., Textile display for electronic and brain-interfaced communications. Adv. Mater. 30(18), 1800323 (2018). https://doi.org/10.1002/adma.201800323
- A. Canales, S. Park, A. Kilias, P. Anikeeva, Multifunctional fibers as tools for neuroscience and neuroengineering. Acc. Chem. Res. 51(4), 829–838 (2018). https://doi.org/10.1021/acs.accounts.7b00558
- X. Pu, L. Li, M. Liu, C. Jiang, C. Du et al., Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28(1), 98–105 (2016). https://doi.org/10.1002/adma.201504403
- C. Wu, T.W. Kim, T. Guo, F. Li, Wearable ultra-lightweight solar textiles based on transparent electronic fabrics. Nano Energy 32, 367–373 (2017). https://doi.org/10.1016/j.nanoen.2016.12.040
- Z. Wen, M.H. Yeh, H. Guo, J. Wang, Y. Zi et al., Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2(10), e1600097 (2016). https://doi.org/10.1126/sciadv.1600097
- Z. Zhang, X. Chen, P. Chen, G. Guan, L. Qiu et al., Integrated polymer solar cell and electrochemical supercapacitor in a flexible and stable fiber format. Adv. Mater. 26(3), 466–470 (2014). https://doi.org/10.1002/adma.201302951
- M. Peng, K. Yan, H. Hu, D. Shen, W. Song et al., Efficient fiber shaped zinc bromide batteries and dye sensitized solar cells for flexible power sources. J. Mater. Chem. C 3(10), 2157–2165 (2015). https://doi.org/10.1039/C4TC02997F
- R. Li, X. Xiang, X. Tong, J. Zou, Q. Li, Wearable double-twisted fibrous perovskite solar cell. Adv. Mater. 27(25), 3831–3835 (2015). https://doi.org/10.1002/adma.201501333
- X. Fu, H. Sun, S. Xie, J. Zhang, Z. Pan et al., A fiber-shaped solar cell showing a record power conversion efficiency of 10%. J. Mater. Chem. A 6(1), 45–51 (2018). https://doi.org/10.1039/C7TA08637G
- Y. Zhang, H. Wang, H. Lu, S. Li, Y. Zhang, Electronic fibers and textiles: recent progress and perspective. iScience 24(7), 102716 (2021). https://doi.org/10.1016/j.isci.2021.102716
- M. Kang, T.W. Kim, Recent advances in fiber-shaped electronic devices for wearable applications. Appl. Sci. 11(13), 6131 (2021). https://doi.org/10.3390/app11136131
- W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang et al., Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26(31), 5310–5336 (2014). https://doi.org/10.1002/adma.201400633
- A. Malik, B. Kandasubramanian, Flexible polymeric substrates for electronic applications. Polym. Rev. 58(4), 630–667 (2018). https://doi.org/10.1080/15583724.2018.1473424
- X. Chen, W. Guo, L. Xie, C. Wei, J. Zhuang et al., Embedded Ag/Ni metal-mesh with low surface roughness as transparent conductive electrode for optoelectronic applications. ACS Appl. Mater. Interfaces 9(42), 37048–37054 (2017). https://doi.org/10.1021/acsami.7b11779
- L. Gillan, J. Hiltunen, M.H. Behfar, K. Rönkä, Advances in design and manufacture of stretchable electronics. Jpn. J. Appl. Phys. 61(SE), SE0804 (2022). https://doi.org/10.35848/1347-4065/ac586f
- K. Srinivas, A.L. Naidu, M.R. Bahubalendruni, A review on chemical and mechanical properties of natural fiber reinforced polymer composites. Int. J. Perform. Eng. 13(2), 189 (2017). https://doi.org/10.23940/ijpe.17.02.p8.189200
- J.L. Wang, M. Hassan, J.W. Liu, S.H. Yu, Nanowire assemblies for flexible electronic devices: recent advances and perspectives. Adv. Mater. 30(48), 1803430 (2018). https://doi.org/10.1002/adma.201803430
- Y.S. Guan, Z. Zhang, Y. Tang, J. Yin, S. Ren, Kirigami-inspired nanoconfined polymer conducting nanosheets with 2000% stretchability. Adv. Mater. 30(20), 1706390 (2018). https://doi.org/10.1002/adma.201706390
- X. Shi, S. Liu, Y. Sun, J. Liang, Y. Chen, Lowering internal friction of 0D–1D–2D ternary nanocomposite-based strain sensor by fullerene to boost the sensing performance. Adv. Funct. Mater. 28(22), 1800850 (2018). https://doi.org/10.1002/adfm.201800850
- K. Zulkowski, Understanding moisture-associated skin damage, medical adhesive-related skin injuries, and skin tears. Adv. Skin Wound Care 30(8), 372–381 (2017). https://doi.org/10.1097/01.ASW.0000521048.64537.6e
- T. Kim, T. Lee, G. Lee, Y.W. Choi, S.M. Kim et al., Polyimide encapsulation of spider-inspired crack-based sensors for durability improvement. Appl. Sci. 8(3), 367 (2018). https://doi.org/10.3390/app8030367
- T. Rutt, N. Eskandari, M. Zhurova, J.A. Elliott, L.E. McGann et al., Thermal expansion of substrate may affect adhesion of Chinese hamster fibroblasts to surfaces during freezing. Cryobiology 86, 134–139 (2019). https://doi.org/10.1016/j.cryobiol.2018.10.006
- W.A. MacDonald, M. Looney, D. MacKerron, R. Eveson, R. Adam et al., Latest advances in substrates for flexible electronics. J. Soc. Inf. Disp. 15(12), 1075–1083 (2007). https://doi.org/10.1002/9783527679973.ch10
- S. Ling, D.L. Kaplan, M.J. Buehler, Nanofibrils in nature and materials engineering. Nat. Rev. Mater. 3(4), 18016 (2018). https://doi.org/10.1038/natrevmats.2018.16
- G. Abbas, M. Hassan, Q. Khan, H. Wang, G. Zhou et al., A low power-consumption and transient nonvolatile memory based on highly dense all-inorganic perovskite films. Adv. Electron. Mater. 8(9), 2101412 (2022). https://doi.org/10.1002/aelm.202101412
- F.D. Giacomo, A. Fakharuddin, R. Jose, T.M. Brown, Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ. Sci. 9(10), 3007–3035 (2016). https://doi.org/10.1039/C6EE01137C
- A. Ehrmann, T. Blachowicz, Recent coating materials for textile-based solar cells. AIMS Mater. Sci. 6(2), 234–251 (2019). https://doi.org/10.3934/matersci.2019.2.234
- P. Liu, Z. Gao, L. Xu, X. Shi, X. Fu et al., Polymer solar cell textiles with interlaced cathode and anode fibers. J. Mater. Chem. A 6(41), 19947–19953 (2018). https://doi.org/10.1039/C8TA06510A
- H. Hu, B. Dong, B. Chen, X. Gao, D. Zou, High performance fiber-shaped perovskite solar cells based on lead acetate precursor. Sustain. Energy Fuels 2(1), 79–84 (2018). https://doi.org/10.1039/C7SE00462A
- S. Lee, Y. Lee, J. Park, D. Choi, Stitchable organic photovoltaic cells with textile electrodes. Nano Energy 9, 88–93 (2014). https://doi.org/10.1016/j.nanoen.2014.06.017
- G. Dennler, M.C. Scharber, C.J. Brabec, Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 21(13), 1323–1338 (2009). https://doi.org/10.1002/adma.200801283
- Y. Lan, Y. Wang, Y. Song, Efficient flexible perovskite solar cells based on a polymer additive. Flex. Print. Electron. 5(1), 014001 (2020). https://doi.org/10.1088/2058-8585/ab5ce3
- Y. Xiao, J. Wu, G. Yue, J. Lin, M. Huang et al., Fabrication of high performance Pt/Ti counter electrodes on Ti mesh for flexible large-area dye-sensitized solar cells. Electrochem. Acta 58, 621–627 (2011). https://doi.org/10.1016/j.electActa2011.10.008
- S. Pan, Z. Yang, H. Li, L. Qiu, H. Sun et al., Efficient dye-sensitized photovoltaic wires based on an organic redox electrolyte. J. Am. Chem. Soc. 135(29), 10622–10625 (2013). https://doi.org/10.1021/ja405012w
- L. Qiu, S. He, J. Yang, J. Deng, H. Peng, Fiber-shaped perovskite solar cells with high power conversion efficiency. Small 12(18), 2419–2424 (2016). https://doi.org/10.1002/smll.201600326
- F. Pichot, J.R. Pitts, B.A. Gregg, Low-temperature sintering of TiO2 colloids: application to flexible dye-sensitized solar cells. Langmuir 16(13), 5626–5630 (2000). https://doi.org/10.1021/la000095i
- M. Jacoby, The future of low-cost solar cells. Chem. Eng. News 94(18), 30–35 (2016)
- O. Mohiuddin, M. Obaidullah, C. Sabah, Improvement in dye sensitized solar cells from past to present. Opt. Quantum Electron. 50(10), 377 (2018). https://doi.org/10.1007/s11082-018-1647-1
- G. Li, L. Sheng, T. Li, J. Hu, P. Li et al., Engineering flexible dye-sensitized solar cells for portable electronics. Sol. Energy 177, 80–98 (2019). https://doi.org/10.1016/j.solener.2018.11.017
- J. Xu, M. Li, L. Wu, Y. Sun, L. Zhu et al., A flexible polypyrrole-coated fabric counter electrode for dye-sensitized solar cells. J. Power Sources 257, 230–236 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.123
- B.D. Choudhury, C. Lin, S.M.A.Z. Shawon, J. Soliz-Martinez, H. Huq et al., A photoanode with hierarchical nanoforest TiO2 structure and silver plasmonic nanops for flexible dye sensitized solar cell. Sci. Rep. 11, 7552 (2021). https://doi.org/10.1038/s41598-021-87123-z
- A.A. Arbab, K.C. Sun, I.A. Sahito, M.B. Qadir, S.H. Jeong, Multiwalled carbon nanotube coated polyester fabric as textile based flexible counter electrode for dye sensitized solar cell. Phys. Chem. Chem. Phys. 17(19), 12957–12969 (2015). https://doi.org/10.1039/C5CP00818B
- W. Song, H. Wang, G. Liu, M. Peng, D. Zou, Improving the photovoltaic performance and flexibility of fiber-shaped dye-sensitized solar cells with atomic layer deposition. Nano Energy 19, 1–7 (2016). https://doi.org/10.1016/j.nanoen.2015.11.006
- A.A. Memon, A.A. Arbab, I.A. Sahito, K.C. Sun, N. Mengal et al., Synthesis of highly photo-catalytic and electro-catalytic active textile structured carbon electrode and its application in DSSCs. Sol. Energy 150, 521–531 (2017). https://doi.org/10.1016/j.solener.2017.04.052
- M.J. Yun, S.I. Cha, S.H. Seo, D.Y. Lee, Insertion of dye-sensitized solar cells in textiles using a conventional weaving process. Sci. Rep. 5(1), 11022 (2015). https://doi.org/10.1038/srep11022
- K. Opwis, J.S. Gutmann, A.R.L. Alonso, M.J.R. Henche, M.E. Mayo et al., Preparation of a textile-based dye-sensitized solar cell. Int. J. Photoenergy 2016, 3796074 (2016). https://doi.org/10.1155/2016/3796074
- W. Kylberg, F.A. Castro, P. Chabrecek, U. Sonderegger, B.T.T. Chu et al., Woven electrodes for flexible organic photovoltaic cells. Adv. Mater. 23(8), 1015–1019 (2011). https://doi.org/10.1002/adma.201003391
- Y. Li, S. Arumugam, C. Krishnan, M.D. Charlton, S.P. Beeby, Encapsulated textile organic solar cells fabricated by spray coating. ChemistrySelect 4(1), 407–412 (2019). https://doi.org/10.1002/slct.201803929
- R. Steim, P. Chabrecek, U. Sonderegger, B. Kindle-Hasse, W. Siefert et al., Laminated fabric as top electrode for organic photovoltaics. Appl. Phys. Lett. 106(19), 193301 (2015). https://doi.org/10.1063/1.4919940
- C. Eames, J.M. Frost, P.R. Barnes, B.C. O’regan, A. Walsh et al., Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015). https://doi.org/10.1038/ncomms8497
- M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photon. 8(7), 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134
- J.Y. Lam, J.Y. Chen, P.C. Tsai, Y.T. Hsieh, C.C. Chueh et al., A stable, efficient textile-based flexible perovskite solar cell with improved washable and deployable capabilities for wearable device applications. RSC Adv. 7(86), 54361–54368 (2017). https://doi.org/10.1039/C7RA10321B
- N.A. Kyeremateng, T. Brousse, D. Pech, Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 12(1), 7–15 (2017). https://doi.org/10.1038/nnano.2016.196
- L. Hu, Y.J.E. Cui, Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ. Sci. 5(4), 6423–6435 (2012). https://doi.org/10.1039/C2EE02414D
- M. Hassan, G. Abbas, Y. Lu, Z. Wang, Z. Peng, A smart flexible supercapacitor enabled by a transparent electrochromic electrode composed of W18O49 nanowires/rGO composite films. J. Mater. Chem. A 10(9), 4870–4880 (2022). https://doi.org/10.1039/D1TA09795D
- M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016). https://doi.org/10.1038/ncomms12647
- A. Rafique, Flexible fiber-shaped supercapacitor for wearable electronics. Appl. Sci. Technol. (2019). https://doi.org/10.6092/polito/porto/2729354
- A. Rafique, S. Bianco, M. Fontana, C.F. Pirri, A. Lamberti, Flexible wire-based electrodes exploiting carbon/ZnO nanocomposite for wearable supercapacitors. Ionics 23(7), 1839–1847 (2017). https://doi.org/10.1007/s11581-017-2003-3
- A. Lewandowski, M. Zajder, E. Frąckowiak, F. Beguin, Supercapacitor based on activated carbon and polyethylene oxide–KOH–H2O polymer electrolyte. Electrochem. Acta 46(18), 2777–2780 (2001). https://doi.org/10.1016/S0013-4686(01)00496-0
- X. Lu, M. Yu, G. Wang, Y. Tong, Y. Li, Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ. Sci. 7(7), 2160–2181 (2014). https://doi.org/10.1039/C4EE00960F
- H. Wang, A.C. Forse, J.M. Griffin, N.M. Trease, L. Trognko et al., In situ NMR spectroscopy of supercapacitors: insight into the charge storage mechanism. J. Am. Chem. Soc. 135(50), 18968–18980 (2013). https://doi.org/10.1021/ja410287s
- A. Rafique, U. Zubair, M. Serrapede, M. Fontana, S. Bianco et al., Binder free and flexible asymmetric supercapacitor exploiting Mn3O4 and MoS2 nanoflakes on carbon fibers. Nanomaterials 10(6), 1084 (2020). https://doi.org/10.3390/nano10061084
- M. Serrapede, A. Rafique, M. Fontana, A. Zine, P. Rivolo et al., Fiber-shaped asymmetric supercapacitor exploiting rGO/Fe2O3 aerogel and electrodeposited MnOx nanosheets on carbon fibers. Carbon 144, 91–100 (2019). https://doi.org/10.1016/j.carbon.2018.12.002
- C. Largeot, C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi et al., Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130(9), 2730–2731 (2008). https://doi.org/10.1021/ja7106178
- P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008). https://doi.org/10.1038/nmat2297
- M. Yang, Z. Zhou, Recent breakthroughs in supercapacitors boosted by nitrogen-rich porous carbon materials. Adv. Sci. 4(8), 1600408 (2017). https://doi.org/10.1002/advs.201600408
- B.E. Conway, V. Birss, J. Wojtowicz, The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources 66(1–2), 1–14 (1997). https://doi.org/10.1016/S0378-7753(96)02474-3
- S. Aderyani, P. Flouda, S. Shah, M. Green, J. Lutkenhaus et al., Simulation of cyclic voltammetry in structural supercapacitors with pseudocapacitance behavior. Electrochem. Acta 390, 138822 (2021). https://doi.org/10.1016/j.electActa2021.138822
- T. Brousse, D. Bélanger, J.W. Long, To be or not to be pseudocapacitive? J. Electrochem. Soc. 162(5), A5185 (2015). https://doi.org/10.1149/2.0201505jes
- J. Kim, J. Yin, X. Xuan, J.Y. Park, A flexible cable-shaped supercapacitor based on carbon fibers coated with graphene flakes for wearable electronic applications. Micro Nano Syst. Lett. 7(1), 4 (2019). https://doi.org/10.1186/s40486-019-0083-8
- X.Y. Fu, Z.D. Chen, Y.L. Zhang, D.D. Han, J.N. Ma et al., Direct laser writing of flexible planar supercapacitors based on GO and black phosphorus quantum dot nanocomposites. Nanoscale 11(18), 9133–9140 (2019). https://doi.org/10.1039/C9NR02530H
- F. Meng, Q. Li, L. Zheng, Flexible fiber-shaped supercapacitors: design, fabrication, and multi-functionalities. Energy Storage Mater. 8, 85–109 (2017). https://doi.org/10.1016/j.ensm.2017.05.002
- S. Wang, Y. Shao, W. Liu, Y. Wu, X. Hao, Elastic sandwich-type GaN/MnO2/MnON composites for flexible supercapacitors with high energy density. J. Mater. Chem. A 6(27), 13215–13224 (2018). https://doi.org/10.1039/C8TA04182B
- Y. Shao, J. Li, Y. Li, H. Wang, Q. Zhang et al., Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Mater. Horiz. 4(6), 1145–1150 (2017). https://doi.org/10.1039/C7MH00441A
- N. Liu, W. Ma, J. Tao, X. Zhang, J. Su et al., Cable-type supercapacitors of three-dimensional cotton thread based multi-grade nanostructures for wearable energy storage. Adv. Mater. 25(35), 4925–4931 (2013). https://doi.org/10.1002/adma.201301311
- P.S. Shewale, K.S. Yun, NiCo2O4/rGO hybrid nanostructures on surface-modified Ni core for flexible wire-shaped supercapacitor. Nanomaterials 11(4), 852 (2021). https://doi.org/10.3390/nano11040852
- P.Y. Erdogan, A. Yavuz, N. Ozdemir, H. Zengin, Synthesis of CoOx from ethaline on a stainless steel mesh for supercapacitor applications. Chem. Pap. 75(6), 2617–2624 (2021). https://doi.org/10.1007/s11696-021-01512-2
- R. Zhang, C. Chen, H. Yu, S. Cai, Y. Xu et al., All-solid-state wire-shaped asymmetric supercapacitor based on binder-free CuO nanowires on copper wire and PPy on carbon fiber electrodes. J. Electroanal. Chem. 893, 115323 (2021). https://doi.org/10.1016/j.jelechem.2021.115323
- W. Cao, Y. Gong, W. Wang, M. Chen, J. Yang et al., Rationally designed hierarchical C/TiO2/Ti multilayer core–sheath wires for high-performance energy storage devices. Nanoscale 13(18), 8658–8664 (2021). https://doi.org/10.1039/D1NR00814E
- K. Jost, C.R. Perez, J.K. McDonough, V. Presser, M. Heon et al., Carbon coated textiles for flexible energy storage. Energy Environ. Sci. 4(12), 5060–5067 (2011). https://doi.org/10.1039/C1EE02421C
- X. Ling, G. Zhang, Z. Long, X. Lu, Z. He et al., Core–shell structure γ-MnO2-PANI carbon fiber paper-based flexible electrode material for high-performance supercapacitors. J. Ind. Eng. Chem. 99, 317–325 (2021). https://doi.org/10.1016/j.jiec.2021.04.044
- P. Avasthi, A. Kumar, V. Balakrishnan, Aligned CNT forests on stainless steel mesh for flexible supercapacitor electrode with high capacitance and power density. ACS Appl. Nano Mater. 2(3), 1484–1495 (2019). https://doi.org/10.1021/acsanm.8b02355
- P. Chen, J.J. Yang, S.S. Li, Z. Wang, T.Y. Xiao et al., Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy 2(2), 249–256 (2013). https://doi.org/10.1016/j.nanoen.2012.09.003
- G. Kamble, A. Kashale, A. Rasal, S. Dengale, S. Kolekar et al., Investigating the influence of reflux condensation reaction temperature on the growth of FeCo2O4 thin film for flexible supercapacitor. ChemistrySelect 6(8), 1838–1844 (2021). https://doi.org/10.1002/slct.202004544
- S.U. Rahman, P. Röse, M. Surati, A.H.A. Shah, U. Krewer et al., 3D polyaniline nanofibers anchored on carbon paper for high-performance and light-weight supercapacitors. Polymers 12(11), 2705 (2020). https://doi.org/10.3390/polym12112705
- J. Ren, L. Li, C. Chen, X. Chen, Z. Cai et al., Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater. 25(8), 1155–1159 (2013). https://doi.org/10.1002/adma.201203445
- X. Chen, H. Lin, J. Deng, Y. Zhang, X. Sun et al., Electrochromic fiber-shaped supercapacitors. Adv. Mater. 26(48), 8126–8132 (2014). https://doi.org/10.1002/adma.201403243
- J. Lee, Surface-engineered flexible fibrous supercapacitor electrode for improved electrochemical performance. Appl. Surf. Sci. 539, 148290 (2021). https://doi.org/10.1016/j.apsusc.2020.148290
- X. Hong, J. Fu, Y. Liu, S. Li, B. Liang, Strawberry-like carbonized cotton cloth@ polyaniline nanocomposite for high-performance symmetric supercapacitors. Mater. Chem. Phys. 258, 123999 (2021). https://doi.org/10.1016/j.matchemphys.2020.123999
- C. Shen, Y. Xie, B. Zhu, M. Sanghadasa, Y. Tang et al., Wearable woven supercapacitor fabrics with high energy density and load-bearing capability. Sci. Rep. 7(1), 14324 (2017). https://doi.org/10.1038/s41598-017-14854-3
- Y.J. Gu, W. Wen, J.M. Wu, Simple air calcination affords commercial carbon cloth with high areal specific capacitance for symmetrical supercapacitors. J. Mater. Chem. A 6(42), 21078–21086 (2018). https://doi.org/10.1039/C8TA07561A
- K. Allado, M. Liu, A. Jayapalan, D. Arvapalli, K. Nowlin et al., Binary MnO2/Co3O4 metal oxides wrapped on superaligned electrospun carbon nanofibers as binder free supercapacitor electrodes. Energy Fuels 35(9), 8396–8405 (2021). https://doi.org/10.1021/acs.energyfuels.1c00556
- A. Basu, Smart electronic yarns and wearable fabrics for human biomonitoring, in Nanosensors and Nanodevices for Smart Multifunctional Textiles. ed. by A. Ehrmann, T.A. Nguyen, P.N. Tri (Elsevier, Amsterdam, 2021), pp.109–123. https://doi.org/10.1016/B978-0-12-820777-2.00007-8
- S. Qin, K.A.S. Usman, D. Hegh, S. Seyedin, Y. Gogotsi et al., Development and applications of mxene-based functional fibers. ACS Appl. Mater. Interfaces 13(31), 36655–36669 (2021). https://doi.org/10.1021/acsami.1c08985
- W. Eom, H. Shin, R.B. Ambade, S.H. Lee, K.H. Lee et al., Large-scale wet-spinning of highly electroconductive MXene fibers. Nat. Commun. 11, 2825 (2020). https://doi.org/10.1038/s41467-020-16671-1
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- A. Levitt, J. Zhang, G. Dion, Y. Gogotsi, J.M. Razal, MXene-based fibers, yarns, and fabrics for wearable energy storage devices. Adv. Funct. Mater. 30(47), 2000739 (2020). https://doi.org/10.1002/adfm.202000739
- Y. Li, Z. Lu, B. Xin, Y. Liu, Y. Cui et al., All-solid-state flexible supercapacitor of carbonized MXene/cotton fabric for wearable energy storage. Appl. Surf. Sci. 528, 146975 (2020). https://doi.org/10.1016/j.apsusc.2020.146975
- R. Liu, J. Li, M. Li, Q. Zhang, G. Shi et al., Mxene-coated air-permeable pressure-sensing fabric for smart wear. ACS Appl. Mater. Interfaces 12(41), 46446–46454 (2020). https://doi.org/10.1021/acsami.0c11715
- M. Salauddin, S.S. Rana, M.T. Rahman, M. Sharifuzzaman, P. Maharjan et al., Fabric-assisted MXene/silicone nanocomposite-based triboelectric nanogenerators for self-powered sensors and wearable electronics. Adv. Funct. Mater. 32(5), 2107143 (2022). https://doi.org/10.1002/adfm.202107143
- J. Zhang, S. Uzun, S. Seyedin, P.A. Lynch, B. Akuzum et al., Additive-free MXene liquid crystals and fibers. ACS Cent. Sci. 6(2), 254–265 (2020). https://doi.org/10.1021/acscentsci.9b01217
- A. Levitt, S. Seyedin, J. Zhang, X. Wang, J.M. Razal et al., Bath electrospinning of continuous and scalable multifunctional MXene-infiltrated nanoyarns. Small 16(26), 2002158 (2020). https://doi.org/10.1002/smll.202002158
- N. He, S. Patil, J. Qu, J. Liao, F. Zhao et al., Effects of electrolyte mediation and MXene size in fiber-shaped supercapacitors. ACS Appl. Mater. Interfaces 3(3), 2949–2958 (2020). https://doi.org/10.1021/acsaem.0c00024
- H. Hwang, S. Byun, S. Yuk, S. Kim, S.H. Song et al., High-rate electrospun Ti3C2Tx MXene/carbon nanofiber electrodes for flexible supercapacitors. Appl. Surf. Sci. 556, 149710 (2021). https://doi.org/10.1016/j.apsusc.2021.149710
- K. Jost, G. Dion, Y. Gogotsi, Textile energy storage in perspective. J. Mater. Chem. A 2(28), 10776–10787 (2014). https://doi.org/10.1039/C4TA00203B
- N. Lima, A.C. Baptista, B.M.M. Faustino, S. Taborda, A. Marques et al., Carbon threads sweat-based supercapacitors for electronic textiles. Sci. Rep. 10, 7703 (2020). https://doi.org/10.1038/s41598-020-64649-2
- C. Choi, J.W. Park, K.J. Kim, D.W. Lee, M.J. Andrade et al., Weavable asymmetric carbon nanotube yarn supercapacitor for electronic textiles. RSC Adv. 8(24), 13112–13120 (2018). https://doi.org/10.1039/C8RA01384E
- D. Liu, Q. Zhang, H. Pei, W. Pan, Y. Liu et al., Synchronous dual roles of copper sulfide on the insulating PET fabric for high-performance portable flexible supercapacitors. Energy Fuels 35(8), 6880–6891 (2021). https://doi.org/10.1021/acs.energyfuels.1c00274
- Y. Mao, Y. Li, J. Xie, H. Liu, C. Guo et al., Triboelectric nanogenerator/supercapacitor in-one self-powered textile based on PTFE yarn wrapped PDMS/MnO2NW hybrid elastomer. Nano Energy 84, 105918 (2021). https://doi.org/10.1016/j.nanoen.2021.105918
- N. Fernando, H. Veldhuizen, A. Nagai, S. Zwaag, A. Abdelkader, Layer-by-layer electrode fabrication for improved performance of porous polyimide-based supercapacitors. Material 15(1), 4 (2021). https://doi.org/10.3390/ma15010004
- X. Xie, B. Xin, Z. Chen, Y. Xu, Preparation and characterization of PANI-PPy/PET fabric conductive composite for supercapacitors. J. Text. Inst. 113(11), 12443–12450 (2021). https://doi.org/10.1080/00405000.2021.1992848
- C. Hu, Y. Zhao, H. Cheng, Y. Wang, Z. Dong et al., Graphene microtubings: controlled fabrication and site-specific functionalization. Nano Lett. 12(11), 5879–5884 (2012). https://doi.org/10.1021/nl303243h
- B. Xu, F. Wu, S. Chen, C. Zhang, G. Cao et al., Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors. Electrochem. Acta 52(13), 4595–4598 (2007). https://doi.org/10.1016/j.electActa2007.01.006
- T. Zhang, H. Yue, X. Gao, F. Yao, H. Chen et al., High-performance supercapacitors based on polyaniline nanowire arrays grown on three-dimensional graphene with small pore sizes. Dalton Trans. 49(10), 3304–3311 (2020). https://doi.org/10.1039/D0DT00100G
- R. Zhang, J. Ding, C. Liu, E.H. Yang, Highly stretchable supercapacitors enabled by interwoven CNTs partially embedded in PDMS. ACS Appl. Energy Mater. 1(5), 2048–2055 (2018). https://doi.org/10.1021/acsaem.8b00156
- M. Kim, M.G. Gu, H. Jeong, E. Song, J.W. Jeon et al., Laser scribing of fluorinated polyimide films to generate microporous structures for high-performance micro-supercapacitor electrodes. ACS Appl. Energy Mater. 4(1), 208–214 (2020). https://doi.org/10.1021/acsaem.0c02096
- W. Hu, C. Peng, W. Luo, M. Lv, X. Li et al., Graphene-based antibacterial paper. ACS Nano 4(7), 4317–4323 (2010). https://doi.org/10.1021/nn101097v
- X. Sun, X. Liu, F. Li, Sulfur-doped laser-induced graphene derived from polyethersulfone and lignin hybrid for all-solid-state supercapacitor. Appl. Surf. Sci. 551, 149438 (2021). https://doi.org/10.1016/j.apsusc.2021.149438
- O. Okhay, A.C. Bastos, K. Andreeva, S. Tuukkanen, A. Tkach, Reduced graphene oxide—polycarbonate electrodes on different supports for symmetric supercapacitors. J. Carbon Res. 8(1), 12 (2022). https://doi.org/10.3390/c8010012
- X. Liu, A. Roberts, A. Ahmed, Z. Wang, X. Li et al., Carbon nanofibers by pyrolysis of self-assembled perylene diimide derivative gels as supercapacitor electrode materials. J. Mater. Chem. A 3(30), 15513–15522 (2015). https://doi.org/10.1039/C5TA03546E
- M.R. Lee, R.D. Eckert, K. Forberich, G. Dennler, C.J. Brabec et al., Solar power wires based on organic photovoltaic materials. Science 324(5924), 232–235 (2009). https://doi.org/10.1126/science.1168539
- L. Jin, R. Ma, H. Liu, W. Xu, Z. Luo et al., Boosting highly efficient hydrocarbon solvent-processed all-polymer-based organic solar cells by modulating thin-film morphology. ACS Appl. Mater. Interfaces 13(29), 34301–34307 (2021). https://doi.org/10.1021/acsami.1c07946
- D. Wang, S. Hou, H. Wu, C. Zhang, Z. Chu et al., Fiber-shaped all-solid state dye sensitized solar cell with remarkably enhanced performance via substrate surface engineering and TiO2 film modification. J. Mater. Chem. 21(17), 6383–6388 (2011). https://doi.org/10.1039/C1JM00016K
- Y. Fu, Z. Lv, S. Hou, H. Wu, D. Wang et al., TCO-free, flexible, and bifacial dye-sensitized solar cell based on low-cost metal wires. Adv. Energy Mater. 2(1), 37–41 (2012). https://doi.org/10.1002/aenm.201100545
- M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4(6), 455–459 (2005). https://doi.org/10.1038/nmat1387
- L. Chen, Y. Zhou, H. Dai, Z. Li, T. Yu et al., Fiber dye-sensitized solar cells consisting of TiO2 nanowires arrays on Ti thread as photoanodes through a low-cost, scalable route. J. Mater. Chem. A 1(38), 11790–11794 (2013). https://doi.org/10.1039/C3TA12511D
- Z. Lv, J. Yu, H. Wu, J. Shang, D. Wang et al., Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array. Nanoscale 4(4), 1248–1253 (2012). https://doi.org/10.1039/C2NR11532H
- Y. Fu, M. Peng, Z. Lv, X. Cai, S. Hou et al., A novel low-cost, one-step and facile synthesis of TiO2 for efficient fiber dye-sensitized solarcells. Nano Energy 2(4), 537–544 (2013). https://doi.org/10.1016/j.nanoen.2012.12.006
- G. Liu, M. Peng, W. Song, H. Wang, D. Zou, An 8.07% efficient fiber dye-sensitized solar cell based on a TiO2 micron-core array and multilayer structure photoanode. Nano Energy 11, 341–347 (2015). https://doi.org/10.1016/j.nanoen.2014.10.024
- L. Qiu, J. Deng, X. Lu, Z. Yang, H. Peng, Integrating perovskite solar cells into a flexible fiber. Angew. Chem. Int. Ed. 53(39), 10425–10428 (2014). https://doi.org/10.1002/anie.201404973
- H. Hu, K. Yan, M. Peng, X. Yu, S. Chen et al., Fiber-shaped perovskite solar cells with 5.3% efficiency. J. Mater. Chem. A 4(10), 3901–3906 (2016). https://doi.org/10.1039/C5TA09280A
- S. Gholipour, J.P. Correa-Baena, K. Domanski, T. Matsui, L. Steier et al., Highly efficient and stable perovskite solar cells based on a low-cost carbon cloth. Adv. Energy Mater. 6(20), 1601116 (2016). https://doi.org/10.1002/aenm.201601116
- N. Wang, B. Sun, P. Zhao, M. Yao, W. Hu et al., Electrodeposition preparation of NiCo2O4 mesoporous film on ultrafine nickel wire for flexible asymmetric supercapacitors. J. Chem. Eng. 345, 31–38 (2018). https://doi.org/10.1016/j.cej.2018.03.147
- K. Wang, Q. Meng, Y. Zhang, Z. Wei, M. Miao, High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv. Mater. 25(10), 1494–1498 (2013). https://doi.org/10.1002/adma.201204598
- F. Su, X. Lv, M. Miao, High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3O4 and NiO nanops. Small 11(7), 854–861 (2015). https://doi.org/10.1002/smll.201401862
- J. He, C. Lu, H. Jiang, F. Han, X. Shi et al., Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597(7874), 57–63 (2021). https://doi.org/10.1038/s41586-021-03772-0
- M. Liao, C. Wang, Y. Hong, Y. Zhang, X. Cheng et al., Industrial scale production of fibre batteries by a solution-extrusion method. Nat. Nanotechnol. 17(4), 372–377 (2022). https://doi.org/10.1038/s41565-021-01062-4
- A.M. Gaikwad, G.L. Whiting, D.A. Steingart, A.C. Arias, Highly flexible, printed alkaline batteries based on mesh-embedded electrodes. Adv. Mater. 23(29), 3251–3255 (2011). https://doi.org/10.1002/adma.201100894
- J. Killian, B. Coffey, F. Gao, T. Poehler, P. Searson, Polypyrrole composite electrodes in an all-polymer battery system. J. Electrochem. Soc. 143(3), 936 (1996). https://doi.org/10.1149/1.1836562
- A. Abouimrane, Y. Abu-Lebdeh, P.J. Alarco, M. Armand, Plastic crystal-lithium batteries: an effective ambient temperature all-solid-state power source. J. Electrochem. Soc. 151(7), A1028 (2004). https://doi.org/10.1149/1.1759971
- G. Zhou, F. Li, H.M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7(4), 1307–1338 (2014). https://doi.org/10.1039/C3EE43182G
- G. Jeong, Y.U. Kim, H. Kim, Y.J. Kim, H.J. Sohn, Prospective materials and applications for Li secondary batteries. Energy Environ. Sci. 4(6), 1986–2002 (2011). https://doi.org/10.1039/C0EE00831A
- J. Wang, Z. Wang, J. Ni, L. Li, Electrospinning for flexible sodium-ion batteries. Energy Storage Mater. 45, 704–719 (2021). https://doi.org/10.1016/j.ensm.2021.12.022
- M. Xu, D. Zhou, T. Wu, J. Qi, Q. Du et al., Self-regulation of spin polarization density propelling the ion diffusion kinetics for flexible potassium-ion batteries. Adv. Funct. Mater. 32(35), 2203263 (2022). https://doi.org/10.1002/adfm.202203263
- H. Liu, P. He, G. Wang, Y. Liang, C. Wang et al., Thin, flexible sulfide-based electrolyte film and its interface engineering for high performance solid-state lithium metal batteries. J. Chem. Eng. 430, 132991 (2022). https://doi.org/10.1016/j.cej.2021.132991
- R. Gao, Q. Zhang, Y. Zhao, Z. Han, C. Sun et al., Regulating polysulfide redox kinetics on a self-healing electrode for high-performance flexible lithium–sulfur batteries. Adv. Funct. Mater. 32(15), 2110313 (2022). https://doi.org/10.1002/adfm.202110313
- X.X. Wang, X. Yang, H. Liu, T. Han, J. Hu et al., Air electrodes for flexible and rechargeable Zn–air batteries. Small Struct. 3(1), 2100103 (2022). https://doi.org/10.1002/sstr.202100103
- Y. Wang, H.Y. Kwok, W. Pan, Y. Zhang, H. Zhang et al., Combining Al–air battery with paper-making industry, a novel type of flexible primary battery technology. Electrochim. Acta 319, 947–957 (2019). https://doi.org/10.1016/j.electActa2019.07.049
- J. Zhang, H. Chen, M. Wen, K. Shen, Q. Chen et al., Lithiophilic 3D copper-based magnetic current collector for lithium-free anode to realize deep lithium deposition. Adv. Funct. Mater. 32(13), 2110110 (2022). https://doi.org/10.1002/adfm.202110110
- W. Qin, Y. Chen, J. An, J. Zhang, X. Wen, 3D N-doped Li4Ti5O12 nanoribbon networks self-supported on Ti foils as advanced anode for high-performance flexible lithium-ion batteries. J. Alloys Compd. 910, 164873 (2022). https://doi.org/10.1016/j.jallcom.2022.164873
- J. Zhao, H. Ren, Q. Liang, D. Yuan, S. Xi et al., High-performance flexible quasi-solid-state zinc-ion batteries with layer-expanded vanadium oxide cathode and zinc/stainless steel mesh composite anode. Nano Energy 62, 94–102 (2019). https://doi.org/10.1016/j.nanoen.2019.05.010
- Y. Shi, Z. Wang, L. Wen, S. Pei, K. Chen et al., Ultrastable interfacial contacts enabling unimpeded charge transfer and ion diffusion in flexible lithium-ion batteries. Adv. Sci. 9(10), 2105419 (2022). https://doi.org/10.1002/advs.202105419
- K.L. Lee, J.Y. Jung, S.W. Lee, H.S. Moon, J.W. Park, Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries. J. Power Sources 129(2), 270–274 (2004). https://doi.org/10.1016/j.jpowsour.2003.10.013
- C. Li, K. Cai, L. Liang, J. Dong, X. Liu et al., Effect of surface treatment of stainless steel foils in high-performance aqueous zinc-ion battery. Energy Technol. 10(6), 2200150 (2022). https://doi.org/10.1002/ente.202200150
- X. Guan, Q. Sun, C. Sun, T. Duan, W. Nie et al., Tremella-like hydrated vanadium oxide cathode with an architectural design strategy toward ultralong lifespan aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 13(35), 41688–41697 (2021). https://doi.org/10.1021/acsami.1c11560
- H. Jeon, I. Cho, H. Jo, K. Kim, M.H. Ryou et al., Highly rough copper current collector: improving adhesion property between a silicon electrode and current collector for flexible lithium-ion batteries. Rsc Adv. 7(57), 35681–35686 (2017). https://doi.org/10.1039/C7RA04598K
- J.Y. Choi, D.J. Lee, Y.M. Lee, Y.G. Lee, K.M. Kim et al., Silicon nanofibrils on a flexible current collector for bendable lithium-ion battery anodes. Adv. Funct. Mater. 23(17), 2108–2114 (2013). https://doi.org/10.1002/adfm.201202458
- J.Z. Wang, S.L. Chou, J. Chen, S.Y. Chew, G.X. Wang et al., Like free-standing polypyrrole and polypyrrole–LiFePO4 composite films for flexible and bendable rechargeable battery. Electrochem. Commun. 10(11), 1781–1784 (2008). https://doi.org/10.1016/j.elecom.2008.09.008
- J. Song, W. Wang, Y. Fang, S. Wang, D. He et al., Freestanding CuV2O6/carbon nanotube composite films for flexible aqueous zinc-ion batteries. Appl. Surf. Sci. 578, 152053 (2022). https://doi.org/10.1016/j.apsusc.2021.152053
- W. Li, J. Peng, H. Li, Z. Wu, Y. Huang et al., Encapsulating nanoscale silicon inside carbon fiber as flexible self-supporting anode material for lithium-ion battery. ACS Appl. Energy Mater. 4(8), 8529–8537 (2021). https://doi.org/10.1021/acsaem.1c01713
- K. Wang, S. Luo, Y. Wu, X. He, F. Zhao et al., Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries. Adv. Funct. Mater. 23(7), 846–853 (2013). https://doi.org/10.1002/adfm.201202412
- X. Li, R. Lv, S. Zou, B. Na, P. Liu et al., Polyaniline nanopillars on surface cracked carbon fibers as an ultrahigh-performance cathode for a flexible rechargeable aqueous Zn-ion battery. Compos. Sci. Technol. 180, 71–77 (2019). https://doi.org/10.1016/j.compscitech.2019.05.016
- Z. Zhao, H. Wu, Monolithic integration of flexible lithium-ion battery on a plastic substrate by printing methods. Nano Res. 12(10), 2477–2484 (2019). https://doi.org/10.1007/s12274-019-2471-z
- P. Augustyn, P. Rytlewski, K. Moraczewski, A. Mazurkiewicz, A review on the direct electroplating of polymeric materials. J. Mater. Sci. 56(27), 14881–14899 (2021). https://doi.org/10.1007/s10853-021-06246-w
- J.H. Yun, G.B. Han, Y.M. Lee, Y.G. Lee, K.M. Kim et al., Low resistance flexible current collector for lithium secondary battery. Electrochem. Solid-State Lett. 14(8), A116 (2011). https://doi.org/10.1149/1.3596721
- S.W. Kim, K.Y. Cho, Current collectors for flexible lithium ion batteries: a review of materials. J. Electrochem. Sci. Technol. 6(1), 1–6 (2015). https://doi.org/10.5229/JECST.2015.6.1.1
- Y. Zhang, T. Zhao, S. Yang, Y. Zhang, Y. Ma et al., Flexible PEDOT:PSS nanopapers as “anion–cation regulation” synergistic interlayers enabling ultra-stable aqueous zinc-iodine batteries. J. Energy Chem. 75, 310–320 (2022). https://doi.org/10.1016/j.jechem.2022.08.026
- L. Nyholm, G. Nyström, A. Mihranyan, M. Strømme, Toward flexible polymer and paper-based energy storage devices. Adv. Mater. 23(33), 3751–3769 (2011). https://doi.org/10.1002/adma.201004134
- Y. Ren, F. Meng, S. Zhang, B. Ping, H. Li et al., CNT@ MnO2 composite ink toward a flexible 3D printed micro-zinc-ion battery. Carbon Energy 4(3), 446–457 (2022). https://doi.org/10.1002/cey2.177
- C. Xu, Q. Wei, M. Li, J. You, W. Song et al., Ultrafast and simple integration engineering of graphene-based flexible films with extensive tunability and simple trial in lithium-ion batteries. J. Alloys Compd. 922, 166282 (2022). https://doi.org/10.1016/j.jallcom.2022.166282
- J.H. Park, W.Y. Choi, J. Yang, D. Kim, H. Gim et al., Nitrogen-rich hierarchical porous carbon paper for a free-standing cathode of lithium sulfur battery. Carbon 172, 624–636 (2021). https://doi.org/10.1016/j.carbon.2020.10.078
- S. Shi, G. Wang, G. Wan, Y. Tang, G. Zhao et al., Titanium niobate (Ti2Nb10O29) anchored on nitrogen-doped carbon foams as flexible and self-supported anode for high-performance lithium ion batteries. J. Colloid Interface Sci. 587, 622–632 (2021). https://doi.org/10.1016/j.jcis.2020.11.019
- L. Yang, X. Zhang, L. Yu, J. Hou, Z. Zhou et al., Atomic Fe–N4/C in flexible carbon fiber membrane as binder-free air cathode for Zn–air batteries with stable cycling over 1000 h. Adv. Mater. 34(5), 2105410 (2022). https://doi.org/10.1002/adma.202105410
- D. Li, Y. Gao, C. Xie, Z. Zheng, Au-coated carbon fabric as Janus current collector for dendrite-free flexible lithium metal anode and battery. Appl. Phys. Rev. 9(1), 011424 (2022). https://doi.org/10.1063/5.0083830
- P. Zhu, C. Yan, J. Zhu, J. Zang, Y. Li et al., Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium–sulfur batteries. Energy Storage Mater. 17, 220–225 (2019). https://doi.org/10.1016/j.ensm.2018.11.009
- K. Zhou, W. Xu, Y. Yu, W. Zhai, Z. Yuan et al., Tunable and nacre-mimetic multifunctional electronic skins for highly stretchable contact-noncontact sensing. Small 17(31), 2100542 (2021). https://doi.org/10.1002/smll.202100542
- S. Li, Y. Zhang, Y. Wang, K. Xia, Z. Yin et al., Physical sensors for skin-inspired electronics. InfoMat 2(1), 184–211 (2020). https://doi.org/10.1002/inf2.12060
- J. Lee, B.L. Zambrano, J. Woo, K. Yoon, T. Lee, Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: materials, fabrications, and applications. Adv. Mater. 32(5), 1902532 (2020). https://doi.org/10.1002/adma.201902532
- S. Lee, S. Franklin, F.A. Hassani, T. Yokota, M.O.G. Nayeem et al., Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 370(6519), 966–970 (2020). https://doi.org/10.1126/science.abc9735
- J. Zhao, Y. Zhang, Y. Huang, J. Xie, X. Zhao et al., 3D printing fiber electrodes for an all-fiber integrated electronic device via hybridization of an asymmetric supercapacitor and a temperature sensor. Adv. Sci. 5(11), 1801114 (2018). https://doi.org/10.1002/advs.201801114
- W. Wang, K. Ouaras, A.L. Rutz, X. Li, M. Gerigk et al., Inflight fiber printing toward array and 3D optoelectronic and sensing architectures. Sci. Adv. 6(40), eaba0931 (2020). https://doi.org/10.1126/sciadv.aba0931
- M. Zhang, R. Guo, K. Chen, Y. Wang, J. Niu et al., Microribbons composed of directionally self-assembled nanoflakes as highly stretchable ionic neural electrodes. PNAS 117(26), 14667–14675 (2020). https://doi.org/10.1073/pnas.2003079117
- L. Wang, L. Wang, Y. Zhang, J. Pan, S. Li et al., Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv. Funct. Mater. 28(42), 1804456 (2018). https://doi.org/10.1002/adfm.201804456
- Y.H. Hwang, S. Kwon, J.B. Shin, H. Kim, Y.H. Son et al., Bright-multicolor, highly efficient, and addressable phosphorescent organic light-emitting fibers: toward wearable textile information displays. Adv. Funct. Mater. 31(18), 2009336 (2021). https://doi.org/10.1002/adfm.202009336
- H. Mi, L. Zhong, X. Tang, P. Xu, X. Liu et al., Electroluminescent fabric woven by ultrastretchable fibers for arbitrarily controllable pattern display. ACS Appl. Mater. Interfaces 13(9), 11260–11267 (2021). https://doi.org/10.1021/acsami.0c19743
- Y.J. Song, J.W. Kim, H.E. Cho, Y.H. Son, M.H. Lee et al., Fibertronic organic light-emitting diodes toward fully addressable, environmentally robust, wearable displays. ACS Nano 14(1), 1133–1140 (2020). https://doi.org/10.1021/acsnano.9b09005
- T. Chen, L. Qiu, H.G. Kia, Z. Yang, H. Peng, Designing aligned inorganic nanotubes at the electrode interface: towards highly efficient photovoltaic wires. Adv. Mater. 24(34), 4623–4628 (2012). https://doi.org/10.1002/adma.201201893
- L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao et al., Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014). https://doi.org/10.1038/ncomms4754
- H. Xu, X. Hu, Y. Sun, H. Yang, X. Liu et al., Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Res. 8(4), 1148–1158 (2015). https://doi.org/10.1007/s12274-014-0595-8
- J. Sun, Y. Huang, C. Fu, Z. Wang, Y. Huang et al., High-performance stretchable yarn supercapacitor based on PPy@ CNTs@ urethane elastic fiber core spun yarn. Nano Energy 27, 230–237 (2016). https://doi.org/10.1016/j.nanoen.2016.07.008
- B. Wang, X. Fang, H. Sun, S. He, J. Ren et al., Fabricating continuous supercapacitor fibers with high performances by integrating all building materials and steps into one process. Adv. Mater. 27(47), 7854–7860 (2015). https://doi.org/10.1002/adma.201503441
- S. Shabahang, F. Tan, J. Perlstein, G. Tao, O. Alvarez et al., Robust multimaterial chalcogenide fibers produced by a hybrid fiber-fabrication process. Opt. Mater. Express 7(7), 2336–2345 (2017). https://doi.org/10.1364/OME.7.002336
- J. Zhao, Z. Cong, J. Hu, H. Lu, L. Wang et al., Regulating zinc electroplating chemistry to achieve high energy coaxial fiber Zn ion supercapacitor for self-powered textile-based monitoring system. Nano Energy 93, 106893 (2022). https://doi.org/10.1016/j.nanoen.2021.106893
- A. Sandström, A. Asadpoordarvish, J. Enevold, L. Edman, Spraying light: ambient-air fabrication of large-area emissive devices on complex-shaped surfaces. Adv. Mater. 26(29), 4975–4980 (2014). https://doi.org/10.1002/adma.201401286
- T. Chen, Z. Cai, L. Qiu, H. Li, J. Ren et al., Synthesis of aligned carbon nanotube composite fibers with high performances by electrochemical deposition. J. Mater. Chem. A 1(6), 2211–2216 (2013). https://doi.org/10.1039/C2TA01039A
- A. Frutiger, J.T. Muth, D.M. Vogt, Y. Mengüç, A. Campo et al., Capacitive soft strain sensors via multicore–shell fiber printing. Adv. Mater. 27(15), 2440–2446 (2015). https://doi.org/10.1002/adma.201500072
- M. Bayindir, A.F. Abouraddy, J. Arnold, J.D. Joannopoulos, Y. Fink, Thermal-sensing fiber devices by multimaterial codrawing. Adv. Mater. 18(7), 845–849 (2006). https://doi.org/10.1002/adma.200502106
- J.S. Park, H. Chae, H.K. Chung, S.I. Lee, Thin film encapsulation for flexible AM-OLED: a review. Semicond. Sci. Technol. 26(3), 034001 (2011). https://doi.org/10.1088/0268-1242/26/3/034001
- K. Wang, X. Zhang, J. Han, X. Zhang, X. Sun et al., High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode. ACS Appl. Mater. Interfaces 10(29), 24573–24582 (2018). https://doi.org/10.1021/acsami.8b07756
- Y. Zhang, High-performance fiber-shaped lithium-ion batteries. Pure Appl. Chem. 92(5), 767–772 (2020). https://doi.org/10.1515/pac-2019-1003
- N. Zhang, J. Chen, Y. Huang, W. Guo, J. Yang et al., A wearable all-solid photovoltaic textile. Adv. Mater. 28(2), 263–269 (2016). https://doi.org/10.1002/adma.201504137
- R. Aigner, A. Pointner, T. Preindl, P. Parzer, M. Haller, Embroidered resistive pressure sensors: a novel approach for textile interfaces, in Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (2020). https://doi.org/10.1145/3313831.3376305
- G. Kim, C.C. Vu, J. Kim, Single-layer pressure textile sensors with woven conductive yarn circuit. Appl. Sci. 10(8), 2877 (2020). https://doi.org/10.3390/app10082877
- I. Šahta, I. Baltina, N. Truskovska, J. Blums, E. Deksnis, Selection of conductive yarns for knitting an electrical heating element. WIT Trans. Built Environ. 137, 91–102 (2014). https://doi.org/10.2495/HPSM140091
- S. Takamatsu, T. Lonjaret, D. Crisp, J.M. Badier, G.G. Malliaras et al., Direct patterning of organic conductors on knitted textiles for long-term electrocardiography. Sci. Rep. 5(1), 15003 (2015). https://doi.org/10.1038/srep15003
- I. Locher, G. Troster, Fundamental building blocks for circuits on textiles. IEEE Trans. Adv. Packag. 30(3), 541–550 (2007). https://doi.org/10.1109/TADVP.2007.898636
- Q. Li, X. Tao, A stretchable knitted interconnect for three-dimensional curvilinear surfaces. Text. Res. J. 81(11), 1171–1182 (2011). https://doi.org/10.1177/0040517511399965
- J.S. Roh, All-fabric interconnection and one-stop production process for electronic textile sensors. Text. Res. J. 87(12), 1445–1456 (2017). https://doi.org/10.1177/0040517516654108
- S. Mulatier, M. Nasreldin, R. Delattre, M. Ramuz, T. Djenizian, Electronic circuits integration in textiles for data processing in wearable technologies. Adv. Mater. Technol. 3(10), 1700320 (2018). https://doi.org/10.1002/admt.201700320
- A. Dhawan, A.M. Seyam, T.K. Ghosh, J.F. Muth, Woven fabric-based electrical circuits: Part I: evaluating interconnect methods. Text. Res. J. 74(10), 913–919 (2004). https://doi.org/10.1177/004051750407401011
- E.R. Post, M. Orth, P.R. Russo, N. Gershenfeld, E-broidery: design and fabrication of textile-based computing. IBM Syst. J. 39(3.4), 840–860 (2000). https://doi.org/10.1147/sj.393.0840
- Y. Mao, M. Zhu, W. Wang, D. Yu, Well-defined silver conductive pattern fabricated on polyester fabric by screen printing a dopamine surface modifier followed by electroless plating. Soft Matter 14(7), 1260–1269 (2018). https://doi.org/10.1039/C7SM02246H
- H. Jin, N. Matsuhisa, S. Lee, M. Abbas, T. Yokota et al., Enhancing the performance of stretchable conductors for e-textiles by controlled ink permeation. Adv. Mater. 29(21), 1605848 (2017). https://doi.org/10.1002/adma.201605848
- T. Plötz, J. Healey, K. Laerhoven, ISWC 2020. IEEE Pervasive Comput. 20(1), 45–49 (2021). https://doi.org/10.1109/MPRV.2020.3044119
- C. Cano-Raya, Z.Z. Denchev, S.F. Cruz, J.C. Viana, Chemistry of solid metal-based inks and pastes for printed electronics–a review. Appl. Mater. Today 15, 416–430 (2019). https://doi.org/10.1016/j.apmt.2019.02.012
- H. Sun, X. Fu, S. Xie, Y. Jiang, H. Peng, Electrochemical capacitors with high output voltages that mimic electric eels. Adv. Mater. 28(10), 2070–2076 (2016). https://doi.org/10.1002/adma.201505742
- X. Chen, H. Sun, Z. Yang, G. Guan, Z. Zhang et al., A novel “energy fiber” by coaxially integrating dye-sensitized solar cell and electrochemical capacitor. J. Mater. Chem. A 2(6), 1897–1902 (2014). https://doi.org/10.1039/C3TA13712K
- Z. Yang, J. Deng, H. Sun, J. Ren, S. Pan et al., Self-powered energy fiber: energy conversion in the sheath and storage in the core. Adv. Mater. 26(41), 7038–7042 (2014). https://doi.org/10.1002/adma.201401972
- L. Li, Z. Lou, D. Chen, W. Han, G. Shen, Hollow polypyrrole sleeve based coaxial fiber supercapacitors for wearable integrated photosensing system. Adv. Mater. Technol. 3(8), 1800115 (2018). https://doi.org/10.1002/admt.201800115
- X. Wang, B. Liu, R. Liu, Q. Wang, X. Hou et al., Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chem. Int. Ed. 126(7), 1880–1884 (2014). https://doi.org/10.1002/ange.201307581
- T. Dias, P. Lugoda, C. Cork, Microchip technology used in textile materials, in High-Performance Apparel Materials, Development, and Applications. ed. by J. McLoughlin, T. Sabir (Elsevier, Amsterdam, 2018), pp.451–471. https://doi.org/10.1016/B978-0-08-100904-8.00022-5
- P. Lugoda, T. Hughes-Riley, R. Morris, T. Dias, A wearable textile thermograph. Sensors 18(7), 2369 (2018). https://doi.org/10.3390/s18072369
- M. Stoppa, A. Chiolerio, Wearable electronics and smart textiles: a critical review. Sensors 14(7), 11957–11992 (2014). https://doi.org/10.3390/s140711957
- T. Agcayazi, K. Chatterjee, A. Bozkurt, T.K. Ghosh, Flexible interconnects for electronic textiles. Adv. Mater. Technol. 3(10), 1700277 (2018). https://doi.org/10.1002/admt.201700277
- A. Psarra, Embodied RF ecologies, https://afroditipsarra.com/work/embodied-rf-ecologies. Accessed 19 Nov 2022
- S. Hwang, M. Kang, A. Lee, S. Bae, S.K. Lee et al., Integration of multiple electronic components on a microfibre towards an emerging electronic textile platform. Nat. Commun. 13, 3173 (2022). https://doi.org/10.1038/s41467-022-30894-4
- R. Lin, H.J. Kim, S. Achavananthadith, Z. Xiong, J.K. Lee et al., Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nat. Commun. 13, 2190 (2022). https://doi.org/10.1038/s41467-022-29859-4
- Y.T. Tsukada, M. Tokita, H. Murata, Y. Hirasawa, K. Yodogawa et al., Validation of wearable textile electrodes for ECG monitoring. Heart Vessels 34(7), 1203–1211 (2019). https://doi.org/10.1007/s00380-019-01347-8
- E-textiles & smart clothing market surpass $15,018.9 Mn by 2028. Acumen Research and Consulting, (2021). https://www.globenewswire.com/news-release/2021/12/09/2349113/0/en/E-Textiles-Smart-Clothing-Market-Surpass-15-018-9-Mn-by-2028-CAGR-32-3-Says-Acumen-Research-and-Consulting.html
- G. Scarano, Smart Clothing Shipments to Reach 26.9m Units by 2022. Just Style, (2017). https://www.just-style.com/news/smart-clothing-shipments-to-reach-26-9m-units-by-2022
- P. Smith, Outdoor Clothing Market Value Forecast Worldwide from 2018 Until 2026 (in million u.S. Dollars)*. Statista, (2018). https://www.statista.com/statistics/979475/outdoor-clothing-market-value-forecast-worldwide
References
A. Rafique, A. Massa, M. Fontana, S. Bianco, A. Chiodoni et al., Highly uniform anodically deposited film of MnO2 nanoflakes on carbon fibers for flexible and wearable fiber-shaped supercapacitors. ACS Appl. Mater. Interfaces 9(34), 28386–28393 (2017). https://doi.org/10.1021/acsami.7b06311
J. Liu, Y. Li, S. Yong, S. Arumugam, S. Beeby, Flexible printed monolithic-structured solid-state dye sensitized solar cells on woven glass fibre textile for wearable energy harvesting applications. Sci. Rep. 9, 1362 (2019). https://doi.org/10.1038/s41598-018-37590-8
R. Das, X. He, Flexible, printed oled displays 2020–2030: forecasts, markets, technologies. IDTechEx, https://www.idtechex.com/en/research-report/flexible-printed-oled-displays-2020-2030-forecasts-markets-technologies/693#:~:text=In%202020%2C%20IDTechEx%20expect%20that,%2C%20Korea%2C%20Japan%20and%20Taiwan. Accessed 15 June 2022
F.M. Research, Stretchable electronics market research report, https://www.researchandmarkets.com/reports/4845901. Accessed 15 June 2022
J. Chen, I.A. Liu, Technology advances in flexible displays and substrates. IEEE Access 1, 150–158 (2013). https://doi.org/10.1109/ACCESS.2013.2260792
A. Poor, A healthtech report. HealthTech V Annual Report, US AID (2014), https://pdf.usaid.gov/pdf_docs/PA00K7BF.pdf
M. Hassan, G. Abbas, N. Li, A. Afzal, Z. Haider et al., Significance of flexible substrates for wearable and implantable devices: recent advances and perspectives. Adv. Mater. Technol. 7(3), 2100773 (2022). https://doi.org/10.1002/admt.202100773
L. Wang, X. Fu, J. He, X. Shi, T. Chen et al., Application challenges in fiber and textile electronics. Adv. Mater. 32(5), 1901971 (2020). https://doi.org/10.1002/adma.201901971
N.J. Smart, A survey of smartphone and tablet computer use by colorectal surgeons in the UK and continental Europe. Colorectal Dis. 14(9), e535–e538 (2012). https://doi.org/10.1111/j.1463-1318.2012.03161.x
X. Li, Z.H. Lin, G. Cheng, X. Wen, Y. Liu et al., 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor. ACS Nano 8(10), 10674–10681 (2014). https://doi.org/10.1021/nn504243j
D. Deahl, Google and Levi’s Smart Jacket Can Now Warn You If You’re About to Leave Your Phone Behind. The Verge (2018), https://www.theverge.com/2018/12/9/18131404/google-atap-levis-project-smart-jacket-jacquard-always-together
E. Frackowiak, Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9(15), 1774–1785 (2007). https://doi.org/10.1039/B618139M
G. Qian, X. Liao, Y. Zhu, F. Pan, X. Chen et al., Designing flexible lithium-ion batteries by structural engineering. ACS Energy Lett. 4(3), 690–701 (2019). https://doi.org/10.1021/acsenergylett.8b02496
Z. Gao, Y. Zhang, N. Song, X. Li, Towards flexible lithium–sulfur battery from natural cotton textile. Electrochim. Acta 246, 507–516 (2017). https://doi.org/10.1016/j.electActa2017.06.069
X. Lei, X. Liu, W. Ma, Z. Cao, Y. Wang et al., Flexible lithium–air battery in ambient air with an in situ formed gel electrolyte. Angew. Chem. Int. Ed. 57(49), 16131–16135 (2018). https://doi.org/10.1002/anie.201810882
L. David, R. Bhandavat, G. Singh, MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8(2), 1759–1770 (2014). https://doi.org/10.1021/nn406156b
C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 124(4), 957–959 (2012). https://doi.org/10.1002/ange.201106307
K.T. Braam, S.K. Volkman, V. Subramanian, Characterization and optimization of a printed, primary silver–zinc battery. J. Power Sources 199, 367–372 (2012). https://doi.org/10.1016/j.jpowsour.2011.09.076
S. Kwon, H. Kim, S. Choi, E.G. Jeong, D. Kim et al., Weavable and highly efficient organic light-emitting fibers for wearable electronics: a scalable, low-temperature process. Nano Lett. 18(1), 347–356 (2018). https://doi.org/10.1021/acs.nanolett.7b04204
Z. Zhang, L. Cui, X. Shi, X. Tian, D. Wang et al., Textile display for electronic and brain-interfaced communications. Adv. Mater. 30(18), 1800323 (2018). https://doi.org/10.1002/adma.201800323
A. Canales, S. Park, A. Kilias, P. Anikeeva, Multifunctional fibers as tools for neuroscience and neuroengineering. Acc. Chem. Res. 51(4), 829–838 (2018). https://doi.org/10.1021/acs.accounts.7b00558
X. Pu, L. Li, M. Liu, C. Jiang, C. Du et al., Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28(1), 98–105 (2016). https://doi.org/10.1002/adma.201504403
C. Wu, T.W. Kim, T. Guo, F. Li, Wearable ultra-lightweight solar textiles based on transparent electronic fabrics. Nano Energy 32, 367–373 (2017). https://doi.org/10.1016/j.nanoen.2016.12.040
Z. Wen, M.H. Yeh, H. Guo, J. Wang, Y. Zi et al., Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2(10), e1600097 (2016). https://doi.org/10.1126/sciadv.1600097
Z. Zhang, X. Chen, P. Chen, G. Guan, L. Qiu et al., Integrated polymer solar cell and electrochemical supercapacitor in a flexible and stable fiber format. Adv. Mater. 26(3), 466–470 (2014). https://doi.org/10.1002/adma.201302951
M. Peng, K. Yan, H. Hu, D. Shen, W. Song et al., Efficient fiber shaped zinc bromide batteries and dye sensitized solar cells for flexible power sources. J. Mater. Chem. C 3(10), 2157–2165 (2015). https://doi.org/10.1039/C4TC02997F
R. Li, X. Xiang, X. Tong, J. Zou, Q. Li, Wearable double-twisted fibrous perovskite solar cell. Adv. Mater. 27(25), 3831–3835 (2015). https://doi.org/10.1002/adma.201501333
X. Fu, H. Sun, S. Xie, J. Zhang, Z. Pan et al., A fiber-shaped solar cell showing a record power conversion efficiency of 10%. J. Mater. Chem. A 6(1), 45–51 (2018). https://doi.org/10.1039/C7TA08637G
Y. Zhang, H. Wang, H. Lu, S. Li, Y. Zhang, Electronic fibers and textiles: recent progress and perspective. iScience 24(7), 102716 (2021). https://doi.org/10.1016/j.isci.2021.102716
M. Kang, T.W. Kim, Recent advances in fiber-shaped electronic devices for wearable applications. Appl. Sci. 11(13), 6131 (2021). https://doi.org/10.3390/app11136131
W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang et al., Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26(31), 5310–5336 (2014). https://doi.org/10.1002/adma.201400633
A. Malik, B. Kandasubramanian, Flexible polymeric substrates for electronic applications. Polym. Rev. 58(4), 630–667 (2018). https://doi.org/10.1080/15583724.2018.1473424
X. Chen, W. Guo, L. Xie, C. Wei, J. Zhuang et al., Embedded Ag/Ni metal-mesh with low surface roughness as transparent conductive electrode for optoelectronic applications. ACS Appl. Mater. Interfaces 9(42), 37048–37054 (2017). https://doi.org/10.1021/acsami.7b11779
L. Gillan, J. Hiltunen, M.H. Behfar, K. Rönkä, Advances in design and manufacture of stretchable electronics. Jpn. J. Appl. Phys. 61(SE), SE0804 (2022). https://doi.org/10.35848/1347-4065/ac586f
K. Srinivas, A.L. Naidu, M.R. Bahubalendruni, A review on chemical and mechanical properties of natural fiber reinforced polymer composites. Int. J. Perform. Eng. 13(2), 189 (2017). https://doi.org/10.23940/ijpe.17.02.p8.189200
J.L. Wang, M. Hassan, J.W. Liu, S.H. Yu, Nanowire assemblies for flexible electronic devices: recent advances and perspectives. Adv. Mater. 30(48), 1803430 (2018). https://doi.org/10.1002/adma.201803430
Y.S. Guan, Z. Zhang, Y. Tang, J. Yin, S. Ren, Kirigami-inspired nanoconfined polymer conducting nanosheets with 2000% stretchability. Adv. Mater. 30(20), 1706390 (2018). https://doi.org/10.1002/adma.201706390
X. Shi, S. Liu, Y. Sun, J. Liang, Y. Chen, Lowering internal friction of 0D–1D–2D ternary nanocomposite-based strain sensor by fullerene to boost the sensing performance. Adv. Funct. Mater. 28(22), 1800850 (2018). https://doi.org/10.1002/adfm.201800850
K. Zulkowski, Understanding moisture-associated skin damage, medical adhesive-related skin injuries, and skin tears. Adv. Skin Wound Care 30(8), 372–381 (2017). https://doi.org/10.1097/01.ASW.0000521048.64537.6e
T. Kim, T. Lee, G. Lee, Y.W. Choi, S.M. Kim et al., Polyimide encapsulation of spider-inspired crack-based sensors for durability improvement. Appl. Sci. 8(3), 367 (2018). https://doi.org/10.3390/app8030367
T. Rutt, N. Eskandari, M. Zhurova, J.A. Elliott, L.E. McGann et al., Thermal expansion of substrate may affect adhesion of Chinese hamster fibroblasts to surfaces during freezing. Cryobiology 86, 134–139 (2019). https://doi.org/10.1016/j.cryobiol.2018.10.006
W.A. MacDonald, M. Looney, D. MacKerron, R. Eveson, R. Adam et al., Latest advances in substrates for flexible electronics. J. Soc. Inf. Disp. 15(12), 1075–1083 (2007). https://doi.org/10.1002/9783527679973.ch10
S. Ling, D.L. Kaplan, M.J. Buehler, Nanofibrils in nature and materials engineering. Nat. Rev. Mater. 3(4), 18016 (2018). https://doi.org/10.1038/natrevmats.2018.16
G. Abbas, M. Hassan, Q. Khan, H. Wang, G. Zhou et al., A low power-consumption and transient nonvolatile memory based on highly dense all-inorganic perovskite films. Adv. Electron. Mater. 8(9), 2101412 (2022). https://doi.org/10.1002/aelm.202101412
F.D. Giacomo, A. Fakharuddin, R. Jose, T.M. Brown, Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ. Sci. 9(10), 3007–3035 (2016). https://doi.org/10.1039/C6EE01137C
A. Ehrmann, T. Blachowicz, Recent coating materials for textile-based solar cells. AIMS Mater. Sci. 6(2), 234–251 (2019). https://doi.org/10.3934/matersci.2019.2.234
P. Liu, Z. Gao, L. Xu, X. Shi, X. Fu et al., Polymer solar cell textiles with interlaced cathode and anode fibers. J. Mater. Chem. A 6(41), 19947–19953 (2018). https://doi.org/10.1039/C8TA06510A
H. Hu, B. Dong, B. Chen, X. Gao, D. Zou, High performance fiber-shaped perovskite solar cells based on lead acetate precursor. Sustain. Energy Fuels 2(1), 79–84 (2018). https://doi.org/10.1039/C7SE00462A
S. Lee, Y. Lee, J. Park, D. Choi, Stitchable organic photovoltaic cells with textile electrodes. Nano Energy 9, 88–93 (2014). https://doi.org/10.1016/j.nanoen.2014.06.017
G. Dennler, M.C. Scharber, C.J. Brabec, Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 21(13), 1323–1338 (2009). https://doi.org/10.1002/adma.200801283
Y. Lan, Y. Wang, Y. Song, Efficient flexible perovskite solar cells based on a polymer additive. Flex. Print. Electron. 5(1), 014001 (2020). https://doi.org/10.1088/2058-8585/ab5ce3
Y. Xiao, J. Wu, G. Yue, J. Lin, M. Huang et al., Fabrication of high performance Pt/Ti counter electrodes on Ti mesh for flexible large-area dye-sensitized solar cells. Electrochem. Acta 58, 621–627 (2011). https://doi.org/10.1016/j.electActa2011.10.008
S. Pan, Z. Yang, H. Li, L. Qiu, H. Sun et al., Efficient dye-sensitized photovoltaic wires based on an organic redox electrolyte. J. Am. Chem. Soc. 135(29), 10622–10625 (2013). https://doi.org/10.1021/ja405012w
L. Qiu, S. He, J. Yang, J. Deng, H. Peng, Fiber-shaped perovskite solar cells with high power conversion efficiency. Small 12(18), 2419–2424 (2016). https://doi.org/10.1002/smll.201600326
F. Pichot, J.R. Pitts, B.A. Gregg, Low-temperature sintering of TiO2 colloids: application to flexible dye-sensitized solar cells. Langmuir 16(13), 5626–5630 (2000). https://doi.org/10.1021/la000095i
M. Jacoby, The future of low-cost solar cells. Chem. Eng. News 94(18), 30–35 (2016)
O. Mohiuddin, M. Obaidullah, C. Sabah, Improvement in dye sensitized solar cells from past to present. Opt. Quantum Electron. 50(10), 377 (2018). https://doi.org/10.1007/s11082-018-1647-1
G. Li, L. Sheng, T. Li, J. Hu, P. Li et al., Engineering flexible dye-sensitized solar cells for portable electronics. Sol. Energy 177, 80–98 (2019). https://doi.org/10.1016/j.solener.2018.11.017
J. Xu, M. Li, L. Wu, Y. Sun, L. Zhu et al., A flexible polypyrrole-coated fabric counter electrode for dye-sensitized solar cells. J. Power Sources 257, 230–236 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.123
B.D. Choudhury, C. Lin, S.M.A.Z. Shawon, J. Soliz-Martinez, H. Huq et al., A photoanode with hierarchical nanoforest TiO2 structure and silver plasmonic nanops for flexible dye sensitized solar cell. Sci. Rep. 11, 7552 (2021). https://doi.org/10.1038/s41598-021-87123-z
A.A. Arbab, K.C. Sun, I.A. Sahito, M.B. Qadir, S.H. Jeong, Multiwalled carbon nanotube coated polyester fabric as textile based flexible counter electrode for dye sensitized solar cell. Phys. Chem. Chem. Phys. 17(19), 12957–12969 (2015). https://doi.org/10.1039/C5CP00818B
W. Song, H. Wang, G. Liu, M. Peng, D. Zou, Improving the photovoltaic performance and flexibility of fiber-shaped dye-sensitized solar cells with atomic layer deposition. Nano Energy 19, 1–7 (2016). https://doi.org/10.1016/j.nanoen.2015.11.006
A.A. Memon, A.A. Arbab, I.A. Sahito, K.C. Sun, N. Mengal et al., Synthesis of highly photo-catalytic and electro-catalytic active textile structured carbon electrode and its application in DSSCs. Sol. Energy 150, 521–531 (2017). https://doi.org/10.1016/j.solener.2017.04.052
M.J. Yun, S.I. Cha, S.H. Seo, D.Y. Lee, Insertion of dye-sensitized solar cells in textiles using a conventional weaving process. Sci. Rep. 5(1), 11022 (2015). https://doi.org/10.1038/srep11022
K. Opwis, J.S. Gutmann, A.R.L. Alonso, M.J.R. Henche, M.E. Mayo et al., Preparation of a textile-based dye-sensitized solar cell. Int. J. Photoenergy 2016, 3796074 (2016). https://doi.org/10.1155/2016/3796074
W. Kylberg, F.A. Castro, P. Chabrecek, U. Sonderegger, B.T.T. Chu et al., Woven electrodes for flexible organic photovoltaic cells. Adv. Mater. 23(8), 1015–1019 (2011). https://doi.org/10.1002/adma.201003391
Y. Li, S. Arumugam, C. Krishnan, M.D. Charlton, S.P. Beeby, Encapsulated textile organic solar cells fabricated by spray coating. ChemistrySelect 4(1), 407–412 (2019). https://doi.org/10.1002/slct.201803929
R. Steim, P. Chabrecek, U. Sonderegger, B. Kindle-Hasse, W. Siefert et al., Laminated fabric as top electrode for organic photovoltaics. Appl. Phys. Lett. 106(19), 193301 (2015). https://doi.org/10.1063/1.4919940
C. Eames, J.M. Frost, P.R. Barnes, B.C. O’regan, A. Walsh et al., Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015). https://doi.org/10.1038/ncomms8497
M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photon. 8(7), 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134
J.Y. Lam, J.Y. Chen, P.C. Tsai, Y.T. Hsieh, C.C. Chueh et al., A stable, efficient textile-based flexible perovskite solar cell with improved washable and deployable capabilities for wearable device applications. RSC Adv. 7(86), 54361–54368 (2017). https://doi.org/10.1039/C7RA10321B
N.A. Kyeremateng, T. Brousse, D. Pech, Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 12(1), 7–15 (2017). https://doi.org/10.1038/nnano.2016.196
L. Hu, Y.J.E. Cui, Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ. Sci. 5(4), 6423–6435 (2012). https://doi.org/10.1039/C2EE02414D
M. Hassan, G. Abbas, Y. Lu, Z. Wang, Z. Peng, A smart flexible supercapacitor enabled by a transparent electrochromic electrode composed of W18O49 nanowires/rGO composite films. J. Mater. Chem. A 10(9), 4870–4880 (2022). https://doi.org/10.1039/D1TA09795D
M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016). https://doi.org/10.1038/ncomms12647
A. Rafique, Flexible fiber-shaped supercapacitor for wearable electronics. Appl. Sci. Technol. (2019). https://doi.org/10.6092/polito/porto/2729354
A. Rafique, S. Bianco, M. Fontana, C.F. Pirri, A. Lamberti, Flexible wire-based electrodes exploiting carbon/ZnO nanocomposite for wearable supercapacitors. Ionics 23(7), 1839–1847 (2017). https://doi.org/10.1007/s11581-017-2003-3
A. Lewandowski, M. Zajder, E. Frąckowiak, F. Beguin, Supercapacitor based on activated carbon and polyethylene oxide–KOH–H2O polymer electrolyte. Electrochem. Acta 46(18), 2777–2780 (2001). https://doi.org/10.1016/S0013-4686(01)00496-0
X. Lu, M. Yu, G. Wang, Y. Tong, Y. Li, Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ. Sci. 7(7), 2160–2181 (2014). https://doi.org/10.1039/C4EE00960F
H. Wang, A.C. Forse, J.M. Griffin, N.M. Trease, L. Trognko et al., In situ NMR spectroscopy of supercapacitors: insight into the charge storage mechanism. J. Am. Chem. Soc. 135(50), 18968–18980 (2013). https://doi.org/10.1021/ja410287s
A. Rafique, U. Zubair, M. Serrapede, M. Fontana, S. Bianco et al., Binder free and flexible asymmetric supercapacitor exploiting Mn3O4 and MoS2 nanoflakes on carbon fibers. Nanomaterials 10(6), 1084 (2020). https://doi.org/10.3390/nano10061084
M. Serrapede, A. Rafique, M. Fontana, A. Zine, P. Rivolo et al., Fiber-shaped asymmetric supercapacitor exploiting rGO/Fe2O3 aerogel and electrodeposited MnOx nanosheets on carbon fibers. Carbon 144, 91–100 (2019). https://doi.org/10.1016/j.carbon.2018.12.002
C. Largeot, C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi et al., Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130(9), 2730–2731 (2008). https://doi.org/10.1021/ja7106178
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008). https://doi.org/10.1038/nmat2297
M. Yang, Z. Zhou, Recent breakthroughs in supercapacitors boosted by nitrogen-rich porous carbon materials. Adv. Sci. 4(8), 1600408 (2017). https://doi.org/10.1002/advs.201600408
B.E. Conway, V. Birss, J. Wojtowicz, The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources 66(1–2), 1–14 (1997). https://doi.org/10.1016/S0378-7753(96)02474-3
S. Aderyani, P. Flouda, S. Shah, M. Green, J. Lutkenhaus et al., Simulation of cyclic voltammetry in structural supercapacitors with pseudocapacitance behavior. Electrochem. Acta 390, 138822 (2021). https://doi.org/10.1016/j.electActa2021.138822
T. Brousse, D. Bélanger, J.W. Long, To be or not to be pseudocapacitive? J. Electrochem. Soc. 162(5), A5185 (2015). https://doi.org/10.1149/2.0201505jes
J. Kim, J. Yin, X. Xuan, J.Y. Park, A flexible cable-shaped supercapacitor based on carbon fibers coated with graphene flakes for wearable electronic applications. Micro Nano Syst. Lett. 7(1), 4 (2019). https://doi.org/10.1186/s40486-019-0083-8
X.Y. Fu, Z.D. Chen, Y.L. Zhang, D.D. Han, J.N. Ma et al., Direct laser writing of flexible planar supercapacitors based on GO and black phosphorus quantum dot nanocomposites. Nanoscale 11(18), 9133–9140 (2019). https://doi.org/10.1039/C9NR02530H
F. Meng, Q. Li, L. Zheng, Flexible fiber-shaped supercapacitors: design, fabrication, and multi-functionalities. Energy Storage Mater. 8, 85–109 (2017). https://doi.org/10.1016/j.ensm.2017.05.002
S. Wang, Y. Shao, W. Liu, Y. Wu, X. Hao, Elastic sandwich-type GaN/MnO2/MnON composites for flexible supercapacitors with high energy density. J. Mater. Chem. A 6(27), 13215–13224 (2018). https://doi.org/10.1039/C8TA04182B
Y. Shao, J. Li, Y. Li, H. Wang, Q. Zhang et al., Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Mater. Horiz. 4(6), 1145–1150 (2017). https://doi.org/10.1039/C7MH00441A
N. Liu, W. Ma, J. Tao, X. Zhang, J. Su et al., Cable-type supercapacitors of three-dimensional cotton thread based multi-grade nanostructures for wearable energy storage. Adv. Mater. 25(35), 4925–4931 (2013). https://doi.org/10.1002/adma.201301311
P.S. Shewale, K.S. Yun, NiCo2O4/rGO hybrid nanostructures on surface-modified Ni core for flexible wire-shaped supercapacitor. Nanomaterials 11(4), 852 (2021). https://doi.org/10.3390/nano11040852
P.Y. Erdogan, A. Yavuz, N. Ozdemir, H. Zengin, Synthesis of CoOx from ethaline on a stainless steel mesh for supercapacitor applications. Chem. Pap. 75(6), 2617–2624 (2021). https://doi.org/10.1007/s11696-021-01512-2
R. Zhang, C. Chen, H. Yu, S. Cai, Y. Xu et al., All-solid-state wire-shaped asymmetric supercapacitor based on binder-free CuO nanowires on copper wire and PPy on carbon fiber electrodes. J. Electroanal. Chem. 893, 115323 (2021). https://doi.org/10.1016/j.jelechem.2021.115323
W. Cao, Y. Gong, W. Wang, M. Chen, J. Yang et al., Rationally designed hierarchical C/TiO2/Ti multilayer core–sheath wires for high-performance energy storage devices. Nanoscale 13(18), 8658–8664 (2021). https://doi.org/10.1039/D1NR00814E
K. Jost, C.R. Perez, J.K. McDonough, V. Presser, M. Heon et al., Carbon coated textiles for flexible energy storage. Energy Environ. Sci. 4(12), 5060–5067 (2011). https://doi.org/10.1039/C1EE02421C
X. Ling, G. Zhang, Z. Long, X. Lu, Z. He et al., Core–shell structure γ-MnO2-PANI carbon fiber paper-based flexible electrode material for high-performance supercapacitors. J. Ind. Eng. Chem. 99, 317–325 (2021). https://doi.org/10.1016/j.jiec.2021.04.044
P. Avasthi, A. Kumar, V. Balakrishnan, Aligned CNT forests on stainless steel mesh for flexible supercapacitor electrode with high capacitance and power density. ACS Appl. Nano Mater. 2(3), 1484–1495 (2019). https://doi.org/10.1021/acsanm.8b02355
P. Chen, J.J. Yang, S.S. Li, Z. Wang, T.Y. Xiao et al., Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy 2(2), 249–256 (2013). https://doi.org/10.1016/j.nanoen.2012.09.003
G. Kamble, A. Kashale, A. Rasal, S. Dengale, S. Kolekar et al., Investigating the influence of reflux condensation reaction temperature on the growth of FeCo2O4 thin film for flexible supercapacitor. ChemistrySelect 6(8), 1838–1844 (2021). https://doi.org/10.1002/slct.202004544
S.U. Rahman, P. Röse, M. Surati, A.H.A. Shah, U. Krewer et al., 3D polyaniline nanofibers anchored on carbon paper for high-performance and light-weight supercapacitors. Polymers 12(11), 2705 (2020). https://doi.org/10.3390/polym12112705
J. Ren, L. Li, C. Chen, X. Chen, Z. Cai et al., Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater. 25(8), 1155–1159 (2013). https://doi.org/10.1002/adma.201203445
X. Chen, H. Lin, J. Deng, Y. Zhang, X. Sun et al., Electrochromic fiber-shaped supercapacitors. Adv. Mater. 26(48), 8126–8132 (2014). https://doi.org/10.1002/adma.201403243
J. Lee, Surface-engineered flexible fibrous supercapacitor electrode for improved electrochemical performance. Appl. Surf. Sci. 539, 148290 (2021). https://doi.org/10.1016/j.apsusc.2020.148290
X. Hong, J. Fu, Y. Liu, S. Li, B. Liang, Strawberry-like carbonized cotton cloth@ polyaniline nanocomposite for high-performance symmetric supercapacitors. Mater. Chem. Phys. 258, 123999 (2021). https://doi.org/10.1016/j.matchemphys.2020.123999
C. Shen, Y. Xie, B. Zhu, M. Sanghadasa, Y. Tang et al., Wearable woven supercapacitor fabrics with high energy density and load-bearing capability. Sci. Rep. 7(1), 14324 (2017). https://doi.org/10.1038/s41598-017-14854-3
Y.J. Gu, W. Wen, J.M. Wu, Simple air calcination affords commercial carbon cloth with high areal specific capacitance for symmetrical supercapacitors. J. Mater. Chem. A 6(42), 21078–21086 (2018). https://doi.org/10.1039/C8TA07561A
K. Allado, M. Liu, A. Jayapalan, D. Arvapalli, K. Nowlin et al., Binary MnO2/Co3O4 metal oxides wrapped on superaligned electrospun carbon nanofibers as binder free supercapacitor electrodes. Energy Fuels 35(9), 8396–8405 (2021). https://doi.org/10.1021/acs.energyfuels.1c00556
A. Basu, Smart electronic yarns and wearable fabrics for human biomonitoring, in Nanosensors and Nanodevices for Smart Multifunctional Textiles. ed. by A. Ehrmann, T.A. Nguyen, P.N. Tri (Elsevier, Amsterdam, 2021), pp.109–123. https://doi.org/10.1016/B978-0-12-820777-2.00007-8
S. Qin, K.A.S. Usman, D. Hegh, S. Seyedin, Y. Gogotsi et al., Development and applications of mxene-based functional fibers. ACS Appl. Mater. Interfaces 13(31), 36655–36669 (2021). https://doi.org/10.1021/acsami.1c08985
W. Eom, H. Shin, R.B. Ambade, S.H. Lee, K.H. Lee et al., Large-scale wet-spinning of highly electroconductive MXene fibers. Nat. Commun. 11, 2825 (2020). https://doi.org/10.1038/s41467-020-16671-1
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
A. Levitt, J. Zhang, G. Dion, Y. Gogotsi, J.M. Razal, MXene-based fibers, yarns, and fabrics for wearable energy storage devices. Adv. Funct. Mater. 30(47), 2000739 (2020). https://doi.org/10.1002/adfm.202000739
Y. Li, Z. Lu, B. Xin, Y. Liu, Y. Cui et al., All-solid-state flexible supercapacitor of carbonized MXene/cotton fabric for wearable energy storage. Appl. Surf. Sci. 528, 146975 (2020). https://doi.org/10.1016/j.apsusc.2020.146975
R. Liu, J. Li, M. Li, Q. Zhang, G. Shi et al., Mxene-coated air-permeable pressure-sensing fabric for smart wear. ACS Appl. Mater. Interfaces 12(41), 46446–46454 (2020). https://doi.org/10.1021/acsami.0c11715
M. Salauddin, S.S. Rana, M.T. Rahman, M. Sharifuzzaman, P. Maharjan et al., Fabric-assisted MXene/silicone nanocomposite-based triboelectric nanogenerators for self-powered sensors and wearable electronics. Adv. Funct. Mater. 32(5), 2107143 (2022). https://doi.org/10.1002/adfm.202107143
J. Zhang, S. Uzun, S. Seyedin, P.A. Lynch, B. Akuzum et al., Additive-free MXene liquid crystals and fibers. ACS Cent. Sci. 6(2), 254–265 (2020). https://doi.org/10.1021/acscentsci.9b01217
A. Levitt, S. Seyedin, J. Zhang, X. Wang, J.M. Razal et al., Bath electrospinning of continuous and scalable multifunctional MXene-infiltrated nanoyarns. Small 16(26), 2002158 (2020). https://doi.org/10.1002/smll.202002158
N. He, S. Patil, J. Qu, J. Liao, F. Zhao et al., Effects of electrolyte mediation and MXene size in fiber-shaped supercapacitors. ACS Appl. Mater. Interfaces 3(3), 2949–2958 (2020). https://doi.org/10.1021/acsaem.0c00024
H. Hwang, S. Byun, S. Yuk, S. Kim, S.H. Song et al., High-rate electrospun Ti3C2Tx MXene/carbon nanofiber electrodes for flexible supercapacitors. Appl. Surf. Sci. 556, 149710 (2021). https://doi.org/10.1016/j.apsusc.2021.149710
K. Jost, G. Dion, Y. Gogotsi, Textile energy storage in perspective. J. Mater. Chem. A 2(28), 10776–10787 (2014). https://doi.org/10.1039/C4TA00203B
N. Lima, A.C. Baptista, B.M.M. Faustino, S. Taborda, A. Marques et al., Carbon threads sweat-based supercapacitors for electronic textiles. Sci. Rep. 10, 7703 (2020). https://doi.org/10.1038/s41598-020-64649-2
C. Choi, J.W. Park, K.J. Kim, D.W. Lee, M.J. Andrade et al., Weavable asymmetric carbon nanotube yarn supercapacitor for electronic textiles. RSC Adv. 8(24), 13112–13120 (2018). https://doi.org/10.1039/C8RA01384E
D. Liu, Q. Zhang, H. Pei, W. Pan, Y. Liu et al., Synchronous dual roles of copper sulfide on the insulating PET fabric for high-performance portable flexible supercapacitors. Energy Fuels 35(8), 6880–6891 (2021). https://doi.org/10.1021/acs.energyfuels.1c00274
Y. Mao, Y. Li, J. Xie, H. Liu, C. Guo et al., Triboelectric nanogenerator/supercapacitor in-one self-powered textile based on PTFE yarn wrapped PDMS/MnO2NW hybrid elastomer. Nano Energy 84, 105918 (2021). https://doi.org/10.1016/j.nanoen.2021.105918
N. Fernando, H. Veldhuizen, A. Nagai, S. Zwaag, A. Abdelkader, Layer-by-layer electrode fabrication for improved performance of porous polyimide-based supercapacitors. Material 15(1), 4 (2021). https://doi.org/10.3390/ma15010004
X. Xie, B. Xin, Z. Chen, Y. Xu, Preparation and characterization of PANI-PPy/PET fabric conductive composite for supercapacitors. J. Text. Inst. 113(11), 12443–12450 (2021). https://doi.org/10.1080/00405000.2021.1992848
C. Hu, Y. Zhao, H. Cheng, Y. Wang, Z. Dong et al., Graphene microtubings: controlled fabrication and site-specific functionalization. Nano Lett. 12(11), 5879–5884 (2012). https://doi.org/10.1021/nl303243h
B. Xu, F. Wu, S. Chen, C. Zhang, G. Cao et al., Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors. Electrochem. Acta 52(13), 4595–4598 (2007). https://doi.org/10.1016/j.electActa2007.01.006
T. Zhang, H. Yue, X. Gao, F. Yao, H. Chen et al., High-performance supercapacitors based on polyaniline nanowire arrays grown on three-dimensional graphene with small pore sizes. Dalton Trans. 49(10), 3304–3311 (2020). https://doi.org/10.1039/D0DT00100G
R. Zhang, J. Ding, C. Liu, E.H. Yang, Highly stretchable supercapacitors enabled by interwoven CNTs partially embedded in PDMS. ACS Appl. Energy Mater. 1(5), 2048–2055 (2018). https://doi.org/10.1021/acsaem.8b00156
M. Kim, M.G. Gu, H. Jeong, E. Song, J.W. Jeon et al., Laser scribing of fluorinated polyimide films to generate microporous structures for high-performance micro-supercapacitor electrodes. ACS Appl. Energy Mater. 4(1), 208–214 (2020). https://doi.org/10.1021/acsaem.0c02096
W. Hu, C. Peng, W. Luo, M. Lv, X. Li et al., Graphene-based antibacterial paper. ACS Nano 4(7), 4317–4323 (2010). https://doi.org/10.1021/nn101097v
X. Sun, X. Liu, F. Li, Sulfur-doped laser-induced graphene derived from polyethersulfone and lignin hybrid for all-solid-state supercapacitor. Appl. Surf. Sci. 551, 149438 (2021). https://doi.org/10.1016/j.apsusc.2021.149438
O. Okhay, A.C. Bastos, K. Andreeva, S. Tuukkanen, A. Tkach, Reduced graphene oxide—polycarbonate electrodes on different supports for symmetric supercapacitors. J. Carbon Res. 8(1), 12 (2022). https://doi.org/10.3390/c8010012
X. Liu, A. Roberts, A. Ahmed, Z. Wang, X. Li et al., Carbon nanofibers by pyrolysis of self-assembled perylene diimide derivative gels as supercapacitor electrode materials. J. Mater. Chem. A 3(30), 15513–15522 (2015). https://doi.org/10.1039/C5TA03546E
M.R. Lee, R.D. Eckert, K. Forberich, G. Dennler, C.J. Brabec et al., Solar power wires based on organic photovoltaic materials. Science 324(5924), 232–235 (2009). https://doi.org/10.1126/science.1168539
L. Jin, R. Ma, H. Liu, W. Xu, Z. Luo et al., Boosting highly efficient hydrocarbon solvent-processed all-polymer-based organic solar cells by modulating thin-film morphology. ACS Appl. Mater. Interfaces 13(29), 34301–34307 (2021). https://doi.org/10.1021/acsami.1c07946
D. Wang, S. Hou, H. Wu, C. Zhang, Z. Chu et al., Fiber-shaped all-solid state dye sensitized solar cell with remarkably enhanced performance via substrate surface engineering and TiO2 film modification. J. Mater. Chem. 21(17), 6383–6388 (2011). https://doi.org/10.1039/C1JM00016K
Y. Fu, Z. Lv, S. Hou, H. Wu, D. Wang et al., TCO-free, flexible, and bifacial dye-sensitized solar cell based on low-cost metal wires. Adv. Energy Mater. 2(1), 37–41 (2012). https://doi.org/10.1002/aenm.201100545
M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4(6), 455–459 (2005). https://doi.org/10.1038/nmat1387
L. Chen, Y. Zhou, H. Dai, Z. Li, T. Yu et al., Fiber dye-sensitized solar cells consisting of TiO2 nanowires arrays on Ti thread as photoanodes through a low-cost, scalable route. J. Mater. Chem. A 1(38), 11790–11794 (2013). https://doi.org/10.1039/C3TA12511D
Z. Lv, J. Yu, H. Wu, J. Shang, D. Wang et al., Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array. Nanoscale 4(4), 1248–1253 (2012). https://doi.org/10.1039/C2NR11532H
Y. Fu, M. Peng, Z. Lv, X. Cai, S. Hou et al., A novel low-cost, one-step and facile synthesis of TiO2 for efficient fiber dye-sensitized solarcells. Nano Energy 2(4), 537–544 (2013). https://doi.org/10.1016/j.nanoen.2012.12.006
G. Liu, M. Peng, W. Song, H. Wang, D. Zou, An 8.07% efficient fiber dye-sensitized solar cell based on a TiO2 micron-core array and multilayer structure photoanode. Nano Energy 11, 341–347 (2015). https://doi.org/10.1016/j.nanoen.2014.10.024
L. Qiu, J. Deng, X. Lu, Z. Yang, H. Peng, Integrating perovskite solar cells into a flexible fiber. Angew. Chem. Int. Ed. 53(39), 10425–10428 (2014). https://doi.org/10.1002/anie.201404973
H. Hu, K. Yan, M. Peng, X. Yu, S. Chen et al., Fiber-shaped perovskite solar cells with 5.3% efficiency. J. Mater. Chem. A 4(10), 3901–3906 (2016). https://doi.org/10.1039/C5TA09280A
S. Gholipour, J.P. Correa-Baena, K. Domanski, T. Matsui, L. Steier et al., Highly efficient and stable perovskite solar cells based on a low-cost carbon cloth. Adv. Energy Mater. 6(20), 1601116 (2016). https://doi.org/10.1002/aenm.201601116
N. Wang, B. Sun, P. Zhao, M. Yao, W. Hu et al., Electrodeposition preparation of NiCo2O4 mesoporous film on ultrafine nickel wire for flexible asymmetric supercapacitors. J. Chem. Eng. 345, 31–38 (2018). https://doi.org/10.1016/j.cej.2018.03.147
K. Wang, Q. Meng, Y. Zhang, Z. Wei, M. Miao, High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv. Mater. 25(10), 1494–1498 (2013). https://doi.org/10.1002/adma.201204598
F. Su, X. Lv, M. Miao, High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3O4 and NiO nanops. Small 11(7), 854–861 (2015). https://doi.org/10.1002/smll.201401862
J. He, C. Lu, H. Jiang, F. Han, X. Shi et al., Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597(7874), 57–63 (2021). https://doi.org/10.1038/s41586-021-03772-0
M. Liao, C. Wang, Y. Hong, Y. Zhang, X. Cheng et al., Industrial scale production of fibre batteries by a solution-extrusion method. Nat. Nanotechnol. 17(4), 372–377 (2022). https://doi.org/10.1038/s41565-021-01062-4
A.M. Gaikwad, G.L. Whiting, D.A. Steingart, A.C. Arias, Highly flexible, printed alkaline batteries based on mesh-embedded electrodes. Adv. Mater. 23(29), 3251–3255 (2011). https://doi.org/10.1002/adma.201100894
J. Killian, B. Coffey, F. Gao, T. Poehler, P. Searson, Polypyrrole composite electrodes in an all-polymer battery system. J. Electrochem. Soc. 143(3), 936 (1996). https://doi.org/10.1149/1.1836562
A. Abouimrane, Y. Abu-Lebdeh, P.J. Alarco, M. Armand, Plastic crystal-lithium batteries: an effective ambient temperature all-solid-state power source. J. Electrochem. Soc. 151(7), A1028 (2004). https://doi.org/10.1149/1.1759971
G. Zhou, F. Li, H.M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7(4), 1307–1338 (2014). https://doi.org/10.1039/C3EE43182G
G. Jeong, Y.U. Kim, H. Kim, Y.J. Kim, H.J. Sohn, Prospective materials and applications for Li secondary batteries. Energy Environ. Sci. 4(6), 1986–2002 (2011). https://doi.org/10.1039/C0EE00831A
J. Wang, Z. Wang, J. Ni, L. Li, Electrospinning for flexible sodium-ion batteries. Energy Storage Mater. 45, 704–719 (2021). https://doi.org/10.1016/j.ensm.2021.12.022
M. Xu, D. Zhou, T. Wu, J. Qi, Q. Du et al., Self-regulation of spin polarization density propelling the ion diffusion kinetics for flexible potassium-ion batteries. Adv. Funct. Mater. 32(35), 2203263 (2022). https://doi.org/10.1002/adfm.202203263
H. Liu, P. He, G. Wang, Y. Liang, C. Wang et al., Thin, flexible sulfide-based electrolyte film and its interface engineering for high performance solid-state lithium metal batteries. J. Chem. Eng. 430, 132991 (2022). https://doi.org/10.1016/j.cej.2021.132991
R. Gao, Q. Zhang, Y. Zhao, Z. Han, C. Sun et al., Regulating polysulfide redox kinetics on a self-healing electrode for high-performance flexible lithium–sulfur batteries. Adv. Funct. Mater. 32(15), 2110313 (2022). https://doi.org/10.1002/adfm.202110313
X.X. Wang, X. Yang, H. Liu, T. Han, J. Hu et al., Air electrodes for flexible and rechargeable Zn–air batteries. Small Struct. 3(1), 2100103 (2022). https://doi.org/10.1002/sstr.202100103
Y. Wang, H.Y. Kwok, W. Pan, Y. Zhang, H. Zhang et al., Combining Al–air battery with paper-making industry, a novel type of flexible primary battery technology. Electrochim. Acta 319, 947–957 (2019). https://doi.org/10.1016/j.electActa2019.07.049
J. Zhang, H. Chen, M. Wen, K. Shen, Q. Chen et al., Lithiophilic 3D copper-based magnetic current collector for lithium-free anode to realize deep lithium deposition. Adv. Funct. Mater. 32(13), 2110110 (2022). https://doi.org/10.1002/adfm.202110110
W. Qin, Y. Chen, J. An, J. Zhang, X. Wen, 3D N-doped Li4Ti5O12 nanoribbon networks self-supported on Ti foils as advanced anode for high-performance flexible lithium-ion batteries. J. Alloys Compd. 910, 164873 (2022). https://doi.org/10.1016/j.jallcom.2022.164873
J. Zhao, H. Ren, Q. Liang, D. Yuan, S. Xi et al., High-performance flexible quasi-solid-state zinc-ion batteries with layer-expanded vanadium oxide cathode and zinc/stainless steel mesh composite anode. Nano Energy 62, 94–102 (2019). https://doi.org/10.1016/j.nanoen.2019.05.010
Y. Shi, Z. Wang, L. Wen, S. Pei, K. Chen et al., Ultrastable interfacial contacts enabling unimpeded charge transfer and ion diffusion in flexible lithium-ion batteries. Adv. Sci. 9(10), 2105419 (2022). https://doi.org/10.1002/advs.202105419
K.L. Lee, J.Y. Jung, S.W. Lee, H.S. Moon, J.W. Park, Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries. J. Power Sources 129(2), 270–274 (2004). https://doi.org/10.1016/j.jpowsour.2003.10.013
C. Li, K. Cai, L. Liang, J. Dong, X. Liu et al., Effect of surface treatment of stainless steel foils in high-performance aqueous zinc-ion battery. Energy Technol. 10(6), 2200150 (2022). https://doi.org/10.1002/ente.202200150
X. Guan, Q. Sun, C. Sun, T. Duan, W. Nie et al., Tremella-like hydrated vanadium oxide cathode with an architectural design strategy toward ultralong lifespan aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 13(35), 41688–41697 (2021). https://doi.org/10.1021/acsami.1c11560
H. Jeon, I. Cho, H. Jo, K. Kim, M.H. Ryou et al., Highly rough copper current collector: improving adhesion property between a silicon electrode and current collector for flexible lithium-ion batteries. Rsc Adv. 7(57), 35681–35686 (2017). https://doi.org/10.1039/C7RA04598K
J.Y. Choi, D.J. Lee, Y.M. Lee, Y.G. Lee, K.M. Kim et al., Silicon nanofibrils on a flexible current collector for bendable lithium-ion battery anodes. Adv. Funct. Mater. 23(17), 2108–2114 (2013). https://doi.org/10.1002/adfm.201202458
J.Z. Wang, S.L. Chou, J. Chen, S.Y. Chew, G.X. Wang et al., Like free-standing polypyrrole and polypyrrole–LiFePO4 composite films for flexible and bendable rechargeable battery. Electrochem. Commun. 10(11), 1781–1784 (2008). https://doi.org/10.1016/j.elecom.2008.09.008
J. Song, W. Wang, Y. Fang, S. Wang, D. He et al., Freestanding CuV2O6/carbon nanotube composite films for flexible aqueous zinc-ion batteries. Appl. Surf. Sci. 578, 152053 (2022). https://doi.org/10.1016/j.apsusc.2021.152053
W. Li, J. Peng, H. Li, Z. Wu, Y. Huang et al., Encapsulating nanoscale silicon inside carbon fiber as flexible self-supporting anode material for lithium-ion battery. ACS Appl. Energy Mater. 4(8), 8529–8537 (2021). https://doi.org/10.1021/acsaem.1c01713
K. Wang, S. Luo, Y. Wu, X. He, F. Zhao et al., Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries. Adv. Funct. Mater. 23(7), 846–853 (2013). https://doi.org/10.1002/adfm.201202412
X. Li, R. Lv, S. Zou, B. Na, P. Liu et al., Polyaniline nanopillars on surface cracked carbon fibers as an ultrahigh-performance cathode for a flexible rechargeable aqueous Zn-ion battery. Compos. Sci. Technol. 180, 71–77 (2019). https://doi.org/10.1016/j.compscitech.2019.05.016
Z. Zhao, H. Wu, Monolithic integration of flexible lithium-ion battery on a plastic substrate by printing methods. Nano Res. 12(10), 2477–2484 (2019). https://doi.org/10.1007/s12274-019-2471-z
P. Augustyn, P. Rytlewski, K. Moraczewski, A. Mazurkiewicz, A review on the direct electroplating of polymeric materials. J. Mater. Sci. 56(27), 14881–14899 (2021). https://doi.org/10.1007/s10853-021-06246-w
J.H. Yun, G.B. Han, Y.M. Lee, Y.G. Lee, K.M. Kim et al., Low resistance flexible current collector for lithium secondary battery. Electrochem. Solid-State Lett. 14(8), A116 (2011). https://doi.org/10.1149/1.3596721
S.W. Kim, K.Y. Cho, Current collectors for flexible lithium ion batteries: a review of materials. J. Electrochem. Sci. Technol. 6(1), 1–6 (2015). https://doi.org/10.5229/JECST.2015.6.1.1
Y. Zhang, T. Zhao, S. Yang, Y. Zhang, Y. Ma et al., Flexible PEDOT:PSS nanopapers as “anion–cation regulation” synergistic interlayers enabling ultra-stable aqueous zinc-iodine batteries. J. Energy Chem. 75, 310–320 (2022). https://doi.org/10.1016/j.jechem.2022.08.026
L. Nyholm, G. Nyström, A. Mihranyan, M. Strømme, Toward flexible polymer and paper-based energy storage devices. Adv. Mater. 23(33), 3751–3769 (2011). https://doi.org/10.1002/adma.201004134
Y. Ren, F. Meng, S. Zhang, B. Ping, H. Li et al., CNT@ MnO2 composite ink toward a flexible 3D printed micro-zinc-ion battery. Carbon Energy 4(3), 446–457 (2022). https://doi.org/10.1002/cey2.177
C. Xu, Q. Wei, M. Li, J. You, W. Song et al., Ultrafast and simple integration engineering of graphene-based flexible films with extensive tunability and simple trial in lithium-ion batteries. J. Alloys Compd. 922, 166282 (2022). https://doi.org/10.1016/j.jallcom.2022.166282
J.H. Park, W.Y. Choi, J. Yang, D. Kim, H. Gim et al., Nitrogen-rich hierarchical porous carbon paper for a free-standing cathode of lithium sulfur battery. Carbon 172, 624–636 (2021). https://doi.org/10.1016/j.carbon.2020.10.078
S. Shi, G. Wang, G. Wan, Y. Tang, G. Zhao et al., Titanium niobate (Ti2Nb10O29) anchored on nitrogen-doped carbon foams as flexible and self-supported anode for high-performance lithium ion batteries. J. Colloid Interface Sci. 587, 622–632 (2021). https://doi.org/10.1016/j.jcis.2020.11.019
L. Yang, X. Zhang, L. Yu, J. Hou, Z. Zhou et al., Atomic Fe–N4/C in flexible carbon fiber membrane as binder-free air cathode for Zn–air batteries with stable cycling over 1000 h. Adv. Mater. 34(5), 2105410 (2022). https://doi.org/10.1002/adma.202105410
D. Li, Y. Gao, C. Xie, Z. Zheng, Au-coated carbon fabric as Janus current collector for dendrite-free flexible lithium metal anode and battery. Appl. Phys. Rev. 9(1), 011424 (2022). https://doi.org/10.1063/5.0083830
P. Zhu, C. Yan, J. Zhu, J. Zang, Y. Li et al., Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium–sulfur batteries. Energy Storage Mater. 17, 220–225 (2019). https://doi.org/10.1016/j.ensm.2018.11.009
K. Zhou, W. Xu, Y. Yu, W. Zhai, Z. Yuan et al., Tunable and nacre-mimetic multifunctional electronic skins for highly stretchable contact-noncontact sensing. Small 17(31), 2100542 (2021). https://doi.org/10.1002/smll.202100542
S. Li, Y. Zhang, Y. Wang, K. Xia, Z. Yin et al., Physical sensors for skin-inspired electronics. InfoMat 2(1), 184–211 (2020). https://doi.org/10.1002/inf2.12060
J. Lee, B.L. Zambrano, J. Woo, K. Yoon, T. Lee, Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: materials, fabrications, and applications. Adv. Mater. 32(5), 1902532 (2020). https://doi.org/10.1002/adma.201902532
S. Lee, S. Franklin, F.A. Hassani, T. Yokota, M.O.G. Nayeem et al., Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 370(6519), 966–970 (2020). https://doi.org/10.1126/science.abc9735
J. Zhao, Y. Zhang, Y. Huang, J. Xie, X. Zhao et al., 3D printing fiber electrodes for an all-fiber integrated electronic device via hybridization of an asymmetric supercapacitor and a temperature sensor. Adv. Sci. 5(11), 1801114 (2018). https://doi.org/10.1002/advs.201801114
W. Wang, K. Ouaras, A.L. Rutz, X. Li, M. Gerigk et al., Inflight fiber printing toward array and 3D optoelectronic and sensing architectures. Sci. Adv. 6(40), eaba0931 (2020). https://doi.org/10.1126/sciadv.aba0931
M. Zhang, R. Guo, K. Chen, Y. Wang, J. Niu et al., Microribbons composed of directionally self-assembled nanoflakes as highly stretchable ionic neural electrodes. PNAS 117(26), 14667–14675 (2020). https://doi.org/10.1073/pnas.2003079117
L. Wang, L. Wang, Y. Zhang, J. Pan, S. Li et al., Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv. Funct. Mater. 28(42), 1804456 (2018). https://doi.org/10.1002/adfm.201804456
Y.H. Hwang, S. Kwon, J.B. Shin, H. Kim, Y.H. Son et al., Bright-multicolor, highly efficient, and addressable phosphorescent organic light-emitting fibers: toward wearable textile information displays. Adv. Funct. Mater. 31(18), 2009336 (2021). https://doi.org/10.1002/adfm.202009336
H. Mi, L. Zhong, X. Tang, P. Xu, X. Liu et al., Electroluminescent fabric woven by ultrastretchable fibers for arbitrarily controllable pattern display. ACS Appl. Mater. Interfaces 13(9), 11260–11267 (2021). https://doi.org/10.1021/acsami.0c19743
Y.J. Song, J.W. Kim, H.E. Cho, Y.H. Son, M.H. Lee et al., Fibertronic organic light-emitting diodes toward fully addressable, environmentally robust, wearable displays. ACS Nano 14(1), 1133–1140 (2020). https://doi.org/10.1021/acsnano.9b09005
T. Chen, L. Qiu, H.G. Kia, Z. Yang, H. Peng, Designing aligned inorganic nanotubes at the electrode interface: towards highly efficient photovoltaic wires. Adv. Mater. 24(34), 4623–4628 (2012). https://doi.org/10.1002/adma.201201893
L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao et al., Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014). https://doi.org/10.1038/ncomms4754
H. Xu, X. Hu, Y. Sun, H. Yang, X. Liu et al., Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Res. 8(4), 1148–1158 (2015). https://doi.org/10.1007/s12274-014-0595-8
J. Sun, Y. Huang, C. Fu, Z. Wang, Y. Huang et al., High-performance stretchable yarn supercapacitor based on PPy@ CNTs@ urethane elastic fiber core spun yarn. Nano Energy 27, 230–237 (2016). https://doi.org/10.1016/j.nanoen.2016.07.008
B. Wang, X. Fang, H. Sun, S. He, J. Ren et al., Fabricating continuous supercapacitor fibers with high performances by integrating all building materials and steps into one process. Adv. Mater. 27(47), 7854–7860 (2015). https://doi.org/10.1002/adma.201503441
S. Shabahang, F. Tan, J. Perlstein, G. Tao, O. Alvarez et al., Robust multimaterial chalcogenide fibers produced by a hybrid fiber-fabrication process. Opt. Mater. Express 7(7), 2336–2345 (2017). https://doi.org/10.1364/OME.7.002336
J. Zhao, Z. Cong, J. Hu, H. Lu, L. Wang et al., Regulating zinc electroplating chemistry to achieve high energy coaxial fiber Zn ion supercapacitor for self-powered textile-based monitoring system. Nano Energy 93, 106893 (2022). https://doi.org/10.1016/j.nanoen.2021.106893
A. Sandström, A. Asadpoordarvish, J. Enevold, L. Edman, Spraying light: ambient-air fabrication of large-area emissive devices on complex-shaped surfaces. Adv. Mater. 26(29), 4975–4980 (2014). https://doi.org/10.1002/adma.201401286
T. Chen, Z. Cai, L. Qiu, H. Li, J. Ren et al., Synthesis of aligned carbon nanotube composite fibers with high performances by electrochemical deposition. J. Mater. Chem. A 1(6), 2211–2216 (2013). https://doi.org/10.1039/C2TA01039A
A. Frutiger, J.T. Muth, D.M. Vogt, Y. Mengüç, A. Campo et al., Capacitive soft strain sensors via multicore–shell fiber printing. Adv. Mater. 27(15), 2440–2446 (2015). https://doi.org/10.1002/adma.201500072
M. Bayindir, A.F. Abouraddy, J. Arnold, J.D. Joannopoulos, Y. Fink, Thermal-sensing fiber devices by multimaterial codrawing. Adv. Mater. 18(7), 845–849 (2006). https://doi.org/10.1002/adma.200502106
J.S. Park, H. Chae, H.K. Chung, S.I. Lee, Thin film encapsulation for flexible AM-OLED: a review. Semicond. Sci. Technol. 26(3), 034001 (2011). https://doi.org/10.1088/0268-1242/26/3/034001
K. Wang, X. Zhang, J. Han, X. Zhang, X. Sun et al., High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode. ACS Appl. Mater. Interfaces 10(29), 24573–24582 (2018). https://doi.org/10.1021/acsami.8b07756
Y. Zhang, High-performance fiber-shaped lithium-ion batteries. Pure Appl. Chem. 92(5), 767–772 (2020). https://doi.org/10.1515/pac-2019-1003
N. Zhang, J. Chen, Y. Huang, W. Guo, J. Yang et al., A wearable all-solid photovoltaic textile. Adv. Mater. 28(2), 263–269 (2016). https://doi.org/10.1002/adma.201504137
R. Aigner, A. Pointner, T. Preindl, P. Parzer, M. Haller, Embroidered resistive pressure sensors: a novel approach for textile interfaces, in Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (2020). https://doi.org/10.1145/3313831.3376305
G. Kim, C.C. Vu, J. Kim, Single-layer pressure textile sensors with woven conductive yarn circuit. Appl. Sci. 10(8), 2877 (2020). https://doi.org/10.3390/app10082877
I. Šahta, I. Baltina, N. Truskovska, J. Blums, E. Deksnis, Selection of conductive yarns for knitting an electrical heating element. WIT Trans. Built Environ. 137, 91–102 (2014). https://doi.org/10.2495/HPSM140091
S. Takamatsu, T. Lonjaret, D. Crisp, J.M. Badier, G.G. Malliaras et al., Direct patterning of organic conductors on knitted textiles for long-term electrocardiography. Sci. Rep. 5(1), 15003 (2015). https://doi.org/10.1038/srep15003
I. Locher, G. Troster, Fundamental building blocks for circuits on textiles. IEEE Trans. Adv. Packag. 30(3), 541–550 (2007). https://doi.org/10.1109/TADVP.2007.898636
Q. Li, X. Tao, A stretchable knitted interconnect for three-dimensional curvilinear surfaces. Text. Res. J. 81(11), 1171–1182 (2011). https://doi.org/10.1177/0040517511399965
J.S. Roh, All-fabric interconnection and one-stop production process for electronic textile sensors. Text. Res. J. 87(12), 1445–1456 (2017). https://doi.org/10.1177/0040517516654108
S. Mulatier, M. Nasreldin, R. Delattre, M. Ramuz, T. Djenizian, Electronic circuits integration in textiles for data processing in wearable technologies. Adv. Mater. Technol. 3(10), 1700320 (2018). https://doi.org/10.1002/admt.201700320
A. Dhawan, A.M. Seyam, T.K. Ghosh, J.F. Muth, Woven fabric-based electrical circuits: Part I: evaluating interconnect methods. Text. Res. J. 74(10), 913–919 (2004). https://doi.org/10.1177/004051750407401011
E.R. Post, M. Orth, P.R. Russo, N. Gershenfeld, E-broidery: design and fabrication of textile-based computing. IBM Syst. J. 39(3.4), 840–860 (2000). https://doi.org/10.1147/sj.393.0840
Y. Mao, M. Zhu, W. Wang, D. Yu, Well-defined silver conductive pattern fabricated on polyester fabric by screen printing a dopamine surface modifier followed by electroless plating. Soft Matter 14(7), 1260–1269 (2018). https://doi.org/10.1039/C7SM02246H
H. Jin, N. Matsuhisa, S. Lee, M. Abbas, T. Yokota et al., Enhancing the performance of stretchable conductors for e-textiles by controlled ink permeation. Adv. Mater. 29(21), 1605848 (2017). https://doi.org/10.1002/adma.201605848
T. Plötz, J. Healey, K. Laerhoven, ISWC 2020. IEEE Pervasive Comput. 20(1), 45–49 (2021). https://doi.org/10.1109/MPRV.2020.3044119
C. Cano-Raya, Z.Z. Denchev, S.F. Cruz, J.C. Viana, Chemistry of solid metal-based inks and pastes for printed electronics–a review. Appl. Mater. Today 15, 416–430 (2019). https://doi.org/10.1016/j.apmt.2019.02.012
H. Sun, X. Fu, S. Xie, Y. Jiang, H. Peng, Electrochemical capacitors with high output voltages that mimic electric eels. Adv. Mater. 28(10), 2070–2076 (2016). https://doi.org/10.1002/adma.201505742
X. Chen, H. Sun, Z. Yang, G. Guan, Z. Zhang et al., A novel “energy fiber” by coaxially integrating dye-sensitized solar cell and electrochemical capacitor. J. Mater. Chem. A 2(6), 1897–1902 (2014). https://doi.org/10.1039/C3TA13712K
Z. Yang, J. Deng, H. Sun, J. Ren, S. Pan et al., Self-powered energy fiber: energy conversion in the sheath and storage in the core. Adv. Mater. 26(41), 7038–7042 (2014). https://doi.org/10.1002/adma.201401972
L. Li, Z. Lou, D. Chen, W. Han, G. Shen, Hollow polypyrrole sleeve based coaxial fiber supercapacitors for wearable integrated photosensing system. Adv. Mater. Technol. 3(8), 1800115 (2018). https://doi.org/10.1002/admt.201800115
X. Wang, B. Liu, R. Liu, Q. Wang, X. Hou et al., Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chem. Int. Ed. 126(7), 1880–1884 (2014). https://doi.org/10.1002/ange.201307581
T. Dias, P. Lugoda, C. Cork, Microchip technology used in textile materials, in High-Performance Apparel Materials, Development, and Applications. ed. by J. McLoughlin, T. Sabir (Elsevier, Amsterdam, 2018), pp.451–471. https://doi.org/10.1016/B978-0-08-100904-8.00022-5
P. Lugoda, T. Hughes-Riley, R. Morris, T. Dias, A wearable textile thermograph. Sensors 18(7), 2369 (2018). https://doi.org/10.3390/s18072369
M. Stoppa, A. Chiolerio, Wearable electronics and smart textiles: a critical review. Sensors 14(7), 11957–11992 (2014). https://doi.org/10.3390/s140711957
T. Agcayazi, K. Chatterjee, A. Bozkurt, T.K. Ghosh, Flexible interconnects for electronic textiles. Adv. Mater. Technol. 3(10), 1700277 (2018). https://doi.org/10.1002/admt.201700277
A. Psarra, Embodied RF ecologies, https://afroditipsarra.com/work/embodied-rf-ecologies. Accessed 19 Nov 2022
S. Hwang, M. Kang, A. Lee, S. Bae, S.K. Lee et al., Integration of multiple electronic components on a microfibre towards an emerging electronic textile platform. Nat. Commun. 13, 3173 (2022). https://doi.org/10.1038/s41467-022-30894-4
R. Lin, H.J. Kim, S. Achavananthadith, Z. Xiong, J.K. Lee et al., Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nat. Commun. 13, 2190 (2022). https://doi.org/10.1038/s41467-022-29859-4
Y.T. Tsukada, M. Tokita, H. Murata, Y. Hirasawa, K. Yodogawa et al., Validation of wearable textile electrodes for ECG monitoring. Heart Vessels 34(7), 1203–1211 (2019). https://doi.org/10.1007/s00380-019-01347-8
E-textiles & smart clothing market surpass $15,018.9 Mn by 2028. Acumen Research and Consulting, (2021). https://www.globenewswire.com/news-release/2021/12/09/2349113/0/en/E-Textiles-Smart-Clothing-Market-Surpass-15-018-9-Mn-by-2028-CAGR-32-3-Says-Acumen-Research-and-Consulting.html
G. Scarano, Smart Clothing Shipments to Reach 26.9m Units by 2022. Just Style, (2017). https://www.just-style.com/news/smart-clothing-shipments-to-reach-26-9m-units-by-2022
P. Smith, Outdoor Clothing Market Value Forecast Worldwide from 2018 Until 2026 (in million u.S. Dollars)*. Statista, (2018). https://www.statista.com/statistics/979475/outdoor-clothing-market-value-forecast-worldwide